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Preface

This is the third edition of our book Electromagnetics. It is intended as a text for use by
engineering graduate students in a first-year sequence where the basic concepts learned as
undergraduates are solidified and a conceptual foundation is established for future work
in research. It should also prove useful for practicing engineers who wish to improve their
understanding of the principles of electromagnetics, or brush up on those fundamentals
that have become cloudy with the passage of time.
The assumed background of the reader is limited to standard undergraduate topics in

physics and mathematics. These include complex arithmetic, vector analysis, ordinary
differential equations, and certain topics normally covered in a “signals and systems”
course (e.g., convolution and the Fourier transform). Further analytical tools, such as
contour integration, dyadic analysis, and separation of variables, are covered in a self-
contained mathematical appendix.
The organization of the book, as with the second edition, is in seven chapters. In

Chapter 1 we present essential background on the field concept, as well as information
related specifically to the electromagnetic field and its sources. Chapter 2 is concerned
with a presentation of Maxwell’s theory of electromagnetism. Here attention is given to
several useful forms of Maxwell’s equations, the nature of the four field quantities and of
the postulate in general, some fundamental theorems, and the wave nature of the time-
varying field. The electrostatic and magnetostatic cases are treated in Chapter 3, and an
introduction to quasistatics is provided. In Chapter 4 we cover the representation of the
field in the frequency domains: both temporal and spatial. The behavior of common engi-
neering materials is also given some attention. The use of potential functions is discussed
in Chapter 5, along with other field decompositions including the solenoidal–lamellar,
transverse–longitudinal, and TE–TM types. In Chapter 6 we present the powerful in-
tegral solution to Maxwell’s equations by the method of Stratton and Chu. Finally, in
Chapter 7 we provide introductory coverage of integral equations and discuss how they
may be used to solve a variety of problems in electromagnetics, including several classic
problems in radiation and scattering. A main mathematical appendix near the end of the
book contains brief but sufficient treatments of Fourier analysis, vector transport theo-
rems, complex-plane integration, dyadic analysis, and boundary value problems. Several
subsidiary appendices provide useful tables of identities, transforms, and so on.
The third edition of Electromagnetics includes a large amount of new material. Most

significantly, each chapter (except the first) now has a culminating section titled “Appli-
cation.” The material introduced in each chapter is applied to an area of some practical
interest, to solidify concepts and motivate their study. In Chapter 2 we examine particle
motion in static electric and magnetic fields, with applications to electron guns and cath-
ode ray tubes. Also included is a bit of material on relativistic motion to demonstrate
that knowledge of relativity can be important in engineering as well as physics. We take
a detailed look at using structures to shield static and quasistatic electric and magnetic
fields in Chapter 3, and compute shielding effectiveness for several canonical problems. In
Chapter 4 we examine the important problem of material characterization, concentrating
on planar structures. We show how measured data can be used to determine ǫ and µ, and

xxi
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describe several well-known techniques for extracting the electromagnetic parameters of
planar samples using reflection and transmission measurements. In Chapter 5 we look at
waveguides and transmission lines from an electromagnetic perspective. We treat many
classic structures such as rectangular, circular, and triangular waveguides, coaxial cables,
fiber-optic cables, slab waveguides, strip transmission lines, horn waveguides, and coni-
cal transmission lines. We also examine waveguides filled with ferrite and partially filled
with dielectrics. In Chapter 6 we investigate the properties of antennas, concentrating on
characteristics such as gain, pattern, bandwidth, and radiation resistance. We treat both
wire antennas, such as dipoles and loops, and aperture antennas, such as dish antennas.
Finally, in Chapter 7 we revisit shielding and study the penetration of electromagnetic
waves through ground plane apertures by solving integral equations. The material on
the impedance properties of antennas, covered earlier in Chapter 7, is augmented by
computing the radiation properties of slot antennas using the method of moments.

We have added many new examples, and now set them off in a smaller typeface,
indented and enclosed by solid arrows ◮ ◭. This makes them easier to locate. A large
fraction of the new examples are numerical, describing practical situations the reader
may expect to encounter. Many include graphs or tables exploring solution behavior
as relevant parameters are varied, thereby providing significant visual feedback. There
are 247 numbered examples in the third edition, including several in the mathematical
appendix.

Several other new topics are covered in the third edition. A detailed section on electro-
and magneto-quasistatics has been added to Chapter 3. This allows the concepts of ca-
pacitance and inductance to be introduced within the context of time-changing fields
without having to worry about solving Maxwell’s equations. The diffusion equation is
derived, and skin depth and internal impedance are examined — quantities crucial for
understanding shielding at low frequencies. New material on the direct solution to Gauss’
law and Ampere’s law is also added to Chapter 3. The section on plane wave propaga-
tion in layered media, covered in Chapter 4, is considerably enhanced. The wave-matrix
method for obtaining the reflected and transmitted plane-wave fields in multi-layered
media is described, and many new canonical problems are examined that are used in the
section on material characterization. In Chapter 5, the material on TE-TM decomposi-
tion of the electromagnetic fields is extended to anisotropic materials. The decomposition
is applied later in the chapter to analyze the fields in a waveguide filled with a magnetized
ferrite. Also new in Chapter 5 is a description of the solenoidal-lamellar decomposition
of solutions to the vector wave equation and vector spherical wave functions. The guided
waves application section of Chapter 5 includes new material on cascaded waveguide
systems, including using mode matching to determine the reflection and transmission
of higher-order modes at junctions between differing waveguides. Finally, new mate-
rial on the application of Fourier transforms to partial differential equations has been
added to the mathematical appendix. Solutions to Laplace’s equation are examined, and
the Fourier transform representation of the three-dimensional Green’s function for the
Helmholtz equation is derived.

We have also made some minor notational changes. We represented complex permit-
tivity and permeability in the previous editions as ǫ̃ = ǫ̃′ + jǫ̃′′ and µ̃ = µ̃′ + jµ̃′′, with
ǫ̃′′ ≤ 0 and µ̃′′ ≤ 0 for passive materials. Some readers found this objectionable, since
it is more common to write, for instance, ǫ̃ = ǫ̃′ − jǫ̃′′ with ǫ̃′′ ≥ 0 for passive materi-
als. To avoid additional confusion we now write ǫ̃ = Re ǫ̃ + j Im ǫ̃, where Im ǫ̃ ≤ 0 for
passive materials. We find this notation unambiguous, although perhaps a bit cumber-
some. There were instances in the first two editions where we wrote a wavenumber as
k = k′ + jk′′. We now use the unambiguous k = Re k + j Im k. We have transposed the
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term Kronig–Kramers, used in previous editions, to Kramers–Kronig, which is in more
common use. Finally, we have changed the terms Lorentz condition and Lorentz gauge
to Lorenz condition and Lorenz gauge; although Hendrik Antoon Lorentz has long been
associated with the equation ∇ ·A = −µǫ∂φ/∂t, it is now recognized that this equation
originated with Ludvig Valentin Lorenz [93, 204].
We would like to express our deep gratitude to colleagues who contributed to the de-

velopment of the book. The reciprocity-based derivation of the Stratton–Chu formula
was provided by Dennis P. Nyquist, as was the material on wave reflection from multiple
layers. The groundwork for our discussion of the Kramers–Kronig relations was laid by
Michael Havrilla. Material on the time-domain reflection coefficient was developed by
Jungwook Suk. Korede Oladimeji contributed to the work on field penetration through
slots, while Raenita Fenner provided material on error analysis for material characteri-
zation. We owe thanks to Leo Kempel, David Infante, and Ahmet Kizilay for carefully
reading large portions of the first edition manuscript, and to Christopher Coleman for
helping to prepare the figures. Benjamin Crowgey assisted us by reading the new appli-
cation section on material characterization, and by providing material on the TE–TM
decomposition of fields in anisotropic media. We are indebted to John E. Ross for kindly
permitting us to employ one of his computer programs for scattering from a sphere and
another for numerical Fourier transformation. Michael I. Mishchenko and Christophe
Caloz offered valuable feedback and encouragement based on their experiences with the
second edition. Finally, we would like to thank Kyra Lindholm, Michele Dimont, and
Nora Konopka of Taylor & Francis for their guidance and support throughout the pub-
lication process, and John Gandour for designing the cover.
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1

Introductory concepts

1.1 Notation, conventions, and symbology

Any book that covers a broad range of topics will likely harbor some problems with
notation and symbology. This results from having the same symbol used in different
areas to represent different quantities, and also from having too many quantities to
represent. Rather than invent new symbols, we choose to stay close to the standards and
warn the reader about any symbol used to represent more than one distinct quantity.
The basic nature of a physical quantity is indicated by typeface or by the use of a

diacritical mark. Scalars are shown in ordinary typeface: q,Φ, for example. Vectors
are shown in boldface: E,Π. Dyadics are shown in boldface with an overbar: ǭ, Ā.
Frequency-dependent quantities are indicated by a tilde, whereas time-dependent quan-
tities are written without additional indication; thus we write Ẽ(r, ω) and E(r, t). (Some
quantities, such as impedance, are used in the frequency domain to interrelate Fourier
spectra; although these quantities are frequency dependent they are seldom written in
the time domain, and hence we do not attach tildes to their symbols.) We often combine
diacritical marks: for example, ˜̄ǫ denotes a frequency domain dyadic. We distinguish
carefully between phasor and frequency domain quantities. The variable ω is used for
the frequency variable of the Fourier spectrum, while ω̌ is used to indicate the constant
frequency of a time harmonic signal. We thus further separate the notion of a phasor
field from a frequency domain field by using a check to indicate a phasor field: Ě(r).
However, there is often a simple relationship between the two, such as Ě = Ẽ(ω̌).
We designate the field and source point position vectors by r and r′, respectively, and

the corresponding relative displacement or distance vector by R:

R = r− r′.

A hat designates a vector as a unit vector (e.g., x̂). The sets of coordinate variables in
rectangular, cylindrical, and spherical coordinates are denoted by

(x, y, z),

(ρ, φ, z),

(r, θ, φ),

respectively. (In the spherical system φ is the azimuthal angle and θ is the polar angle.)
We freely use the “del” operator notation ∇ for gradient, curl, divergence, Laplacian,
and so on.
The SI (MKS) system of units is employed throughout the book.

1
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2 Electromagnetics

1.2 The field concept of electromagnetics

Introductory treatments of electromagnetics often stress the role of the field in force
transmission: the individual fields E and B are defined via the mechanical force on a
small test charge. This is certainly acceptable, but does not tell the whole story. We
might, for example, be left with the impression that the EM field always arises from
an interaction between charged objects. Often coupled with this is the notion that the
field concept is meant merely as an aid to the calculation of force, a kind of notational
convenience not placed on the same physical footing as force itself. In fact, fields are
more than useful — they are fundamental. Before discussing electromagnetic fields in
more detail, let us attempt to gain a better perspective on the field concept and its role
in modern physical theory. Fields play a central role in any attempt to describe physical
reality. They are as real as the physical substances we ascribe to everyday experience.
In the words of Einstein [55],

“It seems impossible to give an obvious qualitative criterion for distinguishing
between matter and field or charge and field.”

We must therefore put fields and particles of matter on the same footing: both carry
energy and momentum, and both interact with the observable world.

1.2.1 Historical perspective

Early nineteenth century physical thought was dominated by the action at a distance
concept, formulated by Newton more than 100 years earlier in his immensely successful
theory of gravitation. In this view the influence of individual bodies extends across space,
instantaneously affects other bodies, and remains completely unaffected by the presence
of an intervening medium. Such an idea was revolutionary; until then action by contact, in
which objects are thought to affect each other through physical contact or by contact with
the intervening medium, seemed the obvious and only means for mechanical interaction.
Priestly’s experiments in 1766 and Coulomb’s torsion-bar experiments in 1785 seemed to
indicate that the force between two electrically charged objects behaves in strict analogy
with gravitation: both forces obey inverse square laws and act along a line joining the
objects. Oersted, Ampere, Biot, and Savart soon showed that the magnetic force on
segments of current-carrying wires also obeys an inverse square law.

The experiments of Faraday in the 1830s placed doubt on whether action at a distance
really describes electric and magnetic phenomena. When a material (such as a dielec-
tric) is placed between two charged objects, the force of interaction decreases; thus, the
intervening medium does play a role in conveying the force from one object to the other.
To explain this, Faraday visualized “lines of force” extending from one charged object to
another. The manner in which these lines were thought to interact with materials they
intercepted along their path was crucial in understanding the forces on the objects. This
also held for magnetic effects. Of particular importance was the number of lines passing
through a certain area (the flux ), which was thought to determine the amplitude of the
effect observed in Faraday’s experiments on electromagnetic induction.

Faraday’s ideas presented a new world view: electromagnetic phenomena occur in the
region surrounding charged bodies, and can be described in terms of the laws governing
the “field” of his lines of force. Analogies were made to the stresses and strains in material
objects, and it appeared that Faraday’s force lines created equivalent electromagnetic
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stresses and strains in media surrounding charged objects. His law of induction was
formulated not in terms of positions of bodies, but in terms of lines of magnetic force.
Inspired by Faraday’s ideas, Gauss restated Coulomb’s law in terms of flux lines, and
Maxwell extended the idea to time-changing fields through his concept of displacement
current.
In the 1860s Maxwell created what Einstein called “the most important invention

since Newton’s time” — a set of equations describing an entirely field-based theory
of electromagnetism. These equations do not model the forces acting between bodies,
as do Newton’s law of gravitation and Coulomb’s law, but rather describe only the
dynamic, time-evolving structure of the electromagnetic field. Thus, bodies are not seen
to interact with each other, but rather with the (very real) electromagnetic field they
create, an interaction described by a supplementary equation (the Lorentz force law).
To better understand the interactions in terms of mechanical concepts, Maxwell also
assigned properties of stress and energy to the field.
Using constructs that we now call the electric and magnetic fields and potentials,

Maxwell synthesized all known electromagnetic laws and presented them as a system of
differential and algebraic equations. By the end of the nineteenth century, Hertz had
devised equations involving only the electric and magnetic fields, and had derived the
laws of circuit theory (Ohm’s law and Kirchhoff’s laws) from the field expressions. His
experiments with high-frequency fields verified Maxwell’s predictions of the existence of
electromagnetic waves propagating at finite velocity, and helped solidify the link between
electromagnetism and optics. But one problem remained: if the electromagnetic fields
propagated by stresses and strains on a medium, how could they propagate through a
vacuum? A substance called the luminiferous aether, long thought to support the trans-
verse waves of light, was put to the task of carrying the vibrations of the electromagnetic
field as well. However, the pivotal experiments of Michelson and Morely showed that the
aether was fictitious, and the physical existence of the field was firmly established.
The essence of the field concept can be conveyed through a simple thought experiment.

Consider two stationary charged particles in free space. Since the charges are stationary,
we know that (1) another force is present to balance the Coulomb force between the
charges, and (2) the momentum and kinetic energy of the system are zero. Now suppose
one charge is quickly moved and returned to rest at its original position. Action at a
distance would require the second charge to react immediately (Newton’s third law),
but by Hertz’s experiments it does not. There appears to be no change in energy of
the system: both particles are again at rest in their original positions. However, after a
time (given by the distance between the charges divided by the speed of light) we find
that the second charge does experience a change in electrical force and begins to move
away from its state of equilibrium. But by doing so it has gained net kinetic energy
and momentum, and the energy and momentum of the system seem larger than at the
start. This can only be reconciled through field theory. If we regard the field as a
physical entity, then the nonzero work required to initiate the motion of the first charge
and return it to its initial state can be seen as increasing the energy of the field. A
disturbance propagates at finite speed and, upon reaching the second charge, transfers
energy into kinetic energy of the charge. Upon its acceleration this charge also sends out
a wave of field disturbance, carrying energy with it, eventually reaching the first charge
and creating a second reaction. At any given time, the net energy and momentum of the
system, composed of both the bodies and the field, remain constant. We thus come to
regard the electromagnetic field as a true physical entity: an entity capable of carrying
energy and momentum.
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4 Electromagnetics

1.2.2 Formalization of field theory

Before we can invoke physical laws, we must find a way to describe the state of the
system we intend to study. We generally begin by identifying a set of state variables
that can depict the physical nature of the system. In a mechanical theory such as
Newton’s law of gravitation, the state of a system of point masses is expressed in terms
of the instantaneous positions and momenta of the individual particles. Hence 6N state
variables are needed to describe the state of a system of N particles, each particle having
three position coordinates and three momentum components. The time evolution of
the system state is determined by a supplementary force function (e.g., gravitational
attraction), the initial state (initial conditions), and Newton’s second law F = dP/dt.

Descriptions using finite sets of state variables are appropriate for action-at-a-distance
interpretations of physical laws such as Newton’s law of gravitation or the interaction
of charged particles. If Coulomb’s law were taken as the force law in a mechanical
description of electromagnetics, the state of a system of particles could be described
completely in terms of their positions, momenta, and charges. Of course, charged particle
interaction is not this simple. An attempt to augment Coulomb’s force law with Ampere’s
force law would not account for kinetic energy loss via radiation. Hence we abandon∗

the mechanical viewpoint in favor of the field viewpoint, selecting a different set of
state variables. The essence of field theory is to regard electromagnetic phenomena as
affecting all of space. We shall find that we can describe the field in terms of the four
vector quantities E, D, B, and H. Because these fields exist by definition at each point
in space and each time t, a finite set of state variables cannot describe the system.

Here then is an important distinction between field theories and mechanical theories:
the state of a field at any instant can only be described by an infinite number of state
variables. Mathematically we describe fields in terms of functions of continuous variables;
however, we must be careful not to confuse all quantities described as “fields” with those
fields innate to a scientific field theory. For instance, we may refer to a temperature
“field” in the sense that we can describe temperature as a function of space and time.
However, we do not mean by this that temperature obeys a set of physical laws analogous
to those obeyed by the electromagnetic field.

What special character, then, can we ascribe to the electromagnetic field that has
meaning beyond that given by its mathematical implications? In this book, E, D, B,
and H are integral parts of a field-theory description of electromagnetics. In any field
theory we need two types of fields: a mediating field generated by a source, and a field
describing the source itself. In free-space electromagnetics the mediating field consists of
E and B, while the source field is the distribution of charge or current. An important
consideration is that the source field must be independent of the mediating field that
it “sources.” Additionally, fields are generally regarded as unobservable: they can only
be measured indirectly through interactions with observable quantities. We need a link
to mechanics to observe E and B: we might measure the change in kinetic energy of
a particle as it interacts with the field through the Lorentz force. The Lorentz force
becomes the force function in the mechanical interaction that uniquely determines the
(observable) mechanical state of the particle.

A field is associated with a set of field equations and a set of constitutive relations. The
field equations describe, through partial derivative operations, both the spatial distribu-
tion and temporal evolution of the field. The constitutive relations describe the effect

∗Attempts have been made to formulate electromagnetic theory purely in action-at-a-distance terms,
but this viewpoint has not been generally adopted [59].
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of the supporting medium on the fields and are dependent upon the physical state of
the medium. The state may include macroscopic effects, such as mechanical stress and
thermodynamic temperature, as well as the microscopic, quantum-mechanical properties
of matter.
The value of the field at any position and time in a bounded region V is then determined

uniquely by specifying the sources within V , the initial state of the fields within V , and
the value of the field or finitely many of its derivatives on the surface bounding V . If
the boundary surface also defines a surface of discontinuity between adjacent regions of
differing physical characteristics, or across discontinuous sources, then jump conditions
may be used to relate the fields on either side of the surface.
The variety of forms of field equations is restricted by many physical principles, in-

cluding reference-frame invariance, conservation, causality, symmetry, and simplicity.
Causality prevents the field at time t = 0 from being influenced by events occurring at
subsequent times t > 0. Of course, we prefer that a field equation be mathematically
robust and well-posed to permit solutions that are unique and stable.
Many of these ideas are well illustrated by a consideration of electrostatics. We can

describe the electrostatic field through a mediating scalar field Φ(x, y, z) known as the
electrostatic potential. The spatial distribution of the field is governed by Poisson’s
equation

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= − ρ

ǫ0
,

where ρ = ρ(x, y, z) is the source charge density. No temporal derivatives appear, and the
spatial derivatives determine the spatial behavior of the field. The function ρ represents
the spatially averaged distribution of charge that acts as the source term for the field Φ.
Note that ρ incorporates no information about Φ. To uniquely specify the field at any
point, we must still specify its behavior over a boundary surface. We could, for instance,
specify Φ on five of the six faces of a cube and the normal derivative ∂Φ/∂n on the
remaining face. Finally, we cannot directly observe the static potential field, but we can
observe its interaction with a particle. We relate the static potential field theory to the
realm of mechanics via the electrostatic force F = qE acting on a particle of charge q.
In future chapters we shall present a classical field theory for macroscopic electromag-

netics. In that case the mediating field quantities are E, D, B, and H, and the source
field is the current density J.

1.3 The sources of the electromagnetic field

Electric charge is an intriguing natural entity. Human awareness of charge and its effects
dates back to at least 600 BC, when the Greek philosopher Thales of Miletus observed
that rubbing a piece of amber could enable the amber to attract bits of straw. Although
charging by friction is probably still the most common and familiar manifestation of
electric charge, systematic experimentation has revealed much more about the behavior
of charge and its role in the physical universe. There are two kinds of charge, to which
Benjamin Franklin assigned the respective names positive and negative. Franklin ob-
served that charges of opposite kind attract and charges of the same kind repel. He also
found that an increase in one kind of charge is accompanied by an increase in the other,
and so first described the principle of charge conservation. Twentieth-century physics
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6 Electromagnetics

has added dramatically to the understanding of charge:

1. Electric charge is a fundamental property of matter, as is mass or dimension.

2. Charge is quantized : there exists a smallest quantity (quantum) of charge that
can be associated with matter. No smaller amount has been observed, and larger
amounts always occur in integral multiples of this quantity.

3. The charge quantum is associated with the smallest subatomic particles, and these
particles interact through electrical forces. In fact, matter is organized and arranged
through electrical interactions; for example, our perception of physical contact is
merely the macroscopic manifestation of countless charges in our fingertips pushing
against charges in the things we touch.

4. Electric charge is an invariant : the value of charge on a particle does not depend on
the speed of the particle. In contrast, the mass of a particle increases with speed.

5. Charge acts as the source of an electromagnetic field; the field is an entity that can
carry energy and momentum away from the charge via propagating waves.

We begin our investigation of the properties of the electromagnetic field with a detailed
examination of its source.

1.3.1 Macroscopic electromagnetics

We are interested primarily in those electromagnetic effects that can be predicted by
classical techniques using continuous sources (charge and current densities). Although
macroscopic electromagnetics is limited in scope, it is useful in many situations en-
countered by engineers. These include, for example, the determination of currents and
voltages in lumped circuits, torques exerted by electrical machines, and fields radiated by
antennas. Macroscopic predictions can fall short in cases where quantum effects are im-
portant: e.g., with devices such as tunnel diodes. Even so, quantum mechanics can often
be coupled with classical electromagnetics to determine the macroscopic electromagnetic
properties of important materials.

Electric charge is not of a continuous nature. The quantization of atomic charge —
±e for electrons and protons, ±e/3 and ±2e/3 for quarks — is one of the most precisely
established principles in physics (verified to 1 part in 1021). The value of e itself is known
to great accuracy. The 2014 recommendation of the Committee on Data for Science and
Technology (CODATA) is

e = 1.6021766208× 10−19 Coulombs (C),

with an uncertainty of 0.0000000098× 10−19 C. However, the discrete nature of charge
is not easily incorporated into everyday engineering concerns. The strange world of the
individual charge — characterized by particle spin, molecular moments, and thermal
vibrations — is well described only by quantum theory. There is little hope that we
can learn to describe electrical machines using such concepts. Must we therefore retreat
to the macroscopic idea and ignore the discretization of charge completely? A viable
alternative is to use atomic theories of matter to estimate the useful scope of macroscopic
electromagnetics.

Remember, we are completely free to postulate a theory of nature whose scope may
be limited. Like continuum mechanics, which treats distributions of matter as if they
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were continuous, macroscopic electromagnetics is regarded as valid because it is verified
by experiment over a certain range of conditions. This applicability range generally
corresponds to dimensions on a laboratory scale, implying a very wide range of validity
for engineers.

1.3.1.1 Macroscopic effects as averaged microscopic effects

Macroscopic electromagnetics can hold in a world of discrete charges because applications
usually occur over physical scales that include vast numbers of charges. Common devices,
generally much larger than individual particles, “average” the rapidly varying fields that
exist in the spaces between charges, and this allows us to view a source as a continuous
“smear” of charge. To determine the range of scales over which the macroscopic viewpoint
is valid, we must compare averaged values of microscopic fields to the macroscopic fields
we measure in the lab. But if the effects of the individual charges are describable only in
terms of quantum notions, this task will be daunting at best. A simple compromise, which
produces useful results, is to extend the macroscopic theory right down to the microscopic
level and regard discrete charges as “point” entities that produce electromagnetic fields
according to Maxwell’s equations. Then, in terms of scales much larger than the classical
radius of an electron (≈ 10−14 m), the expected rapid fluctuations of the fields in the
spaces between charges is predicted. Finally, we ask: over what spatial scale must we
average the effects of the fields and the sources in order to obtain agreement with the
macroscopic equations?
In the spatial averaging approach, a convenient weighting function f(r) is chosen, and

is normalized so that
∫

f(r) dV = 1. An example is the Gaussian distribution

f(r) = (πa2)−3/2e−r
2/a2 ,

where a is the approximate radial extent of averaging. The spatial average of a micro-
scopic quantity F (r, t) is given by

〈F (r, t)〉 =
∫

F (r− r′, t)f(r′) dV ′. (1.1)

The scale of validity of the macroscopic model can be found by determining the averaging
radius a that produces good agreement between the averaged microscopic fields and the
macroscopic fields.

1.3.1.2 The macroscopic volume charge density

At this point we do not distinguish between the “free” charge that is unattached to a
molecular structure and the charge found near the surface of a conductor. Nor do we
consider the dipole nature of polarizable materials or the microscopic motion associated
with molecular magnetic moment or the magnetic moment of free charge. For the con-
sideration of free-space electromagnetics, we assume charge exhibits either three degrees
of freedom (volume charge), two degrees of freedom (surface charge), or one degree of
freedom (line charge).
In typical matter, the microscopic fields vary spatially over dimensions of 10−10 m

or less, and temporally over periods (determined by atomic motion) of 10−13 s or less.
At the surface of a material such as a good conductor where charge often concentrates,
averaging with a radius on the order of 10−10 m may be required to resolve the rapid
variation in the distribution of individual charged particles. However, within a solid or
liquid material, or within a free-charge distribution characteristic of a dense gas or an
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8 Electromagnetics

electron beam, a radius of 10−8 m proves useful, containing typically 106 particles. A
diffuse gas, on the other hand, may have a particle density so low that the averaging
radius takes on laboratory dimensions, and in such a case the microscopic theory must
be employed even at macroscopic dimensions.

Once the averaging radius has been determined, the value of the charge density may
be found via (1.1). The volume density of charge for an assortment of point sources can
be written in terms of the three-dimensional Dirac delta as

ρo(r, t) =
∑

i

qiδ(r− ri(t)),

where ri(t) is the position of the charge qi at time t. Substitution into (1.1) gives

ρ(r, t) = 〈ρo(r, t)〉 =
∑

i

qif(r− ri(t)) (1.2)

as the averaged charge density appropriate for use in a macroscopic field theory. Because
the oscillations of the atomic particles are statistically uncorrelated over the distances
used in spatial averaging, the time variations of microscopic fields are not present in the
macroscopic fields and temporal averaging is unnecessary. In (1.2) the time dependence
of the spatially averaged charge density is due entirely to bulk motion of the charge
aggregate (macroscopic charge motion).

With the definition of macroscopic charge density given by (1.2), we can determine
the total charge Q(t) in any macroscopic volume region V using

Q(t) =

∫

V

ρ(r, t) dV. (1.3)

We have

Q(t) =
∑

i

qi

∫

V

f(r− ri(t)) dV =
∑

ri(t)∈V
qi.

Here we ignore the small discrepancy produced by charges lying within distance a of the
boundary of V . It is common to employ a box B having volume ∆V :

f(r) =

{

1/∆V, r ∈ B,

0, r /∈ B.

In this case

ρ(r, t) =
1

∆V

∑

r−ri(t)∈B
qi. (1.4)

The size of B is chosen with the same considerations as to atomic scale as was the
averaging radius a. Discontinuities at the box edges introduce some difficulties concerning
charges that move in and out of the box because of molecular motion.

◮ Example 1.1: Volume charge density for a uniform arrangement of point charges

Point charges of value Q0 are located on a regular three-dimensional grid with separation a.
Assume the charges are located at x = ±ℓa, y = ±ma, and z = ±na for ℓ,m,n = 0, 1, 2, . . ..
Calculate the volume charge density at the origin using a cube centered at the origin as the
averaging function. Assume the cube has side length: (a) a; (b) 3a; (c) (2k + 1)a. What is
the limiting value of the charge density as the box becomes large?

Solution: We need only find the total charge within each box and use (1.4).
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(a) With side length a we count one charge within the box and have

ρ(0, t) =
Q0

a3
.

(b) A box of side length 3a contains 27 charges and

ρ(0, t) =
27Q0

(3a)3
=
Q0

a3
.

(c) A box of side length (2k + 1)a contains (2k + 1)3 charges and

ρ(0, t) =
(2k + 1)3Q0

[(2k + 1)a]3
=
Q0

a3
.

Thus, the averaged density is independent of the box size if the side length is an odd multiple
of a. ◭

As an example with a distribution of non-identical charges, we consider the following.

◮ Example 1.2: Volume charge density for an arrangement of nonuniform point charges

Point charges of value Qn = n2Q0 reside on the x-axis at the points x = ±na for n =
1, 2, 3, . . ., on the y-axis at the points y = ±na for n = 1, 2, 3, . . ., and on the z-axis at the
points z = ±na for n = 1, 2, 3, . . .. Calculate the volume charge density at the origin using
a cube centered at the origin as the averaging function. Assume the cube has side length:
(a) a; (b) 3a; (c) 5a; (d) 7a; (e) (2k + 1)a. What is the limiting value of the charge density
as the box becomes large?

Solution:

(a) With a side length a we find no charges within the box and thus ρ(0, t) = ρ(r = 0, t) = 0.
In this case the box is too small to provide a meaningful definition of charge density.

(b) With side length 3a we have a total charge in the box of Q = 6(1)2Q0 and

ρ(0, t) =
6Q0

(3a)3
= 0.222222

Q0

a3
.

(c) A box of side length 5a contains the total charge Q = 6(1)2Q0 + 6(2)2Q0 = 30Q0 and

ρ(0, t) =
30Q0

(5a)3
= 0.24

Q0

a3
.

(d) A box of side length 7a contains the total charge Q = 6(1)2Q0 + 6(2)2Q0 + 6(3)2Q0 =
84Q0 and

ρ(0, t) =
84Q0

(7a)3
= 0.244898

Q0

a3
.

(e) A box of side length (2k + 1)a contains the total charge

Q = 6Q0

k
∑

i=1

i2 = k(k + 1)(2k + 1)Q0

and

ρ(0, t) =
k(k + 1)(2k + 1)

[(2k + 1)a]3
Q0 =

k(k + 1)

(2k + 1)2
Q0

a3
.
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As the box gets large, the charge density approaches

ρ(0, t) = lim
k→∞

k(k + 1)

(2k + 1)2
Q0

a3
=

1

4

Q0

a3
= 0.25

Q0

a3
.

Thus, we can define a meaningful charge density at the origin by choosing a sufficiently large
box. ◭

The next example, involving a nonuniform distribution of identical charges, is presented
for comparison.

◮ Example 1.3: Volume charge density for a nonuniform arrangement of point charges

Charges of value Q0 Coulombs are placed at the vertices of concentric cubes centered on
the origin. The sides of the cubes, having length 2na (n = 1, 2, 3, . . .), are parallel to the
coordinate axes. Find the volume charge density at the origin using a cube as the averaging
function. Assume the cube has side length: (a) a; (b) 3a; (c) 5a (d) (2k + 1)a.

Solution:

(a) With side length a the box contains no charges and ρ(0, t) = 0. Here the box is too
small to provide a meaningful definition of charge density.

(b) A box of side 3a contains eight charges:

ρ(0, t) =
8Q0

(3a)3
= 0.296296

Q0

a3
.

(c) A box of side 5a contains sixteen charges:

ρ(0, t) =
16Q0

(5a)3
= 0.128

Q0

a3
.

(d) A box of side (2k + 1)a contains 8k charges:

ρ(0, t) =
8kQ0

[(2k + 1)a]3
=

8k

(2k + 1)3
Q0

a3
.

Because the charge density decreases with increasing box size, it is difficult to assign a
meaningful volume charge density. ◭

1.3.1.3 The macroscopic volume current density

Electric charge in motion is referred to as electric current. Charge motion can be associ-
ated with external forces and with microscopic fluctuations in position. Assuming charge
qi has velocity vi(t) = dri(t)/dt, the charge aggregate has volume current density

Jo(r, t) =
∑

i

qivi(t) δ(r − ri(t)).

Spatial averaging gives the macroscopic volume current density

J(r, t) = 〈Jo(r, t)〉 =
∑

i

qivi(t)f(r− ri(t)). (1.5)

Spatial averaging at time t eliminates currents associated with microscopic motions that
are uncorrelated at the scale of the averaging radius (again, we do not consider the
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FIGURE 1.1

Intersection of the averaging function of a point charge with a surface S, as the charge
crosses S with velocity v: (a) at some time t = t1, and (b) at t = t2 > t1. The averaging
function is represented by a sphere of radius a.

magnetic moments of particles). The assumption of a sufficiently large averaging radius
leads to

J(r, t) = ρ(r, t)v(r, t).

The total flux I(t) of current through a surface S is given by

I(t) =

∫

S

J(r, t) · n̂ dS

where n̂ is the unit normal to S. Hence, using (1.5), we have

I(t) =
∑

i

qi
d

dt
(ri(t) · n̂)

∫

S

f(r− ri(t)) dS

if n̂ stays approximately constant over the extent of the averaging function and S is not
in motion. We see that the integral effectively intersects S with the averaging function
surrounding each moving point charge (Figure 1.1). The time derivative of ri·n̂ represents
the velocity at which the averaging function is “carried across” the surface.
Electric current takes a variety of forms, each described by the relation J = ρv. Isolated

charged particles (positive and negative) and charged insulated bodies moving through
space compose convection currents. Negatively charged electrons moving through the
positive background lattice within a conductor compose a conduction current. Empirical
evidence suggests that conduction currents are also described by the relation J = σE
known as Ohm’s law. A third type of current, called electrolytic current, results from the
flow of positive or negative ions through a fluid.

1.3.2 Impressed vs. secondary sources

In addition to the simple classification given above, we may classify currents as primary
or secondary, depending on the action that sets the charge in motion.
It is helpful to separate primary or “impressed” sources, which are independent of the

fields they source, from secondary sources, which result from interactions between the
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sourced fields and the medium in which the fields exist. Most familiar is the conduc-
tion current set up in a conducting medium by an externally applied electric field. The
impressed source concept is particularly important in circuit theory, where independent
voltage sources are modeled as providing primary voltage excitations that are indepen-
dent of applied load. In this way they differ from the secondary or “dependent” sources
that react to the effect produced by the application of primary sources.

In applied electromagnetics, the primary source may be so distant that return effects
resulting from local interaction of its impressed fields can be ignored. Other examples of
primary sources include the applied voltage at the input of an antenna, the current on a
probe inserted into a waveguide, and the currents producing a power-line field in which
a biological body is immersed.

1.3.3 Surface and line source densities

Because they are spatially averaged effects, macroscopic sources and the fields they source
cannot have true spatial discontinuities. However, it is often convenient to work with
sources in one or two dimensions. Surface and line source densities are idealizations of
actual, continuous macroscopic densities.

The entity we describe as a surface charge is a continuous volume charge distributed
in a thin layer across some surface S. If the thickness of the layer is small compared to
laboratory dimensions, it is useful to assign to each point r on the surface a quantity
describing the amount of charge contained within a cylinder oriented normal to the
surface and having infinitesimal cross-section dS. We call this quantity the surface
charge density ρs(r, t), and write the volume charge density as

ρ(r, w, t) = ρs(r, t)f(w,∆),

where w is distance from S in the normal direction and ∆ in some way parameterizes the
“thickness” of the charge layer at r. The continuous density function f(x,∆) satisfies

∫ ∞

−∞
f(x,∆) dx = 1

and
lim
∆→0

f(x,∆) = δ(x).

For instance, we might have

f(x,∆) =
e−x

2/∆2

∆
√
π

. (1.6)

With this definition, the total charge contained in a cylinder normal to the surface at r
and having cross-sectional area dS is

dQ(t) =

∫ ∞

−∞
[ρs(r, t) dS] f(w,∆) dw = ρs(r, t) dS,

and the total charge contained within any cylinder oriented normal to S is

Q(t) =

∫

S

ρs(r, t) dS.

We may describe a line charge as a thin “tube” of volume charge distributed along
some contour Γ. The amount of charge contained between two planes normal to the
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contour and separated by a distance dl is described by the line charge density ρl(r, t).
The volume charge density associated with the contour is then

ρ(r, ρ, t) = ρl(r, t)fs(ρ,∆),

where ρ is the radial distance from the contour in the plane normal to Γ and fs(ρ,∆) is
a density function with the properties

∫ ∞

0

fs(ρ,∆)2πρ dρ = 1

and

lim
∆→0

fs(ρ,∆) =
δ(ρ)

2πρ
.

For example, we might have

fs(ρ,∆) =
e−ρ

2/∆2

π∆2
. (1.7)

Then the total charge contained between planes separated by a distance dl is

dQ(t) =

∫ ∞

0

[ρl(r, t) dl] fs(ρ,∆)2πρ dρ = ρl(r, t) dl

and the total charge contained between planes placed at the ends of a contour Γ is

Q(t) =

∫

Γ

ρl(r, t) dl.

We may define surface and line currents similarly. A surface current is merely a
volume current confined to the vicinity of a surface S. The volume current density may
be represented using a surface current density function Js(r, t), defined at each point r
on the surface so that

J(r, w, t) = Js(r, t)f(w,∆).

Here f(w,∆) is some appropriate density function such as (1.6), and the surface current
vector obeys n̂ ·Js = 0 where n̂ is normal to S. The total current flowing through a strip
of width dl arranged perpendicular to S at r is

dI(t) =

∫ ∞

−∞
[Js(r, t) · n̂l(r) dl] f(w,∆) dw = Js(r, t) · n̂l(r) dl

where n̂l is normal to the strip at r (and thus also tangential to S at r). The total
current passing through a strip intersecting with S along a contour Γ is thus

I(t) =

∫

Γ

Js(r, t) · n̂l(r) dl.

We may describe a line current as a thin “tube” of volume current distributed about
some contour Γ and flowing parallel to it. The amount of current passing through a
plane normal to the contour is described by the line current density Jl(r, t). The volume
current density associated with the contour may be written as

J(r, ρ, t) = û(r)Jl(r, t)fs(ρ,∆),
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where û is a unit vector along Γ, ρ is the radial distance from the contour in the plane
normal to Γ, and fs(ρ,∆) is a density function such as (1.7). The total current passing
through any plane normal to Γ at r is

I(t) =

∫ ∞

0

[Jl(r, t)û(r) · û(r)] fs(ρ,∆)2πρ dρ

= Jl(r, t).

It is often convenient to employ singular models for continuous source densities. For
instance, it is mathematically simpler to regard a surface charge as residing only in the
surface S than to regard it as being distributed about the surface. Of course, the source
is then discontinuous since it is zero everywhere outside the surface. We may obtain a
representation of such a charge distribution by letting the thickness parameter ∆ in the
density functions recede to zero, thus concentrating the source into a plane or a line. We
describe the limit of the density function in terms of the δ-function. For instance, the
volume charge distribution for a surface charge located about the xy-plane is

ρ(x, y, z, t) = ρs(x, y, t)f(z,∆).

As ∆ → 0 we have

ρ(x, y, z, t) = ρs(x, y, t) lim
∆→0

f(z,∆)

= ρs(x, y, t)δ(z).

It is a simple matter to represent singular source densities in this way as long as the
surface or line is easily parameterized in terms of constant values of coordinate variables.
However, care must be taken to represent the δ-function properly.

◮ Example 1.4: Charge density on the surface of a cone

Charge is located on the surface of a cone in spherical coordinates. If the surface charge
density is ρs(r, φ, t), determine the volume charge density.

Solution: The density of charge on the surface of a cone at θ = θ0 may be described using
the distance along the normal to this surface, which is given by rθ − rθ0:

ρ(r, θ, φ, t) = ρs(r, φ, t) δ(r[θ − θ0]).

Using the property δ(ax) = δ(x)/a, we can also write this as

ρ(r, θ, φ, t) = ρs(r, φ, t)
δ(θ − θ0)

r
. ◭

◮ Example 1.5: Total charge on the surface of a sphere

Charge on the surface of a sphere is described by the volume charge density

ρ(r, t) = 2e−3tr2 cos2 θ cos2 φ δ(r − 3) µC/m3 (0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π).

Compute the total charge Q(t) on the surface.
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Solution: Using (1.3) we have

Q(t) =

∫

ρ dV =

∫ 2π

0

∫ π

0

∫ ∞

0

2e−3tr2 cos2 θ cos2 φδ(r − 3)r2 sin θ dr dθ dφ

= 2e−3t

∫ ∞

0

r4δ(r − 3) dr

∫ π

0

cos2 θ sin θ dθ

∫ 2π

0

cos2 φdφ

= 2e−3t(81)( 2
3
)(π) = 108πe−3t µC. ◭

◮ Example 1.6: Total charge on a segment

The density of charge on a line segment parallel to the x-axis is given by the volume charge
density

ρ(r) = 10y2 sin x δ(y − 4)δ(z) nC/m3 (0 ≤ x ≤ π).

Compute the total charge Q on the line.

Solution: Using (1.3) we have

Q =

∫ ∞

−∞

∫ ∞

−∞

∫ π

0

10y2 sin x δ(y − 4)δ(z) dx dy dz

= 10

∫ π

0

sin xdx

∫ ∞

−∞

y2δ(y − 4) dy

∫ ∞

−∞

δ(z) dz = 320 nC. ◭

1.3.4 Charge conservation

There are four fundamental conservation laws in physics: conservation of energy, mo-
mentum, angular momentum, and charge. These laws are said to be absolute; they have
never been observed to fail. In that sense they are true empirical laws of physics.
However, in modern physics the fundamental conservation laws have come to represent

more than just observed facts. Each law is now associated with a fundamental symme-
try of the universe; conversely, each known symmetry is associated with a conservation
principle. For example, energy conservation can be shown to arise from the observation
that the universe is symmetric with respect to time; the laws of physics do not depend
on choice of time origin t = 0. Similarly, momentum conservation arises from the obser-
vation that the laws of physics are invariant under translation, while angular momentum
conservation arises from invariance under rotation.
The law of conservation of charge also arises from a symmetry principle. But instead

of being spatial or temporal in character, it is related to the invariance of electrostatic
potential. Experiments show that there is no absolute potential, only potential difference.
The laws of nature are invariant with respect to what we choose as the “reference”
potential. This in turn is related to the invariance of Maxwell’s equations under gauge
transforms; the values of the electric and magnetic fields do not depend on which gauge
transformation we use to relate the scalar potential Φ to the vector potential A.
We may state the conservation of charge as follows:

The net charge in any closed system remains constant with time.

This does not mean that individual charges cannot be created or destroyed, only that
the total charge in any isolated system must remain constant. Thus it is possible for a
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16 Electromagnetics

positron with charge e to annihilate an electron with charge −e without changing the
net charge of the system. Only if a system is not closed can its net charge be altered;
since moving charge constitutes current, we can say that the total charge within a system
depends on the current passing through the surface enclosing the system. This is the
essence of the continuity equation. To derive this important result we consider a closed
system within which the charge remains constant, and apply the Reynolds transport
theorem (see § A.3).

1.3.4.1 The continuity equation

Consider a region of space occupied by a distribution of charge whose velocity is given by
the vector field v. We surround a portion of charge by a surface S and let S deform as
necessary to “follow” the charge as it moves. Since S always contains precisely the same
charged particles, we have an isolated system for which the time rate of change of total
charge must vanish. An expression for the time rate of change is given by the Reynolds
transport theorem (A.68); we have†

DQ

Dt
=

D

Dt

∫

V (t)

ρ dV =

∫

V (t)

∂ρ

∂t
dV +

∮

S(t)

ρv · dS = 0.

The “D/Dt” notation indicates that the volume region V (t) moves with its enclosed
particles. Since ρv represents current density, we can write

∫

V (t)

∂ρ(r, t)

∂t
dV +

∮

S(t)

J(r, t) · dS = 0. (1.8)

In this large-scale form of the continuity equation, the partial derivative term describes
the time rate of change of the charge density for a fixed spatial position r. At any time t,
the time rate of change of charge density integrated over a volume is exactly compensated
by the total current exiting through the surrounding surface.

We can obtain the continuity equation in point form by applying the divergence the-
orem to the second term of (1.8) to get

∫

V (t)

[

∂ρ(r, t)

∂t
+∇ · J(r, t)

]

dV = 0.

Since V (t) is arbitrary, we can set the integrand to zero to obtain

∂ρ(r, t)

∂t
+∇ · J(r, t) = 0. (1.9)

This expression involves the time derivative of ρ with r fixed. We can also find an
expression in terms of the material derivative by using the transport equation (A.69).
Enforcing conservation of charge by setting that expression to zero, we have

Dρ(r, t)

Dt
+ ρ(r, t)∇ · v(r, t) = 0.

Here Dρ/Dt is the time rate of change of the charge density experienced by an observer
moving with the current.

†Note that in Appendix A we use the symbol u to represent the velocity of a material and v to represent
the velocity of an artificial surface.
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We can state the large-scale form of the continuity equation in terms of a stationary
volume. Integrating (1.9) over a stationary volume region V and using the divergence
theorem, we find that

∫

V

∂ρ(r, t)

∂t
dV = −

∮

S

J(r, t) · dS.

Since V is not changing with time, we have

dQ(t)

dt
=

d

dt

∫

V

ρ(r, t) dV = −
∮

S

J(r, t) · dS. (1.10)

Hence any increase of total charge within V must be produced by current entering V
through S.

◮ Example 1.7: Use of the continuity equation

The volume density of charge in a bounded region of space is given by

ρ(r, t) = ρ0re
−βt.

Find J and v, and verify both versions of the continuity equation in point form.

Solution: The spherical symmetry of ρ requires that J = r̂Jr. Application of (1.10) over a
sphere of radius a gives

4π
d

dt

∫ a

0

ρ0re
−βtr2 dr = −4πJr(a)a

2.

Hence

J = r̂βρ0
r2

4
e−βt

and therefore

∇ · J =
1

r2
∂

∂r
(r2Jr) = βρ0re

−βt.

The velocity is

v =
J

ρ
= r̂β

r

4
,

and we have ∇ · v = 3β/4. To verify the continuity equations, we compute the time deriva-
tives

∂ρ

∂t
= −βρ0re−βt,

Dρ

Dt
=
∂ρ

∂t
+ v · ∇ρ = −βρ0re−βt +

(

r̂β
r

4

)

·
(

r̂ρ0e
−βt
)

= − 3
4
βρ0re

−βt.

Note that the charge density decreases with time less rapidly for a moving observer than
for a stationary one (3/4 as fast): the moving observer is following the charge outward, and
ρ ∝ r. Now we can check the continuity equations. First we see

Dρ

Dt
+ ρ∇ · v = − 3

4
βρ0re

−βt + (ρ0re
−βt)

(

3
4
β
)

= 0,

as required for a moving observer; second we see

∂ρ

∂t
+∇ · J = −βρ0re−βt + βρ0e

−βt = 0,

as required for a stationary observer. ◭
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18 Electromagnetics

◮ Example 1.8: Use of the continuity equation

The charge density in a region of free space is given by

ρ(r, t) = ρ0 sin(ωt− βz).

An observer moves with constant velocity v = vẑ. At what speed v does the observer
measure zero time rate of change of charge?

Solution: The total derivative is given by (A.60) as

dρ

dt
=
∂ρ

∂t
+ v · ∇ρ.

Computing
∂ρ

∂t
= ωρ0 cos(ωt− βz) and ∇ρ = −ẑβρ0 cos(ωt− βz)

we get

dρ

dt
= ωρ0 cos(ωt− βz)− vβρ0 cos(ωt− βz) = (ω − vβ)ρ0 cos(ωt− βz).

Thus, the observer will measure no time rate of change of the charge while moving with
speed v = ω/β. ◭

1.3.4.2 The continuity equation in fewer dimensions

The continuity equation can also be used to relate current and charge on a surface or
along a line. By conservation of charge we can write

d

dt

∫

S

ρs(r, t) dS = −
∮

Γ

Js(r, t) · m̂ dl

where m̂ is the vector normal to the curve Γ and tangential to the surface S. By the
surface divergence theorem (B.26), the corresponding point form is

∂ρs(r, t)

∂t
+∇s · Js(r, t) = 0.

Here ∇s · Js is the surface divergence of the vector field Js. For instance, in rectangular
coordinates in the z = 0 plane, we have

∇s · Js =
∂Jsx
∂x

+
∂Jsy
∂y

.

In cylindrical coordinates on the cylinder ρ = a, we would have

∇s · Js =
1

a

∂Jsφ
∂φ

+
∂Jsz
∂z

.

A detailed description of vector operations on a surface may be found in Tai [188], while
many identities may be found in Van Bladel [203].

The equation of continuity for a line is easily established by reference to Figure 1.2.
Here the net charge exiting the surface during time ∆t is given by

∆t[I(u2, t)− I(u1, t)].
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FIGURE 1.2

Linear form of the continuity equation.

Thus, the rate of net increase of charge within the system is

dQ(t)

dt
=

d

dt

∫

ρl(r, t) dl = −[I(u2, t)− I(u1, t)].

The corresponding point form is found by letting the length of the curve approach zero:

∂I(l, t)

∂l
+
∂ρl(l, t)

∂t
= 0,

where l is arc length along the curve.

◮ Example 1.9: Using the 1-D continuity equation with a line source

The line current on a circular loop antenna is approximately

I(φ, t) = I0 cos
(ωa

c
φ
)

cosωt,

where a is the radius of the loop, ω is the frequency of operation, and c is the speed of light.
Find the line charge density on the loop.

Solution: Since l = aφ, we can write

I(l, t) = I0 cos

(

ωl

c

)

cosωt.

Thus

∂I(l, t)

∂l
= −I0ω

c
sin

(

ωl

c

)

cosωt = −∂ρl(l, t)
∂t

.

Integrating with respect to time and ignoring any constant (static) charge, we have

ρl(l, t) =
I0
c
sin

(

ωl

c

)

sinωt

or

ρl(φ, t) =
I0
c
sin
(ωa

c
φ
)

sinωt.
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Note that we could have used the chain rule

∂I(φ, t)

∂l
=
∂I(φ, t)

∂φ

∂φ

∂l
and

∂φ

∂l
=

[

∂l

∂φ

]−1

=
1

a

to calculate the spatial derivative. ◭

We can apply the volume density continuity equation (1.9) directly to surface and line
distributions written in singular notation.

◮ Example 1.10: Using the 3-D continuity equation with a line source

Consider the loop in the previous example. Write the volume current using singular notation
and use the volume continuity equation to find the line charge density.

Solution: We write the volume current density corresponding to the line current as

J(r, t) = φ̂ δ(ρ− a)δ(z)I(φ, t).

Substitution into (1.9) then gives

∇ · [φ̂δ(ρ− a)δ(z)I(φ, t)] = −∂ρ(r, t)
∂t

.

The divergence formula for cylindrical coordinates gives

δ(ρ− a)δ(z)
∂I(φ, t)

ρ ∂φ
= −∂ρ(r, t)

∂t
.

Next we substitute for I(φ, t) to get

− I0
ρ

ωa

c
sin
(ωa

c
φ
)

δ(ρ− a)δ(z) cosωt = −∂ρ(r, t)
∂t

.

Finally, integrating with respect to time and ignoring any constant term, we have

ρ(r, t) =
I0
c
δ(ρ− a)δ(z) sin

(ωa

c
φ
)

sinωt,

where we have set ρ = a because of the presence of the factor δ(ρ − a). From this we see
immediately that

ρl(φ, t) =
I0
c
sin
(ωa

c
φ
)

sinωt,

which is identical to the line charge density found in Example 1.9. ◭

1.3.5 Magnetic charge

We take for granted that electric fields are produced by electric charges, whether sta-
tionary or in motion. The smallest element of electric charge is the electric monopole:
a single discretely charged particle from which the electric field diverges. In contrast,
experiments show that magnetic fields are created only by currents or by time changing
electric fields; hence, magnetic fields have moving electric charge as their source. The
elemental source of magnetic field is the magnetic dipole, representing a tiny loop of
electric current (or a spinning electric particle). The observation made in 1269 by Pierre
de Maricourt, that even the smallest magnet has two poles, still holds today.

In a world filled with symmetry at the fundamental level, we find it hard to understand
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why there should not be a source from which the magnetic field diverges. We would call
such a source magnetic charge, and the most fundamental quantity of magnetic charge
would be exhibited by amagnetic monopole. In 1931 Paul Dirac invigorated the search for
magnetic monopoles by making the first strong theoretical argument for their existence.
Dirac showed that the existence of magnetic monopoles would imply the quantization
of electric charge, and would thus provide an explanation for one of the great puzzles
of science. Since that time, magnetic monopoles have become important players in the
“Grand Unified Theories” of modern physics, and in cosmological theories of the origin
of the universe.
If magnetic monopoles are ever found to exist, there will be both positive and negative

charged particles whose motions will constitute currents. We can define a macroscopic
magnetic charge density ρm and current density Jm exactly as we did with electric charge,
and use conservation of magnetic charge to provide a continuity equation:

∇ · Jm(r, t) +
∂ρm(r, t)

∂t
= 0.

With these new sources, Maxwell’s equations become appealingly symmetric. Despite
uncertainties about the existence and physical nature of magnetic monopoles, magnetic
charge and current have become an integral part of electromagnetic theory. We often use
the concept of fictitious magnetic sources to make Maxwell’s equations symmetric, and
then derive various equivalence theorems for use in the solution of important problems.
Thus we can put the idea of magnetic sources to use regardless of whether these sources
actually exist.

1.4 Problems

1.1 Write the volume charge density for a singular surface charge located on the sphere
r = r0, entirely in terms of spherical coordinates. Find the total charge on the sphere.

1.2 Repeat Problem 1.1 for a charged half plane φ = φ0.

1.3 Write the volume charge density for a singular surface charge located on the cylinder
ρ = ρ0, entirely in terms of cylindrical coordinates. Find the total charge on the cylinder.

1.4 Repeat Problem 1.3 for a charged half plane φ = φ0.

1.5 A current flows radially outward from the z-axis of cylindrical coordinates. The
volume charge density associated with the current is given by

ρ(r, t) = ρ0ρ
2e−βt

where ρ0 and β are constants. (a) Calculate the current density. (b) Show that the
following two forms of the continuity equation are satisfied:

∂ρ

∂t
+∇ · J = 0,

Dρ

Dt
+ ρ∇ · v = 0.
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1.6 Compute the total charge associated with the following volume charge densities:

(a) ρ = 4r2 cos2 θ δ(θ − π/4), 0 ≤ φ ≤ 2π, 0 ≤ r ≤ 2.

(b) ρ = 4 cos2 φ δ(ρ− 2), 0 ≤ z ≤ 2, 0 ≤ φ ≤ 2π.

(c) ρ = 4z3 δ(x)δ(y), 0 ≤ z ≤ 2.

(d) ρ = 4ρzδ(ρ− 3), 0 ≤ z ≤ 2, 0 ≤ φ ≤ 2π.

(e) ρ = 5(z + 2)δ(z)δ(ρ− 3), 0 ≤ φ ≤ π.

1.7 A charge distribution has density ρ(r, t) = 4x2e−4t C/m3. Calculate the time rate of
change of ρ measured by an observer moving with velocity v = x̂Ax. Find the value of A
such that the observer measures the same value of ρ at all times t.

1.8 The charge density in a certain region of free space is given by ρ(r, t) = 4r2e−βt C/m3.
Find the time rate of change of the charge density measured by an observer moving with
velocity v = r̂2r m/s. For what value of β is the measured time rate of change identically
zero?
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Maxwell’s theory of electromagnetism

2.1 The postulate

In 1864, James Clerk Maxwell proposed one of the most successful theories in the history
of science. In a famous memoir to the Royal Society [127], he presented nine equations
summarizing all known laws on electricity and magnetism. This was more than a mere
cataloging of the laws of nature. By postulating the need for an additional term to make
the set of equations self-consistent, Maxwell was able to put forth what is still considered
a complete theory of macroscopic electromagnetism. The beauty of Maxwell’s equations
led Boltzmann to ask, “Was it a god who wrote these lines . . . ?” [180].
Since that time, authors have struggled to find the best way to present Maxwell’s

theory. Although it is possible to study electromagnetics from an “empirical–inductive”
viewpoint (roughly following the historical order of development, beginning with static
fields), it is only by postulating the complete theory that we can do justice to Maxwell’s
vision. His concept of the existence of an electromagnetic “field” (as introduced by
Faraday) is fundamental to this theory, and has become one of the most significant
principles of modern science.
We find controversy even over the best way to present Maxwell’s equations. Maxwell

worked at a time before vector notation was completely in place, and thus chose to
use scalar variables and equations to represent the fields. Certainly the true beauty
of Maxwell’s equations emerges when they are written in vector form, and the use of
tensors reduces the equations to their underlying physical simplicity. We shall use vector
notation in this book because of its wide acceptance by engineers, but we still must
decide whether it is more appropriate to present the vector equations in integral or point
form.
On one side of this debate, the brilliant mathematician David Hilbert felt that the

fundamental natural laws should be posited as axioms, each best described in terms
of integral equations [158]. This idea has been championed by Truesdell and Toupin
[199]. On the other side, we may quote from the great physicist Arnold Sommerfeld:
“The general development of Maxwell’s theory must proceed from its differential form;
for special problems the integral form may, however, be more advantageous” ([180], p.
23). Special relativity flows naturally from the point forms, with fields easily converted
between moving reference frames. For stationary media, it seems to us that the only
difference between the two approaches arises in how we handle discontinuities in sources
and materials. If we choose to use the point forms of Maxwell’s equations, then we must
also postulate the boundary conditions at surfaces of discontinuity. This is pointed out
clearly by Tai [189], who also notes that if the integral forms are used, then their validity
across regions of discontinuity should be stated as part of the postulate.
We have decided to use the point form in this text. In doing so we follow a long

history begun by Hertz in 1890 [86] when he wrote down Maxwell’s differential equations

23
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as a set of axioms, recognizing the equations as the launching point for the theory of
electromagnetism. Also, by postulating Maxwell’s equations in point form, we can take
full advantage of modern developments in the theory of partial differential equations; in
particular, the idea of a “well-posed” theory determines what sort of information must
be specified to make the postulate useful.

We must also decide which form of Maxwell’s differential equations to use as the basis
of our postulate. There are several competing forms, each differing as to the manner in
which materials are considered. The oldest and most widely used form was suggested
by Minkowski in 1908 [132]. In the Minkowski form, the differential equations contain
no mention of the materials supporting the fields; all information about material media
is relegated to the constitutive relationships. This places simplicity of the differential
equations above intuitive understanding of the behavior of fields in materials. We choose
the Maxwell–Minkowski form as the basis of our postulate, primarily for ease of ma-
nipulation. But we also recognize the value of other versions of Maxwell’s equations.
We shall present the basic ideas behind the Boffi form, which places some information
about materials into the differential equations (although constitutive relationships are
still required). Missing, however, is any information regarding the velocity of a moving
medium. By using the polarization and magnetization vectors P and M rather than the
fields D and H, it is sometimes easier to visualize the meaning of the field vectors and
to understand (or predict) the nature of the constitutive relations.

The Chu and Amperian forms of Maxwell’s equations have been promoted as useful
alternatives to the Minkowski and Boffi forms. These include explicit information about
the velocity of a moving material, and differ somewhat from the Boffi form in the physical
interpretation of the electric and magnetic properties of matter. Although each of these
models matter in terms of charged particles immersed in free space, magnetization in the
Boffi and Amperian forms arises from electric current loops, while the Chu form employs
magnetic dipoles. In all three forms, polarization is modeled using electric dipoles. For a
detailed discussion of the Chu and Amperian forms, the reader should consult the work
of Kong [108], Tai [190], Penfield and Haus [149], or Fano, Chu, and Adler [61].

Importantly, all of these various forms of Maxwell’s equations produce the same values
of the physical fields (at least external to the material where the fields are measurable).

We must include several other constituents, besides the field equations, to make the
postulate complete. To form a complete field theory, we need a source field, a mediating
field, and a set of field differential equations. This allows us to mathematically describe
the relationship between effect (the mediating field) and cause (the source field). In
a well-posed postulate we must also include a set of constitutive relationships and a
specification of some field relationship over a bounding surface and at an initial time. If
the electromagnetic field is to have physical meaning, we must link it to some observable
quantity such as force. Finally, to allow the solution of problems involving mathematical
discontinuities, we must specify certain boundary, or “jump,” conditions.

2.1.1 The Maxwell–Minkowski equations

In Maxwell’s macroscopic theory of electromagnetics, the source field consists of the
vector field J(r, t) (the current density) and the scalar field ρ(r, t) (the charge den-
sity). In Minkowski’s form of Maxwell’s equations, the mediating field is the electromag-
netic field consisting of the set of four vector fields E(r, t), D(r, t), B(r, t), and H(r, t).
The field equations are the four partial differential equations referred to as the Maxwell
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Minkowski@Maxwell–Minkowski equations

∇×E(r, t) = − ∂

∂t
B(r, t), (2.1)

∇×H(r, t) = J(r, t) +
∂

∂t
D(r, t), (2.2)

∇ ·D(r, t) = ρ(r, t), (2.3)

∇ ·B(r, t) = 0, (2.4)

along with the continuity equation

∇ · J(r, t) = − ∂

∂t
ρ(r, t). (2.5)

Here (2.1) is called Faraday’s law, (2.2) is called Ampere’s law, (2.3) is called Gauss’s
law, and (2.4) is called the magnetic Gauss’s law. For brevity we shall often leave the
dependence on r and t implicit, and refer to the Maxwell–Minkowski equations as simply
the “Maxwell equations,” or “Maxwell’s equations.”
Equations (2.1)–(2.5), the point forms of the field equations, describe the relation-

ships between the fields and their sources at each point in space where the fields are
continuously differentiable (i.e., the derivatives exist and are continuous). Such points
are called ordinary points. We shall not attempt to define the fields at other points,
but instead seek conditions relating the fields across surfaces containing these points.
Normally this is necessary on surfaces across which either sources or material parameters
are discontinuous.
The electromagnetic fields carry SI units as follows: E is measured in Volts per meter

(V/m), B is measured in Teslas (T), H is measured in Amperes per meter (A/m), and
D is measured in Coulombs per square meter (C/m2). In older texts we find the units of
B given as Webers per square meter (Wb/m2) to reflect the role of B as a flux vector;
in that case the Weber (Wb = T·m2) is regarded as a unit of magnetic flux.

2.1.1.1 The interdependence of Maxwell’s equations

It is often claimed that the divergence equations (2.3) and (2.4) may be derived from the
curl equations (2.1) and (2.2). While this is true, it is not proper to say that only the two
curl equations are required to describe Maxwell’s theory. This is because an additional
physical assumption, not present in the two curl equations, is required to complete the
derivation. Either the divergence equations must be specified, or the values of certain
constants that fix the initial conditions on the fields must be specified. It is customary
to specify the divergence equations and include them with the curl equations to form the
complete set we now call “Maxwell’s equations.”
To identify the interdependence, we take the divergence of (2.1) to get

∇ · (∇×E) = ∇ ·
(

−∂B
∂t

)

,

hence
∂

∂t
(∇ ·B) = 0

by (B.55). This requires that ∇ ·B be constant with time, say ∇ ·B(r, t) = CB(r).
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The constant CB must be specified as part of the postulate of Maxwell’s theory, and
the choice we make is subject to experimental validation. We postulate that CB(r) = 0,
which leads us to (2.4). Note that if we can identify a time prior to which B(r, t) ≡ 0,
then CB(r) must vanish. For this reason, CB(r) = 0 and (2.4) are often called the “initial
conditions” for Faraday’s law [160].

Next we take the divergence of (2.2) to find that

∇ · (∇×H) = ∇ · J+
∂

∂t
(∇ ·D).

Using (2.5) and (B.55), we obtain

∂

∂t
(ρ−∇ ·D) = 0

and thus ρ − ∇ ·D must be some temporal constant CD(r). Again, we must postulate
the value of CD as part of the Maxwell theory. We choose CD(r) = 0 and thus obtain
Gauss’s law (2.3). If we can identify a time prior to which both D and ρ are everywhere
equal to zero, then CD(r) must vanish. Hence CD(r) = 0 and (2.3) may be regarded
as “initial conditions” for Ampere’s law. Combining the two sets of initial conditions,
we find that the curl equations imply the divergence equations, as long as we can find a
time prior to which all of the fields E,D,B,H and the sources J and ρ are equal to zero
(since all the fields are related through the curl equations, and the charge and current are
related through the continuity equation). Conversely, the empirical evidence supporting
the two divergence equations implies that such a time should exist.

Throughout this book we shall refer to the two curl equations as the “fundamental”
Maxwell equations, and to the two divergence equations as the “auxiliary” equations.
The fundamental equations describe the relationships between the fields, while, as we
have seen, the auxiliary equations provide a sort of initial condition. This does not
imply that the auxiliary equations are of lesser importance; indeed, they are required
to establish uniqueness of the fields, to derive the wave equations for the fields, and to
properly describe static fields.

2.1.1.2 Field vector terminology

Various terms are used for the field vectors, sometimes harkening back to the descriptions
used by Maxwell himself, and often based on the physical nature of the fields. We are
attracted to Sommerfeld’s separation of the fields into entities of intensity (E,B) and
entities of quantity (D,H). In this system E is called the electric field strength, B the
magnetic field strength, D the electric excitation, and H the magnetic excitation [180].
Maxwell separated the fields into a set (E,H) of vectors that appear within line integrals
to give work-related quantities, and a set (B,D) of vectors that appear within surface
integrals to give flux-related quantities; we shall see this clearly when considering the
integral forms of Maxwell’s equations. By this system, authors such as Jones [98] and
Ramo, Whinnery, and Van Duzer [156] call E the electric intensity, H the magnetic
intensity, B the magnetic flux density, and D the electric flux density.

Maxwell himself designated names for each of the vector quantities. In his classic
paper “A Dynamical Theory of the Electromagnetic Field,” [177] Maxwell referred to
the quantity we now designate E as the electromotive force, the quantity D as the elec-
tric displacement (with a time rate of change given by his now famous “displacement
current”), the quantity H as the magnetic force, and the quantity B as the magnetic
induction (although he described B as a density of lines of magnetic force). Maxwell
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also included a quantity designated electromagnetic momentum as an integral part of his
theory. We now know this as the vector potential A, which is not generally included as
a part of the electromagnetics postulate.
Many authors follow the original terminology of Maxwell, with some slight modifica-

tions. For instance, Stratton [183] calls E the electric field intensity, H the magnetic
field intensity, D the electric displacement, and B the magnetic induction. Jackson [92]
calls E the electric field, H the magnetic field, D the displacement, and B the magnetic
induction.
Other authors choose freely among combinations of these terms. For instance, Kong

[108] calls E the electric field strength, H the magnetic field strength, B the magnetic flux
density, and D the electric displacement. We do not wish to inject further confusion into
the issue of nomenclature; still, we find it helpful to use as simple a naming system as
possible. We shall refer to E as the electric field, H as the magnetic field, D as the electric
flux density, and B as the magnetic flux density. When we use the term electromagnetic
field, we imply the entire set of field vectors (E,D,B,H) used in Maxwell’s theory.

2.1.1.3 Invariance of Maxwell’s equations

Maxwell’s differential equations are valid for any system in uniform relative motion with
respect to the laboratory frame of reference in which we normally do our measurements.
The field equations describe the relationships between the source and mediating fields
within that frame of reference. This property was first proposed for moving material
media by Minkowski in 1908 (using the term covariance) [132]. For this reason, Maxwell’s
equations expressed in the form (2.1)–(2.2) are referred to as the Minkowski form.

2.1.2 Connection to mechanics

Our postulate must include a connection between the abstract quantities of charge and
field and a measurable physical quantity. A convenient means of linking electromagnetics
to other classical theories is through mechanics. We postulate that charges experience
mechanical forces given by the Lorentz force equation. If a small volume element dV
contains a total charge ρ dV , then the force experienced by that charge when moving at
velocity v in an electromagnetic field is

dF = ρ dV E+ ρv dV ×B.

As with any postulate, we verify this equation through experiment. Note that we write
the Lorentz force in terms of charge ρ dV , rather than charge density ρ, since charge is
an invariant quantity under a Lorentz transformation.
The important links between the electromagnetic fields and energy and momentum

must also be postulated. We postulate that the quantity

Sem = E×H

represents the transport density of electromagnetic power, and that the quantity

gem = D×B

represents the transport density of electromagnetic momentum.
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2.2 The well-posed nature of the postulate

It is important to investigate whether Maxwell’s equations, along with the point form
of the continuity equation, suffice as a useful theory of electromagnetics. Certainly we
must agree that a theory is “useful” as long as it is defined as such by the scientists
and engineers who employ it. In practice a theory is considered useful if it accurately
predicts the behavior of nature under given circumstances, and even a theory that often
fails may be useful if it is the best available. We choose here to take a more narrow view
and investigate whether the theory is “well-posed.”

A mathematical model for a physical problem is said to be well-posed , or correctly set,
if three conditions hold:

1. the model has at least one solution (existence);

2. the model has at most one solution (uniqueness);

3. the solution is continuously dependent on the data supplied.

The importance of the first condition is obvious: if the electromagnetic model has no
solution, it will be of little use to scientists and engineers. The importance of the second
condition is equally obvious: if we apply two different solution methods to the same
model and get two different answers, the model will not be very helpful in analysis or
design work. The third point is more subtle; it is often extended in a practical sense to
the following statement:

3′. Small changes in the data supplied produce equally small changes in the solution.

That is, the solution is not sensitive to errors in the data. To make sense of this we
must decide which quantity is specified (the independent quantity) and which remains
to be calculated (the dependent quantity). Commonly the source field (charge) is taken
as the independent quantity, and the mediating (electromagnetic) field is computed from
it; in such cases it can be shown that Maxwell’s equations are well-posed. Taking the
electromagnetic field to be the independent quantity, we can produce situations in which
the computed quantity (charge or current) changes wildly with small changes in the
specified fields. These situations (called inverse problems) are of great importance in
remote sensing, where the field is measured and the properties of the object probed are
thereby deduced.

At this point we shall concentrate on the “forward” problem of specifying the source
field (charge) and computing the mediating field (the electromagnetic field). In this case
we may question whether the first of the three conditions (existence) holds. We have
twelve unknown quantities (the scalar components of the four vector fields), but only
eight equations to describe them (from the scalar components of the two fundamental
Maxwell equations and the two scalar auxiliary equations). With fewer equations than
unknowns, we cannot be sure that a solution exists, and we refer to Maxwell’s equations
as being indefinite. To overcome this problem, we must specify more information in the
form of constitutive relations among the field quantities E, B, D, H, and J. When
these are properly formulated, the number of unknowns and the number of equations
are equal and Maxwell’s equations are in definite form. If we provide more equations
than unknowns, the solution may be nonunique. When we model the electromagnetic
properties of materials, we must supply precisely the right amount of information in the
constitutive relations, or our postulate will not be well-posed.
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Once Maxwell’s equations are in definite form, standard methods for partial differential
equations can be used to determine whether the electromagnetic model is well-posed. In
a nutshell, the system (2.1)–(2.2) of hyperbolic differential equations is well-posed if and
only if we specify E and H throughout a volume region V at some time instant, and also
specify, at all subsequent times,

1. the tangential component of E over all of the boundary surface S, or

2. the tangential component of H over all of S, or

3. the tangential component of E over part of S, and the tangential component of H
over the remainder of S.

Proof of all three of the conditions of well-posedness is quite tedious, but a simplified
uniqueness proof is often given in textbooks on electromagnetics. The procedure used
by Stratton [183] is reproduced below. The interested reader should refer to Hansen and
Yaghjian [79] for a discussion of the existence of solutions to Maxwell’s equations.

2.2.1 Uniqueness of solutions to Maxwell’s equations

Consider a simply connected region of space V bounded by a surface S, where both V
and S contain only ordinary points. The fields within V are associated with a current
distribution J, which may be internal to V (entirely or in part). By the initial conditions
that imply the auxiliary Maxwell’s equations, we know there is a time, say t = 0, prior
to which the current is zero for all time, and thus by causality the fields throughout V
are identically zero for all times t < 0. We next assume that the fields are specified
throughout V at some time t0 > 0, and seek conditions under which they are determined
uniquely for all t > t0.
Let the field set (E1,D1,B1,H1) be a solution to Maxwell’s equations (2.1)–(2.2)

associated with the current J (along with an appropriate set of constitutive relations),
and let (E2,D2,B2,H2) be a second solution associated with J. To determine the
conditions for uniqueness of the fields, we look for a situation that results in E1 = E2,
B1 = B2, and so on. The electromagnetic fields must obey

∇×E1 = −∂B1

∂t
, ∇×H1 = J+

∂D1

∂t
,

∇×E2 = −∂B2

∂t
, ∇×H2 = J+

∂D2

∂t
.

Subtracting, we have

∇× (E1 −E2) = −∂(B1 −B2)

∂t
, (2.6)

∇× (H1 −H2) =
∂(D1 −D2)

∂t
, (2.7)

hence defining E0 = E1 −E2, B0 = B1 −B2, and so on, we have

H0 · (∇×E0) = −H0 ·
∂B0

∂t
,

E0 · (∇×H0) = E0 ·
∂D0

∂t
.
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Subtracting again, we have

E0 · (∇×H0)−H0 · (∇×E0) = E0 ·
∂D0

∂t
+H0 ·

∂B0

∂t
,

hence

−∇ · (E0 ×H0) = E0 ·
∂D0

∂t
+H0 ·

∂B0

∂t

by (B.50). Integrating both sides throughout V and using the divergence theorem on the
left-hand side, we get

−
∮

S

(E0 ×H0) · dS =

∫

V

(

E0 ·
∂D0

∂t
+H0 ·

∂B0

∂t

)

dV.

Breaking S into two arbitrary portions and using (B.6), we obtain

∫

S1

E0 · (n̂×H0) dS −
∫

S2

H0 · (n̂×E0) dS =

∫

V

(

E0 ·
∂D0

∂t
+H0 ·

∂B0

∂t

)

dV.

Now if n̂×E0 = 0 or n̂×H0 = 0 over all of S, or some combination of these conditions
holds over all of S, then

∫

V

(

E0 ·
∂D0

∂t
+H0 ·

∂B0

∂t

)

dV = 0. (2.8)

This expression implies a relationship between E0, D0, B0, and H0. Since V is arbitrary,
we see that one possibility is simply to have D0 and B0 constant with time. However,
since the fields are identically zero for t < 0, if they are constant for all time then those
constant values must be zero. Another possibility is to have one of each pair (E0,D0)
and (H0,B0) equal to zero. Then, by (2.6) and (2.7), E0 = 0 implies B0 = 0, and
D0 = 0 implies H0 = 0. Thus E1 = E2, B1 = B2, and so on, and the solution is unique
throughout V . However, we cannot in general rule out more complicated relationships.
The number of possibilities depends on the additional constraints on the relationship
between E0, D0, B0, and H0 that we must supply to describe the material supporting
the field — i.e., the constitutive relationships. For a simple medium described by the
time-constant permittivity ǫ and permeability µ, (2.8) becomes

∫

V

(

E0 · ǫ
∂E0

∂t
+H0 · µ

∂H0

∂t

)

dV = 0,

or
1

2

∂

∂t

∫

V

(ǫE0 · E0 + µH0 ·H0) dV = 0.

Since the integrand is always positive or zero (and not constant with time, as mentioned
above), the only possible conclusion is that E0 and H0 must both be zero, and thus the
fields are unique.

When establishing more complicated constitutive relations, we must be careful to en-
sure that they lead to a unique solution, and that the condition for uniqueness is un-
derstood. In the case above, the assumption n̂ × E0

∣

∣

S
= 0 implies that the tangential

components of E1 and E2 are identical over S — that is, we must give specific values of
these quantities on S to ensure uniqueness. A similar statement holds for the condition
n̂ ×H0

∣

∣

S
= 0. Requiring that constitutive relations lead to a unique solution is known
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as just setting, and is one of several factors that must be considered, as discussed in the
next section.
Uniqueness implies that the electromagnetic state of an isolated region of space may

be determined without the knowledge of conditions outside the region. If we wish to
solve Maxwell’s equations for that region, we need know only the source density within
the region and the values of the tangential fields over the bounding surface. The effects
of a complicated external world are thus reduced to the specification of surface fields.
This concept has numerous applications to problems in antennas, diffraction, and guided
waves.

2.2.2 Constitutive relations

We must supply a set of constitutive relations to complete the conditions for well-
posedness. We generally split these relations into two sets. The first describes the
relationships between the electromagnetic field quantities, and the second describes me-
chanical interaction between the fields and resulting secondary sources. All of these
relations depend on the properties of the medium supporting the electromagnetic field.
Material phenomena are quite diverse, and it is remarkable that the Maxwell–Minkowski
equations hold for all phenomena yet discovered. All material effects, from nonlinearity
to chirality to temporal dispersion, are described by the constitutive relations.
The specification of constitutive relationships is required in many areas of physical

science to describe the behavior of “ideal materials”: mathematical models of actual
materials encountered in nature. For instance, in continuum mechanics the constitutive
equations describe the relationship between material motions and stress tensors [210].
Truesdell and Toupin [199] give an interesting set of “guiding principles” for the con-
cerned scientist to use when constructing constitutive relations. These include consider-
ation of consistency (with the basic conservation laws of nature), coordinate invariance
(independence of coordinate system), isotropy and aeolotropy (dependence on, or inde-
pendence of, orientation), just setting (constitutive parameters should lead to a unique
solution), dimensional invariance (similarity), material indifference (nondependence on
the observer), and equipresence (inclusion of all relevant physical phenomena in all of
the constitutive relations across disciplines).
The constitutive relations generally involve a set of constitutive parameters and a set

of constitutive operators. The constitutive parameters may be as simple as constants
of proportionality between the fields or they may be components in a dyadic relation-
ship. The constitutive operators may be linear and integro-differential in nature, or may
imply some nonlinear operation on the fields. If the constitutive parameters are spa-
tially constant within a certain region, we term the medium homogeneous within that
region. If the constitutive parameters vary spatially, the medium is inhomogeneous. If
the constitutive parameters are constants with time, we term the medium stationary;
if they are time-changing, the medium is nonstationary. If the constitutive operators
involve time derivatives or integrals, the medium is said to be temporally dispersive; if
space derivatives or integrals are involved, the medium is spatially dispersive. Examples
of all these effects can be found in common materials. It is important to note that the
constitutive parameters may depend on other physical properties of the material, such
as temperature, mechanical stress, and isomeric state, just as the mechanical constitu-
tive parameters of a material may depend on the electromagnetic properties (principle
of equipresence).
Many effects produced by linear constitutive operators, such as those associated with

temporal dispersion, have been studied primarily in the frequency domain. In this case
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temporal derivative and integral operations produce complex constitutive parameters. It
is becoming equally important to characterize these effects directly in the time domain
for use with direct time-domain field solving techniques such as the finite-difference time-
domain (FDTD) method. We shall cover the very basic properties of dispersive media
in this section. A detailed description of frequency-domain fields (and a discussion of
complex constitutive parameters) is deferred until later in this book.

It is difficult to find a simple and consistent means for classifying materials by their
electromagnetic effects. One way is to separate linear and nonlinear materials, then cate-
gorize linear materials by the way in which the fields are coupled through the constitutive
relations:

1. Isotropic materials are those in which D is related to E, B is related to H, and
the secondary source current J is related to E, with the field direction in each pair
aligned.

2. In anisotropic materials the pairings are the same, but the fields in each pair are
generally not aligned.

3. In biisotropic materials (such as chiral media) the fields D and B depend on both
E and H, but with no realignment of E or H; for instance, D is given by the
addition of a scalar times E plus a second scalar times H. Thus the contributions
to D involve no changes to the directions of E and H.

4. Bianisotropic materials exhibit the most general behavior: D and H depend on
both E and B, with an arbitrary realignment of either or both of these fields.

In 1888, Roentgen showed experimentally that a material isotropic in its own station-
ary reference frame exhibits bianisotropic properties when observed from a moving frame.
Only recently have materials bianisotropic in their own rest frame been discovered. In
1894 Curie predicted that in a stationary material, based on symmetry, an electric field
might produce magnetic effects and a magnetic field might produce electric effects. These
effects, coined magnetoelectric by Landau and Lifshitz in 1957, were sought unsuccess-
fully by many experimentalists during the first half of the twentieth century. In 1959 the
Soviet scientist I.E. Dzyaloshinskii predicted that, theoretically, the antiferromagnetic
material chromium oxide (Cr2O3) should display magnetoelectric effects. The magneto-
electric effect was finally observed soon after by D.N. Astrov in a single crystal of Cr2O3

using a 10 kHz electric field. Since then the effect has been observed in many different
materials. Recently, highly exotic materials with useful electromagnetic properties have
been proposed and studied in depth, including chiroplasmas and chiroferrites [211]. As
the technology of materials synthesis advances, a host of new and intriguing media will
certainly be created.

The most general forms of the constitutive relations between the fields may be written
in symbolic form as

D = D[E,B],

H = H[E,B].

That is, D and H have some mathematically descriptive relationship to E and B. The
specific forms of the relationships may be written in terms of dyadics as [109]

cD = P̄ · E+ L̄ · (cB), (2.9)

H = M̄ · E+ Q̄ · (cB), (2.10)
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where each of the quantities P̄, L̄, M̄, Q̄ may be dyadics in the usual sense, or dyadic
operators containing space or time derivatives or integrals, or some nonlinear operations
on the fields. We may write these expressions as a single matrix equation

[

cD
H

]

= [C̄]

[

E
cB

]

(2.11)

where the 6× 6 matrix

[C̄] =

[

P̄ L̄
M̄ Q̄

]

.

This most general relationship between fields is the property of a bianisotropic material.
We may wonder why D is not related to (E,B,H), E to (D,B), etc. The reason is

that since the field pairs (E,B) and (D,H) convert identically under a Lorentz transfor-
mation, a constitutive relation that maps fields as in (2.11) is form invariant, as are the
Maxwell–Minkowski equations. That is, although the constitutive parameters may vary
numerically between observers moving at different velocities, the form of the relationship
given by (2.11) is maintained.
Many authors choose to relate (D,B) to (E,H), often because the expressions are

simpler and can be more easily applied to specific problems. For instance, in a linear,
isotropic material (as shown below), D is directly proportional to E and B is directly
proportional to H. To provide the appropriate expression for the constitutive relations,
we need only remap (2.11). This gives

D = ǭ · E+ ξ̄ ·H, (2.12)

B = ζ̄ · E+ µ̄ ·H, (2.13)

or
[

D
B

]

=
[

C̄EH

]

[

E
H

]

, (2.14)

where the new constitutive parameters ǭ, ξ̄, ζ̄, µ̄ can be easily found from the original
constitutive parameters P̄, L̄, M̄, Q̄. We do note, however, that in the form (2.12)–(2.13)
the Lorentz invariance of the constitutive equations is not obvious.
In the following sections we shall characterize some of the most common materials

according to these classifications. With this approach, effects such as temporal or spatial
dispersion are not part of the classification process, but arise from the nature of the
constitutive parameters. Hence we shall not dwell on the particulars of the constitutive
parameters, but shall concentrate on the form of the constitutive relations.

2.2.2.1 Constitutive relations for fields in free space

In a vacuum, the fields are related by the simple constitutive equations

D = ǫ0E, (2.15)

H = µ−1
0 B. (2.16)

The quantities µ0 and ǫ0 are, respectively, the free-space permeability and permittivity
constants. It is convenient to use three numerical quantities to describe the electromag-
netic properties of free space — µ0, ǫ0, and the speed of light c — and interrelate them
through the equation

c = 1/(µ0ǫ0)
1/2.
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Historically it has been the practice to define µ0, measure c, and compute ǫ0. The speed
of light is now a defined constant in the SI system of units; the meter is based on this
constant. Thus, each of the quantities c, ǫ0, and µ0 is exact:

c = 299, 792, 458 m/s,

µ0 = 4π × 10−7 H/m,

ǫ0 = 8.854187817620 . . .× 10−12 F/m.

With the two constitutive equations, we have enough information to put Maxwell’s
equations into definite form. Traditionally (2.15) and (2.16) are substituted into (2.1)–(2.2)
to give

∇×E = −∂B
∂t
,

∇×B = µ0J+ µ0ǫ0
∂E

∂t
.

These are two vector equations in two vector unknowns (equivalently, six scalar equations
in six scalar unknowns).

In terms of the general constitutive relation (2.11), we find that free space is isotropic
with

P̄ = Q̄ =
1

η0
Ī, L̄ = M̄ = 0,

where η0 = (µ0/ǫ0)
1/2 is called the intrinsic impedance of free space. This emphasizes the

fact that free space has, along with c, only a single empirical constant associated with
it (i.e., ǫ0 or η0). Since no derivative or integral operators appear in the constitutive
relations, free space is nondispersive.

2.2.2.2 Constitutive relations in a linear isotropic material

In a linear isotropic material there is proportionality between D and E and between B
and H. The constants of proportionality are the permittivity ǫ and the permeability µ.
If the material is nondispersive, the constitutive relations take the form

D = ǫE, B = µH,

where ǫ and µ may depend on position for inhomogeneous materials. Often the permit-
tivity and permeability are referenced to the permittivity and permeability of free space
according to

ǫ = ǫrǫ0, µ = µrµ0.

Here the dimensionless quantities ǫr and µr are called, respectively, the relative permit-
tivity and relative permeability.

When dealing with the Maxwell–Boffi equations (§ 2.4), the difference between the
material and free space values of D and H becomes important. Thus, for linear isotropic
materials, we often write the constitutive relations as

D = ǫ0E+ ǫ0χeE, (2.17)

B = µ0H+ µ0χmH, (2.18)

where the dimensionless quantities χe = ǫr − 1 and χm = µr − 1 are called, respectively,
the electric and magnetic susceptibilities of the material. In terms of (2.11) we have

P̄ =
ǫr
η0

Ī, Q̄ =
1

η0µr
Ī, L̄ = M̄ = 0.
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Generally, a material will have either its electric or magnetic properties dominant. If
µr = 1 and ǫr 6= 1, then the material is generally called a perfect dielectric or a perfect
insulator, and is said to be an electric material. If ǫr = 1 and µr 6= 1, the material is
said to be a magnetic material.
A linear isotropic material may also have conduction properties. In a conducting

material, a constitutive relation is generally used to describe the mechanical interaction
of field and charge by relating the electric field to a secondary electric current. For
a nondispersive isotropic material, the current is aligned with, and proportional to, the
electric field; there are no temporal operators in the constitutive relation, which is simply

J = σE. (2.19)

This is known as Ohm’s law. Here σ is the conductivity of the material.
If µr ≈ 1 and σ is very small, the material is generally called a good dielectric. If

σ is very large, the material is generally called a good conductor. The conditions by
which we say the conductivity is “small” or “large” are usually established using the
frequency response of the material. Materials that are good dielectrics over broad ranges
of frequency include various glasses and plastics such as fused quartz, polyethylene,
and teflon. Materials that are good conductors over broad ranges of frequency include
common metals such as gold, silver, and copper.
For dispersive linear isotropic materials, the constitutive parameters become nonsta-

tionary (time dependent), and the constitutive relations involve time operators. (Note
that the name dispersive describes the tendency for pulsed electromagnetic waves to
spread out, or disperse, in materials of this type.) If we assume that the relationships
given by (2.17), (2.18), and (2.19) retain their product form in the frequency domain,
then by the convolution theorem we have in the time domain the constitutive relations

D(r, t) = ǫ0

[

E(r, t) +

∫ t

−∞
χe(r, t− t′)E(r, t′) dt′

]

, (2.20)

B(r, t) = µ0

[

H(r, t) +

∫ t

−∞
χm(r, t− t′)H(r, t′) dt′

]

, (2.21)

J(r, t) =

∫ t

−∞
σ(r, t− t′)E(r, t′) dt′. (2.22)

These expressions were first introduced by Volterra in 1912 [199]. We see that for a linear
dispersive material of this type the constitutive operators are time integrals, and that
the behavior of D(t) depends not only on the value of E at time t, but on its values at
all past times. Thus, in dispersive materials there is a “time lag” between the effect of
the applied field and the polarization or magnetization that results. In the frequency
domain, temporal dispersion is associated with complex values of the constitutive pa-
rameters, which, to describe a causal relationship, cannot be constant with frequency.
The nonzero imaginary component is identified with the dissipation of electromagnetic
energy as heat. Causality is implied by the upper limit being t in the convolution inte-
grals, which indicates that D(t) cannot depend on future values of E(t). This assumption
leads to a relationship between the real and imaginary parts of the frequency domain
constitutive parameters as described through the Kramers–Kronig equations.

◮ Example 2.1: Fields in an inhomogeneous dielectric medium

A source-free region is filled with an inhomogeneous dielectric having permeability µ(r) = µ0
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and permittivity ǫ(r) = ǫ0ǫre
Kz. Assume the electric and magnetic fields take the form

E(r, t) = ŷEy(z, t), H(r, t) = x̂Hx(z, t).

If

Hx(z, t) = H0e
K
2
zJ1

(

2k

K
e
K
2
z

)

cosωt,

find Ey(z, t) using Ampere’s law. Then show that Hx(z, t) and Ey(z, t) obey Faraday’s law.
Here k = ω

√
µ0ǫ0ǫr, and J1(x) is the ordinary Bessel function of the first kind.

Solution: By Ampere’s law we have

∇×H = ŷ
∂Hx

∂z
= ŷǫ(z)

∂Ey
∂t

.

We compute

∂Hx

∂z
= H0e

K
2
zJ ′

1

(

2k

K
e
K
2
z

)

ke
K
2
z cosωt+H0

K

2
e
K
2
z

(

2k

K
e
K
2
z

)

cosωt.

Using J ′
1(x) = J0(x)− J1(x)/x we find that the J1 terms cancel, leaving

∂Hx

∂z
= H0ke

KzJ0

(

2k

K
e
K
2
z

)

cosωt. (2.23)

Integrating with respect to time we obtain

Ey(z, t) = H0
k

ωǫ(z)
eKzJ0

(

2k

K
e
K
2
z

)

sinωt = H0ηJ0

(

2k

K
e
K
2
z

)

sinωt,

where η =
√

µ0/(ǫ0ǫr) is a wave impedance with units of ohms.
Next we wish to verify Faraday’s law

∇×E = x̂
∂Ey
∂z

= x̂µ0
∂Hx

∂t
.

The derivative of Ey is

∂Ey
∂z

= −H0ηke
K
2
zJ1

(

2k

K
e
K
2
z

)

sinωt

since J ′
0(x) = −J1(x). The derivative of Hx is

∂Hx

∂t
= −H0ωe

K
2
zJ1

(

2k

K
e
K
2
z

)

sinωt

so that

µ0
∂Hx

∂t
= −H0ηke

K
2
zJ1

(

2k

K
e
K
2
z

)

sinωt

and Faraday’s law is satisfied. ◭

2.2.2.3 Constitutive relations for fields in perfect conductors

In a perfect electric conductor (PEC) or a perfect magnetic conductor (PMC), the fields
are exactly specified as the null field:

E = D = B = H = 0.
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By Ampere’s and Faraday’s laws we must also have J = Jm = 0; hence, by the continuity
equation, ρ = ρm = 0.
In addition to the null field, we have the condition that the tangential electric field

on the surface of a PEC must be zero. Similarly, the tangential magnetic field on the
surface of a PMC must be zero. This implies (§ 2.8.3) that an electric surface current
may exist on the surface of a PEC but not on the surface of a PMC, while a magnetic
surface current may exist on the surface of a PMC but not on the surface of a PEC.
A PEC may be regarded as the limit of a conducting material as σ → ∞. In many

practical cases, good conductors such as gold and copper can be assumed to be perfect
electric conductors, which greatly simplifies the application of boundary conditions. No
physical material is known to behave as a PMC, but the concept is mathematically
useful for applying symmetry conditions (in which a PMC is sometimes referred to as a
“magnetic wall”) and for use in developing equivalence theorems.

2.2.2.4 Constitutive relations in a linear anisotropic material

In a linear anisotropic material there are relationships between B and H and between D
and E, but the field vectors are not aligned as in the isotropic case. We can thus write

D = ǭ · E, B = µ̄ ·H, J = σ̄ ·E,

where ǭ is called the permittivity dyadic, µ̄ is the permeability dyadic, and σ̄ is the
conductivity dyadic. In terms of the general constitutive relation (2.11) we have

P̄ = cǭ, Q̄ = c−1µ̄−1, L̄ = M̄ = 0.

Many different types of materials demonstrate anisotropic behavior, including opti-
cal crystals, magnetized plasmas, and ferrites. Plasmas and ferrites are examples of
gyrotropic media. With the proper choice of coordinate system, the frequency-domain
permittivity or permeability can be written in matrix form as

[̃̄ǫ] =





ǫ11 ǫ12 0
−ǫ12 ǫ11 0
0 0 ǫ33



 , [˜̄µ] =





µ11 µ12 0
−µ12 µ11 0
0 0 µ33



 . (2.24)

Each of the matrix entries may be complex. For the special case of a lossless gyrotropic
material, the matrices become hermitian:

[̃̄ǫ] =





ǫ −jδ 0
jδ ǫ 0
0 0 ǫ3



 , [˜̄µ] =





µ −jκ 0
jκ µ 0
0 0 µ3



 , (2.25)

where ǫ, ǫ3, δ, µ, µ3, and κ are real numbers.
Crystals have received particular attention because of their birefringent properties. A

birefringent crystal can be characterized by a symmetric permittivity dyadic that has real
permittivity parameters in the frequency domain; equivalently, the constitutive relations
do not involve constitutive operators. A coordinate system called the principal system,
with axes called the principal axes , can always be found so that the permittivity dyadic
in that system is diagonal:

[̃̄ǫ] =





ǫx 0 0
0 ǫy 0
0 0 ǫz



 .
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The geometrical structure of a crystal determines the relationship between ǫx, ǫy, and
ǫz. If ǫx = ǫy < ǫz, then the crystal is positive uniaxial (e.g., quartz). If ǫx = ǫy > ǫz,
the crystal is negative uniaxial (e.g., calcite). If ǫx 6= ǫy 6= ǫz, the crystal is biaxial (e.g.,
mica). In uniaxial crystals the z-axis is called the optical axis.

If the anisotropic material is dispersive, we can generalize the convolutional form of
the isotropic dispersive media to obtain the constitutive relations

D(r, t) = ǫ0

[

E(r, t) +

∫ t

−∞
χ̄e(r, t− t′) · E(r, t′) dt′

]

,

B(r, t) = µ0

[

H(r, t) +

∫ t

−∞
χ̄m(r, t− t′) ·H(r, t′) dt′

]

,

J(r, t) =

∫ t

−∞
σ̄(r, t− t′) ·E(r, t′) dt′.

2.2.2.5 Constitutive relations for biisotropic materials

A biisotropic material is an isotropic magnetoelectric material. Here we have D related
to E and B, and H related to E and B, but with no realignment of the fields as in
anisotropic (or bianisotropic) materials. Perhaps the simplest example is the Tellegen
medium devised by B.D.H. Tellegen in 1948 [193], having

D = ǫE+ ξH, (2.26)

B = ξE+ µH. (2.27)

Note that these relations may be rearranged in a number of ways, including

D =

(

ǫ− ξ2

µ

)

E+
ξ

µ
B, (2.28)

H = − ξ

µ
E+

1

µ
B. (2.29)

Tellegen proposed that his hypothetical material be composed of small (but macroscopic)
ferromagnetic particles suspended in a liquid. This is an example of a synthetic mate-
rial, constructed from ordinary materials to have an exotic electromagnetic behavior.
Other examples include artificial dielectrics made from metallic particles imbedded in
lightweight foams [57], and chiral materials made from small metallic helices suspended
in resins [119].

◮ Example 2.2: Fields in a Tellegen medium

A source-free region is filled with a homogeneous Tellegen medium described by the consti-
tutive relations (2.26)–(2.27). Assume the electric field has the form of a wave,

E(r, t) = x̂E0f
(

t− z

v

)

.

Here f(t) is an arbitrary time function and

v =
1

√

µǫ− ξ2

is the wave velocity with ξ2 < µǫ [27]. Use Maxwell’s equations to find B, D, and H. Verify
that the fields satisfy both curl equations. Also find the angles between B and E, between
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B and D, and between E and D.

Solution: To find B we use Faraday’s law

∇×E = −∂B
∂t
.

The curl of E is

∇×E = ŷ
∂Ex
∂z

= −ŷ
E0

v
f ′
(

t− z

v

)

,

where f ′(u) = df(u)/du. Time integration yields B:

B = ŷ
E0

v
f
(

t− z

v

)

.

Hence E and B are orthogonal. We can find D using (2.28). Since

ǫ− ξ2

µ
= ǫ−

µǫ− 1
v2

µ
=

1

v2µ
,

we have

D =

(

ǫ− ξ2

µ

)

E+
ξ

µ
B =

E0

µv

[

x̂
1

v
+ ŷξ

]

f
(

t− z

v

)

.

Similarly, H is given by (2.29):

H = − ξ

µ
E+

1

µ
B =

E0

µ

[

ŷ
1

v
− x̂ξ

]

f
(

t− z

v

)

.

We wish to verify the field expressions by substituting into Ampere’s law

∇×H =
∂D

∂t
.

The curl of H is

∇×H = −x̂
∂Hy

∂z
+ ŷ

∂Hx

∂z
=
E0

µv

[

x̂
1

v
+ ŷξ

]

f ′
(

t− z

v

)

.

But we also have

∂D

∂t
=
E0

µv

[

x̂
1

v
+ ŷξ

]

f ′
(

t− z

v

)

,

and thus Ampere’s law is satisfied.
To find the angle between B and D, we note that a unit vector along D is

ûD =
x̂ 1
v
+ ŷξ

√

(1/v)2 + ξ2
=

x̂ 1
v
+ ŷξ

√

µǫ− ξ2 + ξ2
=

x̂ 1
v
+ x̂ξ

√
µǫ

.

Hence

ûB · ûD = cos θBD = ŷ · x̂
1
v
+ ŷξ

√
µǫ

=
ξ√
µǫ

gives the angle θBD between B and D. So B and E are orthogonal but B and D are typically
not. In like manner the angle θED between E and D is given by

ûE · ûD = cos θED = x̂ · x̂
1
v
+ ŷξ

√
µǫ

=
1

v
√
µǫ

=

√

1− ξ2

µǫ
,

and thus, unlike in a simple dielectric, E and D are not collinear. ◭
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Chiral materials are also biisotropic, and have the constitutive relations

D = ǫE− χ
∂H

∂t
, (2.30)

B = µH+ χ
∂E

∂t
, (2.31)

where the constitutive parameter χ is called the chirality parameter. Note the presence
of temporal derivative operators. Alternatively,

D = ǫ(E+ β∇×E),

B = µ(H+ β∇×H),

by Faraday’s and Ampere’s laws. Chirality is a natural state of symmetry; many natural
substances are chiral materials, including DNA and many sugars. The time derivatives
in (2.30)–(2.31) produce rotation of the polarization of time harmonic electromagnetic
waves propagating in chiral media.

2.2.2.6 Constitutive relations in nonlinear media

Nonlinear electromagnetic effects have been studied by scientists and engineers since the
beginning of the era of electrical technology. Familiar examples include saturation and
hysteresis in ferromagnetic materials and the behavior of p–n junctions in solid-state
rectifiers. The invention of the laser extended interest in nonlinear effects to the realm
of optics, where phenomena such as parametric amplification and oscillation, harmonic
generation, and magneto-optic interactions have found applications in modern devices
[174].

Provided that the external field applied to a nonlinear electric material is small com-
pared to the internal molecular fields, the relationship between E and D can be expanded
in a Taylor series of the electric field. For an anisotropic material exhibiting no hysteresis
effects, the constitutive relation is [134]

Di(r, t) = ǫ0Ei(r, t) +

3
∑

j=1

χ
(1)
ij Ej(r, t) +

3
∑

j,k=1

χ
(2)
ijkEj(r, t)Ek(r, t)

+

3
∑

j,k,l=1

χ
(3)
ijklEj(r, t)Ek(r, t)El(r, t) + · · · (2.32)

where the index i = 1, 2, 3 refers to the three components of the fields D and E. The
first sum in (2.32) is identical to the constitutive relation for linear anisotropic materi-

als. Thus, χ
(1)
ij is identical to the susceptibility dyadic of a linear anisotropic medium

considered earlier. The quantity χ
(2)
ijk is called the second-order susceptibility, and is a

three-dimensional matrix (or third rank tensor) describing the nonlinear electric effects

quadratic in E. Similarly χ
(3)
ijkl is called the third-order susceptibility, and is a four-

dimensional matrix (or fourth-rank tensor) describing the nonlinear electric effects cubic

in E. Numerical values of χ
(2)
ijk and χ

(3)
ijkl are given in Shen [174] for a variety of crystals.

When the material shows hysteresis effects, D at any point r and time t is due not
only to the value of E at that point and at that time, but to the values of E at all points
and times. That is, the material displays both temporal and spatial dispersion.
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2.3 Maxwell’s equations in moving frames

The essence of special relativity is that the mathematical forms of Maxwell’s equations are
identical in all inertial reference frames : frames moving with uniform velocities relative
to the laboratory frame of reference in which we perform our measurements. This form
invariance of Maxwell’s equations is a specific example of the general physical principle
of covariance. In the laboratory frame we write the differential equations of Maxwell’s
theory as

∇×E(r, t) = −∂B(r, t)

∂t
,

∇×H(r, t) = J(r, t) +
∂D(r, t)

∂t
,

∇ ·D(r, t) = ρ(r, t),

∇ ·B(r, t) = 0,

∇ · J(r, t) = −∂ρ(r, t)
∂t

.

Similarly, in an inertial frame having four-dimensional coordinates (r′, t′) we have

∇′ ×E′(r′, t′) = −∂B
′(r′, t′)

∂t′
,

∇′ ×H′(r′, t′) = J′(r′, t′) +
∂D′(r′, t′)

∂t′
,

∇′ ·D′(r′, t′) = ρ′(r′, t′),

∇′ ·B′(r′, t′) = 0,

∇′ · J′(r′, t′) = −∂ρ
′(r′, t′)

∂t′
.

The primed fields measured in the moving system do not have the same numerical values
as the unprimed fields measured in the laboratory. To convert between E and E′, B and
B′, and so on, we must find a way to convert between the coordinates (r, t) and (r′, t′).

2.3.1 Field conversions under Galilean transformation

We shall assume that the primed coordinate system moves with constant velocity v
relative to the laboratory frame (Figure 2.1). Prior to the early part of the twentieth
century, converting between the primed and unprimed coordinate variables was intuitive
and obvious: it was thought that time must be measured identically in each coordinate
system, and that the relationship between the space variables can be determined simply
by the displacement of the moving system at time t = t′. Under these assumptions, and
under the further assumption that the two systems coincide at time t = 0, we can write

t′ = t, x′ = x− vxt, y′ = y − vyt, z′ = z − vzt,

or simply
t′ = t, r′ = r− vt.
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FIGURE 2.1

Primed coordinate system moving with velocity v relative to laboratory (unprimed)
coordinate system.

This is called a Galilean transformation. We can use the chain rule to describe the
manner in which differential operations transform, i.e., to relate derivatives with respect
to the laboratory coordinates to derivatives with respect to the inertial coordinates. We
have, for instance,

∂

∂t
=
∂t′

∂t

∂

∂t′
+
∂x′

∂t

∂

∂x′
+
∂y′

∂t

∂

∂y′
+
∂z′

∂t

∂

∂z′

=
∂

∂t′
− vx

∂

∂x′
− vy

∂

∂y′
− vz

∂

∂z′

=
∂

∂t′
− (v · ∇′). (2.33)

Similarly
∂

∂x
=

∂

∂x′
,

∂

∂y
=

∂

∂y′
,

∂

∂z
=

∂

∂z′
,

from which

∇×A(r, t) = ∇′ ×A(r, t), ∇ ·A(r, t) = ∇′ ·A(r, t), (2.34)

for each vector field A.
Newton was aware that the laws of mechanics are invariant with respect to Galilean

transformations. Do Maxwell’s equations also behave in this way? Let us use the Galilean
transformation to determine which relationship between the primed and unprimed fields
results in form invariance of Maxwell’s equations. We first examine ∇′ × E, the spatial
rate of change of the laboratory field with respect to the inertial frame spatial coordinates:

∇′ ×E = ∇×E = −∂B
∂t

= −∂B
∂t′

+ (v · ∇′)B

by (2.34) and (2.33). Rewriting the last term by (B.51) we have

(v · ∇′)B = −∇′ × (v ×B)

since v is constant and ∇′ ·B = ∇ ·B = 0, hence

∇′ × (E+ v ×B) = −∂B
∂t′

. (2.35)
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Similarly

∇′ ×H = ∇×H = J+
∂D

∂t
= J+

∂D

∂t′
+∇′ × (v ×D)− v(∇′ ·D)

where ∇′ ·D = ∇ ·D = ρ so that

∇′ × (H− v ×D) =
∂D

∂t′
− ρv + J. (2.36)

Also

∇′ · J = ∇ · J = −∂ρ
∂t

= − ∂ρ

∂t′
+ (v · ∇′)ρ

and we may use (B.48) to write

(v · ∇′)ρ = v · (∇′ρ) = ∇′ · (ρv),

obtaining

∇′ · (J− ρv) = − ∂ρ

∂t′
. (2.37)

Equations (2.35), (2.36), and (2.37) show that the forms of Maxwell’s equations in the
inertial and laboratory frames are identical, provided that

E′ = E+ v ×B, (2.38)

D′ = D, (2.39)

H′ = H− v ×D, (2.40)

B′ = B, (2.41)

J′ = J− ρv, (2.42)

ρ′ = ρ. (2.43)

That is, (2.38)–(2.43) result in form invariance of Faraday’s law, Ampere’s law, and the
continuity equation under a Galilean transformation. These equations express the fields
measured by a moving observer in terms of those measured in the laboratory frame. To
convert the opposite way, we need only use the principle of relativity. Neither observer
can tell whether he or she is stationary — only that the other observer is moving relative
to him or her. To obtain the fields in the laboratory frame, we simply change the sign
on v and swap primed with unprimed fields in (2.38)–(2.43):

E = E′ − v ×B′,

D = D′,

H = H′ + v ×D′,

B = B′,

J = J′ + ρ′v,

ρ = ρ′.

According to (2.42), a moving observer interprets charge stationary in the laboratory
frame as an additional current moving opposite the direction of his or her motion. This
seems reasonable. However, while E depends on both E′ and B′, the field B is unchanged
under the transformation. Why should B have this special status? In fact, we may
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uncover an inconsistency among the transformations by considering free space where
(2.15) and (2.16) hold: in this case (2.38) gives

D′/ǫ0 = D/ǫ0 + v × µ0H

or

D′ = D+ v ×H/c2

rather than (2.39). Similarly, from (2.40) we get

B′ = B− v ×E/c2

instead of (2.41). Using these, the set of transformations becomes

E′ = E+ v ×B, (2.44)

D′ = D+ v ×H/c2, (2.45)

H′ = H− v ×D,

B′ = B− v ×E/c2, (2.46)

J′ = J− ρv,

ρ′ = ρ. (2.47)

These can also be written using dyadic notation as

E′ = Ī ·E+ β̄ · (cB),

cB′ = −β̄ ·E+ Ī · (cB),

and

cD′ = Ī · (cD) + β̄ ·H,
H′ = −β̄ · (cD) + Ī ·H,

where

[β̄] =





0 −βz βy
βz 0 −βx
−βy βx 0





with β = v/c. This set of equations is self-consistent among Maxwell’s equations. How-
ever, the equations are not consistent with the assumption of a Galilean transformation
of the coordinates, and thus Maxwell’s equations are not covariant under a Galilean
transformation. Maxwell’s equations are only covariant under a Lorentz transforma-
tion as described in the next section. Expressions (2.44)–(2.46) turn out to be accurate
to order v/c, hence are the results of a first-order Lorentz transformation. Only when
v is an appreciable fraction of c do the field conversions resulting from the first-order
Lorentz transformation differ markedly from those resulting from a Galilean transforma-
tion; those resulting from the true Lorentz transformation require even higher velocities
to differ markedly from the first-order expressions. Engineering accuracy is often accom-
plished using the Galilean transformation. This pragmatic observation leads to quite a
bit of confusion when considering the large-scale forms of Maxwell’s equations, as we
shall soon see.
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2.3.2 Field conversions under Lorentz transformation

To find the proper transformation under which Maxwell’s equations are covariant, we
must discard our notion that time progresses the same in the primed and the un-
primed frames. The proper transformation of coordinates that guarantees covariance
of Maxwell’s equations is the Lorentz transformation

ct′ = γct− γβ · r, (2.48)

r′ = ᾱ · r− γβct, (2.49)

where

ᾱ = Ī+ (γ − 1)
ββ

β2
, β = |β|.

Here

γ =
1

√

1− β2

is called the Lorentz factor . The Lorentz transformation is obviously more complicated
than the Galilean transformation; only as β → 0 are the Lorentz and Galilean transfor-
mations equivalent.
Not surprisingly, field conversions between inertial reference frames are more com-

plicated with the Lorentz transformation than with the Galilean transformation. For
simplicity we assume that the velocity of the moving frame has only an x-component:
v = x̂v. Later we can generalize this to any direction. Equations (2.48) and (2.49)
become

x′ = x+ (γ − 1)x− γvt, (2.50)

y′ = y, (2.51)

z′ = z, (2.52)

ct′ = γct− γ
v

c
x, (2.53)

and the chain rule gives

∂

∂x
= γ

∂

∂x′
− γ

v

c2
∂

∂t′
, (2.54)

∂

∂y
=

∂

∂y′
, (2.55)

∂

∂z
=

∂

∂z′
, (2.56)

∂

∂t
= −γv ∂

∂x′
+ γ

∂

∂t′
. (2.57)

We begin by examining Faraday’s law in the laboratory frame. In component form we
have

∂Ez
∂y

− ∂Ey
∂z

= −∂Bx
∂t

, (2.58)

∂Ex
∂z

− ∂Ez
∂x

= −∂By
∂t

, (2.59)

∂Ey
∂x

− ∂Ex
∂y

= −∂Bz
∂t

. (2.60)
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These become

∂Ez
∂y′

− ∂Ey
∂z′

= γv
∂Bx
∂x′

− γ
∂Bx
∂t′

, (2.61)

∂Ex
∂z′

− γ
∂Ez
∂x′

+ γ
v

c2
∂Ez
∂t′

= γv
∂By
∂x′

− γ
∂By
∂t′

, (2.62)

γ
∂Ey
∂x′

− γ
v

c2
∂Ey
∂t′

− ∂Ex
∂y′

= γv
∂Bz
∂x′

− γ
∂Bz
∂t′

, (2.63)

after we use (2.54)–(2.57) to convert the derivatives in the laboratory frame to derivatives
with respect to the moving frame coordinates. To simplify (2.61) we consider

∇ ·B =
∂Bx
∂x

+
∂By
∂y

+
∂Bz
∂z

= 0.

Converting the laboratory frame coordinates to the moving frame coordinates, we have

γ
∂Bx
∂x′

− γ
v

c2
∂Bx
∂t′

+
∂By
∂y′

+
∂Bz
∂z′

= 0

or

−γv∂Bx
∂x′

= −γ v
2

c2
∂Bx
∂t′

+ v
∂By
∂y′

+ v
∂Bz
∂z′

.

Substituting this into (2.61) and rearranging (2.62) and (2.63), we obtain

∂

∂y′
γ(Ez + vBy)−

∂

∂z′
γ(Ey − vBz) = −∂Bx

∂t′
,

∂Ex
∂z′

− ∂

∂x′
γ(Ez + vBy) = − ∂

∂t′
γ
(

By +
v

c2
Ez

)

,

∂

∂x′
γ(Ey − vBz)−

∂Ex
∂y′

= − ∂

∂t′
γ
(

Bz −
v

c2
Ey

)

.

Comparison with (2.58)–(2.60) shows that form invariance of Faraday’s law under the
Lorentz transformation requires

E′
x = Ex, E′

y = γ(Ey − vBz), E′
z = γ(Ez + vBy),

and
B′
x = Bx, B′

y = γ
(

By +
v

c2
Ez

)

, B′
z = γ

(

Bz −
v

c2
Ey

)

.

To generalize v to any direction, we simply note that the components of the fields parallel
to the velocity direction are identical in the moving and laboratory frames, while the
components perpendicular to the velocity direction convert according to a simple cross-
product rule. After similar analyses with Ampere’s and Gauss’s laws (see Example 2.3),
we find that

E′
‖ = E‖, B′

‖ = B‖, D′
‖ = D‖, H′

‖ = H‖,

E′
⊥ = γ(E⊥ + β × cB⊥), (2.64)

cB′
⊥ = γ(cB⊥ − β ×E⊥), (2.65)

cD′
⊥ = γ(cD⊥ + β ×H⊥), (2.66)

H′
⊥ = γ(H⊥ − β × cD⊥), (2.67)
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and

J′
‖ = γ(J‖ − ρv), (2.68)

J′
⊥ = J⊥, (2.69)

cρ′ = γ(cρ− β · J), (2.70)

where the symbols ‖ and ⊥ designate the components of the field parallel and perpen-
dicular to v, respectively.

◮ Example 2.3: Reference frame transformation

Consider Ampere’s law and Gauss’s law, written in terms of rectangular components in the
laboratory frame of reference. Assume that an inertial frame moves with velocity v = x̂v with
respect to the laboratory frame. Using the Lorentz transformation given by (2.50)–(2.53),
show that

cD′
⊥ = γ(cD⊥ + β ×H⊥), J

′
‖ = γ(J‖ − ρv),

H
′
⊥ = γ(H⊥ − β × cD⊥), J

′
⊥ = J⊥,

where “⊥” means perpendicular to the direction of the velocity and “‖” means parallel to
the direction of the velocity.

Solution: Examine Ampere’s law in rectangular coordinates:

∂Hz

∂y
− ∂Hy

∂z
= Jx +

∂Dx
∂t

, (2.71)

∂Hx

∂z
− ∂Hz

∂x
= Jy +

∂Dy
∂t

, (2.72)

∂Hy

∂x
− ∂Hx

∂y
= Jz +

∂Dz
∂t

. (2.73)

Assume v = x̂v and use the derivative transforms (2.54)–(2.57):

∂

∂x
= γ

∂

∂x′
− γ

v

c2
∂

∂t′
,

∂

∂y
=

∂

∂y′
,

∂

∂t
= −γv ∂

∂x′
+ γ

∂

∂t′
,

∂

∂z
=

∂

∂z′
.

With these, (2.71)–(2.73) become

∂Hz

∂y′
− ∂Hy

∂z′
= Jx − γv

∂Dx
∂x′

+ γ
∂Dx
∂t′

, (2.74)

∂Hx

∂z′
− γ

∂Hz

∂x′
+ γ

v

c2
∂Hz

∂t′
= Jy − γv

∂Dy
∂x′

+ γ
∂Dy
∂t′

, (2.75)

γ
∂Hy

∂x′
− γ

v

c2
∂Hy

∂t′
− ∂Hx

∂y′
= Jz − γv

∂Dz
∂x′

+ γ
∂Dz
∂t′

. (2.76)

In addition, note that Gauss’s law ∇ ·D = ρ becomes

γ
∂Dx
∂x′

− γ
v

c2
∂Dx
∂t′

+
∂Dy
∂y′

+
∂Dz
∂z′

= ρ. (2.77)

So we can substitute

γv
∂Dx
∂x′

= ρv + γ
v2

c2
∂Dx
∂t′

− v
∂Dy
∂y′

− v
∂Dz
∂z′
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into (2.74) and obtain

∂

∂y′
(Hz − vDy)− ∂

∂z′
(Hy + vDz) = Jx − ρv + γ

(

1− v2

c2

)

∂Dx
∂t′

.

But

1− v2

c2
= 1− β2 =

1

γ2
,

so
∂

∂y′
γ(Hz − vDy)−

∂

∂z′
γ(Hy + vDz) = γJx − γρv +

∂Dx
∂t′

. (2.78)

Next rearrange (2.75) and (2.76) to get

∂Hx

∂z′
− ∂

∂x′
γ(Hz − vDy) = Jy +

∂

∂t′
γ
(

Dy − v

c2
Hz

)

, (2.79)

∂

∂x′
γ(Hy + vDz)− ∂Hx

∂y′
= Jz +

∂

∂t′
γ
(

Dz +
v

c2
Hy

)

. (2.80)

Comparing (2.78)–(2.80) to Ampere’s law in the moving frame, we see

H ′
z = γ(Hz − vDy), H ′

x = Hx, D′
y = γ

(

Dy −
v

c2
Hz

)

,

H ′
y = γ(Hy + vDz), D′

x = Dx, D′
z = γ

(

Dz +
v

c2
Hy

)

,

J ′
x = γ(Jx − ρv), J ′

y = Jy , J ′
z = Jz.

We can generalize this result to an arbitrary direction of v by letting ‖ represent the part
of a vector in the direction of v and ⊥ the part perpendicular to v. Since the perpendicular
part obeys a cross-product rule, we have

cD′
⊥ = γ(cD⊥ + β ×H⊥), J

′
‖ = γ(J‖ − ρv),

H
′
⊥ = γ(H⊥ − β × cD⊥), J

′
⊥ = J⊥,

where β = v/c. It is easy to verify that these results yield the special case treated above
when

v = vx̂, H
′
⊥ = ŷH ′

y + ẑH ′
z, H⊥ = ŷHy + ẑHz, D⊥ = ŷDy + ẑDz,

for instance.
Demonstration that cρ′ = γ(cρ− β · J) is left for Problem 2.2. ◭

These conversions are self-consistent, and the Lorentz transformation is the transfor-
mation under which Maxwell’s equations are covariant. If v2 ≪ c2, then γ ≈ 1 and to
first order (2.64)–(2.70) reduce to (2.44)–(2.47). If v/c ≪ 1, then the first-order fields
reduce to the Galilean fields (2.38)–(2.43).

To convert in the opposite direction, we can swap primed and unprimed fields and
change the sign on v:

E⊥ = γ(E′
⊥ − β × cB′

⊥),

cB⊥ = γ(cB′
⊥ + β ×E′

⊥),

cD⊥ = γ(cD′
⊥ − β ×H′

⊥),

H⊥ = γ(H′
⊥ + β × cD′

⊥),
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and

J‖ = γ(J′
‖ + ρ′v),

J⊥ = J′
⊥,

cρ = γ(cρ′ + β · J′).

The conversion formulas can be written much more succinctly in dyadic notation:

E′ = γᾱ−1 · E+ γβ̄ · (cB), (2.81)

cB′ = −γβ̄ · E+ γᾱ−1 · (cB), (2.82)

cD′ = γᾱ−1 · (cD) + γβ̄ ·H, (2.83)

H′ = −γβ̄ · (cD) + γᾱ−1 ·H, (2.84)

and

cρ′ = γ(cρ− β · J), (2.85)

J′ = ᾱ · J− γβcρ, (2.86)

where ᾱ−1 · ᾱ = Ī, and thus
ᾱ−1 = ᾱ− γββ.

Maxwell’s equations are covariant under a Lorentz transformation but not under a
Galilean transformation; the laws of mechanics are invariant under a Galilean transfor-
mation but not under a Lorentz transformation. How then should we analyze interactions
between electromagnetic fields and particles or materials? Einstein realized that the laws
of mechanics needed revision to make them Lorentz covariant: in fact, under his theory of
special relativity all physical laws should demonstrate Lorentz covariance. Interestingly,
charge is then Lorentz invariant, whereas mass is not (recall that invariance refers to a
quantity, whereas covariance refers to the form of a natural law). We shall not attempt
to describe all the ramifications of special relativity, but instead refer the reader to any
of the excellent and readable texts on the subject, including those by Bohm [19], Einstein
[54], and Born [21], and to the nice historical account by Miller [132]. However, we shall
examine the importance of Lorentz invariants in electromagnetic theory.

2.3.2.1 Lorentz invariants

Although the electromagnetic fields are not Lorentz invariant (e.g., the numerical value
of E measured by one observer differs from that measured by another observer in uniform
relative motion), several quantities do give identical values regardless of the velocity of
motion. Most fundamental are the speed of light and the quantity of electric charge
which, unlike mass, is the same in all frames of reference. Other important Lorentz
invariants include E ·B, H ·D, and the quantities

B ·B−E · E/c2,
B ·H−E ·D,
H ·H− c2D ·D,
cB ·D+E ·H/c.
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◮ Example 2.4: Lorentz invariants

Show that the quantity E ·B is a Lorentz invariant.

Solution: Let E = E‖ +E⊥ and B = B‖ +B⊥. Then

E ·B = E‖ ·B‖ +E‖ ·B⊥ +E⊥ ·B‖ +E⊥ ·B⊥ = E‖ ·B‖ +E⊥ ·B⊥.

Now examine
E

′ ·B′ = E
′
‖ ·B′

‖ +E
′
⊥ ·B′

⊥.

We have E′ = E′
‖ +E′

⊥ and B′ = B′
‖ +B′

⊥, where

E
′
⊥ = γ(E⊥ + β × cB⊥), E

′
‖ = E‖,

B
′
⊥ =

γ

c
(cB⊥ − β ×E⊥), B

′
‖ = B‖.

So

E
′ ·B′ = E‖ ·B‖ +

γ2

c
(E⊥ + β × cB⊥) · (cB⊥ − β ×E⊥)

= E‖ ·B‖ + γ2
E⊥ ·B⊥ +

γ2

c
E⊥ · (β ×E⊥)− γ2(β × cB⊥) ·B⊥

− γ2(β ×B⊥) · (β ×E⊥).

Use of (B.6) gives

E⊥ · (β ×E⊥) = β · (E⊥ ×E⊥) = 0,

B⊥ · (β ×B⊥) = β · (B⊥ ×B⊥) = 0,

and then use of (B.8) gives

(β ×B⊥) · (β ×E⊥) = (B⊥ · E⊥)(β · β)− (B⊥ · β)(E⊥ · β) = β2
B⊥ ·E⊥.

Finally,

E
′ ·B′ = E‖ ·B‖ + γ2

E⊥ ·B⊥(1− β2) = E‖ ·B‖ +E⊥ ·B⊥ = E ·B.

Consideration of the remaining Lorentz invariants is Problem 2.3. ◭

To see the importance of the Lorentz invariants, consider the special case of fields
in empty space. If E · B = 0 in one reference frame, then it is zero in all reference
frames. Then if B · B − E · E/c2 = 0 in any reference frame, the ratio of E to B is
always c2 regardless of the reference frame in which the fields are measured. This is the
characteristic of a plane wave in free space.

If E · B = 0 and c2B2 > E2, then we can find a reference frame using the conver-
sion formulas (2.81)–(2.86) (see Problem 2.5) in which the electric field is zero but the
magnetic field is nonzero. In this case we call the fields purely magnetic in any reference
frame, even if both E and B are nonzero. Similarly, if E · B = 0 and c2B2 < E2 then
we can find a reference frame in which the magnetic field is zero but the electric field is
nonzero. We call fields of this type purely electric.

The Lorentz force is not Lorentz invariant. Consider a point charge at rest in the
laboratory frame. While we measure only an electric field in the laboratory frame, an
inertial observer measures both electric and magnetic fields. A test charge Q in the
laboratory frame experiences the Lorentz force F = QE; in an inertial frame the same
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charge experiences F′ = QE′ + Qv × B′ (see Problem 2.6). The conversion formulas
show that F and F′ are not identical.
We see that both E and B are integral components of the electromagnetic field: the

separation of the field into electric and magnetic components depends on the motion
of the reference frame in which measurements are made. This has obvious implications
when considering static electric and magnetic fields.

2.3.2.2 Derivation of Maxwell’s equations from Coulomb’s law

Consider a point charge at rest in the laboratory frame. If the magnetic component of
force on this charge arises naturally through motion of an inertial reference frame, and
if this force can be expressed in terms of Coulomb’s law in the laboratory frame, then
perhaps the magnetic field can be derived directly from Coulomb’s law and the Lorentz
transformation. Perhaps it is possible to derive all of Maxwell’s theory with Coulomb’s
law and Lorentz invariance as the only postulates.
Several authors, notably Purcell [155] and Elliott [56], have used this approach. How-

ever, Jackson [92] has pointed out that many additional assumptions are required to
deduce Maxwell’s equations beginning with Coulomb’s law. Feynman [63] is critical of
the approach, pointing out that we must introduce a vector potential that adds to the
scalar potential from electrostatics in order to produce an entity that transforms accord-
ing to the laws of special relativity. In addition, the assumption of Lorentz invariance
seems to involve circular reasoning, since the Lorentz transformation was originally in-
troduced to make Maxwell’s equations covariant. But Lucas and Hodgson [123] point
out that the Lorentz transformation can be deduced from other fundamental principles
(such as causality and the isotropy of space), and that the postulate of a vector potential
is reasonable. Schwartz [172] gives a detailed derivation of Maxwell’s equations from
Coulomb’s law, outlining the necessary assumptions.

2.3.2.3 Transformation of constitutive relations

Minkowski’s interest in the covariance of Maxwell’s equations was aimed not merely
at the relationship between fields in different moving frames of reference, but at an
understanding of the electrodynamics of moving media. He wished to ascertain the effect
of a moving material body on the electromagnetic fields in some region of space. By
proposing the covariance of Maxwell’s equations in materials as well as in free space, he
extended Maxwell’s theory to moving material bodies.
We have seen in (2.81)–(2.84) that (E, cB) and (cD,H) convert identically under a

Lorentz transformation. Since the most general form of the constitutive relations relate
cD and H to the field pair (E, cB) (see § 2.2.2) as

[

cD
H

]

=
[

C̄
]

[

E
cB

]

,

this form of the constitutive relations must be Lorentz covariant. That is, in the reference
frame of a moving material we have

[

cD′

H′

]

=
[

C̄′]
[

E′

cB′

]

,

and should be able to convert [C̄′] to [C̄]. We should be able to find the constitutive
matrix describing the relationships among the fields observed in the laboratory frame.
It is somewhat laborious to obtain the constitutive matrix [C̄] for an arbitrary moving

medium. Detailed expressions for isotropic, bianisotropic, gyrotropic, and uniaxial media
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are given by Kong [108]. The rather complicated expressions can be written in a more
compact form if we consider the expressions for B and D in terms of the pair (E,H).
For a linear isotropic material such that D′ = ǫ′E′ and B′ = µ′H′ in the moving frame,
the relationships in the laboratory frame are [108]

B = µ′Ā ·H−Ω×E, (2.87)

D = ǫ′Ā ·E+Ω×H, (2.88)

where

Ā =
1− β2

1− n2β2

[

Ī− n2 − 1

1− β2
ββ

]

, (2.89)

Ω =
n2 − 1

1− n2β2

β

c
, (2.90)

and where n = c(µ′ǫ′)1/2 is the optical index of the medium. A moving material that is
isotropic in its own moving reference frame is bianisotropic in the laboratory frame. If, for
instance, we tried to measure the relationship between the fields of a moving isotropic
fluid, but used instruments that were stationary in our laboratory (e.g., attached to
our measurement bench) we would find that D depends not only on E but also on
H, and that D aligns with neither E nor H. That a moving material isotropic in its
own frame of reference is bianisotropic in the laboratory frame was known long ago.
Roentgen showed experimentally in 1888 that a dielectric moving through an electric
field becomes magnetically polarized, while H.A. Wilson showed in 1905 that a dielectric
moving through a magnetic field becomes electrically polarized [141].

If v2/c2 ≪ 1, we can consider the form of the constitutive equations for a first-order
Lorentz transformation. Ignoring terms to order v2/c2 in (2.89) and (2.90), we obtain
Ā = Ī and Ω = v(n2 − 1)/c2. Then, by (2.87) and (2.88),

B = µ′H− (n2 − 1)
v ×E

c2
, (2.91)

D = ǫ′E+ (n2 − 1)
v ×H

c2
. (2.92)

We can also derive these from the first-order field conversion equations (2.44)–(2.46).
From (2.44) and (2.45) we have

D′ = D+ v ×H/c2 = ǫ′E′ = ǫ′(E+ v ×B).

Eliminating B via (2.46), we have

D+ v ×H/c2 = ǫ′E+ ǫ′v × (v ×E/c2) + ǫ′v ×B′ = ǫ′E+ ǫ′v ×B′

where we have neglected terms of order v2/c2. Since B′ = µ′H′ = µ′(H − v ×D), we
have

D+ v ×H/c2 = ǫ′E+ ǫ′µ′v ×H− ǫ′µ′v × v ×D.

Using n2 = c2µ′ǫ′ and neglecting the last term since it is of order v2/c2, we obtain

D = ǫ′E+ (n2 − 1)
v ×H

c2
,
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which is identical to the expression (2.92) obtained by approximating the exact result
to first order. Similar steps produce (2.91). In a Galilean frame where v/c ≪ 1, the
expressions reduce to D = ǫ′E and B = µ′H, and the isotropy of the fields is preserved.
For a conducting medium having

J′ = σ′E′

in a moving reference frame, Cullwick [43] shows that in the laboratory frame

J = σ′γ(Ī− ββ) ·E+ σ′γcβ ×B.

For v ≪ c we can set γ ≈ 1 and see that J = σ′(E+ v ×B) to first order.

2.3.2.4 Constitutive relations in deforming or rotating media

The transformations discussed in the previous sections hold for media in uniform relative
motion. When a material body undergoes deformation or rotation, the concepts of
special relativity are not directly applicable. However, authors such as Pauli [148] and
Sommerfeld [180] have maintained that Minkowski’s theory is approximately valid for
deforming or rotating media if v is taken to be the instantaneous velocity at each point
within the body. The reasoning is that at any instant in time each point within the body
has a velocity v that may be associated with some inertial reference frame (generally
different for each point). Thus the constitutive relations for the material at that point,
within some small time interval taken about the observation time, may be assumed to
be those of a stationary material, and the relations measured by an observer within
the laboratory frame may be computed using the inertial frame for that point. This
instantaneous rest-frame theory is most accurate at small accelerations dv/dt. Van
Bladel [202] outlines its shortcomings. See also Anderson and Ryon [3] and Mo [136] for
detailed discussions of the electromagnetic properties of material media in accelerating
frames of reference.

2.4 The Maxwell–Boffi equations

In any version of Maxwell’s theory, the mediating field is the electromagnetic field de-
scribed by four field vectors. In Minkowski’s form of Maxwell’s equations we use E, D,
B, and H. As an alternative, consider the electromagnetic field as represented by the
vector fields E, B, P, and M, and described by

∇×E = −∂B
∂t
, (2.93)

∇× (B/µ0 −M) = J+
∂

∂t
(ǫ0E+P), (2.94)

∇ · (ǫ0E+P) = ρ, (2.95)

∇ ·B = 0. (2.96)

These Maxwell–Boffi equations are named after L. Boffi, who formalized them for moving
media [18]. The quantity P is the polarization vector , and M is the magnetization vector .
The use of P and M in place of D and H is sometimes called an application of the
principle of Ampere and Lorentz [199].
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Let us examine the ramification of using (2.93)–(2.96) as the basis for a postulate
of electromagnetics. These equations are similar to the Maxwell–Minkowski equations
used earlier; must we rebuild all the underpinning of a new postulate, or can we use
our original arguments based on the Minkowski form? For instance, how do we invoke
uniqueness if we no longer have the field H? What represents the flux of energy, formerly
found using E×H? And, importantly, are (2.93)–(2.94) form invariant under a Lorentz
transformation?

It turns out that the set of vector fields (E,B,P,M) is merely a linear mapping of
the set (E,D,B,H). As pointed out by Tai [190], any linear mapping of the four field
vectors from Minkowski’s form onto any other set of four field vectors will preserve the
covariance of Maxwell’s equations. Boffi chose to keep E and B intact and to introduce
only two new fields; he could have kept H and D instead, or used a mapping that
introduced four completely new fields (as did Chu). Many authors retain E and H.
This is somewhat more cumbersome since these vectors do not convert as a pair under
a Lorentz transformation. A discussion of the idea of field vector “pairing” appears in
§ 2.6.

The usefulness of the Boffi form lies in the specific mapping chosen. Comparison of
(2.93)–(2.96) to (2.1)–(2.4) quickly reveals that

P = D− ǫ0E, (2.97)

M = B/µ0 −H. (2.98)

We see that P is the difference between D in a material and D in free space, while M is
the difference between H in free space and H in a material. In free space, P = M = 0.

◮ Example 2.5: Manipulation of dyadic constitutive parameters

Find the 6× 6 matrix Ū that allows P and M to be written in terms of E and B as
[

P

M

]

=
[

Ū
]

[

E

B

]

.

Solution: Start with (2.9):

cD = P̄ · E+ L̄ · (cB).

Use D = ǫ0E+P to get

ǫ0E+P = P̄ ·
(

1

c
E

)

+ L̄ ·B.

Rearrangement gives

P = P̄ ·
(

1

c
E

)

− ǫ0E+ L̄ ·B,

or

P =

(

1

c
P̄− ǫ0Ī

)

·E+ L̄ ·B. (2.99)

Next start with (2.10):

H = M̄ · E+ Q̄ · (cB).

Use H = B/µ0 −M to get

B

µ0
−M = M̄ · E+ Q̄ · (cB).
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Rearrangement gives

M = −M̄ ·E− Q̄ · (cB) +
B

µ0
,

or

M = −M̄ ·E−
(

cQ̄− 1

µ0
Ī

)

·B. (2.100)

Thus, Ū is

[

Ū
]

=

[ (

1
c
P̄− ǫ0Ī

)

L̄

−M̄ −
(

cQ̄− 1
µ0

Ī
)

]

. ◭

2.4.1 Equivalent polarization and magnetization sources

The Boffi formulation provides a new way to regard E and B. Maxwell grouped (E,H)
as a pair of “force vectors” to be associated with line integrals (or curl operations in
the point forms of his equations), and (D,B) as a pair of “flux vectors” associated with
surface integrals (or divergence operations). That is, E is interpreted as belonging to the
computation of “emf” as a line integral, while B is interpreted as a density of magnetic
“flux” passing through a surface. Similarly, H yields the “mmf” about some closed path
and D the electric flux through a surface. The introduction of P and M allows us to
also regard E as a flux vector and B as a force vector — in essence, allowing the two
fields E and B to take on the duties that required four fields in Minkowski’s form. To
see this, we rewrite the Maxwell–Boffi equations as

∇×E = −∂B
∂t
,

∇× B

µ0
=

(

J+∇×M+
∂P

∂t

)

+
∂ǫ0E

∂t
,

∇ · (ǫ0E) = (ρ−∇ ·P),

∇ ·B = 0,

and compare them to the Maxwell–Minkowski equations for sources in free space:

∇×E = −∂B
∂t
,

∇× B

µ0
= J+

∂ǫ0E

∂t
,

∇ · (ǫ0E) = ρ,

∇ ·B = 0.

The forms are preserved if we identify ∂P/∂t and ∇×M as new types of current density,
and ∇ ·P as a new type of charge density. We define

JP =
∂P

∂t
(2.101)

as an equivalent polarization current density, and

JM = ∇×M

as an equivalent magnetization current density (sometimes called the equivalent Amperian
currents of magnetized matter [199]). We define

ρP = −∇ ·P
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as an equivalent polarization charge density (sometimes called the Poisson–Kelvin equiv-
alent charge distribution [199]). Then the Maxwell–Boffi equations become simply

∇×E = −∂B
∂t
, (2.102)

∇× B

µ0
= (J+ JM + JP ) +

∂ǫ0E

∂t
, (2.103)

∇ · (ǫ0E) = (ρ+ ρP ), (2.104)

∇ ·B = 0. (2.105)

Here is the new view. A material can be viewed as composed of charged particles of
matter immersed in free space. When these charges are properly considered as “equiv-
alent” polarization and magnetization charges, all field effects (describable through flux
and force vectors) can be handled by the two fields E and B. Whereas in Minkowski’s
form D diverges from ρ, in Boffi’s form E diverges from a total charge density consisting
of ρ and ρP . Whereas in the Minkowski form H curls around J, in the Boffi form B curls
around the total current density consisting of J, JM , and JP .

This view was pioneered by Lorentz, who by 1892 considered matter as consisting of
bulk molecules in a vacuum that would respond to an applied electromagnetic field [132].
The resulting motion of the charged particles of matter then became another source
term for the “fundamental” fields E and B. Using this reasoning, he was able to reduce
the fundamental Maxwell equations to two equations in two unknowns, demonstrating a
simplicity appealing to many (including Einstein). Of course, to apply this concept we
must be able to describe how the charged particles respond to an applied field. Simple
microscopic models of the constituents of matter are generally used: some combination
of electric and magnetic dipoles, or of loops of electric and magnetic current.

The Boffi equations are mathematically appealing since they now specify both the curl
and divergence of the two field quantities E and B. By the Helmholtz theorem we know
that a field vector is uniquely specified when both its curl and divergence are given. But
this assumes that the equivalent sources produced by P and M are true source fields in
the same sense as J. We have precluded this by insisting in Chapter 1 that the source
field must be independent of the mediating field it sources. If we view P and M as
merely a mapping from the original vector fields of Minkowski’s form, we still have four
vector fields with which to contend. And with these must also be a mapping of the
constitutive relationships, which now link the fields E, B, P, and M. Rather than argue
the actual physical existence of the equivalent sources, we note that a real benefit of
the new view is that under certain circumstances the equivalent source quantities can be
determined through physical reasoning. Hence we can create physical models of P and
M and deduce their links to E and B. We may then find it easier to understand and
deduce the constitutive relationships. However, we do not in general consider E and B
to be in any way more “fundamental” than D and H.

2.4.2 Covariance of the Boffi form

Because of the linear relationships (2.97) and (2.98), covariance of the Maxwell–Minkowski
equations carries over to the Maxwell–Boffi equations. However, the conversion between
fields in different moving reference frames will now involve P and M. Since Faraday’s
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law is unchanged in the Boffi form, we still have

E′
‖ = E‖,

B′
‖ = B‖,

E′
⊥ = γ(E⊥ + β × cB⊥),

cB′
⊥ = γ(cB⊥ − β ×E⊥).

To see how P and M convert, we note that in the laboratory frame D = ǫ0E + P and
H = B/µ0 −M, while in the moving frame D′ = ǫ0E

′ +P′ and H′ = B′/µ0 −M′. Thus

P′
‖ = D′

‖ − ǫ0E
′
‖ = D‖ − ǫ0E‖ = P‖

and
M′

‖ = B′
‖/µ0 −H′

‖ = B‖/µ0 −H‖ = M‖.

For the perpendicular components

D′
⊥ = γ(D⊥ + β ×H⊥/c) = ǫ0E

′
⊥ +P′

⊥ = ǫ0 [γ(E⊥ + β × cB⊥)] +P′
⊥;

substitution of H⊥ = B⊥/µ0 −M⊥ then gives

P′
⊥ = γ(D⊥ − ǫ0E⊥)− γǫ0β × cB⊥ + γβ ×B⊥/(cµ0)− γβ ×M⊥/c

or
cP′

⊥ = γ(cP⊥ − β ×M⊥).

Similarly,
M′

⊥ = γ(M⊥ + β × cP⊥).

Hence
E′

‖ = E‖, B′
‖ = B‖, P′

‖ = P‖, M′
‖ = M‖, J′

⊥ = J⊥, (2.106)

and

E′
⊥ = γ(E⊥ + β × cB⊥), (2.107)

cB′
⊥ = γ(cB⊥ − β ×E⊥), (2.108)

cP′
⊥ = γ(cP⊥ − β ×M⊥), (2.109)

M′
⊥ = γ(M⊥ + β × cP⊥), (2.110)

J′
‖ = γ(J‖ − ρv). (2.111)

In the case of the first-order Lorentz transformation, we can set γ ≈ 1 to obtain

E′ = E+ v ×B, (2.112)

B′ = B− v ×E

c2
, (2.113)

P′ = P− v ×M

c2
, (2.114)

M′ = M+ v ×P, (2.115)

J′ = J− ρv. (2.116)

To convert from the moving frame to the laboratory frame we simply swap primed with
unprimed fields and let v → −v.
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◮ Example 2.6: Covariance of the Maxwell-Boffi equations

A linear isotropic medium has

D
′ = ǫ0ǫ

′
rE

′, B
′ = µ0µ

′
rH

′,

in a moving reference frame. Find P andM in terms of the laboratory frame electromagnetic
fields E and B. For simplicity, consider only the first-order equations.

Solution: From (2.97) we have

P
′ = ǫ0ǫ

′
rE

′ − ǫ0E
′ = ǫ0χ

′
eE

′

where χ′
e = ǫ′r−1 is the electric susceptibility of the moving material. Similarly (2.98) yields

M
′ =

B′

µ0
− B′

µ0µ′
r

=
B′χ′

m

µ0µ′
r

where χ′
m = µ′

r−1 is the magnetic susceptibility of the moving material. To find how P and
M are related to E and B in the laboratory frame, we consider the first-order expressions.
From (2.114) we have

P = P
′ +

v ×M′

c2
= ǫ0χ

′
eE

′ +
v ×B′χ′

m

µ0µ′
rc2

.

Substituting for E′ and B′ from (2.112) and (2.113), and using µ0c
2 = 1/ǫ0, we have

P = ǫ0χ
′
e(E+ v ×B) + ǫ0

χ′
m

µ′
r

v ×
(

B− v ×E

c2

)

.

Neglecting the last term since it varies as v2/c2, we get

P = ǫ0χ
′
eE+ ǫ0

(

χ′
e +

χ′
m

µ′
r

)

v ×B. (2.117)

Similarly,

M =
χ′
m

µ0µ′
r

B− ǫ0

(

χ′
e +

χ′
m

µ′
r

)

v ×E. ◭ (2.118)

2.5 Large-scale form of Maxwell’s equations

We can write Maxwell’s equations in a form that incorporates the spatial variation of the
field in a certain region of space. To do this, we integrate the point form of Maxwell’s
equations over a region of space, then perform some succession of manipulations until
we arrive at a form that provides us some benefit in our work with electromagnetic
fields. The results are particularly useful for understanding the properties of electric and
magnetic circuits, and for predicting the behavior of electrical machinery.

We shall consider two important situations: a mathematical surface that moves with
constant velocity v and with constant shape, and a surface that moves and deforms
arbitrarily.
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FIGURE 2.2

Open surface having velocity v relative to laboratory (unprimed) coordinate system.
Surface is non-deforming.

2.5.1 Surface moving with constant velocity

Consider an open surface S moving with constant velocity v relative to the laboratory
frame (Figure 2.2). Assume every point on the surface is an ordinary point. At any
instant t we can express the relationship between the fields at points on S in either
frame. In the laboratory frame we have

∇× E = −∂B
∂t
, ∇×H =

∂D

∂t
+ J,

while in the moving frame

∇′ ×E′ = −∂B
′

∂t′
, ∇′ ×H′ =

∂D′

∂t′
+ J′.

If we integrate over S and use Stokes’s theorem, we get for the laboratory frame
∮

Γ

E · dl = −
∫

S

∂B

∂t
· dS, (2.119)

∮

Γ

H · dl =
∫

S

∂D

∂t
· dS+

∫

S

J · dS, (2.120)

and for the moving frame
∮

Γ′

E′ · dl′ = −
∫

S′

∂B′

∂t′
· dS′, (2.121)

∮

Γ′

H′ · dl′ =
∫

S′

∂D′

∂t′
· dS′ +

∫

S′

J′ · dS′. (2.122)

Here boundary contour Γ has sense determined by the right-hand rule. We use the
notation Γ′, S′, etc., to indicate that all integrations for the moving frame are computed
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FIGURE 2.3

Nondeforming volume region having velocity v relative to laboratory (unprimed) coor-
dinate system.

using space and time variables in that frame. Equation (2.119) is the integral form of
Faraday’s law , while (2.120) is the integral form of Ampere’s law.

Faraday’s law states that the net circulation of E about a contour Γ (sometimes called
the electromotive force or emf ) is determined by the flux of the time-rate of change of the
flux vector B passing through the surface bounded by Γ. Ampere’s law states that the
circulation of H (sometimes called the magnetomotive force or mmf ) is determined by
the flux of the current J plus the flux of the time-rate of change of the flux vector D. It is
the term containing ∂D/∂t that Maxwell recognized as necessary to make his equations
consistent; since it has units of current, it is often referred to as the displacement current
term.

Equations (2.119)–(2.120) are the large-scale or integral forms of Maxwell’s equations.
They are the integral-form equivalents of the point forms, and are form invariant under
Lorentz transformation. If we express the fields in terms of the moving reference frame,
we can write

∮

Γ′

E′ · dl′ = − d

dt′

∫

S′

B′ · dS′, (2.123)

∮

Γ′

H′ · dl′ = d

dt′

∫

S′

D′ · dS′ +

∫

S′

J′ · dS′. (2.124)

These hold for a stationary surface, since the surface would be stationary to an observer
who moves with it. We are therefore justified in removing the partial derivative from the
integral. Although the surfaces and contours considered here are purely mathematical,
they often coincide with actual physical boundaries. The surface may surround a moving
material medium, for instance, or the contour may conform to a wire moving in an
electrical machine.

We can also convert the auxiliary equations to large-scale form. Consider a volume
region V surrounded by a surface S that moves with velocity v relative to the laboratory
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frame (Figure 2.3). Integrating the point form of Gauss’s law over V we have

∫

V

∇ ·D dV =

∫

V

ρ dV.

Using the divergence theorem and recognizing that the integral of charge density is total
charge, we obtain

∮

S

D · dS =

∫

V

ρ dV = Q(t) (2.125)

where Q(t) is the total charge contained within V at time t. This large-scale form of
Gauss’s law states that the total flux of D passing through a closed surface is identical
to the electric charge Q contained within. Similarly,

∮

S

B · dS = 0 (2.126)

is the large-scale magnetic field Gauss’s law. It states that the total flux of B passing
through a closed surface is zero, since there are no magnetic charges contained within
(i.e., magnetic charge does not exist).
Since charge is an invariant quantity, the large-scale forms of the auxiliary equations

take the same form in a moving reference frame:
∮

S′

D′ · dS′ =

∫

V ′

ρ′ dV ′ = Q(t)

and
∮

S′

B′ · dS′ = 0.

The large-scale forms of the auxiliary equations may be derived from the large-scale
forms of Faraday’s and Ampere’s laws. To obtain Gauss’s law, we let the open surface
in Ampere’s law become a closed surface. Then

∮

H ·dl vanishes, and application of the
large-scale form of the continuity equation (1.8) produces (2.125). The magnetic Gauss’s
law (2.126) is found from Faraday’s law (2.119) by a similar transition from an open
surface to a closed surface.
The values obtained from the expressions (2.119)–(2.120) will not match those ob-

tained from (2.121)–(2.122), and we can use the Lorentz transformation field conversions
to study how they differ. That is, we can write either side of the laboratory equations in
terms of the moving reference frame fields, or vice versa. For most engineering applica-
tions where v/c≪ 1, this is not done via the Lorentz transformation field relations, but
rather via the Galilean approximations to these relations (see Tai [191] for details on us-
ing the Lorentz transformation field relations). We consider the most common situation
in the next section.

2.5.1.1 Kinematic form of the large-scale Maxwell equations

Confusion can result from the fact that the large-scale forms of Maxwell’s equations
can be written in a number of ways. A popular formulation of Faraday’s law, the emf
formulation, revolves around the concept of electromotive force. Unfortunately, various
authors offer different definitions of emf in a moving circuit.
Consider a nondeforming contour in space, moving with constant velocity v relative

to the laboratory frame (Figure 2.4). In terms of the laboratory fields we have the large-
scale form of Faraday’s law (2.119). The flux term on the right-hand side of this equation
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FIGURE 2.4

Nondeforming closed contour moving with velocity v through a magnetic field B given
in the laboratory (unprimed) coordinate system.

can be written differently by employing the Helmholtz transport theorem (A.65). If a
nondeforming surface S moves with uniform velocity v relative to the laboratory frame,
and a vector field A(r, t) is expressed in the stationary frame, then the time derivative
of the flux of A through S is

d

dt

∫

S

A · dS =

∫

S

[

∂A

∂t
+ v(∇ ·A)−∇× (v ×A)

]

· dS. (2.127)

Using this with (2.119) we have

∮

Γ

E · dl = − d

dt

∫

S

B · dS+

∫

S

v(∇ ·B) · dS−
∫

S

∇× (v ×B) · dS.

Remembering that ∇ ·B = 0 and using Stokes’s theorem on the last term, we obtain

∮

Γ

(E+ v ×B) · dl = − d

dt

∫

S

B · dS = −dΨ(t)

dt

where the magnetic flux
∫

S

B · dS = Ψ(t)

represents the flux of B through S. Following Sommerfeld [180], we may set

E∗ = E+ v ×B

to obtain the kinematic form of Faraday’s law

∮

Γ

E∗ · dl = − d

dt

∫

S

B · dS = −dΨ(t)

dt
. (2.128)

(The asterisk should not be confused with the notation for complex conjugate.)
Much confusion arises from the similarity between (2.128) and (2.123). In fact, these

expressions are different and give different results. This is because B′ in (2.123) is
measured in the frame of the moving circuit, while B in (2.128) is measured in the frame
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of the laboratory. Further confusion arises from various definitions of emf. Many authors
(e.g., Hermann Weyl [213]) define emf to be the circulation of E∗. In that case the emf
is equal to the negative time rate of change of the flux of the laboratory frame magnetic
field B through S. Since the Lorentz force experienced by a charge q moving with the
contour is given by qE∗ = q(E + v × B), this emf is the circulation of Lorentz force
per unit charge along the contour. If the contour is aligned with a conducting circuit,
then in some cases this emf can be given physical interpretation as the work required
to move a charge around the entire circuit through the conductor against the Lorentz
force. Unfortunately the usefulness of this definition of emf is lost if the time or space
rate of change of the fields is so large that no true loop current can be established
(hence Kirchoff’s law cannot be employed). Such a problem must be treated as an
electromagnetic “scattering” problem with consideration given to retardation effects.
Detailed discussions of the physical interpretation of E∗ in the definition of emf are given
by Cullwick [43] and Scanlon et al. [168].
Other authors choose to define emf as the circulation of the electric field in the frame of

the moving contour. In this case the circulation of E′ in (2.123) is the emf, and is related
to the flux of the magnetic field in the frame of the moving circuit. As pointed out above,
the result differs from that based on the Lorentz force. If we wish, we can also write
this emf in terms of the fields expressed in the laboratory frame. To do this we must
convert ∂B′/∂t′ to the laboratory fields using the rules for a Lorentz transformation.
The result, given by Tai [191], is quite complicated and involves both the magnetic and
electric laboratory-frame fields.
The moving-frame emf as computed from the Lorentz transformation is rarely used as

a working definition of emf, mostly because circuits moving at relativistic velocities are
seldom used by engineers. Unfortunately, more confusion arises for the case v ≪ c, since
for a Galilean frame the Lorentz-force and moving-frame emfs become identical. This
is apparent if we use (2.41) to replace B′ with the laboratory frame field B, and (2.38)
to replace E′ with the combination of laboratory frame fields E + v ×B. Then (2.123)
becomes

∮

Γ

E′ · dl =
∮

Γ

(E+ v ×B) · dl = − d

dt

∫

S

B · dS,

which is identical to (2.128). For circuits moving with low velocity then, the circulation
of E′ can be interpreted as work per unit charge. As an added bit of confusion, the term

∮

Γ

(v ×B) · dl =
∫

S

∇× (v ×B) · dS

is sometimes called motional emf, since it is the component of the circulation of E∗ that
is directly attributable to the motion of the circuit.
Although less commonly done, we can also rewrite Ampere’s law (2.120) using (2.127).

This gives
∮

Γ

H · dl =
∫

S

J · dS+
d

dt

∫

S

D · dS−
∫

S

(v∇ ·D) · dS+

∫

S

∇× (v ×D) · dS.

Using ∇ ·D = ρ and using Stokes’s theorem on the last term, we obtain
∮

Γ

(H− v ×D) · dl = d

dt

∫

S

D · dS+

∫

S

(J− ρv) · dS.

Finally, letting H∗ = H − v ×D and J∗ = J − ρv we can write the kinematic form of
Ampere’s law :

∮

Γ

H∗ · dl = d

dt

∫

S

D · dS+

∫

S

J∗ · dS. (2.129)
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In a Galilean frame where we use (2.38)–(2.43), we see that (2.129) is identical to
∮

Γ

H′ · dl = d

dt′

∫

S

D′ · dS+

∫

S

J′ · dS

where the primed fields are measured in the frame of the moving contour. This equiv-
alence does not hold when the Lorentz transformation is used to represent the primed
fields.

2.5.1.2 Alternative form of the large-scale Maxwell equations

We can write Maxwell’s equations in an alternative large-scale form involving only surface
and volume integrals. This will be useful later for establishing the field jump conditions
across a material or source discontinuity. Again we begin with Maxwell’s equations in
point form, but instead of integrating them over an open surface we integrate over a
volume region V moving with velocity v (Figure 2.3). In the laboratory frame this gives

∫

V

(∇×E) dV = −
∫

V

∂B

∂t
dV,

∫

V

(∇×H) dV =

∫

V

(

∂D

∂t
+ J

)

dV.

An application of curl theorem (B.30) then gives
∮

S

(n̂×E) dS = −
∫

V

∂B

∂t
dV, (2.130)

∮

S

(n̂×H) dS =

∫

V

(

∂D

∂t
+ J

)

dV. (2.131)

Similar results are obtained for the fields in the moving frame:
∮

S′

(n̂′ ×E′) dS′ = −
∫

V ′

∂B′

∂t′
dV ′,

∮

S′

(n̂′ ×H′) dS′ =

∫

V ′

(

∂D′

∂t′
+ J′

)

dV ′.

These large-scale forms are an alternative to (2.119)–(2.122). They are also form-
invariant under a Lorentz transformation.

An alternative to the kinematic formulation of (2.128) and (2.129) can be achieved
by applying a kinematic identity for a moving volume region. If V is surrounded by a
surface S that moves with velocity v relative to the laboratory frame, and if a vector field
A is measured in the laboratory frame, then the vector form of the general transport
theorem (A.70) states that

d

dt

∫

V

A dV =

∫

V

∂A

∂t
dV +

∮

S

A(v · n̂) dS. (2.132)

Applying this to (2.130) and (2.131) we have
∮

S

[n̂×E− (v · n̂)B] dS = − d

dt

∫

V

B dV,

∮

S

[n̂×H+ (v · n̂)D] dS =

∫

V

J dV +
d

dt

∫

V

D dV.
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We can also apply (2.132) to the large-scale form of the continuity equation (1.8) and
obtain the expression for a volume region moving with velocity v:

∮

S

(J− ρv) · dS = − d

dt

∫

V

ρ dV.

2.5.2 Moving, deforming surfaces

Because (2.127) holds for arbitrarily moving surfaces, the kinematic versions (2.128) and
(2.129) hold when v is interpreted as an instantaneous velocity. However, if the surface
and contour lie within a material body that moves relative to the laboratory frame,
the constitutive equations relating E, D, B, H, and J in the laboratory frame differ
from those relating the fields in the stationary frame of the body (if the body is not
accelerating), and thus the concepts of § 2.3.2.3 must be employed. This is important
when boundary conditions at a moving surface are needed. Particular care must be taken
when the body accelerates, since the constitutive relations are then only approximate.
The representation (2.123)–(2.124) is also generally valid, provided we define the

primed fields as those converted from laboratory fields using the Lorentz transforma-
tion with instantaneous velocity v. Here we should use a different inertial frame for each
point in the integration, and align the frame with the velocity vector v at the instant
t. We certainly may do this since we can choose to integrate any function we wish.
However, this representation may not find wide application.
We thus choose the following expressions, valid for arbitrarily moving surfaces con-

taining only regular points, as our general forms of the large-scale Maxwell equations:
∮

Γ(t)

E∗ · dl = − d

dt

∫

S(t)

B · dS = −dΨ(t)

dt
,

∮

Γ(t)

H∗ · dl = d

dt

∫

S(t)

D · dS+

∫

S(t)

J∗ · dS,

where
E∗ = E+ v ×B, H∗ = H− v ×D, J∗ = J− ρv,

and where all fields are taken to be measured in the laboratory frame with v the in-
stantaneous velocity of points on the surface and contour relative to that frame. The
constitutive parameters must be considered carefully if the contours and surfaces lie in
a moving material medium.
Kinematic identity (2.132) is also valid for arbitrarily moving surfaces. Thus we have

the following, valid for arbitrarily moving surfaces and volumes containing only regular
points:

∮

S(t)

[n̂×E− (v · n̂)B] dS = − d

dt

∫

V (t)

B dV,

∮

S(t)

[n̂×H+ (v · n̂)D] dS =

∫

V (t)

J dV +
d

dt

∫

V (t)

D dV.

We also find that the two Gauss’s law expressions,
∮

S(t)

D · dS =

∫

V (t)

ρ dV,

∮

S(t)

B · dS = 0,

remain valid.
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2.5.3 Large-scale form of the Boffi equations

The Maxwell–Boffi equations can be written in large-scale form using the same approach
as with the Maxwell–Minkowski equations. Integrating (2.102) and (2.103) over an open
surface S and applying Stokes’s theorem, we have

∮

Γ

E · dl = −
∫

S

∂B

∂t
· dS, (2.133)

∮

Γ

B · dl = µ0

∫

S

(

J+ JM + JP +
∂ǫ0E

∂t

)

· dS, (2.134)

for fields in the laboratory frame, and
∮

Γ′

E′ · dl′ = −
∫

S′

∂B′

∂t′
· dS′,

∮

Γ′

B′ · dl′ = µ0

∫

S′

(

J′ + J′
M + J′

P +
∂ǫ0E

′

∂t′

)

· dS′,

for fields in a moving frame. We see that Faraday’s law is unmodified by the introduction
of polarization and magnetization. Hence our prior discussion of emf for moving contours
remains valid. However, Ampere’s law must be interpreted somewhat differently. The
flux vector B also acts as a force vector, and its circulation is proportional to the out-
flux of total current, consisting of J plus the equivalent magnetization and polarization
currents plus the displacement current in free space, through the surface bounded by the
circulation contour.

The large-scale forms of the auxiliary equations can be found by integrating (2.104)
and (2.105) over a volume region and applying the divergence theorem. This gives

∮

S

E · dS =
1

ǫ0

∫

V

(ρ+ ρP ) dV,

∮

S

B · dS = 0,

for the laboratory frame fields, and
∮

S′

E′ · dS′ =
1

ǫ0

∫

V ′

(ρ′ + ρ′P ) dV
′,

∮

S′

B′ · dS′ = 0,

for the moving frame fields. Here we find the force vector E also acting as a flux vector,
with the outflux of E over a closed surface proportional to the sum of the electric and
polarization charges enclosed by the surface.

To provide the alternative representation, we integrate the point forms over V and use
the curl theorem to obtain

∮

S

(n̂×E) dS = −
∫

V

∂B

∂t
dV, (2.135)

∮

S

(n̂×B) dS = µ0

∫

V

(

J+ JM + JP +
∂ǫ0E

∂t

)

dV, (2.136)

for the laboratory frame fields, and
∮

S′

(n̂′ ×E′) dS′ = −
∫

V ′

∂B′

∂t′
dV ′,

∮

S′

(n̂′ ×B′) dS′ = µ0

∫

V ′

(

J′ + J′
M + J′

P +
∂ǫ0E

′

∂t′

)

dV ′,
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for the moving frame fields.
The large-scale forms of the Boffi equations can also be put into kinematic form using

either (2.127) or (2.132). Using (2.127) on (2.133) and (2.134) we have
∮

Γ(t)

E∗ · dl = − d

dt

∫

S(t)

B · dS, (2.137)

∮

Γ(t)

B† · dl =
∫

S(t)

µ0J
† · dS+

1

c2
d

dt

∫

S(t)

E · dS, (2.138)

where

E∗ = E+ v ×B,

B† = B− 1

c2
v ×E,

J† = J+ JM + JP − (ρ+ ρP )v.

Here B† is equivalent to the first-order Lorentz transformation representation of the field
in the moving frame (2.46). (The dagger † should not be confused with the symbol for
the hermitian operation.) Using (2.132) on (2.135) and (2.136) we have

∮

S(t)

[n̂×E− (v · n̂)B] dS = − d

dt

∫

V (t)

B dV, (2.139)

and
∮

S(t)

[

n̂×B+
1

c2
(v · n̂)E

]

dS = µ0

∫

V (t)

(J+ JM + JP ) dV +
1

c2
d

dt

∫

V (t)

E dV.

(2.140)

In each case the fields are measured in the laboratory frame, and v is measured with
respect to the laboratory frame and may vary arbitrarily over the surface or contour.

2.6 The nature of the four field quantities

Since the very inception of Maxwell’s theory, its students have been distressed by the fact
that while there are four electromagnetic fields (E,D,B,H), there are only two funda-
mental equations (the curl equations) to describe their interrelationship. The relegation
of additional required information to constitutive equations that vary widely between
classes of materials seems to lessen the elegance of the theory. While some may find
elegant the separation of equations into a set expressing the basic wave nature of electro-
magnetism and a set describing how the fields interact with materials, the history of the
discipline is one of categorizing and pairing fields as “fundamental” and “supplemental”
in hopes of reducing the model to two equations in two unknowns.
Lorentz led the way in this area. With his electrical theory of matter, all material ef-

fects could be interpreted in terms of atomic charge and current immersed in free space.
We have seen how the Maxwell–Boffi equations seem to eliminate the need for D and H,
and indeed for simple media where there is a linear relation between the remaining “fun-
damental” fields and the induced polarization and magnetization, it appears that only
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E and B are required. However, for more complicated materials that display nonlinear
and bianisotropic effects, we are only able to supplant D and H with two other fields P
and M, along with (possibly complicated) constitutive relations relating them to E and
B.

Even those authors who do not wish to eliminate two of the fields tend to categorize
the fields into pairs based on physical arguments, implying that one or the other pair
is in some way “more fundamental.” Maxwell himself separated the fields into the pair
(E,H) that appears within line integrals to give work and the pair (B,D) that appears
within surface integrals to give flux. In what other ways might we pair the four vectors?

Most prevalent is the splitting of the fields into electric and magnetic pairs: (E,D) and
(B,H). In Poynting’s theorem E · D describes one component of stored energy (called
“electric energy”) and B · H describes another component (called “magnetic energy”).
These pairs also occur in Maxwell’s stress tensor. In statics, the fields decouple into
electric and magnetic sets. But biisotropic and bianisotropic materials demonstrate how
separation into electric and magnetic effects can become problematic.

In the study of electromagnetic waves, the ratio of E to H appears to be an important
quantity, called the “intrinsic impedance.” The pair (E,H) also determines the Poynting
flux of power, and is required to establish the uniqueness of the electromagnetic field.
In addition, constitutive relations for simple materials usually express (D,B) in terms
of (E,H). Models for these materials are often conceived by viewing the fields (E,H)
as interacting with the atomic structure in such a way as to produce secondary effects
describable by (D,B). These considerations, along with Maxwell’s categorization into
a pair of work vectors and a pair of flux vectors, lead many authors to formulate elec-
tromagnetics with E and H as the “fundamental” quantities. But the pair (B,D) gives
rise to electromagnetic momentum and is also perpendicular to the direction of wave
propagation in an anisotropic material; in these senses, we might argue that these fields
must be equally “fundamental.”

Perhaps the best motivation for grouping fields comes from relativistic considerations.
We have found that (E,B) transform together under a Lorentz transformation, as do
(D,H). In each of these pairs we have one polar vector (E or D) and one axial vector (B
or H). A polar vector retains its meaning under a change in handedness of the coordinate
system, while an axial vector does not. The Lorentz force involves one polar vector (E)
and one axial vector (B) that we also call “electric” and “magnetic.” If we follow the
lead of some authors and choose to define E and B through measurements of the Lorentz
force, then we recognize that B must be axial since it is not measured directly, but as
part of the cross product v×B that changes its meaning if we switch from a right-hand
to a left-hand coordinate system. The other polar vector (D) and axial vector (H) arise
through the “secondary” constitutive relations. Following this reasoning we might claim
that E and B are “fundamental.”

Sommerfeld also associates E with B and D with H. The vectors E and B are
called entities of intensity, describing “how strong,” while D and H are called entities
of quantity, describing “how much.” This is in direct analogy with stress (intensity) and
strain (quantity) in materials. We might also say that the entities of intensity describe
a “cause” while the entities of quantity describe an “effect.” In this view E “induces”
(causes) a polarization P, and the field D = ǫ0E+P is the result. Similarly, B creates
M, and H = B/µ0 −M is the result. Interestingly, each of the terms describing energy
and momentum in the electromagnetic field (D · E, B ·H, E×H, D×B) involves the
interaction of an entity of intensity with an entity of quantity.

Although there is a natural tendency to group things together based on conceptual
similarity, there appears to be little reason to believe that any of the four field vectors are
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more “fundamental” than the rest. Perhaps we are fortunate that we can apply Maxwell’s
theory without worrying too much about such questions of underlying philosophy.

2.7 Maxwell’s equations with magnetic sources

Researchers have yet to discover the “magnetic monopole”: a magnetic source from
which magnetic field would diverge. This has not stopped speculation on the form that
Maxwell’s equations might take if such a discovery were made. Arguments based on
fundamental principles of physics (such as symmetry and conservation laws) indicate
that in the presence of magnetic sources, Maxwell’s equations would assume the forms

∇×E = −Jm − ∂B

∂t
, (2.141)

∇×H = J+
∂D

∂t
, (2.142)

∇ ·B = ρm, (2.143)

∇ ·D = ρ, (2.144)

where Jm is a volume magnetic current density describing the flow of magnetic charge
in exactly the same manner as J describes the flow of electric charge. The density of
this magnetic charge is given by ρm and should, by analogy with electric charge density,
obey a conservation law

∇ · Jm +
∂ρm
∂t

= 0.

This is the magnetic source continuity equation.
It is interesting to inquire as to the units of Jm and ρm. From (2.141) we see that if B

has units of Wb/m2, then Jm has units of (Wb/s)/m2. Similarly, (2.143) shows that ρm
must have units of Wb/m3. Hence magnetic charge is measured in Wb, magnetic current
in Wb/s. This gives a nice symmetry with electric sources where charge is measured in
C and current in C/s.∗ The physical symmetry is equally appealing: magnetic flux lines
diverge from magnetic charge, and the total flux passing through a surface is given by the
total magnetic charge contained within the surface. This is best seen by considering the
large-scale forms of Maxwell’s equations for stationary surfaces. We need only modify
(2.123) to include the magnetic current term; this gives

∮

Γ

E · dl = −
∫

S

Jm · dS− d

dt

∫

S

B · dS,
∮

Γ

H · dl =
∫

S

J · dS+
d

dt

∫

S

D · dS.

∗We note that if the modern unit of T is used to describe B, then ρm is described using the more
cumbersome units of T/m, while Jm is given in terms of T/s. Thus, magnetic charge is measured in
Tm2 and magnetic current in (Tm2)/s.
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If we modify (2.126) to include magnetic charge, we get the auxiliary equations

∮

S

D · dS =

∫

V

ρ dV,

∮

S

B · dS =

∫

V

ρm dV.

Any of the large-scale forms of Maxwell’s equations can be similarly modified to include
magnetic current and charge. For arbitrarily moving surfaces, we have

∮

Γ(t)

E∗ · dl = − d

dt

∫

S(t)

B · dS−
∫

S(t)

J∗
m · dS,

∮

Γ(t)

H∗ · dl = d

dt

∫

S(t)

D · dS+

∫

S(t)

J∗ · dS,

where

E∗ = E+ v ×B, J∗ = J− ρv,

H∗ = H− v ×D, J∗
m = Jm − ρmv,

and all fields are taken to be measured in the laboratory frame with v the instantaneous
velocity of points on the surface and contour relative to the laboratory frame. We also
have the alternative forms

∮

S

(n̂×E) dS =

∫

V

(

−∂B
∂t

− Jm

)

dV, (2.145)

∮

S

(n̂×H) dS =

∫

V

(

∂D

∂t
+ J

)

dV, (2.146)

and

∮

S(t)

[n̂×E− (v · n̂)B] dS = −
∫

V (t)

Jm dV − d

dt

∫

V (t)

B dV, (2.147)

∮

S(t)

[n̂×H+ (v · n̂)D] dS =

∫

V (t)

J dV +
d

dt

∫

V (t)

D dV, (2.148)

and the two Gauss’s law expressions

∮

S(t)

D · n̂ dS =

∫

V (t)

ρ dV,

∮

S(t)

B · n̂ dS =

∫

V (t)

ρm dV.

Magnetic sources also allow us to develop equivalence theorems in which difficult prob-
lems involving boundaries are replaced by simpler problems involving magnetic sources.
Although these sources may not physically exist, the mathematical solutions are com-
pletely valid.
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2.8 Boundary (jump) conditions

If we restrict ourselves to regions of space without spatial (jump) discontinuities in either
the sources or the constitutive relations, we can find meaningful solutions to the Maxwell
differential equations. We also know that for given sources, if the fields are specified on a
closed boundary and at an initial time, the solutions are unique. The standard approach
to treating regions that do contain spatial discontinuities is to isolate the discontinuities
on surfaces. That is, we introduce surfaces that serve to separate space into regions in
which the differential equations are solvable and the fields are well defined. To make the
solutions in adjoining regions unique, we must specify the tangential fields on each side of
the adjoining surface. If we can relate the fields across the boundary, we can propagate
the solution from one region to the next; in this way, information about the source in
one region is effectively passed on to the solution in an adjacent region. For uniqueness,
only relations between the tangential components need be specified.
We shall determine the appropriate boundary conditions via two distinct approaches.

We first model a thin source layer and consider a discontinuous surface source layer as a
limiting case of the continuous thin layer. With no true discontinuity, Maxwell’s differ-
ential equations hold everywhere. We then consider a true spatial discontinuity between
material surfaces (with possible surface sources lying along the discontinuity). We must
then isolate the region containing the discontinuity and postulate a field relationship that
is both physically meaningful and experimentally verifiable.
We shall also consider both stationary and moving boundary surfaces, and surfaces

containing magnetic as well as electric sources.

2.8.1 Boundary conditions across a stationary, thin source layer

In § 1.3.3 we discussed how in the macroscopic sense a surface source is actually a volume
distribution concentrated near a surface S. We write the charge and current in terms of
the point r on the surface and the normal distance x from the surface at r as

ρ(r, x, t) = ρs(r, t)f(x,∆),

J(r, x, t) = Js(r, t)f(x,∆),

where f(x,∆) is the source density function obeying
∫ ∞

−∞
f(x,∆) dx = 1. (2.149)

The parameter ∆ describes the “width” of the source layer normal to the reference
surface.
We use (2.130)–(2.131) to study field behavior across the source layer. Consider a

volume region V that intersects the source layer as shown in Figure 2.5. Let the top and
bottom surfaces be parallel to the reference surface, and label the fields on the top and
bottom surfaces with subscripts 1 and 2, respectively. Since points on and within V are
all regular, (2.131) yields

∫

S1

n̂1 ×H1 dS +

∫

S2

n̂2 ×H2 dS +

∫

S3

n̂3 ×H dS =

∫

V

(

J+
∂D

∂t

)

dV.

We now choose δ = k∆ (k > 1) so that most of the source lies within V . As ∆ → 0
the thin source layer recedes to a surface layer, and the volume integral of displacement
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FIGURE 2.5

Derivation of the electromagnetic boundary conditions across a thin continuous source
layer.

current and the integral of tangential H over S3 both approach zero by continuity of the
fields. By symmetry, S1 = S2 and n̂1 = −n̂2 = n̂12, where n̂12 is the surface normal
directed into region 1 from region 2. Thus

∫

S1

n̂12 × (H1 −H2) dS =

∫

V

J dV.

Note that

∫

V

J dV =

∫

S1

∫ δ/2

−δ/2
J dS dx =

∫ δ/2

−δ/2
f(x,∆) dx

∫

S1

Js(r, t) dS.

Since we assume that the majority of the source current lies within V , the integral can
be evaluated using (2.149) to give

∫

S1

[n̂12 × (H1 −H2)− Js] dS = 0,

hence
n̂12 × (H1 −H2) = Js.

The tangential magnetic field across a thin source distribution is discontinuous by an
amount equal to the surface current density.

Similar steps with Faraday’s law give

n̂12 × (E1 −E2) = 0.

The tangential electric field is continuous across a thin source.
We can also derive conditions on the normal components of the fields, although these

are not required for uniqueness. Gauss’s law (2.125) applied to the volume V in Figure
2.5 gives

∫

S1

D1 · n̂1 dS +

∫

S2

D2 · n̂2 dS +

∫

S3

D · n̂3 dS =

∫

V

ρ dV.
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As ∆ → 0, the thin source layer recedes to a surface layer. The integral of normal D over
S3 tends to zero by continuity of the fields. By symmetry, S1 = S2 and n̂1 = −n̂2 = n̂12.
Thus

∫

S1

(D1 −D2) · n̂12 dS =

∫

V

ρ dV.

The volume integral is

∫

V

ρ dV =

∫

S1

∫ δ/2

−δ/2
ρ dS dx =

∫ δ/2

−δ/2
f(x,∆) dx

∫

S1

ρs(r, t) dS.

Since δ = k∆ has been chosen so that most of the source charge lies within V , (2.149)
gives

∫

S1

[(D1 −D2) · n̂12 − ρs] dS = 0,

hence

(D1 −D2) · n̂12 = ρs.

The normal component of D is discontinuous across a thin source distribution by an
amount equal to the surface charge density. Similar steps with the magnetic Gauss’s law
yield

(B1 −B2) · n̂12 = 0.

The normal component of B is continuous across a thin source layer.
We can follow similar steps when a thin magnetic source layer is present. When eval-

uating Faraday’s law we must include magnetic surface current and when evaluating the
magnetic Gauss’s law we must include magnetic charge. However, since such sources are
not physical, we postpone their consideration until the next section, where appropriate
boundary conditions are postulated rather than derived.

2.8.2 Boundary conditions holding across a stationary layer of field
discontinuity

Provided that we model a surface source as a limiting case of a very thin but continuous
volume source, we can derive boundary conditions across a surface layer. We might
ask whether we can extend this idea to surfaces of materials where the constitutive
parameters change from one region to another. Indeed, if we take Lorentz’ viewpoint
and visualize a material as a conglomerate of atomic charge, we should be able to apply
this same idea. After all, a material should demonstrate a continuous transition (in the
macroscopic sense) across its boundary, and we can employ the Maxwell–Boffi equations
to describe the relationship between the “equivalent” sources and the electromagnetic
fields.
We should note, however, that the limiting concept is not without its critics. Stokes

suggested as early as 1848 that jump conditions should never be derived from smooth
solutions [199]. Let us therefore pursue the boundary conditions for a surface of true
field discontinuity. This will also allow us to treat a material modeled as having a true
discontinuity in its material parameters (which we can always take as a mathematical
model of a more gradual transition) before we have studied in a deeper sense the physical
properties of materials. This approach, taken by many textbooks, must be done carefully.
There is a logical difficulty with this approach, lying in the application of the large-

scale forms of Maxwell’s equations. Many authors postulate Maxwell’s equations in point
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form, integrate to obtain the large-scale forms, then apply the large-scale forms to regions
of discontinuity. Unfortunately, the large-scale forms thus obtained are only valid in the
same regions where their point form antecedents were valid — discontinuities must be
excluded. Schelkunoff [169] has criticized this approach, calling it a “swindle” rather
than a proof, and has suggested that the proper way to handle true discontinuities
is to postulate the large-scale forms of Maxwell’s equations, and to include as part
of the postulate the assumption that the large-scale forms are valid at points of field
discontinuity. Does this mean we must reject our postulate of the point-form Maxwell
equations and reformulate everything in terms of the large-scale forms? Fortunately, no.
Tai [189] has pointed out that it is still possible to postulate the point forms, as long
as we also postulate appropriate boundary conditions that make the large-scale forms,
as derived from the point forms, valid at surfaces of discontinuity. In essence, both
approaches require an additional postulate for surfaces of discontinuity: the large-scale
forms require a postulate of applicability to discontinuous surfaces, and from there the
boundary conditions can be derived; the point forms require a postulate of the boundary
conditions that result in the large-scale forms being valid on surfaces of discontinuity.
Let us examine how the latter approach works.

Consider a surface across which the constitutive relations are discontinuous, containing
electric and magnetic surface currents and charges Js, ρs, Jms, and ρms (Figure 2.6).
We locate a volume region V1 above the surface of discontinuity; this volume is bounded
by a surface S1 and another surface S10, which is parallel to, and a small distance δ/2
above, the surface of discontinuity. A second volume region V2 is similarly situated below
the surface of discontinuity. Because these regions exclude the surface of discontinuity,
we can use (2.146) to get

∫

S1

n̂×H dS +

∫

S10

n̂×H dS =

∫

V1

(

J+
∂D

∂t

)

dV,

∫

S2

n̂×H dS +

∫

S20

n̂×H dS =

∫

V2

(

J+
∂D

∂t

)

dV.

Adding these we obtain
∫

S1+S2

n̂×H dS −
∫

V1+V2

(

J+
∂D

∂t

)

dV

−
∫

S10

n̂10 ×H1 dS −
∫

S20

n̂20 ×H2 dS = 0, (2.150)

where we have used subscripts to delineate the fields on each side of the discontinuity
surface.

If δ is very small (but nonzero), then n̂10 = −n̂20 = n̂12 and S10 = S20. Letting
S1 + S2 = S and V1 + V2 = V , we can write (2.150) as

∫

S

(n̂×H) dS −
∫

V

(

J+
∂D

∂t

)

dV =

∫

S10

n̂12 × (H1 −H2) dS. (2.151)

Now suppose we use the same volume region V , but let it intersect the surface of
discontinuity (Figure 2.6), and suppose that the large-scale form of Ampere’s law holds
even if V contains points of field discontinuity. We must include the surface current in
the computation. Since

∫

V J dV becomes
∫

S Js dS on the surface, we have

∫

S

(n̂×H) dS −
∫

V

(

J+
∂D

∂t

)

dV =

∫

S10

Js dS.
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FIGURE 2.6

Derivation of the electromagnetic boundary conditions across a discontinuous source
layer.

We wish to have this give the same value for the integrals over V and S as (2.151), which
included in its derivation no points of discontinuity. This is true provided that

n̂12 × (H1 −H2) = Js. (2.152)

Thus, under the condition (2.152) we may interpret the large-scale form of Ampere’s law
(as derived from the point form) as being valid for regions containing discontinuities.
Note that this condition is not “derived,” but must be regarded as a postulate that
results in the large-scale form holding for surfaces of discontinuous field.
Similar reasoning can be used to determine the appropriate boundary condition on

tangential E from Faraday’s law. Corresponding to (2.151) we obtain

∫

S

(n̂×E) dS −
∫

V

(

−Jm − ∂B

∂t

)

dV =

∫

S10

n̂12 × (E1 −E2) dS. (2.153)

Employing (2.145) over the region containing the field discontinuity surface, we get

∫

S

(n̂×E) dS −
∫

V

(

−Jm − ∂B

∂t

)

dV = −
∫

S10

Jms dS. (2.154)

To have (2.153) and (2.154) produce identical results, we postulate

n̂12 × (E1 −E2) = −Jms

as the boundary condition appropriate to a surface of field discontinuity containing a
magnetic surface current.
We can also postulate boundary conditions on the normal fields to make Gauss’s laws

valid for surfaces of discontinuous fields. Integrating (2.125) over the regions V1 and V2
and adding, we obtain

∫

S1+S2

D · n̂ dS −
∫

S10

D1 · n̂10 dS −
∫

S20

D2 · n̂20 dS =

∫

V1+V2

ρ dV.

As δ → 0 this becomes
∫

S

D · n̂ dS −
∫

V

ρ dV =

∫

S10

(D1 −D2) · n̂12 dS. (2.155)
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If we integrate Gauss’s law over the entire region V , including the surface of discontinuity,
we get

∮

S

D · n̂ dS =

∫

V

ρ dV +

∫

S10

ρs dS. (2.156)

In order to get identical answers from (2.155) and (2.156), we must have

(D1 −D2) · n̂12 = ρs

as the boundary condition appropriate to a surface of field discontinuity containing an
electric surface charge. Similarly, we must postulate

(B1 −B2) · n̂12 = ρms

as the condition appropriate to a surface of field discontinuity containing a magnetic
surface charge.

We can determine an appropriate boundary condition on current by using the large-
scale form of the continuity equation. Applying (1.8) over each of the volume regions of
Figure 2.6 and adding the results, we have

∫

S1+S2

J · n̂ dS −
∫

S10

J1 · n̂10 dS −
∫

S20

J2 · n̂20 dS = −
∫

V1+V2

∂ρ

∂t
dV.

As δ → 0 we have
∫

S

J · n̂ dS −
∫

S10

(J1 − J2) · n̂12 dS = −
∫

V

∂ρ

∂t
dV. (2.157)

Applying the continuity equation over the entire region V and allowing it to intersect
the discontinuity surface, we get

∫

S

J · n̂ dS +

∫

Γ

Js · m̂ dl = −
∫

V

∂ρ

∂t
dV −

∫

S10

∂ρs
∂t

dS.

By the two-dimensional divergence theorem (B.26) we can write this as
∫

S

J · n̂ dS +

∫

S10

∇s · Js dS = −
∫

V

∂ρ

∂t
dV −

∫

S10

∂ρs
∂t

dS.

In order for this expression to produce the same values of the integrals over S and V as
in (2.157), we require

∇s · Js = −n̂12 · (J1 − J2)−
∂ρs
∂t

,

which we take as our postulate of the boundary condition on current across a surface
containing discontinuities. A similar set of steps carried out using the continuity equation
for magnetic sources yields

∇s · Jms = −n̂12 · (Jm1 − Jm2)−
∂ρms
∂t

.

In summary, we have the following boundary conditions for fields across a surface
containing discontinuities:

n̂12 × (H1 −H2) = Js, (2.158)

n̂12 × (E1 −E2) = −Jms, (2.159)

n̂12 · (D1 −D2) = ρs, (2.160)

n̂12 · (B1 −B2) = ρms, (2.161)
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and

n̂12 · (J1 − J2) = −∇s · Js −
∂ρs
∂t

, (2.162)

n̂12 · (Jm1 − Jm2) = −∇s · Jms −
∂ρms
∂t

, (2.163)

where n̂12 points into region 1 from region 2.

2.8.3 Boundary conditions at the surface of a perfect conductor

We can easily specialize the results of the previous section to the case of perfect electric
or magnetic conductors. In § 2.2.2.3 we saw that the constitutive relations for perfect
conductors requires the null field within the material. In addition, a PEC requires zero
tangential electric field, while a PMC requires zero tangential magnetic field. Using
(2.158)–(2.163), we find that the boundary conditions for a perfect electric conductor
are

n̂×H = Js, (2.164)

n̂×E = 0, (2.165)

n̂ ·D = ρs, (2.166)

n̂ ·B = 0, (2.167)

and

n̂ · J = −∇s · Js −
∂ρs
∂t

, n̂ · Jm = 0.

For a PMC the conditions are

n̂×H = 0,

n̂×E = −Jms,

n̂ ·D = 0,

n̂ ·B = ρms,

and

n̂ · Jm = −∇s · Jms −
∂ρms
∂t

, n̂ · J = 0.

We note that the normal vector n̂ points out of the conductor and into the adjacent
region of nonzero fields.

2.8.4 Boundary conditions across a stationary layer of field disconti-
nuity using equivalent sources

So far we have avoided using the physical interpretation of the equivalent sources in the
Maxwell–Boffi equations so that we might investigate the behavior of fields across true
discontinuities. Now that we have the appropriate boundary conditions, it is interesting
to interpret them in terms of the equivalent sources.
If we put H = B/µ0 −M into (2.158) and rearrange, we get

n̂12 × (B1 −B2) = µ0(Js + n̂12 ×M1 − n̂12 ×M2). (2.168)
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The terms on the right involving n̂12×M have the units of surface current and are called
equivalent magnetization surface currents. Defining

JMs = −n̂×M

where n̂ is directed normally outward from the material region of interest, we can rewrite
(2.168) as

n̂12 × (B1 −B2) = µ0(Js + JMs1 + JMs2).

We note that JMs replaces atomic charge moving along the surface of a material with an
equivalent surface current in free space.

If we substitute D = ǫ0E+P into (2.160) and rearrange, we get

n̂12 · (E1 −E2) =
1

ǫ0
(ρs − n̂12 ·P1 + n̂12 ·P2). (2.169)

The terms on the right involving n̂12 ·P have the units of surface charge and are called
equivalent polarization surface charges. Defining

ρPs = n̂ ·P,

we can rewrite (2.169) as

n̂12 · (E1 −E2) =
1

ǫ0
(ρs + ρPs1 + ρPs2).

We note that ρPs replaces atomic charge adjacent to a surface of a material with an
equivalent surface charge in free space.

In summary, the boundary conditions at a stationary surface of discontinuity written
in terms of equivalent sources are

n̂12 × (B1 −B2) = µ0(Js + JMs1 + JMs2),

n̂12 × (E1 −E2) = −Jms,

n̂12 · (E1 −E2) =
1

ǫ0
(ρs + ρPs1 + ρPs2),

n̂12 · (B1 −B2) = ρms.

2.8.5 Boundary conditions across a moving layer of field discontinuity

With a moving material body it is often necessary to apply boundary conditions describ-
ing the behavior of the fields across the surface of the body. If a surface of discontinuity
moves with constant velocity v, the boundary conditions (2.158)–(2.163) hold as long as
all fields are expressed in the frame of the moving surface. We can also derive boundary
conditions for a deforming surface moving with arbitrary velocity by using equations
(2.147)–(2.148). In this case all fields are expressed in the laboratory frame. Proceeding
through the same set of steps that gave us (2.158)–(2.161), we find

n̂12 × (H1 −H2) + (n̂12 · v)(D1 −D2) = Js, (2.170)

n̂12 × (E1 −E2)− (n̂12 · v)(B1 −B2) = −Jms, (2.171)

n̂12 · (D1 −D2) = ρs, (2.172)

n̂12 · (B1 −B2) = ρms. (2.173)
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Note that when n̂12 · v = 0 these boundary conditions reduce to those for a stationary
surface. This occurs not only when v = 0 but also when the velocity is parallel to the
surface.
The reader must be wary when employing (2.170)–(2.173). Since the fields are mea-

sured in the laboratory frame, if the constitutive relations are substituted into the bound-
ary conditions they must also be represented in the laboratory frame. It is probable that
the material parameters would be known in the rest frame of the material, in which case
a conversion to the laboratory frame would be necessary.

2.9 Fundamental theorems

In this section we shall consider some of the important theorems of electromagnetics that
pertain directly to Maxwell’s equations. They may be derived without reference to the
solutions of Maxwell’s equations, and are not connected with any specialization of the
equations or any specific application or geometrical configuration. In this sense these
theorems are fundamental to the study of electromagnetics.

2.9.1 Linearity

Recall that a mathematical operator L is linear if

L(α1f1 + α2f2) = α1L(f1) + α2L(f2)

holds for any two functions f1,2 in the domain of L and any two scalar constants α1,2. A
standard observation regarding the equation

L(f) = s, (2.174)

where L is a linear operator and s is a given forcing function, is that if f1 and f2 are
solutions to

L(f1) = s1, L(f2) = s2, (2.175)

respectively, and
s = s1 + s2, (2.176)

then
f = f1 + f2 (2.177)

is a solution to (2.174). This is the principle of superposition; if convenient, we can
decompose s in Equation (2.174) as a sum (2.176) and solve the two resulting equations
(2.175) independently. The solution to (2.174) is then (2.177), “by superposition.” Of
course, we are free to split the right side of (2.174) into more than two terms — the
method extends directly to any finite number of terms.
Because the operators ∇·, ∇×, and ∂/∂t are all linear, Maxwell’s equations can be

treated by this method. If, for instance,

∇×E1 = −∂B1

∂t
, ∇×E2 = −∂B2

∂t
,

then

∇×E = −∂B
∂t
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where E = E1 + E2 and B = B1 + B2. The motivation for decomposing terms in
a particular way is often based on physical considerations; we give one example here
and defer others to later sections of the book. We saw earlier that Maxwell’s equations
can be written in terms of both electric and (fictitious) magnetic sources as in equations
(2.141)–(2.144). Let E = Ee+Em where Ee is produced by electric-type sources and Em
is produced by magnetic-type sources, and decompose the other fields similarly. Then

∇×Ee = −∂Be

∂t
, ∇×He = J+

∂De

∂t
, ∇ ·De = ρ, ∇ ·Be = 0,

with a similar equation set for the magnetic sources. We may, if desired, solve these two
equation sets independently for Ee, De, Be, He and Em, Dm, Em, Hm, and then use
superposition to obtain the total fields E, D, B, H.

2.9.2 Duality

The intriguing symmetry of Maxwell’s equations leads us to an observation that can
reduce the effort required to compute solutions. Consider a closed surface S enclosing a
region of space that includes an electric source current J and a magnetic source current
Jm. The fields (E1,D1,B1,H1) within the region (which may also contain arbitrary
media) are described by

∇×E1 = −Jm − ∂B1

∂t
, (2.178)

∇×H1 = J+
∂D1

∂t
, (2.179)

∇ ·D1 = ρ, (2.180)

∇ ·B1 = ρm. (2.181)

Suppose we have been given a mathematical description of the sources (J,Jm) and have
solved for the field vectors (E1,D1,B1,H1). Of course, we must also have been supplied
with a set of boundary values and constitutive relations in order to make the solution
unique. We note that if we replace the formula for J with the formula for Jm in (2.179)
(and ρ with ρm in (2.180)) and also replace Jm with −J in (2.178) (and ρm with −ρ
in (2.181)) we get a new problem to solve, with a different solution. However, the
symmetry of the equations allows us to specify the solution immediately. The new set of
curl equations requires

∇×E2 = J− ∂B2

∂t
, (2.182)

∇×H2 = Jm +
∂D2

∂t
. (2.183)

As long as we can resolve the question of how the constitutive parameters must be altered
to reflect these replacements, we can conclude by comparing (2.182) with (2.179) and
(2.183) with (2.178) that the solution to these equations is merely

E2 = H1,

B2 = −D1,

D2 = B1,

H2 = −E1.
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That is, if we have solved the original problem, we can use those solutions to find the
new ones. This is an application of the general principle of duality.
Unfortunately, this approach is a little awkward since the units of the sources and

fields in the two problems are different. We can make the procedure more convenient by
multiplying Ampere’s law by η0 = (µ0/ǫ0)

1/2. Then we have

∇×E = −Jm − ∂B

∂t
,

∇× (η0H) = (η0J) +
∂(η0D)

∂t
.

Thus, if the original problem has solution (E1, η0D1,B1, η0H1), then the dual problem
with J replaced by Jm/η0 and Jm replaced by −η0J has solution

E2 = η0H1, (2.184)

B2 = −η0D1, (2.185)

η0D2 = B1, (2.186)

η0H2 = −E1. (2.187)

The units on the quantities in the two problems are now identical.
Of course, the constitutive parameters for the dual problem must be altered from

those of the original problem to reflect the change in field quantities. From (2.12) and
(2.13) we know that the most general forms of the constitutive relations (those for linear,
bianisotropic media) are

D1 = ξ̄1 ·H1 + ǭ1 ·E1, (2.188)

B1 = µ̄1 ·H1 + ζ̄1 · E1, (2.189)

for the original problem, and

D2 = ξ̄2 ·H2 + ǭ2 ·E2, (2.190)

B2 = µ̄2 ·H2 + ζ̄2 · E2, (2.191)

for the dual problem. Substitution of (2.184)–(2.187) into (2.188) and (2.189) gives

D2 = (−ζ̄1) ·H2 +

(

µ̄1

η20

)

·E2, (2.192)

B2 =
(

η20 ǭ1
)

·H2 + (−ξ̄1) · E2. (2.193)

Comparing (2.192) with (2.190) and (2.193) with (2.191), we conclude that

ζ̄2 = −ξ̄1, ξ̄2 = −ζ̄1, µ̄2 = η20 ǭ1, ǭ2 = µ̄1/η
2
0 .

As an important special case, we see that for a linear, isotropic medium specified by a
permittivity ǫ and permeability µ, the dual problem is obtained by replacing ǫr with µr
and µr with ǫr. The solution to the dual problem is then given by

E2 = η0H1

η0H2 = −E1,
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as before. We thus see that the medium in the dual problem must have electric properties
numerically equal to the magnetic properties of the medium in the original problem, and
magnetic properties numerically equal to the electric properties of the medium in the
original problem. This is rather inconvenient for most applications. Alternatively, we
may divide Ampere’s law by η = (µ/ǫ)1/2 instead of η0. Then the dual problem has the
replacements

J 7→ Jm/η, Jm 7→ −ηJ,

and the solution to the dual problem is given by

E2 = ηH1,

ηH2 = −E1.

In this case there is no need to swap ǫr and µr, since information about these parameters
is incorporated into the replacement sources.

We must also remember that to obtain a unique solution we need to specify the bound-
ary values of the fields. In a true dual problem, the boundary values of the fields used
in the original problem are used on the swapped fields in the dual problem. A typical
example of this is when the condition of zero tangential electric field on a perfect electric
conductor is replaced by the condition of zero tangential magnetic field on the surface of
a perfect magnetic conductor. However, duality can also be used to obtain the mathe-
matical form of the field expressions, often in a homogeneous (source-free) situation, and
boundary values can be applied later to specify the solution appropriate to the problem
geometry. This approach is often used to compute waveguide modal fields and the elec-
tromagnetic fields scattered from objects. In these cases a TE/TM field decomposition
is employed, and duality is used to find one part of the decomposition once the other is
known.

2.9.2.1 Duality of electric and magnetic point source fields

By duality, we can sometimes use the known solution to one problem to solve a related
problem by merely substituting different variables into the known mathematical expres-
sion. An example of this is the case in which we have solved for the fields produced by
a certain distribution of electric sources and wish to determine the fields when the same
distribution is used to describe magnetic sources.

Let us consider the case when the source distribution is that of a point current, or
Hertzian dipole, immersed in free space. As we shall see in Chapter 5, the fields for a
general source may be found by using the fields produced by these point sources. We
begin by finding the fields produced by an electric dipole source at the origin aligned
along the z-axis, J = ẑI0δ(r), then use duality to find the fields produced by a magnetic
current source Jm = ẑIm0δ(r).

The fields produced by the electric source must obey

∇×Ee = − ∂

∂t
µ0He, (2.194)

∇×He = ẑI0δ(r) +
∂

∂t
ǫ0Ee, (2.195)

∇ · ǫ0Ee = ρ, (2.196)

∇ ·He = 0, (2.197)
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while those produced by the magnetic source must obey

∇×Em = −ẑIm0δ(r) −
∂

∂t
µ0Hm, (2.198)

∇×Hm =
∂

∂t
ǫ0Em, (2.199)

∇ ·Em = 0, (2.200)

∇ · µ0Hm = ρm. (2.201)

We see immediately that the second set of equations is the dual of the first, as long
as we scale the sources appropriately. Multiplying (2.198) by −I0/Im0 and (2.199) by
I0η

2
0/Im0, we have the curl equations

∇×
(

− I0
Im0

Em

)

= ẑI0δ(r) +
∂

∂t

(

µ0
I0
Im0

Hm

)

, (2.202)

∇×
(

I0η
2
0

Im0
Hm

)

= − ∂

∂t

(

−ǫ0
I0η

2
0

Im0
Em

)

. (2.203)

Comparing (2.203) with (2.194) and (2.202) with (2.195) we see that

Em = −Im0

I0
He, Hm =

Im0

I0

Ee
η20
.

We note that it is impossible to have a point current source without accompanying
point charge sources terminating each end of the dipole current. The point charges are
required to satisfy the continuity equation, and vary in time as the moving charge that
establishes the current accumulates at the ends of the dipole. From (2.195) we see that
the magnetic field curls around the combination of the electric field and electric current
source, while from (2.194) the electric field curls around the magnetic field, and from
(2.196) diverges from the charges located at the ends of the dipole. From (2.198) we
see that the electric field must curl around the combination of the magnetic field and
magnetic current source, while (2.199) and (2.201) show that the magnetic field curls
around the electric field and diverges from the magnetic charge.

2.9.2.2 Duality in a source-free region

Consider a closed surface S enclosing a source-free region of space. For simplicity, assume
that the medium within S is linear, isotropic, and homogeneous. The fields within S are
described by Maxwell’s equations

∇×E1 = − ∂

∂t
µH1,

∇× ηH1 =
∂

∂t
ǫηE1,

∇ · ǫE1 = 0,

∇ · µH1 = 0.

Under these conditions the concept of duality takes on a different face. The symmetry
of the equations is such that the mathematical form of the solution for E is the same as
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that for ηH. That is, the fields

E2 = ηH1,

H2 = −E1/η,

are also a solution to Maxwell’s equations, and thus the dual problem merely involves
replacing E by ηH and H by −E/η. However, the final forms of E and H will not be
identical after appropriate boundary values are imposed.

This form of duality is very important for the solution of fields within waveguides or
the fields scattered by objects where the sources are located outside the region where the
fields are evaluated.

2.9.3 Reciprocity

The reciprocity theorem, also called the Lorentz reciprocity theorem, describes a specific
and often useful relationship between sources and the electromagnetic fields they produce.
Under certain special circumstances, we find that an interaction between independent
source and mediating fields, called “reaction,” is a spatially symmetric quantity. The
reciprocity theorem is used in the study of guided waves to establish the orthogonality of
guided wave modes, in microwave network theory to obtain relationships between termi-
nal characteristics, and in antenna theory to demonstrate the equivalence of transmission
and reception patterns.

Consider a closed surface S enclosing a volume V . Assume that the fields within and
on S are produced by two independent source fields. The source (Ja,Jma) produces the
field (Ea,Da,Ba,Ha) as described by Maxwell’s equations

∇×Ea = −Jma −
∂Ba

∂t
,

∇×Ha = Ja +
∂Da

∂t
,

while the source field (Jb,Jmb) produces the field (Eb,Db,Bb,Hb) as described by

∇×Eb = −Jmb −
∂Bb

∂t
,

∇×Hb = Jb +
∂Db

∂t
.

The sources may be distributed in any way relative to S: they may lie completely inside,
completely outside, or partially inside and partially outside. Material media may lie
within S, and their properties may depend on position.

Let us examine the quantity

R ≡ ∇ · (Ea ×Hb −Eb ×Ha).

By (B.50) we have

R = Hb · ∇ ×Ea −Ea · ∇ ×Hb −Ha · ∇ ×Eb +Eb · ∇ ×Ha

so that by Maxwell’s curl equations

R =

[

Ha ·
∂Bb

∂t
−Hb ·

∂Ba

∂t

]

−
[

Ea ·
∂Db

∂t
−Eb ·

∂Da

∂t

]

+ [Ja ·Eb − Jb ·Ea − Jma ·Hb + Jmb ·Ha] .
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The useful relationships we seek occur when the first two bracketed quantities on the
right-hand side of the above expression are zero. Whether this is true depends not only
on the behavior of the fields, but on the properties of the medium at the point in question.
Though we have assumed that the sources of the field sets are independent, it is apparent
that they must share a similar time dependence in order for the terms within each of the
bracketed quantities to cancel. Of special interest is the case where the two sources are
both sinusoidal in time with identical frequencies, but with differing spatial distributions.
We shall consider this case in detail in § 4.10.2 after we have discussed the properties of
the time-harmonic field. Importantly, we will find that only certain characteristics of the
constitutive parameters allow cancellation of the bracketed terms; materials with these
characteristics are called reciprocal, and the fields they support are said to display the
property of reciprocity. To see what this property entails, we set the bracketed terms to
zero and integrate over a volume V to obtain

∮

S

(Ea ×Hb −Eb ×Ha) · dS =

∫

V

(Ja ·Eb − Jb · Ea − Jma ·Hb + Jmb ·Ha) dV,

which is the time-domain version of the Lorentz reciprocity theorem.
Two special cases of this theorem are important to us. If all sources lie outside S, we

have Lorentz’s lemma
∮

S

(Ea ×Hb −Eb ×Ha) · dS = 0.

This remarkable expression shows that a relationship exists between the fields produced
by completely independent sources, and is useful for establishing waveguide mode or-
thogonality for time-harmonic fields. If sources reside within S but the surface integral
is equal to zero, we have

∫

V

(Ja ·Eb − Jb · Ea − Jma ·Hb + Jmb ·Ha) dV = 0.

This occurs when the surface is bounded by a special material (such as an impedance
sheet or a perfect conductor), or when the surface recedes to infinity; the expression is
useful for establishing the reciprocity conditions for networks and antennas. We shall
interpret it for time harmonic fields in § 4.10.2.

2.9.4 Similitude

A common approach in physical science involves the introduction of normalized variables
to provide for scaling of problems along with a chance to identify certain physically
significant parameters. Similarity as a general principle can be traced back to the earliest
attempts to describe physical effects with mathematical equations, with serious study
undertaken by Galileo. Helmholtz introduced the first systematic investigation in 1873,
and the concept was rigorized by Reynolds ten years later [218]. Similitude is now
considered a fundamental guiding principle in the modeling of materials [199].
The process often begins with a consideration of the fundamental differential equations.

In electromagnetics we may introduce a set of dimensionless field and source variables

E, D, B, H, J, ρ, (2.204)

by setting

E = EkE , B = BkB, D = DkD,

H = HkH , J = JkJ , ρ = ρkρ. (2.205)
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Here we regard the quantities kE , kB, . . . as base units for the discussion, while the
dimensionless quantities (2.204) serve to express the actual fields E,B, . . . in terms of
these base units. Of course, the time and space variables can also be scaled: we can write

t = tkt, l = lkl, (2.206)

if l is any length of interest. Again, the quantities t and l are dimensionless measure
numbers used to express the actual quantities t and l relative to the chosen base amounts
kt and kl. With (2.205) and (2.206), Maxwell’s curl equations become

∇×E = −kB
kE

kl
kt

∂B

∂t
, ∇×H =

kJkl
kH

J+
kD
kH

kl
kt

∂D

∂t
(2.207)

while the continuity equation becomes

∇ · J = − kρ
kJ

kl
kt

∂ρ

∂t
, (2.208)

where ∇ has been normalized by kl. These are examples of field equations cast into
dimensionless form — it is easily verified that the similarity parameters

kB
kE

kl
kt
,

kJkl
kH

,
kD
kH

kl
kt
,

kρ
kJ

kl
kt
, (2.209)

are dimensionless. The idea behind electromagnetic similitude is that a given set of
normalized values E,B, . . . can satisfy equations (2.207) and (2.208) for many different
physical situations, provided that the numerical values of the coefficients (2.209) are all
fixed across those situations. Indeed, the differential equations would be identical.

To make this discussion a bit more concrete, let us assume a conducting linear medium
where

D = ǫE, B = µH, J = σE,

and use
ǫ = ǫkǫ, µ = µkµ, σ = σkσ,

to express the material parameters in terms of dimensionless values ǫ, µ, and σ. Then

D =
kǫkE
kD

ǫE, B =
kµkH
kB

µH, J =
kσkE
kJ

σE,

and equations (2.207) become

∇×E = −
(

kµkl
kt

kH
kE

)

µ
∂H

∂t
,

∇×H =

(

kσkl
kE
kH

)

σE+

(

kǫkl
kt

kE
kH

)

ǫ
∂E

∂t
.

Defining

α =
kµkl
kt

kH
kE

, γ = kσkl
kE
kH

, β =
kǫkl
kt

kE
kH

,

we see that under the current assumptions similarity holds between two electromagnetics
problems only if αµ, γσ, and βǫ are numerically the same in both problems. A necessary
condition for similitude, then, is that the products

(αµ)(βǫ) = kµkǫ

(

kl
kt

)2

µǫ, (αµ)(γσ) = kµkσ
k2l
kt
µσ,



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 87 — #111
✐

✐

✐

✐

✐

✐

Maxwell’s theory of electromagnetism 87

(which do not involve kE or kH) stay constant between problems. We see, for example,
that we may compensate for a halving of the length scale kl by (a) a quadrupling of the
permeability µ, or (b) a simultaneous halving of the time scale kt and doubling of the
conductivity σ. A much less subtle special case is that for which σ = 0, kǫ = ǫ0, kµ = µ0,
and ǫ = µ = 1; we then have free space and must simply maintain

kl/kt = constant

so that the time and length scales stay proportional. In the sinusoidal steady state, for
instance, the frequency would be made to vary inversely with the length scale.

2.9.5 Conservation theorems

The misconception that Poynting’s theorem can be “derived” from Maxwell’s equations is
widespread and ingrained. We must, in fact, postulate the idea that the electromagnetic
field can be associated with an energy flux propagating at the speed of light. Since
the form of the postulate is patterned after the well-understood laws of mechanics, we
begin by developing the basic equations of momentum and energy balance in mechanical
systems. Then we shall see whether it is sensible to ascribe these principles to the
electromagnetic field.
Maxwell’s theory allows us to describe, using Maxwell’s equations, the behavior of

the electromagnetic fields within a (possibly) finite region V of space. The presence of
any sources or material objects outside V are made known through the specification of
tangential fields over the boundary of V , as required for uniqueness. Thus, the influence
of external effects can always be viewed as being transported across the boundary. This
is true of mechanical as well as electromagnetic effects. A charged material body can
be acted on by physical contact with another body, by gravitational forces, and by the
Lorentz force, each effect resulting in momentum exchange across the boundary of the
object. These effects must all be taken into consideration if we are to invoke momentum
conservation, resulting in a very complicated situation. This suggests that we try to
decompose the problem into simpler “systems” based on physical effects.

2.9.5.1 The system concept in the physical sciences

The idea of decomposing a complicated system into simpler, self-contained systems is
quite common in the physical sciences. Penfield and Haus [149] invoke this concept by
introducing an electromagnetic system where the effects of the Lorentz force equation
are considered to accompany a mechanical system where effects of pressure, stress, and
strain are considered, and a thermodynamic system where the effects of heat exchange
are considered. These systems can all be interrelated in a variety of ways. For instance,
as a material heats up, it can expand, and the resulting mechanical forces can alter
the electrical properties of the material. We will follow Penfield and Haus by consider-
ing separate electromagnetic and mechanical subsystems; other systems may be added
analogously.
If we separate the various systems by physical effect, we will need to know how to

“reassemble the information.” Two conservation theorems are very helpful in this re-
gard: conservation of energy, and conservation of momentum. Engineers often employ
these theorems to make tacit use of the system idea. For instance, when studying elec-
tromagnetic waves propagating in a waveguide, it is common practice to compute wave
attenuation by calculating the Poynting flux of power into the walls of the guide. The
power lost from the wave is said to “heat up the waveguide walls,” which indeed it does.
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This is an admission that the electromagnetic system is not “closed”: it requires the
inclusion of a thermodynamic system in order that energy be conserved. Of course, the
detailed workings of the thermodynamic system are often ignored, indicating that any
thermodynamic “feedback” mechanism is weak. In the waveguide example, for instance,
the heating of the metallic walls does not alter their electromagnetic properties enough
to couple back into an effect on the fields in the walls or in the guide. If such effects were
important, they would have to be included in the conservation theorem via the boundary
fields; it is therefore reasonable to associate with these fields a “flow” of energy or mo-
mentum into V . Thus, we wish to develop conservation laws that include not only the
Lorentz force effects within V , but a flow of external effects into V through its boundary
surface.

To understand how external influences may affect the electromagnetic subsystem, we
look to the behavior of the mechanical subsystem as an analogue. In the electromagnetic
system, effects are felt both internally to a region (because of the Lorentz force effect) and
through the system boundary (by the dependence of the internal fields on the boundary
fields). In the mechanical and thermodynamic systems, a region of mass is affected both
internally (through transfer of heat and gravitational forces) and through interactions
occurring across its surface (through transfers of energy and momentum, by pressure
and stress). One beauty of electromagnetic theory is that we can find a mathematical
symmetry between electromagnetic and mechanical effects which parallels the above con-
ceptual symmetry. This makes applying conservation of energy and momentum to the
total system (electromagnetic, thermodynamic, and mechanical) very convenient.

2.9.5.2 Conservation of momentum and energy in mechanical systems

We begin by reviewing the interactions of material bodies in a mechanical system. For
simplicity we concentrate on fluids (analogous to charge in space); the extension of these
concepts to solid bodies is straightforward.

Consider a fluid with mass density ρm. The momentum of a small subvolume of the
fluid is given by ρmv dV , where v is the velocity of the subvolume. So the momentum
density is ρmv. Newton’s second law states that a force acting throughout the subvolume
results in a change in its momentum, given by

D

Dt
(ρmv dV ) = f dV, (2.210)

where f is the volume force density and the D/Dt notation shows that we are interested
in the rate of change of the momentum as observed by the moving fluid element (see
§ A.3). Here f could be the weight force, for instance. Addition of the results for all
elements of the fluid body gives

D

Dt

∫

V

ρmv dV =

∫

V

f dV (2.211)

as the change in momentum for the entire body. If on the other hand the force exerted
on the body is through contact with its surface, the change in momentum is

D

Dt

∫

V

ρmv dV =

∮

S

t dS (2.212)

where t is the “surface traction.”
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We can write the time-rate of change of momentum in a more useful form by applying
the Reynolds transport theorem (A.68):

D

Dt

∫

V

ρmv dV =

∫

V

∂

∂t
(ρmv) dV +

∮

S

(ρmv)v · dS. (2.213)

Superposing (2.211) and (2.212) and substituting into (2.213) we have

∫

V

∂

∂t
(ρmv) dV +

∮

S

(ρmv)v · dS =

∫

V

f dV +

∮

S

t dS. (2.214)

If we define the dyadic quantity
T̄k = ρmvv,

then (2.214) can be written as

∫

V

∂

∂t
(ρmv) dV +

∮

S

n̂ · T̄k dS =

∫

V

f dV +

∮

S

t dS. (2.215)

This principle of linear momentum [214] can be interpreted as a large-scale form of
conservation of kinetic linear momentum. Here n̂ · T̄k represents the flow of kinetic mo-
mentum across S, and the sum of this momentum transfer and the change of momentum
within V stands equal to the forces acting internal to V and upon S.
The surface traction may be related to the surface normal n̂ through a dyadic quantity

T̄m called the mechanical stress tensor :

t = n̂ · T̄m.

With this we may write (2.215) as

∫

V

∂

∂t
(ρmv) dV +

∮

S

n̂ · T̄k dS =

∫

V

f dV +

∮

S

n̂ · T̄m dS

and apply the dyadic form of the divergence theorem (B.25) to get

∫

V

∂

∂t
(ρmv) dV +

∫

V

∇ · (ρmvv) dV =

∫

V

f dV +

∫

V

∇ · T̄m dV.

Combining the volume integrals and setting the integrand to zero, we have

∂

∂t
(ρmv) + ∇ · (ρmvv) = f +∇ · T̄m,

which is the point-form equivalent of (2.215). Note that the second term on the right-
hand side is nonzero only for points residing on the surface of the body. Finally, letting
g denote momentum density, we obtain the simple expression

∇ · T̄k +
∂gk
∂t

= fk, (2.216)

where
gk = ρmv

is the density of kinetic momentum, and

fk = f +∇ · T̄m (2.217)
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is the total force density.
Equation (2.216) is somewhat analogous to the electric charge continuity equation

(1.9). For each point of the body, the total outflux of kinetic momentum plus the time
rate of change of kinetic momentum equals the total force. The resemblance to (1.9)
is strong, except for the nonzero term on the right-hand side. The charge continuity
equation represents a closed system: charge cannot spontaneously appear and add an
extra term to the right-hand side of (1.9). On the other hand, the change in total
momentum at a point can exceed that given by the momentum flowing out of the point
if there is another “source” (e.g., gravity for an internal point, or pressure on a boundary
point).

To obtain a momentum conservation expression that resembles the continuity equa-
tion, we must consider a “subsystem” with terms that exactly counterbalance the extra
expressions on the right-hand side of (2.216). For a fluid acted on only by external
pressure, the sole effect enters through the traction term, and [149]

∇ · T̄m = −∇p (2.218)

where p is the pressure exerted on the fluid body. Now, using (B.69), we can write

−∇p = −∇ · T̄p (2.219)

where
T̄p = pĪ

and Ī is the unit dyad. Finally, using (2.219), (2.218), and (2.217) in (2.216), we obtain

∇ · (T̄k + T̄p) +
∂

∂t
gk = 0

and we have an expression for a closed system including all possible effects. Now, note
that we can form the above expression as

(

∇ · T̄k +
∂

∂t
gk

)

+

(

∇ · T̄p +
∂

∂t
gp

)

= 0 (2.220)

where gp = 0 since there are no volume effects associated with pressure. This can be
viewed as the sum of two closed subsystems

∇ · T̄k +
∂

∂t
gk = 0, (2.221)

∇ · T̄p +
∂

∂t
gp = 0.

We now have the desired viewpoint. The conservation formula for the complete closed
system can be viewed as a sum of formulas for open subsystems, each having the form
of a conservation law for a closed system. In case we must include the effects of gravity,
for instance, we need only determine T̄g and gg such that

∇ · T̄g +
∂

∂t
gg = 0

and add this new conservation equation to (2.220). If we can find a conservation ex-
pression of form similar to (2.221) for an “electromagnetic subsystem,” we can include
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its effects along with the mechanical effects by merely adding together the conservation
laws. We shall find just such an expression later in this section.
We stated in § 1.3.4 that there are four fundamental conservation principles. We have

now discussed linear momentum; the principle of angular momentum follows similarly.
Our next goal is to find an expression similar to (2.220) for conservation of energy. We
may expect the conservation of energy expression to obey a similar law of superposition.
We begin with the fundamental definition of work: for a particle moving with velocity v
under the influence of a force fk, the work is given by fk · v. Dot multiplying (2.210) by
v and replacing f by fk (to represent both volume and surface forces), we get

v · D
Dt

(ρmv) dV = v · fk dV

or equivalently
D

Dt
(12ρmv · v) dV = v · fk dV.

Integration over a volume and application of the Reynolds transport theorem (A.68) then
gives

∫

V

∂

∂t
(12ρmv

2) dV +

∮

S

n̂ · (v 1
2ρmv

2) dS =

∫

V

fk · v dV.

Hence the sum of the time rate of change in energy internal to the body and the flow
of kinetic energy across the boundary must equal the work done by internal and surface
forces acting on the body. In point form,

∇ · Sk +
∂

∂t
Wk = fk · v (2.222)

where
Sk = v 1

2ρmv
2

is the density of the flow of kinetic energy, and

Wk = 1
2ρmv

2

is the kinetic energy density. Again, the system is not closed (the right-hand side of
(2.222) is not zero) because the balancing forces are not included. As was done with the
momentum equation, the effect of the work done by the pressure forces can be described
in a closed-system-type equation:

∇ · Sp +
∂

∂t
Wp = 0. (2.223)

Combining (2.222) and (2.223), we have

∇ · (Sk + Sp) +
∂

∂t
(Wk +Wp) = 0,

the energy conservation equation for the closed system.

2.9.5.3 Conservation in the electromagnetic subsystem

We would now like to achieve closed-system conservation theorems for the electromag-
netic subsystem so that we can add in the effects of electromagnetism. For the momentum
equation, we can proceed exactly as we did with the mechanical system. We begin with

fem = ρE+ J×B.
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This force term should appear on one side of the point form of the momentum conserva-
tion equation. The term on the other side must involve the electromagnetic fields, since
they are the mechanism for exerting force on the charge distribution. Substituting for J
from (2.2) and for ρ from (2.3) we have

fem = E(∇ ·D)−B× (∇×H) +B× ∂D

∂t
.

Using

B× ∂D

∂t
= − ∂

∂t
(D×B) +D× ∂B

∂t

and substituting from Faraday’s law for ∂B/∂t we have

−[E(∇ ·D)−D× (∇×E) +H(∇ ·B)−B× (∇×H)] +
∂

∂t
(D×B) = −fem. (2.224)

Here we have also added the null term H(∇ ·B).
The forms of (2.224) and (2.216) would be identical if the bracketed term could be

written as the divergence of a dyadic function T̄em. This is indeed possible for linear,
homogeneous, bianisotropic media, provided that the constitutive matrix [C̄EH ] in (2.14)
is symmetric [108]. In that case

T̄em = 1
2 (D ·E+B ·H)Ī−DE−BH, (2.225)

which is called the Maxwell stress tensor. Let us demonstrate this equivalence for a
linear, isotropic, homogeneous material. Putting D = ǫE and H = B/µ into (2.224) we
obtain

∇ ·Tem = −ǫE(∇ · E) +
1

µ
B× (∇×B) + ǫE× (∇×E)− 1

µ
B(∇ ·B). (2.226)

Now (B.52) gives

∇(A ·A) = 2A× (∇×A) + 2(A · ∇)A

so that

E(∇ ·E)−E× (∇×E) = E(∇ · E) + (E · ∇)E− 1
2∇(E2).

Finally, (B.61) and (B.69) give

E(∇ · E)−E× (∇×E) = ∇ ·
(

EE− 1
2 ĪE ·E

)

.

Substituting this expression and a similar one for B into (2.226) we have

∇ · T̄em = ∇ · [ 12 (D ·E+B ·H)Ī−DE−BH],

which matches (2.225).
Replacing the term in brackets in (2.224) by ∇ · T̄em, we get

∇ · T̄em +
∂gem
∂t

= −fem (2.227)

where

gem = D×B.
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Equation (2.227) is the point form of the electromagnetic conservation of momentum
theorem. It is mathematically identical in form to the mechanical theorem (2.216).
Integration over a volume gives the large-scale form

∮

S

T̄em · dS+

∫

V

∂gem
∂t

dV = −
∫

V

fem dV.

If we interpret this as we interpreted the conservation theorems from mechanics, the first
term on the left-hand side represents the flow of electromagnetic momentum across the
boundary of V , while the second term represents the change in momentum within V . The
sum of these two quantities is exactly compensated by the total Lorentz force acting on
the charges within V . Thus we identify gem as the transport density of electromagnetic
momentum.
Because (2.227) is not zero on the right-hand side, it does not represent a closed system.

If the Lorentz force is the only force acting on the charges within V , then the mechanical
reaction to the Lorentz force should be described by Newton’s third law. Thus we have
the kinematic momentum conservation formula

∇ · T̄k +
∂gk
∂t

= fk = −fem.

Subtracting this expression from (2.227) we obtain

∇ · (T̄em − T̄k) +
∂

∂t
(gem − gk) = 0,

which describes momentum conservation for the closed system.
It is also possible to derive a conservation theorem for electromagnetic energy that

resembles the corresponding theorem for mechanical energy. Earlier we noted that v · f
represents the volume density of work produced by moving an object at velocity v under
the action of a force f . For the electromagnetic subsystem the work is produced by
charges moving against the Lorentz force. So the volume density of work delivered to
the currents is

wem = v · fem = v · (ρE+ J×B) = (ρv) ·E+ ρv · (v ×B). (2.228)

Using (B.6) on the second term in (2.228) we get

wem = (ρv) · E+ ρB · (v × v).

The second term vanishes by definition of the cross product. This is the familiar property
that the magnetic field does no work on moving charge. Hence

wem = J · E. (2.229)

This important relation says that charge moving in an electric field experiences a force
which results in energy transfer to (or from) the charge. We wish to write this energy
transfer in terms of an energy flux vector, as we did with the mechanical subsystem.
As with our derivation of the conservation of electromagnetic momentum, we wish to

relate the energy transfer to the electromagnetic fields. Substitution of J from (2.2) into
(2.229) gives

wem = (∇×H) ·E− ∂D

∂t
·E,



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 94 — #118
✐

✐

✐

✐

✐

✐

94 Electromagnetics

hence

wem = −∇ · (E×H) +H · (∇×E)− ∂D

∂t
·E

by (B.50). Substituting for ∇×E from (2.1) we have

wem = −∇ · (E×H)−
(

E · ∂D
∂t

+H · ∂B
∂t

)

.

This is not quite of the form (2.222) since a single term representing the time rate of
change of energy density is not present. However, for a linear isotropic medium in which
ǫ and µ do not depend on time (i.e., a nondispersive medium) we have

E · ∂D
∂t

= ǫE · ∂E
∂t

=
1

2
ǫ
∂

∂t
(E ·E) =

1

2

∂

∂t
(D ·E), (2.230)

H · ∂B
∂t

= µH · ∂H
∂t

=
1

2
µ
∂

∂t
(H ·H) =

1

2

∂

∂t
(H ·B). (2.231)

Using this we obtain

∇ · Sem +
∂

∂t
Wem = −fem · v = −J ·E (2.232)

where Wem = 1
2 (D ·E+B ·H) and

Sem = E×H. (2.233)

Equation (2.232) is the point form of the energy conservation theorem, also called Poynt-
ing’s theorem after J.H. Poynting who first proposed it. The quantity Sem given in
(2.233) is known as the Poynting vector. Integrating (2.232) over a volume and using the
divergence theorem, we obtain the large-scale form

−
∫

V

J ·E dV =

∫

V

1

2

∂

∂t
(D · E+B ·H) dV +

∮

S

(E×H) · dS. (2.234)

This also holds for a nondispersive, linear, bianisotropic medium with a symmetric con-
stitutive matrix [108, 180].

We see that the electromagnetic energy conservation theorem (2.232) is identical in
form to the mechanical energy conservation theorem (2.222). Thus, if the system is com-
posed of just the kinetic and electromagnetic subsystems, the mechanical force exactly
balances the Lorentz force, and (2.232) and (2.222) add to give

∇ · (Sem + Sk) +
∂

∂t
(Wem +Wk) = 0, (2.235)

showing that energy is conserved for the entire system.
As in the mechanical system, we identify Wem as the volume electromagnetic energy

density in V , and Sem as the density of electromagnetic energy flowing across the bound-
ary of V . This interpretation is somewhat controversial, as discussed below.

2.9.5.4 Interpretation of the energy and momentum conservation theorems

There has been some controversy regarding Poynting’s theorem (and, equally, the mo-
mentum conservation theorem). While there is no question that Poynting’s theorem is
mathematically correct, we may wonder whether we are justified in associatingWem with
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Wk and Sem with Sk merely because of the similarities in their mathematical expressions.
Certainly there is some justification for associating Wk, the kinetic energy of particles,
with Wem, since we shall show that for static fields the term 1

2 (D ·E+B ·H) represents
the energy required to assemble the charges and currents into a certain configuration.
However, the term Sem is more problematic. In a mechanical system, Sk represents the
flow of kinetic energy associated with moving particles — does that imply that Sem rep-
resents the flow of electromagnetic energy? That is the position generally taken, and it is
widely supported by experimental evidence. However, the interpretation is not clear-cut.
If we associate Sem with the flow of electromagnetic energy at a point in space, then

we must define what a flow of electromagnetic energy is. We naturally associate the
flow of kinetic energy with moving particles; with what do we associate the flow of
electromagnetic energy? Maxwell felt that electromagnetic energy must flow through
space as a result of the mechanical stresses and strains associated with an unobserved
substance called the “aether.” A more modern interpretation is that the electromagnetic
fields propagate as a wave through space at finite velocity; when those fields encounter a
charged particle a force is exerted, work is done, and energy is “transferred” from the field
to the particle. Hence the energy flow is associated with the “flow” of the electromagnetic
wave.
Unfortunately, it is uncertain whether E×H is the appropriate quantity to associate

with this flow, since only its divergence appears in Poynting’s theorem. We could add
any other term S′ that satisfies∇·S′ = 0 to Sem in (2.232), and the conservation theorem
would be unchanged. (Equivalently, we could add to (2.234) any term that integrates to
zero over S.) There is no such ambiguity in the mechanical case because kinetic energy
is rigorously defined. We are left, then, to postulate that E ×H represents the density
of energy flow associated with an electromagnetic wave (based on the symmetry with
mechanics), and to look to experimental evidence as justification. In fact, experimental
evidence does point to the correctness of this hypothesis, and the quantity E×H is widely
and accurately used to compute the energy radiated by antennas, carried by waveguides,
etc.
Confusion also arises regarding the interpretation of Wem. Since this term is so con-

veniently paired with the mechanical volume kinetic energy density in (2.235) it would
seem that we should interpret it as an electromagnetic energy density. As such, we can
think of this energy as “localized” in certain regions of space. This viewpoint has been
criticized [183, 149, 59] since the large-scale form of energy conservation for a space re-
gion only requires that the total energy in the region be specified, and the integrand
(energy density) giving this energy is not unique. It is also felt that energy should be
associated with a “configuration” of objects (such as charged particles) and not with an
arbitrary point in space. However, we retain the concept of localized energy because it
is convenient and produces results consistent with experiment.
The validity of extending the static field interpretation of 1

2 (D · E + B · H) as the
energy “stored” by a charge and a current arrangement to the time-varying case has
also been questioned. If we do extend this view to the time-varying case, Poynting’s
theorem suggests that every point in space somehow has an energy density associated
with it, and the flow of energy from that point (via Sem) must be accompanied by a
change in the stored energy at that point. This again gives a very useful and intuitively
satisfying point of view. Since we can associate the flow of energy with the propagation
of the electromagnetic fields, we can view the fields in any region of space as having the
potential to do work on charged particles in that region. If there are charged particles in
that region then work is done, accompanied by a transfer of energy to the particles and
a reduction in the amplitudes of the fields.
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We must also remember that the association of stored electromagnetic energy density
Wem with the mechanical energy density Wk is only possible if the medium is nondisper-
sive. If we cannot make the assumptions that justify (2.230) and (2.231), then Poynting’s
theorem must take the form

−
∫

V

J · E dV =

∫

V

(

E · ∂D
∂t

+H · ∂B
∂t

)

dV +

∮

S

(E×H) · dS. (2.236)

For dispersive media, the volume term on the right-hand side describes not only the stored
electromagnetic energy, but also the energy dissipated within the material produced by
a time lag between the field applied to the medium and the resulting polarization or
magnetization of the atoms. This is clearly seen in (2.20), which shows that D(t) depends
on the value of E at time t and at all past times. The stored energy and dissipative terms
are hard to separate, but we can see that there must always be a stored energy term by
substituting D = ǫ0E+P and H = B/µ0 −M into (2.236) to obtain

−
∫

V

[(J+ JP ) ·E+ JH ·H] dV

=
1

2

∂

∂t

∫

V

(ǫ0E ·E+ µ0H ·H) dV +

∮

S

(E×H) · dS. (2.237)

Here JP is the equivalent polarization current (2.101) and JH is an analogous magnetic
polarization current given by

JH = µ0
∂M

∂t
.

In this form we easily identify the quantity 1
2 (ǫ0E · E + µ0H · H) as the electromag-

netic energy density for the fields E and H in free space. Any dissipation produced
by polarization and magnetization lag is now handled by the interaction between the
fields and equivalent current, just as J · E describes the interaction of the electric cur-
rent (source and secondary) with the electric field. Unfortunately, the equivalent current
interaction terms also include the additional stored energy that results from polarizing
and magnetizing the material atoms, and again the effects are hard to separate.

Finally, let us consider the case of static fields. Setting the time derivative to zero in
(2.234), we have

−
∫

V

J · E dV =

∮

S

(E×H) · dS.

This shows that energy flux is required to maintain steady current flow. For instance,
we need both an electromagnetic and a thermodynamic subsystem to account for energy
conservation in the case of steady current flow through a resistor. The Poynting flux
describes the electromagnetic energy entering the resistor and the thermodynamic flux
describes the heat dissipation. For the sum of the two subsystems, conservation of energy
requires

∇ · (Sem + Sth) = −J ·E+ Pth = 0.

To compute the heat dissipation, we can use

Pth = J · E = −∇ · Sem

and thus either use the boundary fields or the fields and current internal to the resistor
to find the dissipated heat.
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2.9.5.5 Boundary conditions on the Poynting vector

The large-scale form of Poynting’s theorem may be used to determine the behavior of
the Poynting vector on either side of a boundary surface. We proceed exactly as in
§ 2.8.2. Consider a surface S across which the electromagnetic sources and constitutive
parameters are discontinuous (Figure 2.6). As before, let n̂12 be the unit normal directed
into region 1. We now simplify the notation and write S instead of Sem. If we apply
Poynting’s theorem

∫

V

(

J ·E+E · ∂D
∂t

+H · ∂B
∂t

)

dV +

∮

S

S · n dS = 0

to the two separate surfaces shown in Figure 2.6, we obtain

∫

V

(

J · E+E · ∂D
∂t

+H · ∂B
∂t

)

dV +

∫

S

S · n dS =

∫

S10

n̂12 · (S1 − S2) dS. (2.238)

If on the other hand we apply Poynting’s theorem to the entire volume region including
the surface of discontinuity and include the contribution produced by surface current, we
get

∫

V

(

J · E+E · ∂D
∂t

+H · ∂B
∂t

)

dV +

∫

S

S · n dS = −
∫

S10

Js ·E dS. (2.239)

Since we are uncertain whether to use E1 or E2 in the surface term on the right-hand
side, if we wish to have the integrals over V and S in (2.238) and (2.239) produce identical
results, we must postulate the two conditions

n̂12 × (E1 −E2) = 0

and
n̂12 · (S1 − S2) = −Js · E. (2.240)

The first condition is merely the continuity of tangential electric field as originally pos-
tulated in § 2.8.2; it allows us to be nonspecific as to which value of E we use in the
second condition, which is the desired boundary condition on S.
It is interesting to note that (2.240) may also be derived directly from the two pos-

tulated boundary conditions on tangential E and H. Here we write with the help of
(B.6)

n̂12 · (S1 − S2) = n̂12 · (E1 ×H1 −E2 ×H2) = H1 · (n̂12 ×E1)−H2 · (n̂12 ×E2).

Since n̂12 ×E1 = n̂12 ×E2 = n̂12 ×E, we have

n̂12 · (S1 − S2) = (H1 −H2) · (n̂12 ×E) = [−n̂12 × (H1 −H2)] ·E.

Finally, using n̂12 × (H1 −H2) = Js we arrive at (2.240).
The arguments above suggest an interesting way to look at the boundary conditions.

Once we identify S with the flow of electromagnetic energy, we may consider the condition
on normal S as a fundamental statement of the conservation of energy. This statement
implies continuity of tangential E in order to have an unambiguous interpretation for the
meaning of the term Js · E. Then, with continuity of tangential E established, we can
derive the condition on tangential H directly.
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2.9.5.6 An alternative formulation of the conservation theorems

As we saw in the sections above, our derivation of the conservation theorems lacks strong
motivation. We manipulated Maxwell’s equations until we found expressions that resem-
bled those for mechanical momentum and energy, but in the process found that the
validity of the expressions is somewhat limiting. For instance, we needed to assume a
linear, homogeneous, bianisotropic medium in order to identify the Maxwell stress ten-
sor (2.225) and the energy densities in Poynting’s theorem (2.234). In the end, we were
reduced to postulating the meaning of the individual terms in the conservation theorems
in order for the whole to have meaning.

An alternative approach is popular in physics. It involves postulating a single La-
grangian density function for the electromagnetic field, and then applying the stationary
property of the action integral. The results are precisely the same conservation expres-
sions for linear momentum and energy as obtained from manipulating Maxwell’s equa-
tions (plus the equation for conservation of angular momentum), obtained with fewer
restrictions regarding the constitutive relations. This process also separates the stored
energy, Maxwell stress tensor, momentum density, and Poynting vector as natural com-
ponents of a tensor equation, allowing a better motivated interpretation of the meaning
of these components. Since this approach is also a powerful tool in mechanics, its ap-
plication is more strongly motivated than merely manipulating Maxwell’s equations. Of
course, some knowledge of the structure of the electromagnetic field is required to provide
an appropriate postulate of the Lagrangian density. Interested readers should consult
Kong [108], Jackson [92], Doughty [50], or Tolstoy [196].

2.10 The wave nature of the electromagnetic field

Throughout this chapter our goal has been a fundamental understanding of Maxwell’s
theory of electromagnetics. We have concentrated on developing and understanding the
equations relating the field quantities, but have done little to understand the nature of
the field itself. We would now like to investigate, in a very general way, the behavior
of the field. We shall not attempt to solve a vast array of esoteric problems, but shall
instead concentrate on a few illuminating examples.

The electromagnetic field can take on a wide variety of characteristics. Static fields
differ qualitatively from those that undergo rapid time variations. Time-varying fields
exhibit wave behavior and carry energy away from their sources. In the case of slow
time variation, this wave nature may often be neglected in favor of the nearby coupling
of sources we know as the inductance effect, hence circuit theory may suffice to describe
the field-source interaction. In the case of extremely rapid oscillations, particle concepts
may be needed to describe the field.

The dynamic coupling between the various field vectors in Maxwell’s equations provides
a means of characterizing the field. Static fields are characterized by decoupling of the
electric and magnetic fields. Quasistatic fields exhibit some coupling, but the wave
characteristic of the field is ignored. Tightly coupled fields are dominated by the wave
effect, but may still show a static-like spatial distribution near the source. Any such
“near-zone” effects are generally ignored for fields at light-wave frequencies, and the
particle nature of light must often be considered.
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2.10.1 Electromagnetic waves

An early result of Maxwell’s theory was the prediction and later verification by Heinrich
Hertz of the existence of electromagnetic waves. We now know that nearly any time-
varying source produces waves, and that these waves have certain important properties.
An electromagnetic wave is a propagating electromagnetic field that travels with finite
velocity as a disturbance through a medium. The field itself is the disturbance, rather
than merely representing a physical displacement or other effect on the medium. This fact
is fundamental for understanding how electromagnetic waves can travel through a true
vacuum. Many specific characteristics of the wave, such as velocity and polarization,
depend on the properties of the medium through which it propagates. The evolution
of the disturbance also depends on these properties: we say that a material exhibits
“dispersion” if the disturbance undergoes a change in its temporal behavior as the wave
progresses. As waves travel they carry energy and momentum away from their source.
This energy may be later returned to the source or delivered to some distant location.
Waves are also capable of transferring energy to, or withdrawing energy from, the medium
through which they propagate. When energy is carried outward from the source never
to return, we refer to the process as “electromagnetic radiation.” The effects of radiated
fields can be far-reaching; indeed, radio astronomers observe waves that originated at the
very edges of the universe.
Light is an electromagnetic phenomenon, and many of the familiar characteristics of

light that we recognize from our everyday experience may be applied to all electromag-
netic waves. For instance, radio waves bend (or “refract”) in the ionosphere much as
light waves bend while passing through a prism. Microwaves reflect from conducting sur-
faces in the same way that light waves reflect from a mirror; detecting these reflections
forms the basis of radar. Electromagnetic waves may also be “confined” by reflecting
boundaries to form waves standing in one or more directions. With this concept we can
use waveguides or transmission lines to guide electromagnetic energy from spot to spot,
or to concentrate it in the cavity of a microwave oven.
The manifestations of electromagnetic waves are so diverse that no one book can

possibly describe the entire range of phenomena or applications. In this section we shall
merely introduce the reader to some of the most fundamental concepts of electromagnetic
wave behavior. In the process we shall also introduce the three most often studied types
of traveling electromagnetic waves: plane waves, spherical waves, and cylindrical waves.
In later sections we shall study some of the complicated interactions of these waves with
objects and boundaries, in the form of guided waves and scattering problems.
Mathematically, electromagnetic waves arise as a subset of solutions to Maxwell’s equa-

tions. These solutions obey the electromagnetic “wave equation,” which may be derived
from Maxwell’s equations under certain circumstances. Not all electromagnetic fields
satisfy the wave equation. Obviously, time-invariant fields cannot represent evolving
wave disturbances, and must obey the static field equations. Time-varying fields in cer-
tain metals may obey the diffusion equation rather than the wave equation, and must
thereby exhibit different behavior. In the study of quasistatic fields we often ignore the
displacement current term in Maxwell’s equations, producing solutions that are most
important near the sources of the fields and having little associated radiation. When the
displacement term is significant we produce solutions with the properties of waves.
In deriving electromagnetic wave equations we transform the first-order coupled par-

tial differential equations we know as Maxwell’s equations into uncoupled second-order
equations. That is, we perform a set of operations (and make appropriate assumptions)
to reduce the set of four differential equations in the four unknown fields, E, D, B, and
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H, into a set of differential equations, each involving a single unknown (usually E or H).

◮ Example 2.7: Wave equation for fields in an inhomogeneous dielectric medium

A source-free region is filled with an inhomogeneous dielectric material having permeability
µ(r) = µ0 and permittivity ǫ(r) = ǫ(z). Assume the electric and magnetic fields take the
form

E(r, t) = ŷEy(z, t), H(r, t) = x̂Hx(z, t).

Derive the wave equations for Ey and Hx.

Solution: By Example 2.1 we have from Ampere’s law and Faraday’s law

∂Hx

∂z
= ǫ(z)

∂Ey
∂t

, (2.241)

∂Ey
∂z

= µ0
∂Hx

∂t
. (2.242)

We differentiate (2.241) with respect to z,

∂2Hx

∂z2
= ǫ(z)

∂2Ey
∂z∂t

+
∂ǫ(z)

∂z

∂Ey
∂t

, (2.243)

and (2.242) with respect to t,
∂2Ey
∂z∂t

= µ0
∂2Hx

∂t2
. (2.244)

Substituting (2.244) and (2.241) into (2.243), we obtain the wave equation for Hx:

∂2Hx

∂z2
− 1

ǫ(z)

∂ǫ(z)

∂z

∂Hx

∂z
− ǫ(z)µ0

∂2Hx

∂t2
= 0. (2.245)

To find the wave equation for Ey we differentiate (2.242) with respect to z,

∂2Ey
∂z2

= µ0
∂2Hx

∂z∂t
, (2.246)

and (2.241) with respect to t,
∂2Hx

∂z∂t
= ǫ(z)

∂2Ey
∂t2

. (2.247)

Substitution of (2.247) into (2.246) yields

∂2Ey
∂z2

− ǫ(z)µ0
∂2Ey
∂t2

= 0. ◭ (2.248)

◮ Example 2.8: Solution to the wave equation for fields in an inhomogeneous dielectric

A source-free region of space is filled with an inhomogeneous dielectric material having
permeability µ(r) = µ0 and permittivity ǫ(r) = ǫ0ǫre

Kz. Show by substitution that the
fields given in Example 2.1 satisfy the wave equations (2.245) and (2.248).

Solution: From Example 2.1 we have the magnetic field

Hx(z, t) = H0e
K
2
zJ1

(

2k

K
e
K
2
z

)

cosωt.
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The derivative of Hx with respect to z is given by (2.23):

∂Hx

∂z
= H0ke

KzJ0

(

2k

K
e
K
2
z

)

cosωt.

The second derivative is

∂2Hx

∂z2
=

[

H0kKe
KzJ0

(

2k

K
e
K
2
z

)

−H0k
2eKze

K
2
zJ1

(

2k

K
e
K
2
z

)]

cosωt.

We also have the second derivative of Hx with respect to t,

∂2Hx

∂t2
= −H0ω

2e
K
2
zJ1

(

2k

K
e
K
2
z

)

cosωt,

and the term
1

ǫ(z)

∂ǫ(z)

∂z
= K.

Substituting these into (2.245) we get

∂2Hx

∂z2
− 1

ǫ(z)

∂ǫ(z)

∂z

∂Hx

∂z
− ǫ(z)µ0

∂2Hx

∂t2

=

[

H0kKe
KzJ0

(

2k

K
e
K
2
z

)

−H0k
2eKze

K
2
zJ1

(

2k

K
e
K
2
z

)

−H0kKe
KzJ0

(

2k

K
e
K
2
z

)

+ µ0ǫ0ǫre
KzH0ω

2e
K
2
zJ1

(

2k

K
e
K
2
z

)]

cosωt.

Since k2 = ω2µ0ǫ0ǫr, the terms in the brackets cancel and the right-hand side is zero. The
wave equation for Hx is satisfied.

To verify the equation for Ey we begin with the electric field from Example 2.1,

Ey = H0ηJ0

(

2k

K
e
K
2
z

)

sinωt,

which has the first derivative

∂Ey
∂z

= −H0ηke
K
2
zJ1

(

2k

K
e
K
2
z

)

sinωt.

The second derivative is

∂2Ey
∂z2

= −H0ηk
2eKzJ0

(

2k

K
e
K
2
z

)

sin ωt

since J ′
1(x) = J0(x)− J1(x)/x. Next, two time derivatives of Ey yield

∂2Ey
∂t2

= −H0ω
2ηJ0

(

2k

K
e
K
2
z

)

sinωt.

Substitution into (2.248) gives

∂2Ey
∂z2

− ǫ(z)µ0
∂2Ey
∂t2

= −H0ηe
KzJ0

(

2k

K
e
K
2
z

)

[

k2 − ω2µ0ǫ0ǫr
]

sinωt.

The term in brackets is zero and the wave equation is satisfied. ◭



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 102 — #126
✐

✐

✐

✐

✐

✐

102 Electromagnetics

2.10.2 Wave equation for bianisotropic materials

It is possible to derive wave equations for E and H even for the most general cases
of inhomogeneous, bianisotropic media, as long as the constitutive parameters µ̄ and
ξ̄ are constant with time. Substituting the constitutive relations (2.12)–(2.13) into the
Maxwell–Minkowski curl equations (2.141)–(2.142) we get

∇×E = − ∂

∂t
(ζ̄ ·E+ µ̄ ·H)− Jm, (2.249)

∇×H =
∂

∂t
(ǭ ·E+ ξ̄ ·H) + J. (2.250)

Separate equations for E and H are facilitated by introducing a new dyadic operator ∇̄,
which when dotted with a vector field V gives the curl:

∇̄ ·V = ∇×V. (2.251)

It is easy to verify that in rectangular coordinates ∇̄ is

[∇̄] =





0 −∂/∂z ∂/∂y
∂/∂z 0 −∂/∂x
−∂/∂y ∂/∂x 0



 .

With this notation, Maxwell’s curl equations (2.249)–(2.250) become simply
(

∇̄+
∂

∂t
ζ̄

)

· E = − ∂

∂t
µ̄ ·H− Jm, (2.252)

(

∇̄ − ∂

∂t
ξ̄

)

·H =
∂

∂t
ǭ · E+ J. (2.253)

Obtaining separate equations for E and H is straightforward. Defining the inverse
dyadic µ̄−1 through

µ̄ · µ̄−1 = µ̄−1 · µ̄ = Ī,

we can write (2.252) as

∂

∂t
H = −µ̄−1 ·

(

∇̄+
∂

∂t
ζ̄

)

· E− µ̄−1 · Jm (2.254)

where we have assumed that µ̄ is independent of time. Assuming that ξ̄ is also indepen-
dent of time, we can differentiate (2.253) with respect to time to obtain

(

∇̄ − ∂

∂t
ξ̄

)

· ∂H
∂t

=
∂2

∂t2
(ǭ · E) +

∂J

∂t
.

Substituting ∂H/∂t from (2.254) and rearranging, we get
[(

∇̄ − ∂

∂t
ξ̄

)

· µ̄−1 ·
(

∇̄+
∂

∂t
ζ̄

)

+
∂2

∂t2
ǭ

]

· E = −
(

∇̄ − ∂

∂t
ξ̄

)

· µ̄−1 · Jm − ∂J

∂t
.

(2.255)

This is the general wave equation for E. Using an analogous set of steps, and assuming
ǭ and ζ̄ are independent of time, we can find

[(

∇̄+
∂

∂t
ζ̄

)

· ǭ−1 ·
(

∇̄ − ∂

∂t
ξ̄

)

+
∂2

∂t2
µ̄

]

·H =

(

∇̄+
∂

∂t
ζ̄

)

· ǭ−1 · J− ∂Jm
∂t

.

(2.256)
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This is the wave equation for H. The case in which the constitutive parameters are
time-dependent will be handled using frequency domain techniques in later chapters.

◮ Example 2.9: Wave equation for fields in a Tellegen medium

A source-free region of space contains a homogeneous Tellegen medium with constitutive
parameters given by (2.26)–(2.27) or equivalently (2.28)–(2.29). Derive a wave equation for
E(r, t). Show that the field

E(r, t) = x̂E0f
(

t− z

v

)

of Example 2.2 satisfies this wave equation. Here ξ2 < µǫ, and

v =
1

√

µǫ− ξ2
.

Solution: Substituting (2.28) and (2.29) into Ampere’s law, we have

∇×
[

− ξ

µ
E+

1

µ
B

]

=
∂

∂t

[(

ǫ− ξ2

µ

)

E+
ξ

µ
B

]

.

By Faraday’s law we transform this to

ξ

µ

∂B

∂t
+

1

µ
∇×B =

∂

∂t

[(

ǫ− ξ2

µ

)

E+
ξ

µ
B

]

and simplify:

∇×B = (µǫ− ξ2)
∂E

∂t
=

1

v2
∂E

∂t
. (2.257)

Taking the curl of Faraday’s law and substituting from (2.257) we obtain

∇×∇×E +
1

v2
∂2E

∂t2
= 0. (2.258)

Expansion of ∇×∇×E then gives

∇(∇ ·E)−∇2
E+

1

v2
∂2E

∂t2
= 0.

Finally, note that by (2.28) we have

∇ · E =

(

ǫ− ξ2

µ

)−1

∇ ·
[

D− ξ

µ
B

]

= 0

since both ∇ ·B = 0 and ∇ ·D = 0. Hence we have the wave equation

∇2
E− 1

v2
∂2E

∂t2
= 0.

To show that
E(r, t) = x̂E0f

(

t− z

v

)

satisfies the wave equation, we note that

∇2
E = x̂

∂2Ex
∂z2

= x̂
1

v2
E0f

′′
(

t− z

v

)
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and
1

v2
∂2E

∂t2
= x̂

1

v2
E0f

′′
(

t− z

v

)

.

These terms are identical and the wave equation is satisfied. ◭

Note that we can also obtain the wave equation for a Tellegen medium by specializing
(2.255), as in the next example.

◮ Example 2.10: Specialization of general wave equation for a Tellegen medium

A source-free region contains a homogeneous Tellegen medium with constitutive parameters
given by (2.26)–(2.27) or equivalently (2.28)–(2.29). Derive the wave equation (2.258) for
E(r, t) by specializing (2.255).

Solution: Multiplying out the terms in (2.255), we have

∇̄ ·
[

µ̄
−1 · ∇̄ · E

]

− ∂

∂t

[

ξ̄ · µ̄−1 · ∂
∂t

(

ζ̄ ·E
)

]

− ∂

∂t

[

ξ̄ · µ̄−1 · ∇̄ ·E
]

+ ∇̄ ·
[

µ̄
−1 · ∂

∂t

(

ζ̄ ·E
)

]

+
∂2

∂t2
[ǭ · E] = 0.

Now, use
µ̄

−1 = µ−1
Ī, ξ̄ = ζ̄ = ξĪ, ǭ = ǫĪ

and recall that ǫ, µ, and ξ are constant with both space and time. This gives

1

µ
∇̄ · ∇̄ · E− ξ2

µ

∂2E

∂t2
− ξ

µ

∂

∂t
∇̄ · E+

ξ

µ

∂

∂t
∇̄ · E+ ǫ

∂2E

∂t2
= 0.

Simplification gives

∇̄ · ∇̄ ·E + (µǫ− ξ2)
∂2E

∂t2
= 0.

Finally, using ∇̄ · ∇̄ ·E = ∇×∇×E and remembering that v = 1/
√

µǫ− ξ2, we have

∇×∇×E+
1

v2
∂2E

∂t2
= 0,

which is identical to (2.258). It is clear that (2.256) will produce the identical wave equation
for H. ◭

Wave equations for anisotropic, isotropic, and homogeneous media are easily obtained
from (2.255) and (2.256) as special cases. For example, the wave equations for a homo-
geneous, isotropic medium can be found by setting ζ̄ = ξ̄ = 0, µ̄ = µĪ, and ǭ = ǫĪ:

1

µ
∇̄ · (∇̄ ·E) + ǫ

∂2E

∂t2
= − 1

µ
∇̄ · Jm − ∂J

∂t
,

1

ǫ
∇̄ · (∇̄ ·H) + µ

∂2H

∂t2
=

1

ǫ
∇̄ · J− ∂Jm

∂t
.

Returning to standard curl notation, we find that these become

∇× (∇×E) + µǫ
∂2E

∂t2
= −∇× Jm − µ

∂J

∂t
, (2.259)

∇× (∇×H) + µǫ
∂2H

∂t2
= ∇× J− ǫ

∂Jm
∂t

. (2.260)
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In each of the wave equations it appears that operations on the electromagnetic fields
have been separated from operations on the source terms. However, we have not yet
invoked any coupling between the fields and sources associated with secondary interac-
tions. That is, we need to separate the impressed sources, which are independent of
the fields they source, with secondary sources resulting from interactions between the
sourced fields and the medium in which the fields exist. The simple case of an isotropic
conducting medium will be discussed below.

2.10.3 Wave equation using equivalent sources

An alternative approach for studying wave behavior in general media is to use the
Maxwell–Boffi form of the field equations

∇×E = −∂B
∂t
, (2.261)

∇× B

µ0
= (J+ JM + JP ) +

∂ǫ0E

∂t
, (2.262)

∇ · (ǫ0E) = (ρ+ ρP ), (2.263)

∇ ·B = 0. (2.264)

Taking the curl of (2.261) we have

∇× (∇×E) = − ∂

∂t
∇×B.

Substituting for ∇×B from (2.262) we then obtain

∇× (∇×E) + µ0ǫ0
∂2E

∂t2
= −µ0

∂

∂t
(J+ JM + JP ),

which is the wave equation for E. Taking the curl of (2.262) and substituting from (2.261)
we obtain the wave equation

∇× (∇×B) + µ0ǫ0
∂2B

∂t2
= µ0∇× (J + JM + JP )

for B. Solution of the wave equations is often facilitated by writing the curl–curl opera-
tion in terms of the vector Laplacian. Using (B.53), and substituting for the divergence
from (2.263) and (2.264), we can write the wave equations as

∇2E− µ0ǫ0
∂2E

∂t2
=

1

ǫ0
∇(ρ+ ρP ) + µ0

∂

∂t
(J + JM + JP ), (2.265)

∇2B− µ0ǫ0
∂2B

∂t2
= −µ0∇× (J+ JM + JP ). (2.266)

The simplicity of these equations relative to (2.255) and (2.256) is misleading. We have
not considered the constitutive equations relating the polarization P and magnetization
M to the fields, nor have we considered interactions leading to secondary sources.

2.10.4 Wave equation in a conducting medium

As an example of the type of wave equation that arises when secondary sources are
included, consider a homogeneous isotropic conducting medium described by permittivity
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ǫ, permeability µ, and conductivity σ. In a conducting medium we must separate the
source field into a causative impressed term Ji that is independent of the fields it sources,
and a secondary term Js that is an effect of the sourced fields. In an isotropic conducting
medium the effect is described by Ohm’s law: Js = σE. Writing the total current as
J = Ji + Js, and assuming that Jm = 0, we write the wave equation (2.259) as

∇× (∇×E) + µǫ
∂2E

∂t2
= −µ∂(J

i + σE)

∂t
.

Using (B.53) and substituting ∇ ·E = ρ/ǫ, we can write the wave equation for E as

∇2E− µσ
∂E

∂t
− µǫ

∂2E

∂t2
= µ

∂Ji

∂t
+

1

ǫ
∇ρ. (2.267)

Substituting J = Ji + σE into (2.260) and using (B.53), we obtain

∇(∇ ·H)−∇2H+ µǫ
∂2H

∂t2
= ∇× Ji + σ∇×E.

Since ∇×E = −∂B/∂t and ∇ ·H = ∇ ·B/µ = 0, we have

∇2H− µσ
∂H

∂t
− µǫ

∂2H

∂t2
= −∇× Ji. (2.268)

This is the wave equation for H.

2.10.4.1 Scalar wave equation for a conducting medium

In many applications, particularly those involving planar boundary surfaces, it is conve-
nient to decompose the vector wave equation into cartesian components. Using ∇2V =
x̂∇2Vx + ŷ∇2Vy + ẑ∇2Vz in (2.267) and in (2.268), we find that the rectangular compo-
nents of E and H must obey the scalar wave equation

∇2ψ(r, t)− µσ
∂ψ(r, t)

∂t
− µǫ

∂2ψ(r, t)

∂t2
= s(r, t). (2.269)

For the electric field wave equation, we have

ψ = Eα, s = µ
∂J iα
∂t

+
1

ǫ
α̂ · ∇ρ,

where α = x, y, z. For the magnetic field wave equation, we have

ψ = Hα, s = α̂ · (−∇× Ji).

2.10.5 Fields determined by Maxwell’s equations vs. fields deter-
mined by the wave equation

Although we derive the wave equations directly fromMaxwell’s equations, we may wonder
whether the solutions to second-order differential equations such as (2.259)–(2.260) are
necessarily the same as the solutions to the first-order Maxwell equations. Hansen and
Yaghjian [79] show that if all information about the fields is supplied by the sources
J(r, t) and ρ(r, t), rather than by specification of field values on boundaries, the solutions
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to Maxwell’s equations and the wave equations are equivalent as long as the second
derivatives of the quantities

∇ ·E(r, t)− ρ(r, t)/ǫ, ∇ ·H(r, t),

are continuous functions of r and t. If boundary values are supplied in an attempt to
guarantee uniqueness, then solutions to the wave equation and to Maxwell’s equations
may differ. This is particularly important when comparing numerical solutions obtained
directly from Maxwell’s equations (using the FDTD method, say) to solutions obtained
from the wave equation. “Spurious” solutions having no physical significance are a con-
tinual plague for engineers who employ numerical techniques. The interested reader
should see Jiang et al. [96].
We note that these conclusions do not hold for static fields. The conditions for equiv-

alence of the first-order and second-order static field equations are considered in § 3.3.5.

2.10.6 Transient uniform plane waves in a conducting medium

We can learn a great deal about the wave nature of the electromagnetic field by solving
the wave equation (2.267) under simple circumstances. In Chapter 5 we shall solve for
the field produced by an arbitrary distribution of impressed sources, but here we seek a
simple solution to the homogeneous form of the equation. This allows us to study the
phenomenology of wave propagation without worrying about the consequences of specific
source functions. We shall also assume a high degree of symmetry so that we are not
bogged down in details about the vector directions of the field components.
We seek a solution of the wave equation in which the fields are invariant over a chosen

planar surface. The resulting fields are said to compose a uniform plane wave. Although
we can envision a uniform plane wave as being created by a uniform surface source of
doubly infinite extent, plane waves are also useful as models for spherical waves over
localized regions of the wavefront.
We choose the plane of field invariance to be the xy-plane and later generalize the

resulting solution to any planar surface by a simple rotation of the coordinate axes. Since
the fields vary with z only we choose to write the wave equation (2.267) in rectangular
coordinates, giving for a source-free region of space†

x̂
∂2Ex(z, t)

∂z2
+ ŷ

∂2Ey(z, t)

∂z2
+ ẑ

∂2Ez(z, t)

∂z2
− µσ

∂E(z, t)

∂t
− µǫ

∂2E(z, t)

∂t2
= 0. (2.270)

If we return to Maxwell’s equations, we soon find that not all components of E are
present in the plane-wave solution. Faraday’s law states that

∇×E(z, t) = −x̂
∂Ey(z, t)

∂z
+ ŷ

∂Ex(z, t)

∂z
= ẑ× ∂E(z, t)

∂z
= −µ∂H(z, t)

∂t
. (2.271)

We see that ∂Hz/∂t = 0, hence Hz must be constant with respect to time. Because a
nonzero constant field component does not exhibit wave-like behavior, we can only have
Hz = 0 in our wave solution. Similarly, Ampere’s law in a homogeneous conducting
region free from impressed sources states that

∇×H(z, t) = J+
∂D(z, t)

∂t
= σE(z, t) + ǫ

∂E(z, t)

∂t

†The term “source free” applied to a conducting region implies that the region is devoid of impressed
sources, and, because of the relaxation effect, has no free charge. See the discussion in Jones [98].
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or

−x̂
∂Hy(z, t)

∂z
+ ŷ

∂Hx(z, t)

∂z
= ẑ× ∂H(z, t)

∂z
= σE(z, t) + ǫ

∂E(z, t)

∂t
. (2.272)

This implies that

σEz(z, t) + ǫ
∂Ez(z, t)

∂t
= 0,

which is a differential equation for Ez with solution

Ez(z, t) = E0(z) e
−σ
ǫ t.

Since we are interested only in wave-type solutions, we choose Ez = 0.
Hence Ez = Hz = 0, and thus both E and H are perpendicular to the z-direction.

Using (2.271) and (2.272), we also see that

∂

∂t
(E ·H) = E · ∂H

∂t
+H · ∂E

∂t

= − 1

µ
E ·
(

ẑ× ∂E

∂z

)

−H ·
(σ

ǫ
E
)

+
1

ǫ
H ·

(

ẑ× ∂H

∂z

)

or
(

∂

∂t
+
σ

ǫ

)

(E ·H) =
1

µ
ẑ ·
(

E× ∂E

∂z

)

− 1

ǫ
ẑ ·
(

H× ∂H

∂z

)

.

We seek solutions of the type E(z, t) = p̂E(z, t) andH(z, t) = q̂H(z, t), where p̂ and q̂ are
constant unit vectors. Under this condition we have E×∂E/∂z = 0 and H×∂H/∂z = 0,
giving

(

∂

∂t
+
σ

ǫ

)

(E ·H) = 0.

Thus we also have E · H = 0, and find that E must be perpendicular to H. So E, H,
and ẑ compose a mutually orthogonal triplet of vectors. A wave having this property is
said to be TEM to the z-direction or simply TEMz. Here “TEM” stands for transverse
electromagnetic, indicating the orthogonal relationship between the field vectors and the
z-direction. Note that

p̂× q̂ = ±ẑ.

The constant direction described by p̂ is called the polarization of the plane wave.
We are now ready to solve the source-free wave equation (2.270). If we dot both sides

of the homogeneous expression by p̂ we obtain

p̂ · x̂∂
2Ex
∂z2

+ p̂ · ŷ∂
2Ey
∂z2

− µσ
∂(p̂ ·E)

∂t
− µǫ

∂2(p̂ ·E)

∂t2
= 0.

Noting that

p̂ · x̂∂
2Ex
∂z2

+ p̂ · ŷ∂
2Ey
∂z2

=
∂2

∂z2
(p̂ · x̂Ex + p̂ · ŷEy) =

∂2

∂z2
(p̂ · E),

we have the wave equation

∂2E(z, t)

∂z2
− µσ

∂E(z, t)

∂t
− µǫ

∂2E(z, t)

∂t2
= 0. (2.273)

Similarly, dotting both sides of (2.268) with q̂ and setting Ji = 0 we obtain

∂2H(z, t)

∂z2
− µσ

∂H(z, t)

∂t
− µǫ

∂2H(z, t)

∂t2
= 0. (2.274)



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 109 — #133
✐

✐

✐

✐

✐

✐

Maxwell’s theory of electromagnetism 109

In a source-free homogeneous conducting region, E and H satisfy identical wave equa-
tions.
Solutions are considered in § A.2.5. There we solve for the total field for all z, t given

the value of the field and its derivative over the z = 0 plane. This solution can be
directly applied to find the total field of a plane wave reflected by a perfect conductor.
Let us begin by considering the lossless case where σ = 0, and assuming the region z < 0
contains a perfect electric conductor. The conditions on the field in the z = 0 plane are
determined by the required boundary condition on a perfect conductor: the tangential
electric field must vanish. From (2.272) we see that since E ⊥ ẑ, requiring

∂H(z, t)

∂z

∣

∣

∣

∣

z=0

= 0 (2.275)

gives E(0, t) = 0 and thus satisfies the boundary condition. Writing

H(0, t) = H0f(t),
∂H(z, t)

∂z

∣

∣

∣

∣

z=0

= H0g(t) = 0, (2.276)

and setting Ω = 0 in (A.42) we obtain the solution to (2.274):

H(z, t) =
H0

2
f
(

t− z

v

)

+
H0

2
f
(

t+
z

v

)

, (2.277)

where v = 1/(µǫ)1/2. Since we designate the vector direction of H as q̂, the vector field
is

H(z, t) = q̂
H0

2
f
(

t− z

v

)

+ q̂
H0

2
f
(

t+
z

v

)

. (2.278)

From (2.271) we also have the solution for E(z, t):

E(z, t) = p̂
vµH0

2
f
(

t− z

v

)

− p̂
vµH0

2
f
(

t+
z

v

)

, (2.279)

where p̂ × q̂ = ẑ. The boundary conditions E(0, t) = 0 and H(0, t) = H0f(t) are easily
verified by substitution.
This solution displays the quintessential behavior of electromagnetic waves. We may

interpret the term f(t+z/v) as a wave-field disturbance, propagating at velocity v in the
−z-direction, incident from z > 0 upon the conductor. The term f(t − z/v) represents
a wave-field disturbance propagating in the +z-direction with velocity v, reflected from
the conductor. By “propagating” we mean that if we increment time, the disturbance
will occupy a spatial position determined by incrementing z by vt. For free space where
v = 1/(µ0ǫ0)

1/2, the velocity of propagation is the speed of light c.

◮ Example 2.11: Propagation of a transient plane wave in a lossless medium

Fresh water, with the constitutive parameters µ = µ0 and ǫ = 81ǫ0, fills a source-free region
of space. Using the rectangular pulse waveform

f(t) = rect(t/τ ) (2.280)

with τ = 1 µs, plot (2.277) as a function of position for fixed values of time and interpret
the result.

Solution: Figure 2.7 shows the spatial distribution of the magnetic field for various times.
We see that the disturbance is spatially distributed as a rectangular pulse of extent L =
2vτ = 66.6 m, where v = c/

√
81 = 3.33 × 107 m/s is the wave velocity, and where 2τ is the
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temporal duration of the pulse. At t = −8 µs the leading edge of the pulse is at z = 233 m,
while at −4 µs the pulse has traveled a distance z = vt = (3.33× 107)× (4× 10−6) = 133 m
in the −z-direction, and the leading edge is thus at 100 m. At t = −1 µs the leading
edge strikes the conductor and begins to induce a current in the conductor surface. This
current sets up the reflected wave, which begins to travel in the opposite (+z) direction. At
t = −0.5 µs a portion of the wave begins to travel in the +z-direction while the trailing
portion of the disturbance continues to travel in the −z-direction. At t = 1 µs the wave
is completely reflected from the surface, and thus consists only of the component traveling
in the +z-direction. Note that if we plot the total field in the z = 0 plane, the sum of the
forward and backward traveling waves produces the pulse waveform (2.280) as expected.
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FIGURE 2.7
Propagation of a transient plane wave in a lossless medium. ◭

Using the expressions for E and H we can determine many interesting characteristics
of the wave. We see that the terms f(t ± z/v) represent the components of the waves
traveling in the ∓z-directions, respectively. If we were to isolate these waves from each
other (by, for instance, measuring them as functions of time at a position where they do
not overlap) we would find from (2.278) and (2.279) that the ratio of E to H for a wave
traveling in either direction is

∣

∣

∣

∣

E(z, t)

H(z, t)

∣

∣

∣

∣

= vµ = (µ/ǫ)1/2,

independent of the time and position of the measurement. This ratio, denoted by η and
carrying units of ohms, is called the intrinsic impedance of the medium through which
the wave propagates. Thus, if we let E0 = ηH0 we can write

E(z, t) = p̂
E0

2
f
(

t− z

v

)

− p̂
E0

2
f
(

t+
z

v

)

.
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We can easily determine the current induced in the conductor by applying the boundary
condition (2.164):

Js = n̂×H|z=0 = ẑ× [H0q̂f(t)] = −p̂H0f(t). (2.281)

We can also determine the pressure exerted on the conductor due to the Lorentz force
interaction between the fields and the induced current. The total force on the conductor
can be computed by integrating the Maxwell stress tensor (2.225) over the xy-plane:

Fem = −
∫

S

T̄em · dS.

The surface traction is

t = T̄em · n̂ = [ 12 (D ·E+B ·H)Ī−DE−BH] · ẑ.

Since E and H are both normal to ẑ, the last two terms in this expression are zero. Also,
the boundary condition on E implies that it vanishes in the xy-plane. Thus

t = 1
2 (B ·H)ẑ = ẑ 1

2µH
2(t).

With H0 = E0/η we have

t = ẑ
E2

0

2η2
µf2(t). (2.282)

◮ Example 2.12: Nuclear electromagnetic pulse

Consider a high-altitude nuclear electromagnetic pulse (HEMP) generated by the explosion
of a large nuclear weapon in the upper atmosphere. Such an explosion could generate
a transient electromagnetic wave of short (submicrosecond) duration with an electric field
amplitude of 50, 000 V/m in air [201]. Find the peak pressure exerted on a perfect conductor
if the wave impinges at normal incidence.

Solution: Using (2.282), we find that the wave would exert a peak pressure of P = |t| =
.011 Pa = 1.6× 10−6 lb/in2 if reflected from a perfect conductor at normal incidence. Obvi-
ously, even for this extreme field level the pressure produced by a transient electromagnetic
wave is quite small. However, from (2.281) we find that the current induced in the conductor
would have a peak value of 133 A/m. Even a small portion of this current could destroy a
sensitive electronic circuit if it were to leak through an opening in the conductor. This is an
important concern for engineers designing circuitry to be used in high-field environments,
and demonstrates why the concepts of current and voltage can often supersede the concept
of force in terms of importance. ◭

Finally, let us see how the terms in the Poynting power balance theorem relate. Con-
sider a cubic region V bounded by the planes z = z1 and z = z2, z2 > z1. We choose
the field waveform f(t) and locate the planes so that we can isolate either the forward
or backward traveling wave. Since there is no current in V , Poynting’s theorem (2.234)
becomes

1

2

∂

∂t

∫

V

(ǫE ·E+ µH ·H) dV = −
∮

S

(E×H) · dS.
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Consider the wave traveling in the −z-direction. Substitution from (2.278) and (2.279)
gives the time-rate of change of stored energy as

Scube(t) =
1

2

∂

∂t

∫

V

[

ǫE2(z, t) + µH2(z, t)
]

dV

=
1

2

∂

∂t

∫

x

∫

y

dx dy

∫ z2

z1

[

ǫ
(vµ)2H2

0

4
f2
(

t+
z

v

)

+ µ
H2

0

4
f2
(

t+
z

v

)

]

dz

=
1

2

∂

∂t
µ
H2

0

2

∫

x

∫

y

dx dy

∫ z2

z1

f2
(

t+
z

v

)

dz.

Integration over x and y gives the area A of the cube face. Putting u = t + z/v we see
that

S = Aµ
H2

0

4

∂

∂t

∫ t+z2/v

t+z1/v

f2(u)v du.

Leibnitz’ rule for differentiation (A.31) then gives

Scube(t) = A
µvH2

0

4

[

f2
(

t+
z2
v

)

− f2
(

t+
z1
v

)]

. (2.283)

Again substituting for E(t+ z/v) and H(t+ z/v) we can write

Scube(t) = −
∮

S

(E×H) · dS

= −
∫

x

∫

y

vµH2
0

4
f2
(

t+
z1
v

)

(−p̂× q̂) · (−ẑ) dx dy

−
∫

x

∫

y

vµH2
0

4
f2
(

t+
z2
v

)

(−p̂× q̂) · (ẑ) dx dy.

The second term represents the energy change in V produced by the backward traveling
wave entering the cube by passing through the plane at z = z2, while the first term
represents the energy change in V produced by the wave exiting the cube by passing
through the plane z = z1. Contributions from the sides, top, and bottom are zero since
E×H is perpendicular to n̂ over those surfaces. Since p̂× q̂ = ẑ, we get

Scube(t) = A
µvH2

0

4

[

f2
(

t+
z2
v

)

− f2
(

t+
z1
v

)]

,

which matches (2.283) and thus verifies Poynting’s theorem. We may interpret this result
as follows. The propagating electromagnetic disturbance carries energy through space.
The energy within any region is associated with the field in that region, and can change
with time as the propagating wave carries a flux of energy across the boundary of the
region. The energy continues to propagate even if the source is changed or is extinguished
altogether. That is, the behavior of the leading edge of the disturbance is determined
by causality — it is affected by obstacles it encounters, but not by changes in the source
that occur after the leading edge has been established.

When propagating through a dissipative region, a plane wave takes on a somewhat
different character. Again applying the conditions (2.275) and (2.276), we obtain from
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(A.42) the solution to the wave equation (2.274):

H(z, t) =
H0

2
e−

Ω
v zf

(

t− z

v

)

+
H0

2
e

Ω
v zf

(

t+
z

v

)

− zΩ2H0

2v
e−Ωt

∫ t+ z
v

t− z
v

f(u)eΩu
J1

(

Ω
v

√

z2 − (t− u)2v2
)

Ω
v

√

z2 − (t− u)2v2
du (2.284)

where Ω = σ/2ǫ. The first two terms resemble those for the lossless case, modified by
an exponential damping factor. This accounts for the loss in amplitude that must ac-
company the transfer of energy from the propagating wave to joule loss (heat) within
the conducting medium. The remaining term appears only when the medium is lossy,
and results in an extension of the disturbance through the medium because of the cur-
rents induced by the passing wavefront. This “wake” follows the leading edge of the
disturbance.

◮ Example 2.13: Propagation of a transient plane wave in a dissipative medium

In Example 2.11 we examined the propagation of a pulse through fresh water, assuming no
loss. Again consider fresh water with the constitutive parameters µ = µ0 and ǫ = 81ǫ0, but
also assume that it is lossy with a conductivity σ = 2×10−4 S/m. As in Example 2.11, using
the rectangular pulse waveform f(t) = rect(t/τ ) with τ = 1 µs, plot (2.284) as a function of
position for fixed values of time and interpret the result.
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FIGURE 2.8
Propagation of a transient plane wave in a dissipative medium.
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Solution: Figure 2.8 shows the spatial distribution of the magnetic field for various times.
Comparing to the lossless results of Figure 2.7, it is clear that the addition of loss leads to
the wake effect discussed above. As the wave travels to the left it attenuates and leaves a
trailing remnant behind. Upon reaching the conductor it reflects much as in the lossless
case, resulting in a time dependence at z = 0 given by the finite-duration rectangular pulse
f(t). In order for the pulse to be of finite duration, the wake left by the reflected pulse must
exactly cancel the wake associated with the incident pulse that continues to arrive after
the reflection. As the reflected pulse sweeps forward, the wake is obliterated everywhere
behind. ◭

If we were to verify the Poynting theorem for a dissipative medium (which we shall not
attempt because of the complexity of the computation), we would need to include the
E · J term. Here J is the induced conduction current and the integral of E · J accounts
for the joule loss within a region V balanced by the difference in Poynting energy flux
carried into and out of V .

Once we have the fields for a wave propagating along the z-direction, it is a simple
matter to generalize these results to any propagation direction. Assume that û is normal
to the surface of a plane over which the fields are invariant. Then u = û · r describes the
distance from the origin along the direction û. We need only replace z by û · r in any of
the expressions obtained above to determine the fields of a plane wave propagating in the
u-direction. We must also replace the orthogonality condition p̂× q̂ = ẑ with p̂× q̂ = û.
For instance, the fields associated with a wave propagating through a lossless medium in
the positive u-direction are, from (2.278)–(2.279),

H(r, t) = q̂
H0

2
f

(

t− û · r
v

)

, E(r, t) = p̂
vµH0

2
f

(

t− û · r
v

)

.

2.10.7 Propagation of cylindrical waves in a lossless medium

Much as we envisioned a uniform plane wave arising from a uniform planar source, we can
imagine a uniform cylindrical wave arising from a uniform line source. Although this line
source must be infinite in extent, uniform cylindrical waves (unlike plane waves) display
the physical behavior of diverging from their source while carrying energy outwards to
infinity.

A uniform cylindrical wave has fields that are invariant over a cylindrical surface:
E(r, t) = E(ρ, t), H(r, t) = H(ρ, t). For simplicity, we shall assume that waves propagate
in a homogeneous, isotropic, linear, and lossless medium described by permittivity ǫ
and permeability µ. From Maxwell’s equations we find that requiring the fields to be
independent of φ and z puts restrictions on the remaining vector components. Faraday’s
law states

∇×E(ρ, t) = −φ̂
∂Ez(ρ, t)

∂ρ
+ ẑ

1

ρ

∂

∂ρ
[ρEφ(ρ, t)] = −µ∂H(ρ, t)

∂t
. (2.285)

Equating components, we see that ∂Hρ/∂t = 0, and because our interest lies in wave
solutions we take Hρ = 0. Ampere’s law in a homogeneous lossless region free from
impressed sources states in a similar manner

∇×H(ρ, t) = −φ̂
∂Hz(ρ, t)

∂ρ
+ ẑ

1

ρ

∂

∂ρ
[ρHφ(ρ, t)] = ǫ

∂E(ρ, t)

∂t
. (2.286)

Equating components, we find that Eρ = 0. Since Eρ = Hρ = 0, both E and H are
perpendicular to the ρ-direction. Note that if there is only a z-component of E then
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there is only a φ-component of H. This case, termed electric polarization, results in

∂Ez(ρ, t)

∂ρ
= µ

∂Hφ(ρ, t)

∂t
.

Similarly, if there is only a z-component of H then there is only a φ-component of E.
This case, termed magnetic polarization, results in

−∂Hz(ρ, t)

∂ρ
= ǫ

∂Eφ(ρ, t)

∂t
.

Since E = φ̂Eφ + ẑEz and H = φ̂Hφ + ẑHz, we can always decompose a cylindrical
electromagnetic wave into cases of electric and magnetic polarization. In each case the
resulting field is TEMρ since the vectors E,H, and ρ̂ are mutually orthogonal.
Wave equations for Ez in the electric polarization case and for Hz in the magnetic

polarization case can be found in the usual manner. Taking the curl of (2.285) and
substituting from (2.286) we find

∇× (∇×E) = −ẑ
1

ρ

∂

∂ρ

(

ρ
∂Ez
∂ρ

)

− φ̂
∂

∂ρ

(

1

ρ

∂

∂ρ
[ρEφ]

)

= − 1

v2
∂2E

∂t2
= − 1

v2

(

ẑ
∂2Ez
∂t2

+ φ̂
∂2Eφ
∂t2

)

where v = 1/(µǫ)1/2. Noting that Eφ = 0 for the electric polarization case, we obtain
the wave equation for Ez . A similar set of steps beginning with the curl of (2.286) gives
an identical equation for Hz. Thus

1

ρ

∂

∂ρ

(

ρ
∂

∂ρ

[

Ez
Hz

])

− 1

v2
∂2

∂t2

[

Ez
Hz

]

= 0. (2.287)

We can obtain a solution for (2.287) in much the same way as we do for the wave
equations in § A.2.4. We begin by substituting for Ez(ρ, t) in terms of its temporal
Fourier representation

Ez(ρ, t) =
1

2π

∫ ∞

−∞
Ẽz(ρ, ω)e

jωt dω

to obtain
1

2π

∫ ∞

−∞

[

1

ρ

∂

∂ρ

(

ρ
∂

∂ρ
Ẽz(ρ, ω)

)

+
ω2

v2
Ẽz(ρ, ω)

]

ejωt dω = 0.

The Fourier integral theorem implies that the integrand is zero. Then, expanding out
the ρ derivatives, we find that Ẽz(ρ, ω) obeys the ordinary differential equation

d2Ẽz
dρ2

+
1

ρ

dẼz
dρ

+ k2Ẽz = 0

where k = ω/v. This is merely Bessel’s differential equation (A.126). It is a second-order
equation with two independent solutions chosen from the list

J0(kρ), Y0(kρ), H
(1)
0 (kρ), H

(2)
0 (kρ).

We find that J0(kρ) and Y0(kρ) are useful for describing standing waves between bound-

aries while H
(1)
0 (kρ) and H

(2)
0 (kρ) are useful for describing waves propagating in the
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ρ-direction. Of these, H
(1)
0 (kρ) represents waves traveling inward while H

(2)
0 (kρ) repre-

sents waves traveling outward. Concentrating on the outward traveling wave, we find
that

Ẽz(ρ, ω) = Ã(ω)
[

−j π
2
H

(2)
0 (kρ)

]

= Ã(ω)g̃(ρ, ω).

Here A(t) ↔ Ã(ω) is the disturbance waveform, assumed to be a real, causal function.
To make Ez(ρ, t) real we require that the inverse transform of g̃(ρ, ω) be real. This
requires the inclusion of the −jπ/2 factor in g̃(ρ, ω). Inverting we have

Ez(ρ, t) = A(t) ∗ g(ρ, t) (2.288)

where g(ρ, t) ↔ (−jπ/2)H(2)
0 (kρ).

The inverse transform needed to obtain g(ρ, t) may be found in [28]:

g(ρ, t) = F−1
{

−j π
2
H

(2)
0

(

ω
ρ

v

)}

=
U
(

t− ρ
v

)

√

t2 − ρ2

v2

,

where U(t) is the unit step function defined in (A.6). Substituting this into (2.288) and
writing the convolution in integral form, we have

Ez(ρ, t) =

∫ ∞

−∞
A(t− t′)

U(t′ − ρ/v)
√

t′2 − ρ2/v2
dt′.

The change of variable x = t′ − ρ/v then gives

Ez(ρ, t) =

∫ ∞

0

A(t− x− ρ/v)
√

x2 + 2xρ/v
dx. (2.289)

Those interested in the details of the inverse transform should see Chew [35].

◮ Example 2.14: Propagation of a transient cylindrical wave in a lossless medium

Fresh water, with the constitutive parameters µ = µ0 and ǫ = 81ǫ0, fills a source-free region
of space. Using the rectangular pulse waveform

A(t) = E0[U(t)− U(t− τ )]

with τ = 2 µs, plot (2.289) for fixed values of time and interpret the result.

Solution: This situation is the same as that in the plane-wave case of Example 2.11 above,
except that the pulse waveform begins at t = 0. Substituting for A(t) into (2.289) and using

∫

dx√
x
√
x+ a

= 2 ln
[√
x+

√
x+ a

]

we can write the electric field in closed form as

Ez(ρ, t) = 2E0 ln

[√
x2 +

√

x2 + 2ρ/v
√
x1 +

√

x1 + 2ρ/v

]

, (2.290)

where x2 = max[0, t− ρ/v] and x1 = max[0, t− ρ/v − τ ]. The field is plotted in Figure 2.9
for various values of time. Note that the leading edge of the disturbance propagates outward
at a velocity v and a wake trails behind the disturbance. This wake is similar to that for
a plane wave in a dissipative medium, but it exists in this case even though the medium is
lossless. We can think of the wave as being created by a line source of infinite extent, pulsed
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by the disturbance waveform. Although current changes simultaneously everywhere along
the line, it takes the disturbance longer to propagate to an observation point in the z = 0
plane from source points z 6= 0 than from the source point at z = 0. Thus, the field at an
arbitrary observation point ρ arrives from different source points at different times. If we
look at Figure 2.9 we note that there is always a nonzero field near ρ = 0 (or any value of
ρ < vt) regardless of the time, since at any given t the disturbance is arriving from some
point along the line source.
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FIGURE 2.9
Propagation of a transient cylindrical wave in a lossless medium.

We also see in Figure 2.9 that as ρ becomes large the peak value of the propagating
disturbance approaches a certain value. This value occurs at tm = ρ/v + τ or, equivalently,
ρm = v(t− τ ). If we substitute this value into (2.290) we find that

Ez(ρ, tm) = 2E0 ln

[
√

τ

2ρ/v
+

√

1 +
τ

2ρ/v

]

.

For large values of ρ/v,

Ez(ρ, tm) ≈ 2E0 ln

[

1 +

√

τ

2ρ/v

]

≈ E0

√

2τv

ρ

since ln(1 + x) ≈ x for x ≪ 1. Thus, as ρ → ∞ we have E × H ∼ 1/ρ and the flux of
energy passing through a cylindrical surface of area ρ dφ dz is independent of ρ. This result
is similar to that seen for spherical waves where E×H ∼ 1/r2. ◭

2.10.8 Propagation of spherical waves in a lossless medium

In the previous section we found solutions that describe uniform cylindrical waves de-
pendent only on the radial variable ρ. It turns out that similar solutions are not possible



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 118 — #142
✐

✐

✐

✐

✐

✐

118 Electromagnetics

in spherical coordinates; fields that only depend on r cannot satisfy Maxwell’s equations
since, as shown in § 2.10.10, a source having the appropriate symmetry for the produc-
tion of uniform spherical waves in fact produces no field at all external to the region it
occupies. As we shall see in Chapter 5, the fields produced by localized sources are in
general quite complex. However, certain solutions that are only slightly nonuniform may
be found, and these allow us to investigate the most important properties of spherical
waves. We shall find that spherical waves diverge from a localized point source and
expand outward with finite velocity, carrying energy away from the source.

Consider a homogeneous, lossless, source-free region of space characterized by permit-
tivity ǫ and permeability µ. We seek solutions to the wave equation that are TEMr in
spherical coordinates (Hr = Er = 0), and independent of the azimuthal angle φ. Thus
we may write

E(r, t) = θ̂Eθ(r, θ, t) + φ̂Eφ(r, θ, t),

H(r, t) = θ̂Hθ(r, θ, t) + φ̂Hφ(r, θ, t).

Maxwell’s equations show that not all of these vector components are required. Faraday’s
law states that

∇×E(r, θ, t) = r̂
1

r sin θ

∂

∂θ
[sin θEφ(r, θ, t)]− θ̂

1

r

∂

∂r
[rEφ(r, θ, t)] + φ̂

1

r

∂

∂r
[rEθ(r, θ, t)]

= −µ∂H(r, θ, t)

∂t
. (2.291)

Since we require Hr = 0, we must have

∂

∂θ
[sin θEφ(r, θ, t)] = 0.

This implies that either Eφ ∼ 1/ sin θ or Eφ = 0. We shall choose Eφ = 0 and investigate
whether the resulting fields satisfy the remaining Maxwell equations.

In a source-free region of space, we have ∇ ·D = ǫ∇ · E = 0. Since we now have only
a θ-component of the electric field, this requires

1

r

∂

∂θ
Eθ(r, θ, t) +

cot θ

r
Eθ(r, θ, t) = 0.

From this we see that when Eφ = 0 the component Eθ must obey

Eθ(r, θ, t) =
fE(r, t)

sin θ
.

By (2.291) there is only a φ-component of magnetic field, and it must obey Hφ(r, θ, t) =
fH(r, t)/ sin θ where

−µ ∂
∂t
fH(r, t) =

1

r

∂

∂r
[rfE(r, t)]. (2.292)

Thus the spherical wave has the property E ⊥ H ⊥ r, and is TEM to the r-direction.
We can obtain a wave equation for Eθ by taking the curl of (2.291) and substituting

from Ampere’s law:

∇× (∇×E) = −θ̂
1

r

∂2

∂r2
[rEθ ] = ∇×

(

−µ ∂
∂t

H

)

= −µ ∂
∂t

(

σE+ ǫ
∂

∂t
E

)

.
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This gives
∂2

∂r2
[rfE(r, t)]− µσ

∂

∂t
[rfE(r, t)]− µǫ

∂2

∂t2
[rfE(r, t)] = 0,

which is the desired wave equation for E. Proceeding similarly we find that Hφ obeys

∂2

∂r2
[rfH(r, t)] − µσ

∂

∂t
[rfH(r, t)]− µǫ

∂2

∂t2
[rfH(r, t)] = 0.

We see that the wave equation for rfE is identical to that for the plane-wave field Ez
(2.273). Thus, we can use the solution obtained in § A.2.5, as we did with the plane wave,
with a few subtle differences. First, we cannot have r < 0. Second, we do not anticipate
a solution representing a wave traveling in the −r-direction — i.e., a wave converging
toward the origin. (In other situations we might need such a solution in order to form a
standing wave between two spherical boundary surfaces, but here we are only interested
in the basic propagating behavior of spherical waves.) Thus, we choose as our solution
the term (A.46) and find for a lossless medium where Ω = 0

Eθ(r, θ, t) =
1

r sin θ
A
(

t− r

v

)

. (2.293)

From (2.292) we see that

Hφ =
1

µv

1

r sin θ
A
(

t− r

v

)

. (2.294)

Since µv = (µ/ǫ)1/2 = η, we can also write this as

H =
r̂×E

η
.

We note that our solution is not appropriate for unbounded space since the fields have
a singularity at θ = 0. Thus we must exclude the z-axis. This can be accomplished by
using PEC cones of angles θ1 and θ2, θ2 > θ1. Because the electric field E = θ̂Eθ is
normal to these cones, the boundary condition that tangential E vanishes is satisfied.
It is informative to see how the terms in the Poynting power balance theorem relate for

a spherical wave. Consider the region between the spherical surfaces r = r1 and r = r2,
r2 > r1. Since there is no current within the volume region, Poynting’s theorem (2.234)
becomes

1

2

∂

∂t

∫

V

(ǫE ·E+ µH ·H) dV = −
∮

S

(E×H) · dS.

From (2.293) and (2.294), the time-rate of change of stored energy is

Psphere(t) =
1

2

∂

∂t

∫

V

[ǫE2(r, θ, t) + µH2(r, θ, t)] dV

=
1

2

∂

∂t

∫ 2π

0

dφ

∫ θ2

θ1

dθ

sin θ

∫ r2

r1

[

ǫ
1

r2
A2
(

t− r

v

)

+ µ
1

r2
1

(vµ)2
A2
(

t− r

v

)

]

r2 dr

= 2πǫF
∂

∂t

∫ r2

r1

A2
(

t− r

v

)

dr

where

F = ln

[

tan(θ2/2)

tan(θ1/2)

]

.
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Putting u = t− r/v we see that

Psphere(t) = −2πǫF
∂

∂t

∫ t−r2/v

t−r1/v
A2(u)v du.

An application of Leibnitz’ rule for differentiation (A.31) gives

Psphere(t) = −2π

η
F
[

A2
(

t− r2
v

)

−A2
(

t− r1
v

)]

. (2.295)

Next we find the Poynting flux term:

Psphere(t) = −
∮

S

(E×H) · dS

= −
∫ 2π

0

dφ

∫ θ2

θ1

[

1

r1
A
(

t− r1
v

)

θ̂

]

×
[

1

r1

1

µv
A
(

t− r1
v

)

φ̂

]

· (−r̂)r21
dθ

sin θ

−
∫ 2π

0

dφ

∫ θ2

θ1

[

1

r2
A
(

t− r2
v

)

θ̂

]

×
[

1

r2

1

µv
A
(

t− r2
v

)

φ̂

]

· r̂r22
dθ

sin θ
.

The first term represents the power carried by the traveling wave into the volume region
by passing through the spherical surface at r = r1, while the second term represents
the power carried by the wave out of the region by passing through the surface r = r2.
Integration gives

Psphere(t) = −2π

η
F
[

A2
(

t− r2
v

)

−A2
(

t− r1
v

)]

, (2.296)

which matches (2.295), thus verifying Poynting’s theorem.
It is also interesting to compute the total energy passing through a surface of radius

r0. From (2.296) we see that the flux of energy (power density) passing outward through
the surface r = r0 is

Psphere(t) =
2π

η
FA2

(

t− r0
v

)

.

The total energy associated with this flux can be computed by integrating over all time:
we have

E =
2π

η
F

∫ ∞

−∞
A2
(

t− r0
v

)

dt =
2π

η
F

∫ ∞

−∞
A2(u) du

after making the substitution u = t− r0/v. The total energy passing through a spherical
surface is independent of the radius of the sphere. This is an important property of
spherical waves. The 1/r dependence of the electric and magnetic fields produces a
power density that decays with distance in precisely the right proportion to compensate
for the r2-type increase in the surface area through which the power flux passes.

2.10.9 Energy radiated by sources

We may use Poynting’s theorem to show that the energy radiated by a bounded impressed
source Ji in a simple medium is nonnegative, and thus the following inequality holds [217]:

−
∫ t

−∞

∫

V

Ji ·E dV dt ≥
∫ t

−∞

∫

V

σ|E|2 dV dt+ 1

2

∫

V

(ǫ|E|2 + µ|H|2) dV.
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FIGURE 2.10

Geometry for establishing radiated energy inequality. Note that because V is bounded,
it is contained entirely inside a sphere of radius R.

The equality is true for nonradiating sources , which are discussed in the next section.
To establish the inequality, consider the bounded region V shown in Figure 2.10.

Applied to V , Poynting’s theorem reads

−
∮

S

(E×H) · n̂ dS =

∫

V

Ji ·E dV +

∫

V

σ|E|2 dV +
1

2

∂

∂t

∫

V

(ǫ|E|2 + µ|H|2) dV. (2.297)

Now assume that V is completely contained within a sphere of radius R such that the
region internal to the sphere but external to V is Vc. Assuming the impressed source
currents are all inside V as shown, application of Poynting’s theorem to Vc gives
∮

S

(E×H) · n̂ dS −
∮

SR

(E×H) · n̂R dS =

∫

Vc

σ|E|2 dV +
1

2

∂

∂t

∫

Vc

(ǫ|E|2 + µ|H|2) dV.

In the limit as R → ∞, the second term vanishes by the radiation conditions for E and
H on SR:

∮

S

(E×H) · n̂ dS =

∫

V ′

σ|E|2 dV +
1

2

∂

∂t

∫

V ′

(ǫ|E|2 + µ|H|2) dV,

where V ′ is the region external to the sphere. The left-hand side is the electromagnetic
power flux from V into V ′ at time t, which we will denote by P (t). Its time integral is
the total electromagnetic energy that has left V by time t. We have

∫ t

−∞
P (t) dt =

∫ t

−∞

∮

S

(E×H) · n̂ dS dt

=

∫ t

−∞

[∫

V ′

σ|E|2 dV +
1

2

∂

∂t

∫

V ′

(ǫ|E|2 + µ|H|2) dV
]

dt

=

∫ t

−∞

∫

V ′

σ|E|2 dV dt+ 1

2

∫

V ′

(ǫ|E|2 + µ|H|2) dV

≥ 0,
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with equality if and only if E ≡ 0 and H ≡ 0 in V ′. Hence by (2.297)

−
∫ t

−∞

[∫

V

Ji · E dV +

∫

V

σ|E|2 dV +
1

2

∂

∂t

∫

V

(ǫ|E|2 + µ|H|2) dV
]

dt ≥ 0

which gives

−
∫ t

−∞

∫

V

Ji ·E dV dt ≥
∫ t

−∞

∫

V

σ|E|2 dV dt+ 1

2

∫

V

(ǫ|E|2 + µ|H|2) dV.

We see that the energy introduced by the impressed currents is greater than or equal to
the energy dissipated as Joule heat in V plus the energy stored in V . We can expect a
positive net radiation of energy from nearly any source. The conditions under which a
source does not radiate are given in the next section.

Note that if Ji ≡ 0 in V , the last inequality becomes

0 ≥
∫ t

−∞

∫

V

σ|E|2 dV dt+ 1

2

∫

V

(ǫ|E|2 + µ|H|2) dV,

which implies that E ≡ 0 ≡ H in V .

2.10.10 Nonradiating sources

Not all time-dependent sources produce electromagnetic waves. In fact, certain localized
source distributions produce no fields external to the region containing the sources. Such
distributions are said to be nonradiating, and the fields they produce (within their source
regions) lack wave characteristics.

Let us consider a specific example involving two concentric spheres. The inner sphere,
carrying a uniformly distributed total charge −Q, is rigid and has a fixed radius a; the
outer sphere, carrying uniform charge +Q, is a flexible balloon that can be stretched to
any radius b = b(t). The two surfaces are initially stationary, some external force being
required to hold them in place. Now suppose we apply a time-varying force that results
in b(t) changing from b(t1) = b1 to b(t2) = b2 > b1. This creates a radially directed
time-varying current r̂Jr(r, t). By symmetry, Jr depends only on r and produces a field
E that depends only on r and is directed radially. An application of Gauss’s law over a
sphere of radius r0 > b2, which contains zero total charge, gives

4πr20Er(r0, t) = 0,

hence E(r, t) = 0 for r > r0 and all time t. So E = 0 external to the current distribution
and no outward traveling wave is produced. Gauss’s law also shows that E = 0 inside
the rigid sphere, while between the spheres

E(r, t) = −r̂
Q

4πǫ0r2
.

Now work is certainly required to stretch the balloon and overcome the Lorentz force
between the two charged surfaces. But an application of Poynting’s theorem over a
surface enclosing both spheres shows that no energy is carried away by an electromagnetic
wave. Where does the expended energy go? The presence of only two nonzero terms in
Poynting’s theorem clearly indicates that the power term

∫

V
E · J dV corresponding to

the external work must be balanced exactly by a change in stored energy. As the radius
of the balloon increases, so does the region of nonzero field as well as the stored energy.
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In free space any current source expressible in the form

J(r, t) = ∇
(

∂ψ(r, t)

∂t

)

(2.298)

and localized to a volume region V , such as the current in the example above, is nonra-
diating. Indeed, Ampere’s law states that

∇×H = ǫ0
∂E

∂t
+∇

(

∂ψ(r, t)

∂t

)

(2.299)

for r ∈ V ; taking the curl, we have

∇× (∇×H) = ǫ0
∂∇×E

∂t
+∇×∇

(

∂ψ(r, t)

∂t

)

.

But the second term on the right is zero, so

∇× (∇×H) = ǫ0
∂∇×E

∂t

and this equation holds for all r. By Faraday’s law we can rewrite it as

(

(∇×∇×) +
1

c2
∂2

∂t2

)

H(r, t) = 0.

So H obeys the homogeneous wave equation everywhere, and H = 0 follows from causal-
ity. The laws of Ampere and Faraday may also be combined with (2.298) to show that

(

(∇×∇×) +
1

c2
∂2

∂t2

)[

E(r, t) +
1

ǫ0
∇ψ(r, t)

]

= 0

for all r. By causality,

E(r, t) = − 1

ǫ0
∇ψ(r, t) (2.300)

everywhere. But since ψ(r, t) = 0 external to V , we must also have E = 0 there.
Note that E = −∇ψ/ǫ0 is consistent with Ampere’s law (2.299) provided that H = 0
everywhere.
We see that sources having spherical symmetry such that

J(r, t) = r̂Jr(r, t) = ∇
(

∂ψ(r, t)

∂t

)

= r̂
∂2ψ(r, t)

∂r∂t

obey (2.298) and are therefore nonradiating. Hence the fields associated with any outward
traveling spherical wave must possess some angular variation. This holds, for example,
for the fields far removed from a time-varying source of finite extent.
As pointed out by Lindell [120], nonradiating sources are not merely hypothetical. The

outflowing currents produced by a highly symmetric nuclear explosion in outer space
or in a homogeneous atmosphere would produce no electromagnetic field outside the
source region. The large electromagnetic-pulse effects discussed in Example 2.12 are due
to inhomogeneities in the earth’s atmosphere. We also note that the fields produced
by a radiating source Jr(r, t) do not change external to the source if we superpose a
nonradiating component Jnr(r, t) to create a new source J = Jnr + Jr. We say that the
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two sources J and Jr are equivalent for the region V external to the sources. This presents
difficulties in remote sensing where investigators are often interested in reconstructing an
unknown source by probing the fields external to (and usually far away from) the source
region. Unique reconstruction is possible only if the fields within the source region are
also measured.

For the time harmonic case, Devaney and Wolf [48] provide the most general possible
form for a nonradiating source. See § 4.11.10 for details.

2.11 Application: single charged particle motion in static electric
and magnetic fields

Moving charge is of course current, so understanding the dynamics of moving charge
is essential to understanding electromagnetics. The challenge is that particle motion
can be extremely complicated depending on the environment where the motion takes
place. Particles in a material lattice behave differently from those in a vacuum. Particles
accelerated by a time-varying field obey much different physics than particles moving
through a static field. Particles in a dense plasma, where interactions are strong, behave
differently from particles in a highly diffuse gas where collisions are rare and particle-to-
particle forces are weak. Many technologies are based on the specifics of these complex
motions, including semiconductor devices, particle accelerators, microwave amplifiers,
plasma displays, and spacecraft thrusters. Accurate descriptions of particle dynamics (in
either deterministic or statistical fashion) are therefore essential. Even so, much insight
can be gained by examining the simplest cases of individual charges moving through static
fields, and several applications are relevant, such as cathode ray tubes, traveling-wave
tube amplifiers, and particle separators.

2.11.1 Fundamental equations of motion

The trajectory of a particle of rest mass m0 traveling with velocity v through an electric
field E(r, t) and a magnetic field B(r, t) (measured in the laboratory frame) is determined
from the Lorentz force [92]

dp

dt
= q(E+ v ×B), (2.301)

where p is the particle momentum. Here we neglect all other forces acting on the particle
(such as gravity). For particles moving at relativistic speeds, the momentum is given by
p = γm0v, where γ is the Lorentz factor

γ =
1

√

1− v2

c2

.

Relativistic effects may be neglected in many applications. However, electron speeds
in gyrotrons typically exceed c/2 and relativistic effects cannot be ignored [39]. In free-
electron lasers, or ubitrons [151], electron speed may be as high as 0.999998c [8, 112]. In
large particle accelerators the electrons may move even faster — see Example 2.16 below.
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◮ Example 2.15: Electron acceleration

Assume we should start considering relativistic effects when γ = 1.1. How fast must an
electron travel to achieve this value of γ? Through what voltage must the electron be
accelerated to reach this speed?

Solution: When γ = 1.1 we have

v

c
=

√

γ2 − 1

γ2
= 0.4166,

which indicates an electron traveling nearly half the speed of light. When accelerated through
a voltage of V volts, an electron gains an energy of eV Joules, where e is the unsigned charge
on the electron. If V = 1 V, we say that the electron has an energy of one electron volt, or
1 eV. Since this energy must be equal to the kinetic energy of the electron, we may find the
required voltage by equating eV with this kinetic energy. If we include relativistic effects,
the kinetic energy of the electron is given by [114]

Ek = mc2 −m0c
2,

where m0 is the rest mass of the electron and m = γm0. Thus

eV = m0(γ − 1)c2 (2.302)

and so
V =

m0

e
(γ − 1)c2.

Setting m0 = 9.109384 × 10−31 kg, e = 1.6021766 × 10−19 C, and γ = 1.1, we find V =
51.1 kV. Hence we might expect to experience relativistic particle speeds only in technologies
that employ high acceleration voltages. ◭

◮ Example 2.16: Relativistic velocity

A free electron laser uses an electron beam with an electron energy of 250 MeV. How fast
do the electrons travel? The Stanford Linear Accelerator Center can impart an energy of
50 GeV to electrons. How fast do these electrons travel?

Solution: The relationship between electron energy and electron speed is given by (2.302).
Solving this equation for v/c gives

v

c
=

√

1 + 2m0c2

eV

1 + m0c2

eV

.

Setting V = 250 × 106 V gives v/c = 0.999998 and γ = 490. Setting V = 50 × 109 V gives
v/c = 0.99999999995 and γ = 97849. Obviously, these technologies produce electron speeds
near the speed of light. ◭

Another form of (2.301) offers some insight into the relativistic behavior of the moving
particle. By the product rule,

dp

dt
=

d

dt
(m0γv) = m0v

dγ

dt
+m0γ

dv

dt
= q(E+ v ×B).

We see that if the particle speed changes with time, then so does γ, and the first term
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contributes to the change in momentum. Note that

v · dp
dt

= m0v
2 dγ

dt
+m0γv · dv

dt
= qv ·E.

But
d

dt
(v · v) = v · dv

dt
+
dv

dt
· v = 2v · dv

dt
,

so

v2
dγ

dt
+ γ

1

2

dv2

dt
=

q

m0
v ·E.

Then, using
dγ

dt
=

d

dt

1
√

1− v2

c2

=
1

2c2
γ3
dv2

dt

we find that

v2
dγ

dt
+ γ

1

2

dv2

dt
=
dγ

dt

(

v2 +
c2

γ2

)

= c2
dγ

dt
=

q

m0
v · E,

and thus
dγ

dt
=

q

m0c2
v ·E.

Hence, changes in particle speed (and thus in γ) are due only to the electric field and
not the magnetic field (i.e., the magnetic field can cause acceleration only by changing
the particle direction). Then, substituting this into (2.301), we get an alternative form
of the equation of motion:

γm0
dv

dt
+
qv

c2
v · E = q(E+ v ×B). (2.303)

For most of the cases considered below, we ignore relativistic effects by assuming
v2/c2 ≪ 1 so that γ ≈ 1. Then we have simply

dv

dt
=

q

m
(E+ v ×B), (2.304)

since m = m0.

2.11.2 Nonrelativistic particle motion in a uniform, static electric
field

Neglecting relativistic effects, the trajectory of a particle in a uniform static electric field
is determined from (2.304) using

dv

dt
=

q

m
E, v =

dr

dt
. (2.305)

Integration gives the velocity vector at time t as

v(t) = v0 +
q

m
Et, (2.306)

where v0 is the initial velocity. Hence, the particle gains speed linearly with time, with
the direction of motion determined by the sign of q. The particle’s kinetic energy is

Ek(t) =
1
2m|v|2 = 1

2m
∣

∣

∣v0 +
q

m
Et
∣

∣

∣

2

,
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which increases quadratically with time. Since velocity is the time derivative of position,
we can also write (2.306) as

dr

dt
= v0 +

q

m
Et.

Integration gives the particle position:

r(t) = r0 + v0t+
1

2

q

m
Et2. (2.307)

◮ Example 2.17: Longitudinal electron acceleration: the electron gun

An electron gun creates a collimated stream of electrons for use in, e.g., a cathode ray tube, a
microwave source or amplifier, or an electron microscope. A heated cathode emits electrons
with low initial velocity v0, which are then accelerated in a static electric field. The electric
field is created by applying a voltage between the cathode and an anode, separated by a
distance d so that E0 = −x̂V0/d (Figure 2.11). Consider an electron emitted at the origin at
time t = 0. Determine the speed and kinetic energy of the electron when it passes through
the anode at x = d.

v v!

"

#

$ 

E 

%

FIGURE 2.11
Electron gun.

Solution: The electron velocity is given by (2.306):

v(t) = v0 +
q

m
Et =

(

v0 +
e

m
E0t
)

x̂.

Its kinetic energy is

Ek(t) =
1
2
m
(

v0 +
e

m
E0t
)2

,



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 128 — #152
✐

✐

✐

✐

✐

✐

128 Electromagnetics

and its position is, by (2.307),

r(t) = r0 + v0t+
1

2

e

m
E0t

2
x̂ =

(

v0t+
1

2

e

m
E0t

2

)

x̂.

Assuming the initial velocity can be neglected, the electron will reach the anode when

1

2

e

m
E0t

2 = d

or

t =

√

2d2m

eV0
.

At that time the speed is

v =
e

m
E0t =

√

2qeV0

m

and the kinetic energy is

Ek = 1
2
m

(

√

2eV0

m

)2

= eV0.

This result is expected from the electrostatic relationship between energy and voltage, as
discussed in the next chapter. ◭

◮ Example 2.18: Lateral electron acceleration: deflection in a CRT

A classic application of electrostatic particle deflection is the cathode ray tube, used as a
display device in some oscilloscopes. An electron gun launches electrons into an electric field;
the field deflects the electrons so that they impact a fluorescent screen at a defined point,
and the screen in turn emits visible photons. Alterations in the voltage cause a pattern of
light to be traced on the screen.

Consider Figure 2.12. An electron gun accelerates an electron through a voltage V0 so
that its initial velocity at the origin is v0 = v0x̂. At that point it enters the region between
two deflector plates; the plates are held at a potential difference Vd so that the electric field
is (neglecting fringing) E0 = −ŷVd/d. If the deflector plates have length L, find the position
y2 at which the electron impacts a screen located a distance D beyond the plates. Also find
the kinetic energy gained by the electron in passing through the deflector plates.
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FIGURE 2.12
Electron deflection in a cathode ray tube.
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Solution: The initial kinetic energy of the electron is

Ek = 1
2
mv20 = eV0,

so the initial velocity is

v0 = x̂

√

2eV0

m
.

The velocity at any time while the electron is between the plates is given by (2.306):

v(t) = v0x̂+
e

m
E0tŷ.

Hence the kinetic energy is

Ek(t) = eV0 +
1

2

e2

m
E2

0t
2.

The electron position is given by (2.307):

r(t) = v0tx̂+
1

2

e

m
E0t

2
ŷ.

The particle will reach the end of the deflector plates when t = t1 = L/v0. At this time the
velocity is

v1 = v0x̂+
e

m
E0t1ŷ = v0x̂+

e

m
E0

L

v0
ŷ,

the position is

r1 = v0t1x̂+
1

2

e

m
E0t

2
1ŷ = Lx̂+

1

4

Vd
V0

L2

d
ŷ,

and the kinetic energy is

Ek(t1) = eV0 +
1

2

e2

m
E2

0t
2
1 = eV0 + eVd

(

1

4

Vd
V0

L2

d2

)

.

After passing through the deflector plates, the electron will no longer gain kinetic energy;
therefore the gain in kinetic energy is

∆Ek = eVd

(

1

4

Vd
V0

L2

d2

)

,

and the gain relative to the initial kinetic energy is

∆Ek
Ek0

=
eVd

(

1
4
Vd
V0

L2

d2

)

eV0
=

(

1

2

Vd
V0

L

d

)2

.

After the electron passes through the deflector plates it continues unaccelerated, with posi-
tion given by

r(t) = r1 + v1(t− t1),

reaching the screen at time t− t1 = D/v0. At this time we have

x2 = L+ v0
D

v0
= L+D

and

y2 =
1

4

Vd
V0

L2

d
+

e

m
E0

LD

v20
=

1

2

Vd
V0

L

d

(

L

2
+D

)

.

Large deflections may be achieved with large deflection voltages relative to the initial accel-
eration voltage, with wide deflector plates, or with a long travel distance to the screen. ◭



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 130 — #154
✐

✐

✐

✐

✐

✐

130 Electromagnetics

2.11.3 Nonrelativistic particle motion in a nonuniform, static electric
field; electron optics

Nonuniform static electric fields are used as electrostatic lenses to direct and focus elec-
tron beams. Applications include particle extractors, electron microprobes, and electron
microscopes [106]. Regions of nonuniform fields are created using closely spaced elec-
trodes, apertures in screens, and gaps in cylinders, and particles passing through these
regions undergo alteration of their trajectories to produce focused beams.

It is found that particle trajectories in nonuniform fields follow rules similar to those
followed by light rays in geometrical optics. Hence the term electron optics is often
assigned to the study of these trajectories. When light rays cross an interface between
differing optical media, they undergo refraction and the direction of the ray path changes.
When an electron crosses an interface between differing regions of electrostatic potential,
the trajectory of the particle changes in a manner analogous to light refraction. A light
ray bends toward the interface normal when entering a region of greater optical index.
In electron optics, the electron trajectory bends toward the normal as the electron enters
a region of higher potential. However, while a light ray may experience a discontinuous
alteration of its direction when crossing an interface between differing materials, the
potential in vacuum is never truly discontinuous (although the gradient can be large),
and thus the path of an electron always changes continuously. We can see this effect in
Figure 2.12. The equipotential surfaces in the region between the deflection plates are
parallel to the plates, and as the electron crosses each equipotential surface into a region
of higher potential, its path changes slightly, bending toward the normal to the surfaces.
The result is the curved parabolic trajectory described in the equations of Example 2.18.
In optics, the path of a light ray through a continuously changing optical medium is
described by Fermat’s principle of least time:

δ

∫ B

Γ,A

n(r) dl = 0,

where n(r) is the optical index of the nonuniform medium. That is, the path Γ taken
by the light ray between the points A and B minimizes the optical path length, and
the ray takes the least amount of time to get from A to B. Similarly, the curved path
of an electron in a nonuniform electric field may be described by a version of Fermat’s
principle,

δ

∫ B

Γ,A

v(r) dl = 0,

where v(r) is the particle speed in the nonuniform field [131]. This implies that the path
Γ is such that the particle takes the least time traveling from A to B, just as in optics.

Closed-form expressions for paths of charged particles in nonuniform electric fields may
be difficult to obtain. Hence numerical solutions to the kinematic equations are often
sought. A simple numerical solution, often sufficient for illustrative purposes, can be
obtained using a finite-difference, or Euler method. The algorithm is as follows:

1. choose a time step δt and a number of iterations N ;

2. set t0 = 0; set the initial particle position r0 and velocity v0;

3. update the velocity using (2.305): vi+1 = vi + (q/m)E δt;

4. update the position: ri+1 = ri + vi+1 δt;

5. update the time: ti+1 = ti + δt;

6. return to step 3 and repeat N times.
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This algorithm is used to calculate electron trajectories in the following example.

◮ Example 2.19: Electrostatic lens

A very simple electrostatic lens may be created using two point charges (or equivalently two
uniformly charged spheres). Assume identical charges Q = +10 nC are fixed at the points
(0, 0.5) m and (0,−0.5) m in the xy-plane. Electrons are injected at various positions y0 at
x = −4 m in the xy-plane, with initial speed v0 = 6.2 × 106 m/s, and initial trajectories
passing through the origin. Use the finite-difference approach to plot the electron trajectories
and determine their speeds over time.

Solution: With δt = 2 ns, the finite-difference technique outlined above gives the electron
trajectories shown in Figure 2.13. As an electron travels it intersects equipotential surfaces
at a slight angle, and its trajectory bends slightly toward the normal. This effect accumulates
until the particle passes between the charges along a path nearly parallel to the x-axis. The
point charges thus act as a diverging lens, transforming the converging electron paths to
a collimated beam parallel to the x-axis. Of course, in this simple example collimation
only occurs for electrons traveling in the xy-plane. To collimate particles converging from
a cathode, for instance, a more complicated three-dimensional arrangement of electrodes is
required.

Note that the trajectories in Figure 2.13 are for individual particles, not for a beam of
electrons, and thus there is no interaction between particles. In an actual electron beam,
mutual repulsion between electrons will spread the beam, even if it is at some point com-
pletely collimated. Hence long electron beams must be continually refocused, using either
nonuniform static electric fields or nonuniform static magnetic fields. For instance, in many
linear-beam microwave devices, such as traveling-wave tubes, the beam is collimated over a
long distance using alternating-pole permanent magnets [152]. Electron trajectories in the
presence of magnetic fields is considered in later sections.
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FIGURE 2.13
Trajectory of electrons deflected by a pair of positive point charges. Equipotential lines are
for 50, 100, 200, 300, and 350 V.
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Figure 2.14 shows the speed of electrons injected at y0 = 0 and at y0 = 3m. Electrons
accelerate as they are drawn toward the positive charges by the outward-pointing electric
field. They reach a maximum speed as they pass nearest the charges and then start to
decelerate. Note that the electron velocity is maximum at the point of maximum potential
along the trajectory, so the kinetic energy mv2/2 is greatest there. However, the potential
energy −eV is lowest at this point, and thus the sum of the kinetic and potential energies
is conserved.
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FIGURE 2.14
Speed of electrons deflected by a pair of positive point charges. ◭

2.11.4 Nonrelativistic particle motion in a uniform, static magnetic
field

In the absence of relativistic effects, the trajectory of a particle in a uniform static
magnetic field is determined from (2.304) using

dv

dt
=

q

m
v ×B, v =

dr

dt
. (2.308)

As mentioned earlier, the magnetic field may accelerate a particle by changing its direc-
tion, but it cannot change the particle speed. It is also clear that a particle following
a trajectory parallel to B will not be affected by the magnetic field, since v × B is
zero. Hence it is convenient to decompose the velocity into components parallel and
perpendicular to the magnetic field,

v = v‖ + v⊥, (2.309)

such that

v‖ ×B = 0, v⊥ ×B 6= 0.

Substituting (2.309) into (2.308) we have

dv‖
dt

= 0, (2.310)
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FIGURE 2.15

Transverse-plane motion of a charged particle in a uniform static magnetic field.

which says that the magnetic field does not affect the velocity in the direction of the
magnetic field, and

dv⊥
dt

=
q

m
v⊥ ×B = ωc × v⊥, (2.311)

which says that the particle will accelerate in the plane perpendicular to the magnetic
field. Here

ωc = − q

m
B

is a vector describing the particle acceleration. Its magnitude

ωc =
|q|
m

|B| = |q|
m
B

is called the cyclotron frequency.
The particle trajectory may be found by decomposing the position vector as

r = r‖ + r⊥

so that

v‖ =
dr‖
dt
, v⊥ =

dr⊥
dt

. (2.312)

From (2.310) we find that v‖ is constant with time and thus

r‖ = r0 + v‖t.

From (2.311) we have
dv⊥
dt

= ωc ×
dr⊥
dt

,
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FIGURE 2.16

Motion of a charged particle in a uniform static magnetic field about its guiding center.

and thus
v⊥ = ωc × r⊥ (2.313)

since ωc is constant with time. Now, since the particle speed is constant, so are both |v⊥|
and |r⊥| = rc. So v⊥ is tangential to a circle of radius rc, and represents the velocity
of a particle moving in circular motion in the plane perpendicular to B. The center of
this circle, or guiding center, is located by the position vector r‖ = r0 + v‖t as shown in
Figure 2.15.

We can write an explicit formula for the particle trajectory by considering Figure 2.16.
Define the unit vector ω̂c = ωc/ωc, and pick a time t = 0 such that

â =
r⊥(t = 0)

rc
.

Then b̂ = ω̂c × â, and we can write the position and velocity vectors as

v = v‖ + vaâ+ vbb̂, r = r0 + raâ+ rbb̂.

With this, we have from (2.312) and (2.313)

d

dt
(âra + b̂rb) = ωcω̂c × (âra + b̂rb).

But ω̂c × b̂ = ω̂c × (ω̂c × â) = −â, so we have the two equations

dra
dt

= −ωcrb,
drb
dt

= ωcra.

Substituting for rb, we obtain
d2ra
dt2

+ ω2
cra = 0,
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which has the solution
ra = rc cosωct

by our choice of time reference. Then

rb = − 1

ωc

dra
dt

= rc sinωct.

Thus,
r⊥ = ârc cosωct+ b̂rc sinωct.

Finally, the particle trajectory is given by

r = r‖ + r⊥ = v‖t+ rc(â cosωct+ ω̂c × â sinωct).

The result of superposing the linear and circular motions is a helical trajectory. The
helix can be either left-handed or right-handed, depending on the sign of q and the
direction of v‖ relative to the direction of B. The particle will travel once around the
helix in time Tc = 2π/ωc (known as the Larmor period [16]), and in that time will also
progress a distance

p =
2π

ωc
v‖

along the helix axis. This distance p is called the pitch of the helix. The pitch angle α
is the angle made between the direction of motion and the ab-plane, or

tanα =
p

2πrc
=

v‖
ωcrc

=
v‖
v⊥
.

◮ Example 2.20: Spiraling particles in the ionosphere

Particles impinging on the earth from the solar wind are guided along the earth’s magnetic
field lines toward the poles. Protons and electrons typically travel at 3 × 105 m/s when
reaching the upper ionosphere at altitude 250 km where the earth’s magnetic field is around
50 × 10−6 T [157]. Assuming the particles spiral with a pitch angle of 45◦, find the radius
and pitch of a helical trajectory. Plot the spiraling trajectory of protons for a typical case
of geometrical parameters.

Solution: For α = 45◦, we have v‖ = v⊥ = v/
√
2 = 212 km/s. Using

ωc =
|q|
m
B

we have ωc = 4.8 kr/s for protons and ωc = 8.8 Mr/s for electrons. Finally, using v⊥ = ωcrc
we find that rc = 44 m for protons and rc = 2.4 cm for electrons. So electrons spiral much
more tightly than do protons with the same speed. This is because of the much smaller
mass of the electron. For protons the helical pitch is p = 2πv‖/ωc = 278 m, so each proton
spirals about four times during each kilometer of axial distance traveled.

To plot the trajectory we must choose the geometrical properties of the path. For illus-
trative purposes let

ω̂c = 0.2x̂ + 0.2ŷ +
√
0.92ẑ,

â =
√
0.5x̂−

√
0.5ŷ,

b̂ =
√
0.46x̂+

√
0.46ŷ −

√
0.08ẑ,

r0 = 50x̂ + 50ŷm.
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Note that â · ω̂ = 0, as required, and b̂ = ω̂c × â. Figure 2.17 shows the trajectory plotted
for a proton over about seven cycles of the helix (from z = 0 to z = 2 km). The dotted line
shows the trajectory of the guiding center as determined by the formula r = r0 +v‖t, which
starts at the point (50, 50) m in the z = 0 plane. As expected, the proton spirals upward
about the trajectory of the guiding center, which makes an angle of cos−1(0.92) = 23◦ with
the z-axis.
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FIGURE 2.17
Helical trajectory of a proton in the ionosphere. Dotted line shows the trajectory of the
guiding center. ◭

◮ Example 2.21: Electron deflection in a static magnetic field

Example 2.18 showed how an electron may be deflected using a static electric field, forming
the basis for the cathode ray tube. Until the advent of flat screen technology, CRTs were
also used in television sets and computer monitors. These types of CRTs use magnetic fields
to deflect an electron beam, thereby forming an image on a phosphorescent screen.
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FIGURE 2.18
Electron deflection by a uniform static magnetic field in a cathode ray tube.
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Consider Figure 2.18. An electron gun accelerates an electron through a voltage V0 so that
its initial velocity at the origin is v0 = v0x̂. It then enters a region of uniform static magnetic
field B = B0ẑ, created by a permanent magnet or by an electromagnet. If the magnetic
field region has length L, find the position y2 at which the electron strikes a screen located
a distance D beyond the plates.

Solution: When the electron enters the magnetic field it is deflected by the Lorentz force and
adopts a circular trajectory. So the entry point is on the tangent to the circular trajectory
experienced by the electron, and we have the initial guiding center of gyration as r0 =
rcŷ. Because the initial trajectory is perpendicular to the magnetic field, and because the
magnetic field cannot change the electron speed, the parallel component of the velocity is
zero, while the perpendicular component has a magnitude v0. So v‖ = 0 and v⊥ = v0. The
cyclotron frequency vector and radius of curvature of the electron trajectory are given by

ωc = ẑ
e

m
B0, rc =

v⊥
ωc

=
v0m

eB0
.

Assuming the electron enters the magnetic field at t = 0, we must have â = −ŷ and
b̂ = ω̂c × â = x̂. Also r‖ = 0 because v‖ = 0, and the guiding center of gyration of the
electron remains stationary at r0 = rcŷ. Hence we can describe the trajectory of the electron
while it is in the magnetic field as

r = r0 + r⊥ = rcŷ + rc(−ŷ cosωct+ x̂ sinωct)

= x̂rc sinωct+ ŷrc(1− cosωct).

The electron reaches the edge of the deflection region when x(t) = L, or

rc sinωct = L.

This occurs at time

t =
1

ωc
sin−1

{

L

rc

}

.

At that time the electron has traveled to point P1 where the y coordinate is

y = rc

[

1− cos

(

sin−1

{

L

rc

})]

= rc

[

1−
√
r2c − L2

rc

]

= rc −
√

r2c − L2.

Once the electron leaves the magnetic field region, it travels with uniform velocity until
impacting the screen at x = L+D. At the exit point P1 we have

r⊥ = Lx̂−
√

r2c − L2ŷ,

and thus the electron has exit velocity

v⊥ = ωc × r⊥ = v0
L

rc
ŷ + v0

√
r2c − L2

rc
x̂.

The electron will therefore travel from the exit point to the screen in time

t =
Drc

v0
√
r2c − L2

.

Finally, at this time the y-coordinate of the electron position is

y2 = v0
L

rc

[

Drc

v0
√
r2c − L2

]

+ rc −
√

r2c − L2,
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which can be written as

y2 = rc



1−
√

1− L2

r2c
+
LD

r2c

1
√

1− L2

r2c



 .

For small deflection (L ≪ rc), we may approximate the square root function with the first
two terms of the binomial series and find that

y2 ≈ L2

rc

(

D

L
+

1

2

)

.

So larger deflections are produced by smaller values of rc (which requires larger values of
B0) and by larger values of D and L. ◭

2.11.5 Nonrelativistic particle motion in uniform, static electric and
magnetic fields: E×B drift

In the simultaneous presence of both electric and magnetic fields, a particle trajectory is
determined from

dv

dt
=

q

m
(E+ v ×B) , v =

dr

dt
. (2.314)

We may solve these by decomposing the electric field, the velocity vector, and the position
vector into components parallel and perpendicular to B:

E = E‖ +E⊥, v = v‖ + v⊥, r = r‖ + r⊥.

Substituting into (2.314) and equating parallel and perpendicular vectors, we obtain

dv‖
dt

=
q

m
E‖, v‖ =

dr‖
dt
, (2.315)

dv⊥
dt

=
q

m
(E⊥ + v⊥ ×B) , v⊥ =

dr⊥
dt

. (2.316)

The first equation is identical to that for a particle moving in a uniform, static electric
field, and can be integrated to give

v‖(t) = v0‖ +
q

m
E‖t, r‖(t) = r0‖ + v0‖t+

1

2

q

m
E‖t

2.

So the particle accelerates in the direction of the magnetic field under the force of the
parallel component of the electric field. Motion perpendicular to B is more complicated;
we expect some combination of magnetic and electric forces, with the magnetic field
causing a gyrating motion and the electric field normal to B causing acceleration along
the perpendicular direction. The actual effect is more intriguing.

Equation (2.316) may be solved using a clever decomposition of the perpendicular
velocity. Let

v⊥ = u+w

where w is time-independent. Such a decomposition is always possible, as we can always
have u = v⊥ −w so that

v⊥ = (v⊥ −w) +w.

Hence w may be chosen as any time-independent vector. Substitution into (2.316) gives

du

dt
=

q

m
[E⊥ + (u+w)×B] =

q

m
u×B+

q

m
(E⊥ +w×B) . (2.317)
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Since w is arbitrary, let us choose it so that

q

m
(E⊥ +w ×B) = 0

or
w ×B = −E⊥.

Crossing this equation with B we get

B× (w ×B) = −B×E⊥ = −B× (E−E‖) = E×B,

since B×E‖ = 0. Expansion of the cross product gives

B× (w ×B) = w(B ·B)−B(w ·B) = B2w,

since w is normal to B. Thus

w =
E×B

|B|2 . (2.318)

We also have from (2.317) the equation for u:

du

dt
=

q

m
u×B.

This is identical to (2.311), which describes the gyrating motion of a particle in a uniform
magnetic field. Therefore v⊥ is a superposition of two velocities. The first gives rise to
the gyrating motion that would be executed by the particle if there were a magnetic
field but no electric field. The second is a constant velocity in the direction of E × B.
So the gyrating particle drifts along this direction. The effect of the electric field in the
direction transverse to B is called, appropriately, the E×B drift.
Several observations are warranted. First note that any constant force may substitute

for the electric force qE, or augment this force. For instance, if a gravitational field
produces a force Fg, then the equation of motion is

dv

dt
=

q

m

(

E+
Fg
q

+ v ×B

)

.

Decomposing Fg into parallel and perpendicular components, we see that the velocity in
the parallel direction is

v‖(t) = v0‖ +
q

m

(

E‖ +
Fg‖
q

)

t,

while that in the perpendicular direction represents gyration superimposed with a drift
velocity

w =
1

|B|2
(

E+
Fg
q

)

×B.

Second, note that the drift velocity (2.318) is independent of q. Third, if the particle
motion is observed in a Galilean reference frame moving with uniform velocity w, the
particle will seem to gyrate under the influence of B but the effect from the electric field
E⊥ will not be observed. (Acceleration along the parallel direction will be observed,
however.) These last two observations suggest that it may be insightful to examine a
particle moving at relativistic speeds in certain Lorentzian reference frames. This is done
in § 2.11.7.
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◮ Example 2.22: E×B drift for normal fields

Study the trajectory of a particle immersed in perpendicular fields B = B0ẑ and E = E0ŷ.

Solution: Since E is perpendicular to B there is no parallel component of E, hence no
z-directed acceleration. The equation of motion (2.316) is

dv⊥

dt
=

q

m
[x̂vyB0 + ŷ(E0 − vxB0)],

or in component form

dvx
dt

=
q

m
vyB0, (2.319)

dvy
dt

=
q

m
(E0 − vxB0). (2.320)

Differentiating (2.320) and substituting from (2.319), we have

d2vy
dt2

= − q

m
B0

dvx
dt

= −ω2
cvy ,

or
d2vy
dt2

+ ω2
cvy = 0.

This has the solution
vy(t) = v⊥ cos(ωct+ φ),

where φ is determined by the t = 0 reference. From (2.320) we then have

vx =
E0

B0
−
(

± 1

ωc

dvy
dt

)

=
E0

B0
± v⊥ sinωct.

Here the upper and lower signs apply to the cases of positively and negatively charged
particles, respectively. The first term in this expression is exactly the E×B drift velocity,

w =
E×B

|B|2 = x̂
E0

B0
.

Integrating the velocity vector, we find the trajectory:

x(t) = x0 +
E0

B0
t∓ rc cos(ωct+ φ), (2.321)

y(t) = y0 + rc sin(ωct+ φ), (2.322)

where rc = v⊥/ωc. ◭

◮ Example 2.23: E×B cycloid motion

A proton travels through the uniform static fields

B = 50× 10−6
ẑ T, E = E0ŷ V/m,

with speed 3× 105 m/s. Plot its trajectory.

Solution: Take x0 = 0, y0 = rc, and a time reference such that φ = −π/2. Then by (2.321)
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and (2.322)

x(t) =
E0

B0
t− rc sinωct, y(t) = rc(1− cosωct),

which we can also write as

x(t) = rc

[

E0

B0v⊥
(ωct)− sinωct

]

, y(t) = rc(1− cosωct).

This has the form of a trochoid shifted along the y-direction,

x(t) = rc(Aθ − sin θ), y(t) = rc(1− A) + rc(A− cos θ),

where θ = ωct and A = E0/(B0v⊥). When A = 1 so that E0/B0 = v⊥, the trajectory is a
cycloid :

x(t) = rc(θ − sin θ), y(t) = rc(1− cos θ).

When A > 1 the trajectory is a y-shifted curate cycloid. When A < 1 the trajectory is a
y-shifted prolate cycloid.

Figure 2.19 shows the trajectories where E0/B0 = v⊥ (cycloid), E0/B0 = 0.5v⊥ (prolate
cycloid), and E0/B0 = 2v⊥ (curate cycloid). Note that the prolate cycloid has been shifted
an additional 4rc in the y-direction, and the curate cycloid −4rc in the y-direction, to permit
easier visualization. The E×B drift along the x-direction is clearly visible.
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FIGURE 2.19
Trajectory of a proton in perpendicular B and E fields. A = E0/(B0v⊥). ◭

2.11.6 Nonrelativistic particle motion in a nonuniform, static mag-
netic field

As with nonuniform electric fields, the equations describing particle motion in nonuniform
static magnetic fields can be difficult to solve in closed form. However, if the radius of
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gyration is small compared to the scale describing the spatial variation of the magnetic
field, the effect of field nonuniformity may be described in an approximate manner [66].
It is found that a gradient in |B| in the direction perpendicular to B produces a drift in
the gyrating particle trajectory. The drift velocity is given by

v∇ = ∓ v2⊥
2ωc

B×∇|B|
|B|2 ,

and is thus analogous with the E×B drift of the previous section. Here the sign is the
sign of the charge on the particle. This effect is called magnetic gradient drift, or ∇B
drift.

A second drift effect experienced by particles in a nonuniform static magnetic field is
due to the curvature of the field lines. The velocity associated with this curvature drift
may be expressed as

vκ = ∓
v2‖
ωc

Rc ×B

|Rc|2|B| .

Here Rc is a vector describing the curvature of the magnetic field with |Rc| the radius
of curvature, and the sign is that of the charge on the particle. For detailed derivations
the reader should consult [66].

2.11.7 Relativistic particle motion in a uniform, static magnetic field

From (2.303) we have the equation of motion for particles moving at relativistic speeds
in a uniform, static magnetic field:

dv

dt
=

q

γm0
v ×B.

Comparison with (2.308) shows that the only difference between a particle moving rela-
tivistically and nonrelativistically is an increase in the mass with increasing speed. Hence
the trajectories described in § 2.11.4 are valid in the relativistic case provided we replace

ωc 7→ ω̂c =
|q|
m0γ

|B|.

The particles follow helical trajectories, but with gyro frequencies that decrease as par-
ticle speed increases.

2.11.8 Relativistic particle motion in uniform, static electric and mag-
netic fields

So far we have described the motion of charged particles traveling through electric and
magnetic fields with reference to a stationary laboratory frame. How does the motion
appear to an observer traveling with some uniform velocity relative to the laboratory
frame? To answer this we can employ the transformation equations of § 2.3.

We first consider particles moving so slowly that Lorentzian relativistic effects can be
neglected. The equations of motion are (2.315) and (2.316). In particular, the perpen-
dicular velocity satisfies

dv⊥
dt

=
q

m
(E⊥ + v⊥ ×B).
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Let us take a frame moving with a uniform velocity u⊥ that is perpendicular to the
magnetic field. In this frame the equation of motion is

dv′
⊥

dt
=

q

m
(E′

⊥ + v′
⊥ ×B′), (2.323)

where v′
⊥, E

′, and B′ are the fields observed in the moving frame. The Galilean trans-
formation given in (2.38) and (2.41) relates the fields observed in the moving frame to
those observed in the laboratory frame:

E′ = E+ u⊥ ×B,

B′ = B.

To use these, define the unit vector B̂ = B/|B| such that E‖ = B̂(B̂ ·E). Then

E⊥ = E−E‖ = E− B̂(B̂ · E).

Thus,

E′
⊥ = E′ − B̂(B̂ ·E′)

= E′ − B̂[B̂ · (E+ u⊥ ×B)]

= E′ − B̂(B̂ ·E)− B̂[B̂ · (u⊥ ×B)].

But B̂ · (u⊥ ×B) = u⊥ · (B× B̂) = 0, so

E′
⊥ = E′ − B̂(B̂ ·E)

= E+ u⊥ ×B− B̂(B̂ ·E)

= E⊥ + u⊥ ×B.

Substitution into (2.323) gives the equation of motion for the moving observer:

dv′
⊥

dt
=

q

m
(E⊥ + u⊥ ×B+ v′

⊥ ×B) .

Now let us determine the velocity u⊥ needed to make

E⊥ + u⊥ ×B = 0.

Crossing both sides with B, we get

B×E⊥ +B× (u⊥ ×B) = 0.

Expanding the vector triple product and noting that u⊥ ·B = 0, we have

u⊥ =
E×B

|B|2 .

This is exactly the drift velocity of the particle identified in (2.318). So if the observer
moves with this velocity, the equation of motion becomes

dv′
⊥

dt
=

q

m
v′
⊥ ×B.
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This equation for v′
⊥ is identical to the equation for v⊥ for an observer in the laboratory

frame when E⊥ = 0. To the observer drifting along with the particle, only the gyrating
motion is apparent; the drift is not observed. This is intuitively sensible. Note that
the moving observer will still see the acceleration of the charge due to the presence of a
parallel electric field E‖.

If we cannot ignore the relativistic speed of the particle, the equation of motion becomes

dp

dt
= q(E+ v ×B)

where p = γm0v. Now suppose an observer moves at uniform velocity up perpendicular
to the magnetic field. In the observer’s frame, the equation of motion is

dp′

dt
= q(E′ + v′ ×B′).

We decompose the fields into components parallel and perpendicular to B. The perpen-
dicular component obeys

dp′
p

dt
= q(E′

p + v′
p ×B′). (2.324)

We use the subscript p in this case to avoid confusion with the Lorentz field transfor-
mations. From § 2.3.2 we have the transformations from the laboratory frame to the
moving frame:

E′
‖ = E‖, (2.325)

B′
‖ = B‖, (2.326)

E′
⊥ = γ(E⊥ + up ×B⊥), (2.327)

B′
⊥ = γB⊥ − γ

c2
up ×E⊥. (2.328)

Here the subscripts ‖ and ⊥ indicate vectors parallel and perpendicular to the up direc-
tion, respectively.

By (2.327) we note that the condition

E⊥ + up ×B⊥ = 0

results in E′
⊥ = 0. Consequently, crossing both sides of the equation with B, we find

that

up =
E×B

|B|2 (2.329)

as seen above. Crossing both sides of the equation with up, we obtain

B =
up ×E⊥

u2p
.

Substitution into (2.328) gives

B′
⊥ = γB− γ

u2p
c2

B =
B

γ
(2.330)

since B⊥ = B and γ = 1/
√

1− u2p/c
2. Now write B̂ = B/|B| and examine

E′
p = E′ − B̂(B̂ · E′) = E′

⊥ +E′
‖ − B̂(B̂ · [E′

⊥ +E′
‖]).
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Since E′
⊥ = 0 by our choice of up, we have

E′
p = E‖ − B̂(B̂ · E‖),

where we have also used (2.325). But by (2.329) we see that up is perpendicular to both
E and B, hence E‖ = 0. Thus E′

p = 0. Substitution of this into (2.324) gives

dp′
p

dt
= qv′

p ×B′ = qv′
p × (B′

⊥ +B‖),

since B′
‖ = B‖ from (2.326). But up is perpendicular to B so B‖ = 0. Thus by (2.330)

we finally have
dp′

p

dt
= qv′

p ×
B

γ
.

As with the Galilean transformation at nonrelativistic speeds, the Lorentzian transforma-
tion produces an equation for v′

⊥ that is identical to the equation for v⊥ for an observer
in the laboratory frame when E⊥ = 0 (except for the presence of γ.) To the observer
drifting along with the particle, only the gyrating motion is apparent.
Note that the condition (2.329) has restrictions, since up cannot exceed the speed of

light. This requires
|E|/|B| < c.

For instance, in the ionosphere where a typical value of |B| is 50×10−6 T, for an electric
field exceeding 15 kV/m it is not possible to find a moving frame in which E′

⊥ = 0.
Interestingly, when |E|/|B| > c it is possible to find a reference frame where B′

⊥ = 0,
and thus the moving observer sees no gyrating motion.

2.12 Problems

2.1 Show that the constitutive equations relating E, H, P, and M are
[

1

c
P̄− ǫ0Ī

]

· E+ [µ0L̄] ·H = P− [µ0L̄] ·M

and
M̄ · E+ (µ0cQ̄− Ī) ·H = −M− (µ0cQ̄− Ī) ·M.

Hint: start with Equations (2.99) and (2.100) from Example 2.5.

2.2 Consider Ampere’s law and Gauss’s law written in terms of rectangular components
in the laboratory frame of reference. Assume that an inertial frame moves with velocity
v = x̂v with respect to the laboratory frame. Using the Lorentz transformation given by
(2.50)–(2.53), show that

cρ′ = γ(cρ− β · J).
Hint: Substitute (2.74) into Gauss’ law (2.77).

2.3 Show that the following quantities are invariant under Lorentz transformation:
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(a) H ·D,

(b) B ·B−E · E/c2,

(c) H ·H− c2D ·D,

(d) B ·H−E ·D,

(e) cB ·D+E ·H/c.

2.4 Show that if c2B2 > E2 holds in one reference frame, then it holds in all other
reference frames. Repeat for the inequality c2B2 < E2.

2.5 Show that if E ·B = 0 and c2B2 > E2 holds in one reference frame, then a reference
frame may be found such that E = 0. Show that if E ·B = 0 and c2B2 < E2 holds in
one reference frame, then a reference frame may be found such that B = 0.

2.6 A test charge Q at rest in the laboratory frame experiences a force F = QE as
measured by an observer in the laboratory frame. An observer in an inertial frame
measures a force on the charge given by F′ = QE′ + Qv × B′. Show that F 6= F′ and
find the formula for converting between F and F′.

2.7 Consider a material moving with velocity v with respect to the laboratory frame of
reference. When the fields are measured in the moving frame, the material is found to be
isotropic with D′ = ǫ′E′ and B′ = µ′H′. Show that the fields measured in the laboratory
frame are given by (2.87) and (2.88), indicating that the material is bianisotropic when
measured in the laboratory frame.

2.8 Show that by assuming v2/c2 ≪ 1 in (2.44)–(2.46) we may obtain (2.91).

2.9 Derive the following expressions that allow us to convert the value of the magneti-
zation measured in the laboratory frame of reference to the value measured in a moving
frame:

M′
⊥ = γ(M⊥ + β × cP⊥), M′

‖ = M‖.

2.10 Beginning with the expressions (2.44)–(2.46) for the field conversions under a first-
order Lorentz transformation, show that

P′ = P− v ×M

c2
, M′ = M+ v ×P.

2.11 Consider a simple isotropic material moving through space with velocity v relative
to the laboratory frame. The relative permittivity and permeability of the material
measured in the moving frame are ǫ′r and µ′

r, respectively. Show that the magnetization
as measured in the laboratory frame is related to the laboratory frame electric field and
magnetic flux density as

M =
χ′
m

µ0µ′
r

B− ǫ0

(

χ′
e +

χ′
m

µ′
r

)

v ×E
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when a first-order Lorentz transformation is used. Here χ′
e = ǫ′r − 1 and χ′

m = µ′
r − 1.

2.12 Consider a simple isotropic material moving through space with velocity v relative
to the laboratory frame. The relative permittivity and permeability of the material
measured in the moving frame are ǫ′r and µ′

r, respectively. Derive the formulas for the
magnetization and polarization in the laboratory frame in terms of E and B measured in
the laboratory frame by using the Lorentz transformations (2.106) and (2.107)–(2.110).
Show that these expressions reduce to (2.117) and (2.118) under the assumption of a
first-order Lorentz transformation (v2/c2 ≪ 1).

2.13 Derive the kinematic form of the large-scale Maxwell–Boffi equations (2.137) and
(2.138). Derive the alternative form of the large-scale Maxwell–Boffi equations (2.139)
and (2.140).

2.14 Modify the kinematic form of the Maxwell–Boffi equations (2.137)–(2.138) to ac-
count for the presence of magnetic sources. Repeat for the alternative forms (2.139)–(2.140).

2.15 Consider a thin magnetic source distribution concentrated near a surface S. The
magnetic charge and current densities are given by

ρm(r, x, t) = ρms(r, t)f(x,∆), Jm(r, x, t) = Jms(r, t)f(x,∆),

where f(x,∆) satisfies
∫ ∞

−∞
f(x,∆) dx = 1.

Let ∆ → 0 and derive the boundary conditions on (E,D,B,H) across S.

2.16 Beginning with the kinematic forms of Maxwell’s equations (2.147)–(2.148), derive
the boundary conditions for a moving surface

n̂12 × (H1 −H2) + (n̂12 · v)(D1 −D2) = Js,

n̂12 × (E1 −E2)− (n̂12 · v)(B1 −B2) = −Jms.

2.17 Beginning with Maxwell’s equations and the constitutive relationships for a bian-
isotropic medium (2.12)–(2.13), derive the wave equation for H (2.256). Specialize the
result for the case of an anisotropic medium.

2.18 Consider an isotropic but inhomogeneous material, so that

D(r, t) = ǫ(r)E(r, t), B(r, t) = µ(r)H(r, t).

Show that the wave equations for the fields within this material may be written as

∇2E− µǫ
∂2E

∂t2
+∇

[

E ·
(∇ǫ
ǫ

)]

− (∇×E)×
(∇µ
µ

)

= µ
∂J

∂t
+∇

(ρ

ǫ

)

,

∇2H− µǫ
∂2H

∂t2
+∇

[

H ·
(∇µ
µ

)]

− (∇×H)×
(∇ǫ
ǫ

)

= −∇× J− J×
(∇ǫ
ǫ

)

.
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2.19 Repeat Example 2.7 for

ǫ = ǫ0, µ = µ(z).

2.20 Specialize the wave equations in Problem 2.18 to the case of a source-free inhomo-
geneous dielectric with µ(r) = µ0 and ǫ(r) = ǫ(z). If

E(r, t) = ŷEy(z, t), H(r, t) = x̂Hx(z, t),

show that the wave equations reduce to those found in Example 2.7.

2.21 Consider a homogeneous, isotropic material in which D = ǫE and B = µH. Using
the definitions of the equivalent sources, show that the wave equations (2.265)–(2.266)
are equivalent to (2.259)–(2.260). Assume Jm = 0.

2.22 When a material is only slightly conducting, and thus Ω is very small, we often
neglect the third term in the plane wave solution (2.284). Reproduce the plot of Figure
2.8 with this term omitted and compare. Discuss how the omitted term affects the shape
of the propagating waveform.

2.23 A total charge Q is evenly distributed over a spherical surface. The surface expands
outward at constant velocity so that the radius of the surface is b = vt at time t. (a) Use
Gauss’s law to find E everywhere as a function of time. (b) Show that E may be found
from a potential function

ψ(r, t) =
Q

4πr

vt− r

vt
U(r − vt)

according to (2.300). Here U(t) is the unit step function. (c) Write down the form of
J for the expanding sphere and show that since it may be found from (2.298) it is a
nonradiating source.

2.24 The instantaneous electric field inside a source-free, homogeneous, isotropic region
is given by (assume all integration constants are zero)

E(r, t) = [x̂A(x+ y) + ŷB(x − y)] cosωt.

Find (a) the relationship between A and B, and (b) the instantaneous magnetic field H.

2.25 The instantaneous electric field inside an empty (source free) rectangular waveguide
is given by (assume all integration constants are zero)

E(r, t) = ŷE0 sin
(π

a
x
)

cos(ωt− βz).

Find (a) the instantaneous magnetic field H, and (b) β.

2.26 The electric field in a certain region of space is given by

E(r, t) = ŷ10x2e−αt U(t)

where U(t) is the unit step function. Find D(r, t) if
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(a) ǫ(r, t) = 3ǫ0y
2;

(b) χe(r, t) = 3ǫ0y
2U(t);

(c) ǭ(r, t) = 3ǫ0x̂x̂+ 2ǫ0x̂ŷ + 4ǫ0ẑŷ;

(d) the region is a chiral material with ǫ = 7ǫ0 and β = 10.

2.27 Consider a uniform volume charge density ρ0 in free space. A spherical surface
expands outward with radius R(t) = v0t. Compute

∮

S
J∗ · dS and show that it is equal

to − d
dt

∫

V ρ dV .

2.28 A spherical dielectric shell occupies the region a ≤ r ≤ b in free space, where a = 2
and b = 4 cm. The polarization and electric fields within the shell are given by

P = r̂
31.87× 10−12

r2
C/m2, E = r̂

0.45

r2
V/m.

Find (a) the equivalent polarization surface charge density on each surface, (b) the total
polarization surface charge, (c) the equivalent polarization volume charge density, (d)
the total polarization volume charge, and (e) the relative permittivity of the material.

2.29 Consider a homogeneous Tellegen medium with constitutive relations D = ǫE+ξH
and B = ξE+µH. Maxwell’s equations are solved for an electric source current density J
and a magnetic source current density Jm, and the fields are found to be (E1,D1,B1,H1).
The problem is then solved again with J replaced by Jm/η0 and Jm replaced by −η0J,
and the fields are found to be (E2,D2,B2,H2). Determine the constitutive parameters
for the dual problem.

2.30 Consider the power balance equation

J ·E = −∇ · (E×H)−
(

E · ∂D
∂t

+H · ∂B
∂t

)

.

Show that for a Tellegen medium we can write this as

∇ · Sem +
∂

∂t
Uem = −J · E

where Uem is a term related to the stored energy.

2.31 Show by substitution that

ψ(z, t) =
1

2

[

f
(

t− z

v

)

+ f
(

t+
z

v

)]

+
v

2

∫ t+ z
v

t− z
v

g(τ) dτ

is a solution to the scalar wave equation

∂2ψ

∂z2
− 1

v2
∂2ψ

∂t2
= 0.
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FIGURE 2.20

Conical transmission line.

2.32 The electric field in free space is given (in spherical coordinates) by

E(r, t) = θ̂
E0

r
cos(ωt− βr).

(a) Find H(r, t). Assume all integration constants are zero. (b) Calculate the Poynting
flux passing through a sphere of radius r.

2.33 The instantaneous magnetic field in a source-free region of free space is given by

H(r, t) = ẑH0 cos(ωt− βx).

(a) Find the instantaneous electric field (set integration constants to zero). (b) Find β.

2.34 The fields in a region of space are given by

E = ρ̂
1

ρ
cos(ωt− βz), H = φ̂

1

ηρ
cos(ωt− βz),

where β = ω
√
µ0ǫ0 and η =

√

µ0/ǫ0. Consider a rectangular loop in the xz-plane, with
height b along the z-direction and width a along the x-direction. The loop moves along
the x-axis with velocity v = x̂v0 such that its left side is at x(t) = v0t at time t.

(a) Compute
∮

E · dl and show that it is equal to −
∫

∂B
∂t · dS.

(b) Compute
∮

(E+ v ×B) · dl and show that it is equal to − d
dt

∫

B · dS.

2.35 A conical transmission line (Figure 2.20) consists of a perfectly conducting cone
aligned along the +z-axis at θ = θ0 and an identical cone aligned along the −z-axis at
θ = π − θ0. Compute (a) the voltage V (r, t) found by integrating the electric field; (b)
the current I(r, t) found by integrating the surface current density; (c) the characteristic
resistance of the line, Rc = V (r, t)/I(r, t).
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The static and quasistatic electromagnetic fields

3.1 Statics and quasistatics

Perhaps the most carefully studied area of electromagnetics is that in which the fields are
time-invariant. This area, known generally as statics, offers the most direct opportunities
for solution of the governing equations and the clearest physical pictures of the electro-
magnetic field. We therefore devote the majority of the present chapter to a treatment
of statics. We also endeavor to describe the behavior of fields that are slowly changing
with time. These quasistatic fields obey many of the same relations as static fields, but
also give rise to phenomena such as diffusion that are important in many applications of
electromagnetics.
We begin to seek and examine specific solutions to the field equations; however, our

selection of examples is shaped by a search for insight into the behavior of the field itself,
rather than by a desire to catalog the solutions of numerous statics problems. We note
at the outset that a static field is physically sensible only as a limiting case of a time-
varying field as the latter approaches a time-invariant equilibrium, and then only in local
regions. The static field equations we shall study thus represent an idealized model of
the physical fields. And while the quasistatic field equations are more broadly applicable,
the underlying assumptions that make their solutions tractable also limit their validity.
To observe the most general behavior of the electromagnetic field, we must seek solutions
to the full system of Maxwell’s equations. This is the subject of subsequent chapters.

3.2 Static fields and steady currents

If we examine the Maxwell–Minkowski equations (2.1)–(2.4) and set the time derivatives
to zero, we obtain the static field Maxwell equations

∇×E(r) = 0,

∇ ·D(r) = ρ(r),

∇×H(r) = J(r),

∇ ·B(r) = 0.

We note that if the fields are to be everywhere time-invariant, then the sources J and
ρ must also be everywhere time-invariant. Under this condition the dynamic coupling
between the fields described by Maxwell’s equations disappears; any connection between
E, D, B, and H imposed by the time-varying nature of the field is gone. For static fields
we also require that any dynamic coupling between fields in the constitutive relations

151
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vanish. In this static field limit we cannot derive the divergence equations from the curl
equations, since we can no longer use the initial condition argument that the fields were
identically zero prior to some time.

The static field equations are useful for approximating many physical situations in
which the fields rapidly settle to a local, macroscopically-static state. This may occur
so rapidly and so completely that, in a practical sense, the static equations describe the
fields within our ability to measure and to compute. Such is the case when a capacitor
is rapidly charged using a battery in series with a resistor; for example, a 1 pF capacitor
charging through a 1 Ω resistor reaches 99.99% of its total charge static limit within
10 ps.

3.2.1 Decoupling of the electric and magnetic fields

For the rest of this chapter we assume there is no coupling between E and H or between
D and B in the constitutive relations. Then the static equations decouple into two
independent sets of equations in terms of two independent sets of fields. The static
electric field set (E,D) is described by

∇×E(r) = 0, (3.1)

∇ ·D(r) = ρ(r). (3.2)

Integrating these over a stationary contour and surface, respectively, we have the large-
scale forms

∮

Γ

E · dl = 0,

∮

S

D · dS =

∫

V

ρ dV.

The static magnetic field set (B,H) is described by

∇×H(r) = J(r),

∇ ·B(r) = 0,

or, in large-scale form,

∮

Γ

H · dl =
∫

S

J · dS,
∮

S

B · dS = 0.

We can also specialize the Maxwell–Boffi equations to static form. Assuming the fields,
sources, and equivalent sources are time-invariant, the electrostatic field E(r) is described
by the point-form equations

∇×E = 0,

∇ · E =
1

ǫ0
(ρ−∇ ·P) ,
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or the equivalent large-scale equations

∮

Γ

E · dl = 0,

∮

S

E · dS =
1

ǫ0

∫

V

(ρ−∇ ·P) dV.

Similarly, the magnetostatic field B is described by

∇×B = µ0 (J+∇×M) ,

∇ ·B = 0,

or
∮

Γ

B · dl = µ0

∫

S

(J+∇×M) · dS,
∮

S

B · dS = 0.

It is important to note that any separation of the electromagnetic field into independent
static electric and magnetic portions is illusory. As we mentioned in § 2.3.2, the electric
and magnetic components of the EM field depend on the motion of the observer. An
observer stationary with respect to a single charge measures only a static electric field,
while an observer in uniform motion with respect to the charge measures both electric
and magnetic fields.

3.2.2 Static field equilibrium and conductors

Suppose we could arrange a group of electric charges into a static configuration in free
space. The charges would produce an electric field, resulting in a force on the distribution
via the Lorentz force law, and hence would begin to move. Regardless of how we arrange
the charges, they cannot maintain their original static configuration without the help
of some mechanical force to counterbalance the electrical force. This is a statement of
Earnshaw’s theorem, discussed in detail in § 3.5.2.
The situation is similar for charges within and on electric conductors. A conductor

is a material having many charges free to move under external influences, both electric
and non-electric. In a metallic conductor, electrons move against a background lattice
of positive charges. An uncharged conductor is neutral: the amount of negative charge
carried by the electrons is equal to the positive charge in the background lattice. The
distribution of charges in an uncharged conductor is such that the macroscopic electric
field is zero inside and outside the conductor. When the conductor is exposed to an addi-
tional electric field, the electrons move under the influence of the Lorentz force, creating
a conduction current. Rather than accelerating indefinitely, conduction electrons experi-
ence collisions with the lattice, thereby giving up their kinetic energy. Macroscopically,
the charge motion can be described in terms of a time-average velocity, hence a macro-
scopic current density can be assigned to the density of moving charge. The relationship
between the applied, or “impressed,” field and the resulting current density is given by
Ohm’s law ; in a linear, isotropic, nondispersive material, this is

J(r, t) = σ(r)E(r, t).
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FIGURE 3.1

Positive point charge in the vicinity of an insulated, uncharged conductor.

The conductivity σ describes the impediment to charge motion through the lattice: the
higher the conductivity, the farther an electron may move on average before undergoing
a collision.

Let us examine how a state of equilibrium is established in a conductor. We shall con-
sider several important situations. First, suppose we bring a positively charged particle
into the vicinity of a neutral, insulated conductor (we say that a conductor is “insulated”
if no means exists for depositing excess charge onto the conductor). The Lorentz force
on the free electrons in the conductor results in their motion toward the particle (Figure
3.1). A reaction force F attracts the particle to the conductor. If the particle and the
conductor are both held rigidly in space by an external mechanical force, the electrons
within the conductor continue to move toward the surface. In a metal, when these elec-
trons reach the surface and try to continue further, they experience a rapid reversal in the
direction of the Lorentz force, drawing them back toward the surface. A sufficiently large
force (described by the work function of the metal) will be able to draw these charges
from the surface, but anything less will permit the establishment of a stable equilibrium
at the surface. If σ is large then equilibrium is established quickly, and a nonuniform
static charge distribution appears on the conductor surface. The electric field within the
conductor must settle to zero at equilibrium, since a nonzero field would be associated
with a current J = σE. In addition, the component of the field tangential to the surface
must be zero or the charge would be forced to move along the surface. At equilibrium,
the field within and tangential to a conductor must be zero. Note also that equilibrium
cannot be established without external forces to hold the conductor and particle in place.

Next, suppose we bring a positively charged particle into the vicinity of a grounded
(rather than insulated) conductor as in Figure 3.2. Use of the term “grounded” means
that the conductor is attached via a filamentary conductor to a remote reservoir of charge
known as ground ; in practical applications the earth acts as this charge reservoir. Charges
are drawn from or returned to the reservoir, without requiring any work, in response to
the Lorentz force on the charge within the conducting body. As the particle approaches,
negative charge is drawn to the body and then along the surface until a static equilibrium
is re-established. Unlike the insulated body, the grounded conductor in equilibrium has
excess negative charge, the amount of which depends on the proximity of the particle.
Again, both particle and conductor must be held in place by external mechanical forces,
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FIGURE 3.2

Positive point charge near a grounded conductor.

and the total field produced by both the static charge on the conductor and the particle
must be zero at points interior to the conductor.
Finally, consider the process whereby excess charge placed inside a conducting body

redistributes as equilibrium is established. We assume an isotropic, homogeneous con-
ducting body with permittivity ǫ and conductivity σ. An initially static charge with
density ρ0(r) is introduced at time t = 0. The charge density must obey the continuity
equation

∇ · J(r, t) = −∂ρ(r, t)
∂t

;

since J = σE, we have

σ∇ · E(r, t) = −∂ρ(r, t)
∂t

.

By Gauss’s law, ∇ · E can be eliminated:

σ

ǫ
ρ(r, t) = −∂ρ(r, t)

∂t
.

Solving this differential equation for the unknown ρ(r, t) we have

ρ(r, t) = ρ0(r)e
−σt/ǫ.

The charge density within a homogeneous, isotropic conducting body decreases exponen-
tially with time, regardless of the original charge distribution and shape of the body. Of
course, the total charge must be constant, and thus charge within the body travels to
the surface where it distributes itself in such a way that the field internal to the body
approaches zero at equilibrium. The rate at which the volume charge dissipates is deter-
mined by the relaxation time ǫ/σ; for copper (a good conductor) this is an astonishingly
small 10−19 s. Even distilled water, a relatively poor conductor, has ǫ/σ = 10−6 s. Thus
we see how rapidly static equilibrium can be approached.

3.2.3 Steady current

Since time-invariant fields must arise from time-invariant sources, we have from the
continuity equation

∇ · J(r) = 0. (3.3)
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In large-scale form this is
∮

S

J · dS = 0. (3.4)

A current with the property (3.3) is said to be a steady current. By (3.4), a steady current
must be completely lineal (and infinite in extent) or must form closed loops. However, if a
current forms loops then the individual moving charges must undergo acceleration (from
the change in direction of velocity). Since a single accelerating particle radiates energy
in the form of an electromagnetic wave, we might expect a large steady loop current to
produce a great deal of radiation. In fact, if we superpose the fields produced by the
many particles composing a steady current, we find that a steady current produces no
radiation [92]. Remarkably, to obtain this result we must consider the exact relativistic
fields, and thus our finding is precise within the limits of our macroscopic assumptions.

If we try to create a steady current in free space, the flowing charges will tend to
disperse because of the Lorentz force from the field set up by the charges, and the
resulting current will not form closed loops. A beam of electrons or ions will produce
both an electric field (because of the nonzero net charge of the beam) and a magnetic field
(because of the current). At nonrelativistic particle speeds, the electric field produces
an outward force on the charges that is much greater than the inward (or pinch) force
produced by the magnetic field. Application of an additional, external force will allow
the creation of a collimated beam of charge, as occurs in an electron tube where a series
of permanent magnets can be used to create a beam of steady current.

More typically, steady currents are created using wire conductors to guide the moving
charge. When an external force, such as the electric field created by a battery, is applied
to an uncharged conductor, the free electrons will begin to move through the positive
lattice, forming a current. Each electron moves only a short distance before colliding with
the positive lattice, and if the wire is bent into a loop the resulting macroscopic current
will be steady in the sense that the temporally and spatially averaged microscopic current
will obey ∇ · J = 0. We note from the examples above that any charges attempting to
leave the surface of the wire are drawn back by the electrostatic force produced by the
resulting imbalance in electrical charge. For conductors, the “drift” velocity associated
with the moving electrons is proportional to the applied field:

ud = −µeE

where µe is the electron mobility. The mobility of copper (3.2× 10−3 m2/V · s) is such
that an applied field of 1 V/m results in a drift velocity of only a third of a centimeter
per second.

Integral properties of a steady current

Steady currents obey several useful integral properties. To develop these properties we
need an integral identity. Let f(r) and g(r) be scalar functions, continuous and with
continuous derivatives in a volume region V . Let J represent a steady current field of
finite extent, completely contained within V . We begin by using (B.48) to expand

∇ · (fgJ) = fg(∇ · J) + J · ∇(fg).

Noting that ∇ · J = 0 and using (B.47), we get

∇ · (fgJ) = (fJ) · ∇g + (gJ) · ∇f.
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Now let us integrate over V and employ the divergence theorem:

∮

S

(fg)J · dS =

∫

V

[(fJ) · ∇g + (gJ) · ∇f ] dV.

Since J is contained entirely within S, we must have n̂ · J = 0 everywhere on S. Hence

∫

V

[(fJ) · ∇g + (gJ) · ∇f ] dV = 0. (3.5)

We can obtain a useful relation by letting f = 1 and g = xi in (3.5), where (x, y, z) =
(x1, x2, x3). This gives

∫

V

Ji(r) dV = 0, (3.6)

where J1 = Jx and so on. Hence the volume integral of any rectangular component of J
is zero. Similarly, letting f = g = xi we find that

∫

V

xiJi(r) dV = 0. (3.7)

With f = xi and g = xj we obtain

∫

V

[xiJj(r) + xjJi(r)] dV = 0. (3.8)

◮ Example 3.1: Azimuthal current

The current density in free space is given by

J(r) = φ̂J0
z

a

ρ

b
(a ≤ ρ ≤ b, 0 ≤ z ≤ h)

where J0 is a constant in A/m2. Show that J is a steady current for which (3.7) holds.

Solution: We have

∇ · J =
1

ρ

∂

∂φ

(

J0
z

a

ρ

b

)

= 0.

To verify (3.7) we note that
∫

V

zJz(r) dV = 0

since Jz = 0, and that

∫

V

xJx(r) dV =

∫ h

0

∫ 2π

0

∫ b

a

(ρ cos φ)
(

− sinφJ0
z

a

ρ

b

)

ρ dρ dφ dz = 0,

∫

V

yJy(r) dV =

∫ h

0

∫ 2π

0

∫ b

a

(ρ sinφ)
(

cos φJ0
z

a

ρ

b

)

ρ dρ dφdz = 0,

since the integrations over φ produce zeros. ◭
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3.3 Electrostatics

3.3.1 Direct solutions to Gauss’s law

When the spatial distribution of charge is highly symmetric, Gauss’s law (in either in-
tegral or point form) may be solved directly for the electric field. Any of the following
symmetry conditions is appropriate:

1. The charge depends only on the spherical coordinate r so that D(r) = Dr(r)r̂.

2. The charge depends only on the cylindrical coordinate ρ so that D(r) = Dρ(ρ)ρ̂.

3. The charge depends on a single rectangular coordinate, e.g., x, so that D(r) =
Dx(x)x̂.

When employing the integral form of Gauss’s law, the procedure is to choose a flux surface
(called a Gaussian surface) over which the electric field is either constant in magnitude
and parallel to the surface normal, or perpendicular to the normal (or over which some
combination of these conditions holds). Then the electric field may be removed from
the integral and determined. The point form is employed by separating the field volume
into regions in which the partial differential equation may be reduced to an ordinary
differential equation solvable by direct integration. The solutions are then connected
across the adjoining surfaces using boundary conditions.

◮ Example 3.2: Solution to the integral form of Gauss’s law for a line charge

The z-axis carries a line charge of uniform density ρl in a homogeneous medium with per-
mittivity ǫ. Find E for ρ > 0.

Solution: The line charge can be described by the volume charge density

ρ(r) = ρl
δ(ρ)

2πρ
.

Since ρ(r) depends only on the radial coordinate ρ, we have D(r) = Dρ(ρ)ρ̂. Choose as a
flux surface a cylinder of radius ρ0 and height h centered on the z-axis. Gauss’s law requires

∫

bottom

D · n̂ dS +

∫

top

D · n̂ dS +

∫

side

D · n̂ dS =

∫

V

ρ dV,

where the net outflux integral has been split into contributions from the bottom, top, and
side surfaces. The integrals over the top and bottom surfaces are zero, since the surface
normal is perpendicular to the field there. However,

∫

side

D · n̂ dS =

∫ h

0

∫ 2π

0

Dρ(ρ0)ρ̂ · ρ̂ρ0 dφdz

= ρ0Dρ(ρ0)

∫ h

0

dz

∫ 2π

0

dφ = 2πhρ0Dρ(ρ0).

The charge enclosed by the cylinder is

Qenc =

∫ h

0

∫ 2π

0

∫ ρ0

0

ρl
δ(ρ)

2πρ
ρ dρ dφdz =

ρl
2π

∫ h

0

dz

∫ 2π

0

dφ

∫ ρ0

0

δ(ρ) dρ = ρlh.
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Hence, by Gauss’s law, 2πhρ0Dρ(ρ0) = ρlh, and we obtain

Dρ(ρ0) =
ρl

2πρ0

where the subscript “0” can be dropped as ρ0 is arbitrary. Therefore

E(ρ) = ρ̂
ρl

2πǫρ
. ◭

◮ Example 3.3: Solution to the integral form of Gauss’s law for a volume charge

A ball of charge having radius a resides at the coordinate origin in a homogeneous medium
with permittivity ǫ. Taking the volume charge density as a constant value ρv for r ≤ a, find
E everywhere.

Solution: Since the charge depends only on the radial variable r of spherical coordinates,
we have D(r) = Dr(r)r̂. Choose as a flux surface the sphere r = r0. Gauss’s law requires

∫

S

D · n̂ dS = Qenc

where
∫

S

D · n̂ dS =

∫ 2π

0

∫ π

0

Dr(r0)r̂ · r̂r20 sin θ dθ dφ

= r20Dr(r0)

∫ 2π

0

dφ

∫ π

0

sin θ dθ = 4πr20Dr(r0)

and

Qenc =















∫ 2π

0

∫ π

0

∫ r0

0

ρvr
2 sin θ dr dθ dφ = 4

3
πr30ρv, r0 < a,

∫ 2π

0

∫ π

0

∫ a

0

ρvr
2 sin θ dr dθ dφ = 4

3
πa3ρv, r0 > a

is the charge enclosed by the sphere r = r0. We obtain

E(r) =











r̂
ρvr
3ǫ , r < a,

r̂
ρva

3

3ǫr2
, r > a.

◭

◮ Example 3.4: Solution to the point form of Gauss’s law for a volume charge

An infinite cylinder of volume charge is aligned with the z-axis in a homogeneous medium
of permittivity ǫ. The radius of the cylinder is a, and the charge density is a constant ρv
within the cylinder. Use the point form of Gauss’s law to find E.

Solution: The cylindrical symmetry of the charge distribution implies that D(r) = Dρ(ρ)ρ̂.
Hence

∇ ·D =
1

ρ

∂

∂ρ
(ρDρ) .
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For ρ ≤ a, Gauss’s law gives
1

ρ

∂

∂ρ
(ρDρ) = ρv

so that by integration

Dρ =
ρv
2
ρ+

C1

ρ
.

Boundedness of the field on the z-axis requires C1 = 0. For ρ > a we have

1

ρ

∂

∂ρ
(ρDρ) = 0

so that Dρ = C2/ρ. Continuity of the normal component of D at ρ = a (cf., § 3.3.3) requires

ρv
2
a =

C2

a
,

giving C2 = ρva
2/2. Therefore

E(ρ) =











ρ̂
ρvρ

2ǫ
, ρ ≤ a,

ρ̂
ρva

2

2ǫρ
, ρ > a.

◭

3.3.2 The electrostatic potential and work

The equation
∮

Γ

E · dl = 0 (3.9)

satisfied by the electrostatic field E(r) is particularly interesting. A field with zero
circulation is said to be conservative. To see why, let us examine the work required to
move a particle of charge Q around a closed path in the presence of E(r). Since work is
the line integral of force and B = 0, the work expended by the external system moving
the charge against the Lorentz force is

W = −
∮

Γ

(QE+Qv ×B) · dl = −Q
∮

Γ

E · dl = 0.

This property is analogous to the conservation property for a classical gravitational field:
any potential energy gained by raising a point mass is lost when the mass is lowered.

Direct experimental verification of the electrostatic conservative property is difficult,
aside from the fact that the motion of Q may alter E by interacting with the sources of
E. By moving Q with nonuniform velocity (i.e., with acceleration at the beginning of the
loop, direction changes in transit, and deceleration at the end) we observe a radiative
loss of energy, and this energy cannot be regained by the mechanical system providing
the motion. To avoid this problem we may assume that the charge is moved so slowly,
or in such small increments, that it does not radiate. We shall use this concept later to
determine the “assembly energy” in a charge distribution.

3.3.2.1 The electrostatic potential

By the point form of (3.9),

∇×E(r) = 0,
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FIGURE 3.3

Demonstration of path independence of the electric field line integral.

we can introduce a scalar field Φ = Φ(r) such that

E(r) = −∇Φ(r). (3.10)

The function Φ carries units of volts and is known as the electrostatic potential. Let us
consider the work expended by an external agent in moving a charge between points P1

at r1 and P2 at r2:

W21 = −Q
∫ P2

P1

−∇Φ(r) · dl = Q

∫ P2

P1

dΦ(r) = Q [Φ(r2)− Φ(r1)] .

The work W21 is clearly independent of the path taken between P1 and P2; the quantity

V21 =
W21

Q
= Φ(r2)− Φ(r1) = −

∫ P2

P1

E · dl,

called the potential difference, has an obvious physical meaning as work per unit charge
required to move a particle against an electric field between two points.
Of course, the large-scale form (3.9) also implies the path-independence of work in the

electrostatic field. Indeed, we may pass an arbitrary closed contour Γ through P1 and
P2 and then split it into two pieces Γ1 and Γ2 as shown in Figure 3.3. Since

−Q
∮

Γ1−Γ2

E · dl = −Q
∫

Γ1

E · dl+Q

∫

Γ2

E · dl = 0,

we have

−Q
∫

Γ1

E · dl = −Q
∫

Γ2

E · dl

as desired.
We sometimes refer to Φ(r) as the absolute electrostatic potential. Choosing a suitable

reference point P0 at location r0 and writing the potential difference as

V21 = [Φ(r2)− Φ(r0)]− [Φ(r1)− Φ(r0)],

we can justify calling Φ(r) the absolute potential referred to P0. Thus, we write

Φ(r) = −
∫ P

P0

E · dl, (3.11)
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where P is located at r. Note that P0 might describe a locus of points, rather than a
single point, since many points can be at the same potential. Although we can choose
any reference point without changing the resulting value of E found from (3.10), for
simplicity we often choose r0 such that Φ(r0) = 0.

◮ Example 3.5: Absolute potential of a volume source

Find Φ for the charge distribution of Example 3.3.

Solution: Recall that

E(r) =











r̂
ρvr
3ǫ , r < a,

r̂
ρva

3

3ǫr2
, r > a.

We take a reference point at radius r0 > a; this will permit us to let r0 → ∞. When r > a,
the potential is merely

Φ(r) = −
∫ r

r0

Er(r
′) dr′

= −ρva
3

3ǫ

∫ r

r0

dr′

r′2

=
ρva

3

3ǫ

(

1

r
− 1

r0

)

.

Otherwise

Φ(r) = −
∫ a

r0

Er(r
′) dr′ −

∫ r

a

Er(r
′) dr′

= −ρva
3

3ǫ

∫ a

r0

dr′

r2
− ρv

3ǫ

∫ r

a

r′ dr′

=
ρva

2

3ǫr0
(r0 − a) +

ρv
6ǫ

(a2 − r2).

As r0 → ∞, we obtain the absolute potential referred to infinity :

Φ(r) =











ρva
3

3ǫr
, r > a,

ρv
6ǫ

(3a2 − r2), r < a.

◭

Several properties of the electrostatic potential make it convenient for describing static
electric fields. We know that, at equilibrium, the electrostatic field within a conducting
body must vanish. By (3.10) the potential at all points within the body must therefore
have the same constant value. It follows that the surface of a conductor is an equipotential
surface: a surface for which Φ(r) is constant.

As an infinite reservoir of charge that can be tapped through a filamentary conductor,
the entity we call “ground” must also be an equipotential object. If we connect a con-
ductor to ground, we have seen that charge may flow freely onto the conductor. Since no
work is expended, “grounding” a conductor obviously places the conductor at the same
absolute potential as ground. For this reason, ground is often assigned the role as the
potential reference with an absolute potential of zero volts. Later we shall see that for
sources of finite extent, ground must be located at infinity.
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3.3.3 Boundary conditions

3.3.3.1 Boundary conditions for the electrostatic field

The boundary conditions found for the dynamic electric field remain valid in the electro-
static case. Thus

n̂12 × (E1 −E2) = 0 (3.12)

and
n̂12 · (D1 −D2) = ρs. (3.13)

Here n̂12 points into region 1 from region 2. Because the static curl and divergence
equations are independent, so are the boundary conditions (3.12) and (3.13).
For a linear and isotropic dielectric where D = ǫE, Equation (3.13) becomes

n̂12 · (ǫ1E1 − ǫ2E2) = ρs. (3.14)

Alternatively, using D = ǫ0E+P, we can write (3.13) as

n̂12 · (E1 −E2) =
1

ǫ0
(ρs + ρPs1 + ρPs2) (3.15)

where
ρPs = n̂ ·P

is the polarization surface charge with n̂ pointing outward from the material body.
We can also write the boundary conditions in terms of the electrostatic potential. With

E = −∇Φ, Equation (3.12) becomes

Φ1(r) = Φ2(r) (3.16)

for all points r on the surface. Actually Φ1 and Φ2 may differ by a constant; because
this constant is eliminated when the gradient is taken to find E, it is generally ignored.
We can write (3.15) as

ǫ0

(

∂Φ1

∂n
− ∂Φ2

∂n

)

= −ρs − ρPs1 − ρPs2

where the normal derivative is taken in the n̂12 direction. For a linear, isotropic dielectric,
(3.13) becomes

ǫ1
∂Φ1

∂n
− ǫ2

∂Φ2

∂n
= −ρs. (3.17)

Again, we note that (3.16) and (3.17) are independent.

3.3.3.2 Boundary conditions for steady electric current

The boundary condition on the normal component of current found in § 2.8.2 remains
valid in the steady current case. Assume that the boundary exists between two linear,
isotropic conducting regions having constitutive parameters (ǫ1,σ1) and (ǫ2,σ2), respec-
tively. By (2.162) we have

n̂12 · (J1 − J2) = −∇s · Js (3.18)

where n̂12 points into region 1 from region 2. A surface current will not appear on the
boundary between two regions having finite conductivity, although a surface charge may
accumulate there during the transient period when the currents are established [34]. If
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FIGURE 3.4

Refraction of steady current at a material interface.

charge is influenced to move from the surface, it will move into the adjacent regions,
rather than along the surface, and a new charge will replace it, supplied by the current.
Thus, for finite conducting regions (3.18) becomes

n̂12 · (J1 − J2) = 0. (3.19)

A boundary condition on the tangential component of current can also be found.
Substituting E = J/σ into (3.12) we have

n̂12 ×
(

J1

σ1
− J2

σ2

)

= 0.

We can also write this as
J1t

σ1
=

J2t

σ2
(3.20)

where
J1t = n̂12 × J1, J2t = n̂12 × J2.

We may combine the boundary conditions for the normal components of current and
electric field to better understand the behavior of current at a material boundary. Sub-
stituting E = J/σ into (3.14) we have

ǫ1
σ1
J1n − ǫ2

σ2
J2n = ρs (3.21)

where J1n = n̂12 · J1 and J2n = n̂12 · J2. Combining (3.21) with (3.19), we have

ρs = J1n

(

ǫ1
σ1

− ǫ2
σ2

)

= E1n

(

ǫ1 −
σ1
σ2
ǫ2

)

= J2n

(

ǫ1
σ1

− ǫ2
σ2

)

= E2n

(

ǫ1
σ2
σ1

− ǫ2

)

where
E1n = n̂12 ·E1, E2n = n̂12 · E2.

Unless ǫ1σ2 − σ1ǫ2 = 0, a surface charge will exist on the interface between dissimilar
current-carrying conductors.

We may also combine the vector components of current on each side of the boundary to
determine the effects of the boundary on current direction (Figure 3.4). Let θ1,2 denote
the angle between J1,2 and n̂12 so that

J1n = J1 cos θ1, J1t = J1 sin θ1,

J2n = J2 cos θ2, J2t = J2 sin θ2.
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Then J1 cos θ1 = J2 cos θ2 by (3.19), while σ2J1 sin θ1 = σ1J2 sin θ2 by (3.20). Hence

σ2 tan θ1 = σ1 tan θ2. (3.22)

It is interesting to consider the case of current incident from a conducting material onto
an insulating material. If region 2 is an insulator, then J2n = J2t = 0; by (3.19) we have
J1n = 0. But (3.20) does not require J1t = 0; with σ2 = 0 the right-hand side of (3.20)
is indeterminate and thus J1t may be nonzero. In other words, when current moving
through a conductor approaches an insulating surface, it bends and flows tangential to
the surface. This concept is useful in explaining how wires guide current.
Interestingly, (3.22) shows that when σ2 ≪ σ1 we have θ2 → 0; current passing from a

conducting region into a slightly conducting region does so normally.

3.3.4 Uniqueness of the electrostatic field

In § 2.2.1 we found that the electromagnetic field is unique within a region V when
the tangential component of E is specified over the surrounding surface. Unfortunately,
this condition is not appropriate in the electrostatic case. We should remember that
an additional requirement for uniqueness of solution to Maxwell’s equations is that the
field be specified throughout V at some time t0. For a static field this would completely
determine E without need for the surface field!
Let us determine conditions for uniqueness beginning with the static field equations.

Consider a region V surrounded by a surface S. Static charge may be located entirely
or partially within V , or entirely outside V , and produces a field within V . The region
may also contain any arrangement of conductors or other materials. Suppose (D1,E1)
and (D2,E2) represent solutions to the static field equations within V with source ρ(r).
We wish to find conditions that guarantee both E1 = E2 and D1 = D2.
Since ∇ · D1 = ρ and ∇ · D2 = ρ, the difference field D0 = D2 − D1 obeys the

homogeneous equation
∇ ·D0 = 0. (3.23)

Consider the quantity

∇ · (D0Φ0) = Φ0(∇ ·D0) +D0 · (∇Φ0)

where E0 = E2 − E1 = −∇Φ0 = −∇(Φ2 − Φ1). We integrate over V and use the
divergence theorem and (3.23) to obtain

∮

S

Φ0 (D0 · n̂) dS =

∫

V

D0 · (∇Φ0) dV = −
∫

V

D0 · E0 dV. (3.24)

Now suppose that Φ0 = 0 everywhere on S, or that n̂ ·D0 = 0 everywhere on S, or that
Φ0 = 0 over part of S and n̂ ·D0 = 0 elsewhere on S. Then

∫

V

D0 ·E0 dV = 0. (3.25)

Since V is arbitrary, either D0 = 0 or E0 = 0. Assuming E and D are linked by the
constitutive relations, we have E1 = E2 and D1 = D2.
Hence the fields within V are unique provided that either Φ, the normal component

of D, or some combination of the two, is specified over S. We often use a multiply
connected surface to exclude conductors. By (3.13) we see that specification of the
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normal component of D on a conductor is equivalent to specification of the surface
charge density. Thus we must specify the potential or surface charge density over all
conducting surfaces.

One other condition results in zero on the left-hand side of (3.24). If S recedes to
infinity and Φ0 and D0 decrease sufficiently fast, then (3.25) still holds and uniqueness
is guaranteed. If D,E ∼ 1/r2 as r → ∞, then Φ ∼ 1/r and the surface integral in (3.24)
tends to zero since the area of an expanding sphere increases only as r2. We shall find
later in this section that for sources of finite extent, the fields do indeed vary inversely
with distance squared from the source. Hence we may allow S to expand and encompass
all space.

For the case in which conducting bodies are immersed in an infinite homogeneous
medium and the static fields must be determined throughout all space, a multiply con-
nected surface is used with one part receding to infinity and the remaining parts sur-
rounding the conductors. Here uniqueness is guaranteed by specifying the potentials or
charges on the surfaces of the conducting bodies.

3.3.5 Poisson’s and Laplace’s equations

For computational purposes it is often convenient to deal with the differential versions

∇×E(r) = 0, (3.26)

∇ ·D(r) = ρ(r), (3.27)

of the electrostatic field equations. We must supplement these with constitutive relations
between E and D; at this point we focus our attention on linear, isotropic materials for
which

D(r) = ǫ(r)E(r).

Using this in (3.27) along with E = −∇Φ (justified by (3.26)), we can write

∇ · [ǫ(r)∇Φ(r)] = −ρ(r). (3.28)

This is Poisson’s equation. The corresponding homogeneous equation

∇ · [ǫ(r)∇Φ(r)] = 0, (3.29)

holding at points r where ρ(r) = 0, is Laplace’s equation. Equations (3.28) and (3.29)
are valid for inhomogeneous media. By (B.48) we can write

∇Φ(r) · ∇ǫ(r) + ǫ(r)∇ · [∇Φ(r)] = −ρ(r).

For a homogeneous medium, ∇ǫ = 0; since ∇ · (∇Φ) ≡ ∇2Φ, we have

∇2Φ(r) = −ρ(r)/ǫ (3.30)

in such a medium. Correspondingly,

∇2Φ(r) = 0

at points where ρ(r) = 0.
Poisson’s and Laplace’s equations can be solved by separation of variables, Fourier

transformation, conformal mapping, and numerical techniques such as the finite difference
and moment methods. In Appendix A we consider the separation of variables solution to
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Laplace’s equation in three major coordinate systems for a variety of problems. For an
introduction to numerical techniques, the reader is referred to the books by Sadiku [167],
Harrington [81], and Peterson [150]. Solution to Poisson’s equation is often undertaken
using the method of Green’s functions, which we shall address later in this section. We
shall also consider the solution to Laplace’s equation for bodies immersed in an applied,
or “impressed,” field.

3.3.5.1 Uniqueness of solution to Poisson’s equation

Before attempting any solutions, we must ask two very important questions. How do
we know that solving the second-order differential equation produces the same values for
E = −∇Φ as solving the first-order equations directly for E? And, if these solutions are
the same, what are the conditions for uniqueness of solution to Poisson’s and Laplace’s
equations? To answer the first question, a sufficient condition is to have Φ twice differen-
tiable. We shall not attempt to prove this, but shall instead show that the condition for
uniqueness of the second-order equations is the same as that for the first-order equations.
Consider a region of space V surrounded by a surface S. Static charge may be located

entirely or partially within V , or entirely outside V , and produces a field within V . This
region may also contain any arrangement of conductors or other materials. Now, assume
that Φ1 and Φ2 represent solutions to the static field equations within V with source
ρ(r). We wish to find conditions under which Φ1 = Φ2.
Since we have

∇ · [ǫ(r)∇Φ1(r)] = −ρ(r), ∇ · [ǫ(r)∇Φ2(r)] = −ρ(r),

the difference field Φ0 = Φ2 − Φ1 obeys

∇ · [ǫ(r)∇Φ0(r)] = 0. (3.31)

That is, Φ0 obeys Laplace’s equation. Now consider the quantity

∇ · (ǫΦ0∇Φ0) = ǫ|∇Φ0|2 +Φ0∇ · (ǫ∇Φ0).

Integration over V and use of the divergence theorem and (3.31) gives

∮

S

Φ0(r)[ǫ(r)∇Φ0(r)] · dS =

∫

V

ǫ(r)|∇Φ0(r)|2 dV.

As with the first order equations, we see that specifying either Φ(r) or ǫ(r)∇Φ(r) · n̂ over
S results in Φ0(r) = 0 throughout V , hence Φ1 = Φ2. As before, specifying ǫ(r)∇Φ(r) · n̂
for a conducting surface is equivalent to specifying the surface charge on S.

3.3.5.2 Integral solution to Poisson’s equation: the static Green’s function

The method of Green’s functions is one of the most useful techniques for solving Poisson’s
equation. We seek a solution for a single point source, then use Green’s second identity
to write the solution for an arbitrary charge distribution in terms of a superposition
integral.
We seek the solution to Poisson’s equation for a region of space V as shown in Figure

3.5. The region is assumed homogeneous with permittivity ǫ, and its surface is multiply-
connected, consisting of a bounding surface SB and any number of closed surfaces internal
to V . We denote by S the composite surface consisting of SB and the N internal surfaces
Sn, n = 1, . . . , N . The internal surfaces are used to exclude material bodies, such as the
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FIGURE 3.5

Computation of potential from known sources and values on bounding surfaces.

plates of a capacitor, which may be charged and on which the potential is assumed
to be known. To solve for Φ(r) within V we must know the potential produced by a
point source. This potential, called the Green’s function, is denoted G(r|r′); it has two
arguments because it satisfies Poisson’s equation at r when the source is located at r′:

∇2G(r|r′) = −δ(r− r′). (3.32)

Later we shall demonstrate that in all cases of interest to us the Green’s function is
symmetric in its arguments:

G(r′|r) = G(r|r′). (3.33)

This property of G is known as reciprocity.
Our development rests on the mathematical result (B.36) known as Green’s second

identity. We can derive this by subtracting the identities

∇ · (φ∇ψ) = φ∇ · (∇ψ) + (∇φ) · (∇ψ),
∇ · (ψ∇φ) = ψ∇ · (∇φ) + (∇ψ) · (∇φ),

to obtain
∇ · (φ∇ψ − ψ∇φ) = φ∇2ψ − ψ∇2φ.

Integrating this over a volume region V with respect to the dummy variable r′ and using
the divergence theorem, we obtain
∫

V

[φ(r′)∇′2ψ(r′)− ψ(r′)∇′2φ(r′)] dV ′ = −
∮

S

[φ(r′)∇′ψ(r′)− ψ(r′)∇′φ(r′)] · dS′.

The negative sign on the right-hand side occurs because n̂ is an inward normal to V .
Finally, since ∂ψ(r′)/∂n′ = n̂′ · ∇′ψ(r′), we have

∫

V

[φ(r′)∇′2ψ(r′)− ψ(r′)∇′2φ(r′)] dV ′ = −
∮

S

[

φ(r′)
∂ψ(r′)

∂n′ − ψ(r′)
∂φ(r′)

∂n′

]

dS′
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as desired.
To solve for Φ in V we shall make some seemingly unmotivated substitutions into this

identity. First note that by (3.32) and (3.33) we can write

∇′2G(r|r′) = −δ(r′ − r). (3.34)

We now set φ(r′) = Φ(r′) and ψ(r′) = G(r|r′) to obtain
∫

V

[Φ(r′)∇′2G(r|r′)−G(r|r′)∇′2Φ(r′)] dV ′ =

−
∮

S

[

Φ(r′)
∂G(r|r′)
∂n′ −G(r|r′)∂Φ(r

′)

∂n′

]

dS′, (3.35)

hence
∫

V

[

Φ(r′)δ(r′ − r)−G(r|r′)ρ(r
′)

ǫ

]

dV ′ =

∮

S

[

Φ(r′)
∂G(r|r′)
∂n′ −G(r|r′)∂Φ(r

′)

∂n′

]

dS′.

By the sifting property of the Dirac delta

Φ(r) =

∫

V

G(r|r′)ρ(r
′)

ǫ
dV ′ +

∮

SB

[

Φ(r′)
∂G(r|r′)
∂n′ −G(r|r′)∂Φ(r

′)

∂n′

]

dS′

+

N
∑

n=1

∮

Sn

[

Φ(r′)
∂G(r|r′)
∂n′ −G(r|r′)∂Φ(r

′)

∂n′

]

dS′. (3.36)

With this we may compute the potential anywhere within V in terms of the charge
density within V and the values of the potential and its normal derivative over S. We
must simply determine G(r|r′) first.
Let us take a moment to specialize (3.36) to the case of unbounded space. Provided

that the sources are of finite extent, as SB → ∞ we shall find that

Φ(r) =

∫

V

G(r|r′)ρ(r
′)

ǫ
dV ′ +

N
∑

n=1

∮

Sn

[

Φ(r′)
∂G(r|r′)
∂n′ −G(r|r′)∂Φ(r

′)

∂n′

]

dS′.

3.3.5.3 Useful derivative identities

Many differential operations on the displacement vector R = r − r′ occur in the study
of electromagnetics. The identities

∇R = −∇′R = R̂, ∇
(

1

R

)

= −∇′
(

1

R

)

= − R̂

R2
, (3.37)

follow from direct differentiation of the rectangular coordinate representation

R = x̂(x− x′) + ŷ(y − y′) + ẑ(z − z′).

Other identities are more difficult to establish.

◮ Example 3.6: Laplacian of 1/R

Establish the identity

∇2

(

1

R

)

= −4πδ(r− r
′), (3.38)
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which is crucial to potential theory.

Solution: We shall prove the equivalent version

∇′2
(

1

R

)

= −4πδ(r′ − r)

by showing that
∫

V

f(r′)∇′2
(

1

R

)

dV ′ =

{

−4πf(r), r ∈ V,

0, r /∈ V,
(3.39)

holds for any continuous function f(r). By direct differentiation we have

∇′2
(

1

R

)

= 0 for r′ 6= r,

hence the second part of (3.39) is established. This also shows that if r ∈ V then the domain
of integration in (3.39) can be restricted to a sphere of arbitrarily small radius ε centered at
r (Figure 3.6). The result we seek is found in the limit as ε→ 0. Thus we are interested in
computing

∫

V

f(r′)∇′2
(

1

R

)

dV ′ = lim
ε→0

∫

Vε

f(r′)∇′2
(

1

R

)

dV ′.

Since f is continuous at r′ = r, we have by the mean value theorem

∫

V

f(r′)∇′2
(

1

R

)

dV ′ = f(r) lim
ε→0

∫

Vε

∇′2
(

1

R

)

dV ′.

The integral over Vε can be computed using ∇′2(1/R) = ∇′ · ∇′(1/R) and the divergence
theorem:

∫

Vε

∇′2
(

1

R

)

dV ′ =

∫

Sε

n̂
′ · ∇′

(

1

R

)

dS′,

where Sε bounds Vε. Noting that n̂′ = −R̂, using (3.37), and writing the integral in spherical
coordinates (ε, θ, φ) centered at the point r, we have

∫

V

f(r′)∇′2
(

1

R

)

dV ′ = f(r) lim
ε→0

∫ 2π

0

∫ π

0

−R̂ ·
(

R̂

ε2

)

ε2 sin θ dθ dφ

= −4πf(r).

Hence the first part of (3.39) is also established.

FIGURE 3.6
Geometry for establishing the singular property of ∇2(1/R). ◭
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3.3.5.4 The Green’s function for unbounded space

In view of (3.38), one solution to (3.32) is

G(r|r′) = 1

4π|r− r′| . (3.40)

This simple Green’s function is generally used to find the potential produced by charge
in unbounded space. Here N = 0 (no internal surfaces) and SB → ∞. Thus

Φ(r) =

∫

V

G(r|r′)ρ(r
′)

ǫ
dV ′ + lim

SB→∞

∮

SB

[

Φ(r′)
∂G(r|r′)
∂n′ −G(r|r′)∂Φ(r

′)

∂n′

]

dS′.

We have seen that the Green’s function varies inversely with distance from the source,
and thus expect that, as a superposition of point-source potentials, Φ(r) will also vary
inversely with distance from a source of finite extent as that distance becomes large with
respect to the size of the source. The normal derivatives then vary inversely with distance
squared. Thus, each term in the surface integrand will vary inversely with distance cubed,
while the surface area itself varies with distance squared. The result is that the surface
integral vanishes as the surface recedes to infinity, giving

Φ(r) =

∫

V

G(r|r′)ρ(r
′)

ǫ
dV ′.

By (3.40) we then have

Φ(r) =
1

4πǫ

∫

V

ρ(r′)

|r− r′| dV
′ (3.41)

where the integration is performed over all of space. Since Φ(r) → 0 as |r| → ∞, points
at infinity are a convenient reference for the absolute potential.
Later we shall need to know the amount of work required to move a charge Q from

infinity to a point P located at r. If a potential field is produced by charge located in
unbounded space, moving an additional charge into position requires the work

W21 = −Q
∫ P

∞
E · dl = Q[Φ(r)− Φ(∞)] = QΦ(r). (3.42)

3.3.5.5 Coulomb’s law

We can obtain E from (3.41) by direct differentiation. We have

E(r) = − 1

4πǫ
∇
∫

V

ρ(r′)

|r− r′| dV
′

= − 1

4πǫ

∫

V

ρ(r′)∇
(

1

|r− r′|

)

dV ′,

hence

E(r) =
1

4πǫ

∫

V

ρ(r′)
r− r′

|r− r′|3 dV
′ (3.43)

by (3.37). So Coulomb’s law follows from the two fundamental postulates of electrostatics
(3.1) and (3.2).
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◮ Example 3.7: Electric field of an infinite uniform line charge

A line charge of uniform density ρl extends along the z-axis in a uniform medium of permit-
tivity ǫ. Use Coulomb’s law to find E.

Solution: By (3.43) we have

E(r) =
1

4πǫ

∫

Γ

ρl(z
′)

r− r′

|r− r′|3 dl
′.

Then, since r = ẑz + ρ̂ρ, r′ = ẑz′, and dl′ = dz′, we have

E(ρ) =
ρl
4πǫ

∫ ∞

−∞

ρ̂ρ+ ẑ(z − z′)

[ρ2 + (z − z′)2]3/2
dz′.

Using a change of variables, the z-component of the field is found to be

Ez(ρ) =
ρl
4πǫ

∫ ∞

−∞

u du

[ρ2 + u2]3/2
= 0

since the integrand is odd in u. Thus E has only a ρ-component, which varies only with ρ.
The remaining integral gives

E(ρ) = ρ̂
ρl

2πǫρ
, (3.44)

which was obtained from Gauss’s law in Example 3.2. ◭

3.3.5.6 Green’s function for unbounded space: two dimensions

We define the two-dimensional Green’s function as the potential at a point r = ρ + ẑz
produced by a z-directed line source of constant density located at r′ = ρ′. Perhaps the
easiest way to find this is to start with a line charge on the z-axis, the field for which
was found in Example 3.7. The absolute potential referred to a radius ρ0 can be found
by computing the line integral of E from ρ to ρ0. Using the field (3.44) for a line charge
gives

Φ(ρ) = − ρl
2πǫ

∫ ρ

ρ0

dρ′

ρ′
=

ρl
2πǫ

ln

(

ρ0
ρ

)

.

We may choose any reference point ρ0 except ρ0 = 0 or ρ0 = ∞. This choice is equivalent
to the addition of an arbitrary constant, hence we can also write

Φ(ρ) =
ρl
2πǫ

ln

(

1

ρ

)

+ C.

The potential for a general two-dimensional charge distribution in unbounded space is
by superposition

Φ(ρ) =

∫

ST

ρT (ρ
′)

ǫ
G(ρ|ρ′) dS′, (3.45)

where the Green’s function is the potential of a unit line source located at ρ′:

G(ρ|ρ′) =
1

2π
ln

(

ρ0
|ρ− ρ′|

)

. (3.46)

Here ST denotes the transverse (xy) plane, and ρT denotes the two-dimensional charge
distribution (C/m2) within that plane. In cylindrical coordinates we have

|ρ− ρ′| =
√

ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′)
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and (3.46) becomes

G(ρ|ρ′) =
1

2π
ln

(

ρ0
ρ

)

− 1

4π
ln

[

1 +

(

ρ′

ρ

)2

− 2

(

ρ′

ρ

)

cos(φ− φ′)

]

(3.47)

or

G(ρ|ρ′) =
1

2π
ln

(

ρ0
ρ′

)

− 1

4π
ln

[

1 +

(

ρ

ρ′

)2

− 2

(

ρ

ρ′

)

cos(φ − φ′)

]

.

We note that the potential field (3.45) of a two-dimensional source decreases logarith-
mically with distance. Only the potential produced by a source of finite extent decreases
inversely with distance.

◮ Example 3.8: Potential of an infinite cylinder of charge

An infinite cylinder of uniform charge density ρv and radius a is centered on the z-axis in a
uniform medium of permittivity ǫ. Compute Φ at a radius ρ referred to a radius ρ0, where
ρ > ρ0 > a.

Solution: We use (3.47) in (3.45) to obtain

Φ(ρ) =
ρv
2πǫ

∫ 2π

0

∫ a

0

ln

(

ρ0
ρ

)

ρ′ dρ′ dφ′

− ρv
4πǫ

∫ 2π

0

∫ a

0

ln

[

1 +

(

ρ′

ρ

)2

− 2

(

ρ′

ρ

)

cos(φ− φ′)

]

ρ′ dρ′ dφ′.

Integrating over φ′ and using the handbook integral [74]

∫ 2π

0

ln
(

1− 2a cosx+ a2
)

dx =

{

0, a2 < 1,

2π ln a2, a2 > 1,

we get

Φ(ρ) =
ρv
ǫ

ln

(

ρ0
ρ

)
∫ a

0

ρ′ dρ′ =
ρva

2

2ǫ
ln

(

ρ0
ρ

)

.

We can also find the potential using the line integral of E from (3.11). We use the electric
field for ρ > a found in Example 3.4,

E(ρ) = ρ̂
ρva

2

2ǫρ
,

to confirm that

Φ(ρ) = −
∫ ρ

ρ0

ρva
2

2ǫρ
dρ =

ρva
2

2ǫ
ln

(

ρ0
ρ

)

. ◭

3.3.5.7 Dirichlet and Neumann Green’s functions

The unbounded space Green’s function may be inconvenient for expressing the potential
in a region having internal surfaces. In fact, (3.36) shows that to use this function we
would be forced to specify both Φ and its normal derivative over all surfaces. This, of
course, would exceed the actual requirements for uniqueness.
Many functions can satisfy (3.32). For instance,

G(r|r′) = A

|r− r′| +
B

|r− ri|
(3.48)
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satisfies (3.32) if ri /∈ V . Evaluation of (3.35) with the Green’s function (3.48) repro-
duces the general formulation (3.36) since the Laplacian of the second term in (3.48) is
identically zero in V . In fact, we can add any function to the free-space Green’s function,
provided that the additional term obeys Laplace’s equation within V :

G(r|r′) = A

|r− r′| + F (r|r′), ∇′2F (r|r′) = 0. (3.49)

A good choice for G(r|r′) will minimize the effort required to evaluate Φ(r). Examining
(3.36) we notice two possibilities. If we demand that

G(r|r′) = 0 for all r′ ∈ S (3.50)

then the surface integral terms in (3.36) involving ∂Φ/∂n′ will vanish. The Green’s
function satisfying (3.50) is known as the Dirichlet Green’s function. Let us designate it
by GD and use reciprocity to write (3.50) as

GD(r|r′) = 0 for all r ∈ S.

The resulting specialization of (3.36),

Φ(r) =

∫

V

GD(r|r′)
ρ(r′)

ǫ
dV ′ +

∮

SB

Φ(r′)
∂GD(r|r′)

∂n′ dS′

+

N
∑

n=1

∮

Sn

Φ(r′)
∂GD(r|r′)

∂n′ dS′, (3.51)

requires the specification of Φ (but not its normal derivative) over the boundary surfaces.
In case SB and Sn surround and are adjacent to perfect conductors, the Dirichlet bound-
ary condition has an important physical meaning. The corresponding Green’s function is
the potential at point r produced by a point source at r′ in the presence of the conductors
when the conductors are grounded — i.e., held at zero potential. Then we must specify
the actual constant potentials on the conductors to determine Φ everywhere within V
using (3.51). The additional term F (r|r′) in (3.49) accounts for the potential produced
by surface charges on the grounded conductors.

By analogy with (3.50) it is tempting to try to define another electrostatic Green’s
function according to

∂G(r|r′)
∂n′ = 0 for all r′ ∈ S. (3.52)

But this choice is not permissible if V is a finite-sized region. Let us integrate (3.34) over
V and employ the divergence theorem and the sifting property to get

∮

S

∂G(r|r′)
∂n′ dS′ = −1; (3.53)

in conjunction with this, Equation (3.52) would imply the false statement 0 = −1.
Suppose instead that we introduce a Green’s function according to

∂G(r|r′)
∂n′ = − 1

A
for all r′ ∈ S (3.54)

where A is the total area of S. This choice avoids a contradiction in (3.53); it does not
nullify any terms in (3.36), but does reduce the surface integral terms involving Φ to
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constants. Taken together, these terms all compose a single additive constant on the
right-hand side; although the corresponding potential Φ(r) is thereby determined only
to within this additive constant, the value of E(r) = −∇Φ(r) will be unaffected. By
reciprocity we can rewrite (3.54) as

∂GN (r|r′)
∂n

= − 1

A
for all r ∈ S.

The Green’s function GN so defined is known as the Neumann Green’s function. Observe
that if V is not finite-sized then A→ ∞ and according to (3.54) the choice (3.52) becomes
allowable.
Finding the Green’s function that obeys one of the boundary conditions for a given

geometry is often a difficult task. Nevertheless, certain canonical geometries make the
Green’s function approach straightforward and simple. Such is the case in image theory,
when a charge is located near a simple conducting body such as a ground screen or a
sphere. In these cases the function F (r|r′) consists of a single correction term as in
(3.48). We shall consider these simple cases in examples to follow.

3.3.5.8 Reciprocity of the static Green’s function

It remains to show that

G(r|r′) = G(r′|r)

for any of the Green’s functions introduced above. The unbounded-space Green’s function
is reciprocal by inspection; |r− r′| is unaffected by interchanging r and r′. However, we
can give a more general treatment covering this case as well as the Dirichlet and Neumann
cases. We begin with

∇2G(r|r′) = −δ(r− r′).

In Green’s second identity we let φ(r) = G(r|ra) and ψ(r) = G(r|rb) where ra and rb are
arbitrary points, and integrate over the unprimed coordinates:

∫

V

[G(r|ra)∇2G(r|rb)−G(r|rb)∇2G(r|ra)] dV =

−
∮

S

[

G(r|ra)
∂G(r|rb)
∂n

−G(r|rb)
∂G(r|ra)

∂n

]

dS.

If G is the unbounded-space Green’s function, the surface integral must vanish since
SB → ∞. It must also vanish under Dirichlet or Neumann boundary conditions. Since

∇2G(r|ra) = −δ(r− ra), ∇2G(r|rb) = −δ(r− rb),

we have
∫

V

[G(r|ra)δ(r− rb)−G(r|rb)δ(r − ra)] dV = 0,

hence

G(rb|ra) = G(ra|rb)

by the sifting property. By the arbitrariness of ra and rb, reciprocity is established.
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3.3.5.9 Image interpretation for solutions to Poisson’s equation

For simple geometries, Poisson’s equation may be solved as part of a boundary value
problem (§ A.5). Occasionally such a solution has an appealing interpretation as the
superposition of potentials produced by the physical charge and its “images.” We shall
consider here the case of planar media and subsequently use the results to predict the
potential produced by charge near a conducting sphere.

Consider a layered dielectric medium where various regions of space are separated by
planes at constant values of z. Material region i occupies volume region Vi and has
permittivity ǫi; it may or may not contain source charge. The solution to Poisson’s
equation is given by (3.36). The contribution

Φp(r) =

∫

V

G(r|r′)ρ(r
′)

ǫ
dV ′

produced by sources within V is known as the primary potential. The term

Φs(r) =

∮

S

[

Φ(r′)
∂G(r|r′)
∂n′ −G(r|r′)∂Φ(r

′)

∂n′

]

dS′,

on the other hand, involves an integral over the surface fields and is known as the sec-
ondary potential . This term is linked to effects outside V . Since the “sources” of Φs

(i.e., the surface fields) lie on the boundary of V , Φs satisfies Laplace’s equation within
V . We may therefore use other, more convenient, representations of Φs provided they
satisfy Laplace’s equation. However, as solutions to a homogeneous equation they are of
indefinite form until linked to appropriate boundary values.

Since the geometry is invariant in the x and y directions, we represent each potential
function in terms of a 2-D Fourier transform over these variables. We leave the z depen-
dence intact so that we may apply boundary conditions directly in the spatial domain.
The transform representations of the Green’s functions for the primary and secondary
potentials are derived in Appendix A. From (A.56) we see that the primary potential
within region Vi can be written as

Φpi (r) =

∫

Vi

Gp(r|r′)ρ(r
′)

ǫi
dV ′

where

Gp(r|r′) = 1

4π|r− r′| =
1

(2π)2

∫ ∞

−∞

e−kρ|z−z
′|

2kρ
ejkρ·(r−r

′) d2kρ (3.55)

is the primary Green’s function with kρ = x̂kx + ŷky, kρ = |kρ|, and d2kρ = dkx dky.
We also find in (A.57) that a solution of Laplace’s equation can be written as

Φs(r) =
1

(2π)2

∫ ∞

−∞

[

A(kρ)e
kρz +B(kρ)e

−kρz] ejkρ·r d2kρ

where A(kρ) and B(kρ) must be found by the application of appropriate boundary con-
ditions.

◮ Example 3.9: Charge distribution above a conducting plane

Find Φ for a charge distribution ρ(r) in free space above the grounded conducting plane
z = 0.

Solution: We will find the potential in the region z > 0 using a Fourier transform repre-
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sentation. The total potential is a sum of primary and secondary terms:

Φ(x, y, z) =

∫

V

[

1

(2π)2

∫ ∞

−∞

e−kρ|z−z
′|

2kρ
ejkρ·(r−r

′) d2kρ

]

ρ(r′)

ǫ0
dV ′

+
1

(2π)2

∫ ∞

−∞

[

B(kρ)e
−kρz

]

ejkρ·r d2kρ,

where the integral is over the region z > 0. Here we have set A(kρ) = 0 because ekρz grows
with increasing z. Since the plane is grounded we must have Φ(x, y, 0) = 0. Because z < z′

when we apply this condition, we have |z − z′| = z′ − z and thus

Φ(x, y, 0) =
1

(2π)2

∫ ∞

−∞

[

∫

V

ρ(r′)

ǫ0

e−kρz
′

2kρ
e−jkρ·r

′

dV ′ +B(kρ)

]

ejkρ·r d2kρ = 0.

By the Fourier integral theorem

B(kρ) = −
∫

V

ρ(r′)

ǫ0

e−kρz
′

2kρ
e−jkρ·r

′

dV ′,

hence the total potential is

Φ(x, y, z) =

∫

V

[

1

(2π)2

∫ ∞

−∞

e−kρ|z−z
′| − e−kρ(z+z

′)

2kρ
ejkρ·(r−r

′) d2kρ

]

ρ(r′)

ǫ0
dV ′

=

∫

V

G(r|r′)ρ(r
′)

ǫ0
dV ′

where G(r|r′) is the Green’s function for the region above a grounded planar conductor.
We can interpret this Green’s function as a sum of the primary Green’s function (3.55)

and a secondary Green’s function

Gs(r|r′) = − 1

(2π)2

∫ ∞

−∞

e−kρ(z+z
′)

2kρ
ejkρ·(r−r

′) d2kρ. (3.56)

For z > 0 the term z + z′ can be replaced by |z + z′|. Then, comparing (3.56) with (3.55),
we see that

Gs(r|x′, y′, z′) = −Gp(r|x′, y′,−z′) = − 1

4π|r− r′i|
where r′i = x̂x′ + ŷy′ − ẑz′. Because the Green’s function is the potential of a point charge,
we may interpret the secondary Green’s function as produced by a negative unit charge
placed in a position −z′ immediately beneath the positive unit charge that produces Gp

(Figure 3.7). This secondary charge is the “image” of the primary charge. That two such
charges would produce a null potential on the ground plane is easily verified.

FIGURE 3.7
Construction of electrostatic Green’s function for a ground plane. ◭
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◮ Example 3.10: Charge distribution above an interface between dielectric regions

Find the potential for a charge distribution ρ(r) above a planar interface separating two
homogeneous dielectric media.

Solution: Let region 1 occupy z > 0 with permittivity ǫ1, and let region 2 occupy z < 0
with permittivity ǫ2. In region 1 we can write the total potential as a sum of primary and
secondary components, discarding the term that grows with z:

Φ1(x, y, z) =

∫

V

[

1

(2π)2

∫ ∞

−∞

e−kρ|z−z
′|

2kρ
ejkρ·(r−r

′) d2kρ

]

ρ(r′)

ǫ1
dV ′

+
1

(2π)2

∫ ∞

−∞

[

B(kρ)e
−kρz

]

ejkρ·r d2kρ. (3.57)

With no source in region 2, the potential there must obey Laplace’s equation and therefore
consists of only a secondary component:

Φ2(r) =
1

(2π)2

∫ ∞

−∞

[

A(kρ)e
kρz
]

ejkρ·r d2kρ. (3.58)

To determine A and B we impose (3.16) and (3.17). By (3.16) we have

1

(2π)2

∫ ∞

−∞

[

∫

V

ρ(r′)

ǫ1

e−kρz
′

2kρ
e−jkρ·r

′

dV ′ +B(kρ)− A(kρ)

]

ejkρ·r d2kρ = 0,

hence
∫

V

ρ(r′)

ǫ1

e−kρz
′

2kρ
e−jkρ·r

′

dV ′ +B(kρ)− A(kρ) = 0

by the Fourier integral theorem. Applying (3.17) at z = 0 with n̂12 = ẑ, and noting that
there is no excess surface charge, we find

∫

V

ρ(r′)
e−kρz

′

2kρ
e−jkρ·r

′

dV ′ − ǫ1B(kρ)− ǫ2A(kρ) = 0.

The solutions

A(kρ) =
2ǫ1

ǫ1 + ǫ2

∫

V

ρ(r′)

ǫ1

e−kρz
′

2kρ
e−jkρ·r

′

dV ′,

B(kρ) =
ǫ1 − ǫ2
ǫ1 + ǫ2

∫

V

ρ(r′)

ǫ1

e−kρz
′

2kρ
e−jkρ·r

′

dV ′,

are then substituted into (3.57) and (3.58) to give

Φ1(r) =

∫

V

[

1

(2π)2

∫ ∞

−∞

e−kρ|z−z
′| + ǫ1−ǫ2

ǫ1+ǫ2
e−kρ(z+z

′)

2kρ
ejkρ·(r−r

′) d2kρ

]

ρ(r′)

ǫ1
dV ′

=

∫

V

G1(r|r′)
ρ(r′)

ǫ1
dV ′,

Φ2(r) =

∫

V

[

1

(2π)2

∫ ∞

−∞

2ǫ2
ǫ1 + ǫ2

e−kρ(z
′−z)

2kρ
ejkρ·(r−r

′) d2kρ

]

ρ(r′)

ǫ2
dV ′

=

∫

V

G2(r|r′)ρ(r
′)

ǫ2
dV ′.



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 179 — #203
✐

✐

✐

✐

✐

✐

The static and quasistatic fields 179

Since z′ > z for all points in region 2, we can replace z′ − z by |z− z′| in the formula for Φ2.
As with Example 3.9, let us compare the result to the form of the primary Green’s function

(3.55). We see that

G1(r|r′) = 1

4π|r− r′| +
ǫ1 − ǫ2
ǫ1 + ǫ2

1

4π|r− r′1|
,

G2(r|r′) = 2ǫ2
ǫ1 + ǫ2

1

4π|r− r′2|
,

where r′1 = x̂x′ + ŷy′ − ẑz′ and r′2 = x̂x′ + ŷy′ + ẑz′. So we can also write

Φ1(r) =
1

4π

∫

V

[

1

|r− r′| +
ǫ1 − ǫ2
ǫ1 + ǫ2

1

|r− r′1|

]

ρ(r′)

ǫ1
dV ′,

Φ2(r) =
1

4π

∫

V

[

2ǫ2
ǫ1 + ǫ2

1

|r− r′2|

]

ρ(r′)

ǫ2
dV ′.

Note that Φ2 → Φ1 as ǫ2 → ǫ1.
There is an image interpretation for the secondary Green’s functions. The secondary

Green’s function for region 1 appears as a potential produced by an image of the primary
charge located at −z′ in an infinite medium of permittivity ǫ1, and with an amplitude of
(ǫ1 − ǫ2)/(ǫ1 + ǫ2) times the primary charge. The Green’s function in region 2 is produced
by an image charge located at z′ (i.e., at the location of the primary charge) in an infinite
medium of permittivity ǫ2 with an amplitude of 2ǫ2/(ǫ1 + ǫ2) times the primary charge. ◭

◮ Example 3.11: Charge distribution external to a grounded conducting sphere

Find the potential for a charge distribution ρ(r) external to a grounded conducting sphere.

FIGURE 3.8
Green’s function for a grounded conducting sphere.

Solution: Consider a point charge Q placed near a grounded conducting sphere in free space
as shown in Figure 3.8. Based on our experience with planar layered media, we hypothesize
that the secondary potential will be produced by an image charge; hence we try the simple
Green’s function

Gs(r|r′) = A(r′)

4π|r− r′i|
where the amplitude A and location r′i of the image are to be determined. We further
assume, based on our experience with planar problems, that the image charge will reside
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inside the sphere along a line joining the origin to the primary charge. Since r = ar̂ for all
points on the sphere, the total Green’s function must obey the Dirichlet condition

G(r|r′)|r=a =
1

4π|r− r′|

∣

∣

∣

∣

r=a

+
A(r′)

4π|r− r′i|

∣

∣

∣

∣

r=a

=
1

4π|ar̂− r′r̂′| +
A(r′)

4π|ar̂− r′ir̂
′| = 0

in order to have the potential, given by (3.36), vanish on the sphere surface. Factoring a
from the first denominator and r′i from the second, we obtain

1

4πa|r̂− r′

a
r̂′|

+
A(r′)

4πr′i| ar′i r̂− r̂′| = 0.

Now |kr̂− k′r̂′| = (k2 + k′2 − 2kk′ cos γ)1/2 where γ is the angle between r̂ and r̂′ and k, k′

are constants; this means that |kr̂− r̂′| = |r̂− kr̂′|. Hence as long as

r′

a
=

a

r′i
,

A

r′i
= −1

a
,

the total Green’s function vanishes everywhere on the surface of the sphere. The image
charge is therefore located within the sphere at r′i = a2r′/r′2 and has amplitude A = −a/r′.
(Note that both the location and amplitude of the image depend on the location of the
primary charge.) With this Green’s function and (3.51), the potential of an arbitrary source
placed near a grounded conducting sphere is

Φ(r) =

∫

V

ρ(r′)

ǫ

1

4π

[

1

|r− r′| −
a/r′

|r− a2

r′2
r′|

]

dV ′. ◭

The Green’s function derived in Example 3.11 may be used to compute the surface
charge density induced on a sphere by a unit point charge: it is merely necessary to find
the normal component of electric field from the gradient of Φ(r). We leave this as an
exercise for the reader, who may then integrate the surface charge and thereby show that
the total charge induced on the sphere is equal to the image charge. So the total charge
induced on a grounded sphere by a point charge q at a point r = r′ is Q = −qa/r′.

It is possible to find the total charge induced on the sphere without finding the image
charge first. This is an application of Green’s reciprocation theorem (§ 3.5.4). According
to (3.164), if we can find the potential VP at a point r produced by the sphere when it is
isolated and carrying a total charge Q0, then the total charge Q induced on the grounded
sphere in the vicinity of a point charge q placed at r is given by

Q = −q VP
V1

where V1 is the potential of the isolated sphere. We can apply this formula by noting
that an isolated sphere carrying charge Q0 produces a field

E(r) = r̂
Q0

4πǫr2
.

Integration from a radius r to infinity gives the potential referred to infinity: Φ(r) =
Q0/4πǫr. So the potential of the isolated sphere is V1 = Q0/4πǫa, while the potential at
radius r′ is VP = Q0/4πǫr

′. Substitution gives Q = −qa/r′ as before.
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3.3.6 Force and energy

3.3.6.1 Maxwell’s stress tensor

The electrostatic version of Maxwell’s stress tensor can be obtained from (2.225) by
setting B = H = 0:

T̄e =
1
2 (D · E)Ī−DE.

The total electric force on the charges in a region V bounded by the surface S is given
by the relation

Fe = −
∮

S

T̄e · dS =

∫

V

fe dV

where fe = ρE is the electric force volume density.
In particular, suppose that S is adjacent to a solid conducting body embedded in a

dielectric having permittivity ǫ(r). Since all the charge is at the surface of the conductor,
the force within V acts directly on the surface. Thus, −T̄e · n̂ is the surface force density
(traction) t. UsingD = ǫE, and remembering that the fields are normal to the conductor,
we find that

T̄e · n̂ = 1
2ǫE

2
nn̂− ǫEE · n̂ = − 1

2ǫE
2
nn̂ = − 1

2ρsE.

The surface force density is perpendicular to the surface.

◮ Example 3.12: Force on a charged sphere

Find the force acting on a rigid conducting sphere of radius a carrying total charge Q in a
homogeneous medium.

Solution: At equilibrium the charge is distributed uniformly with surface density ρs =
Q/4πa2, producing a field E = r̂Q/4πǫr2 external to the sphere. Hence a force density

t =
1

2
r̂

Q2

ǫ(4πa2)2

acts at each point on the surface. This would cause the sphere to expand outward if the
structural integrity of the material were to fail. Integration over the entire sphere yields

F =
1

2

Q2

ǫ(4πa2)2

∫

S

r̂ dS = 0.

However, integration of t over the upper hemisphere yields

F =
1

2

Q2

ǫ(4πa2)2

∫ 2π

0

∫ π/2

0

r̂a2 sin θ dθ dφ.

Substitution of r̂ = x̂ sin θ cos φ + ŷ sin θ sinφ + ẑ cos θ leads immediately to Fx = Fy = 0,
but the z-component is

Fz =
1

2

Q2

ǫ(4πa2)2

∫ 2π

0

∫ π/2

0

a2 cos θ sin θ dθ dφ =
Q2

32ǫπa2
.

This result can also be obtained by integrating −T̄e ·n̂ over the entire xy-plane with n̂ = −ẑ.
Since −T̄e · (−ẑ) = ẑǫE · E/2, we have

F = ẑ
1

2

Q2ǫ

(4πǫ)2

∫ 2π

0

∫ ∞

a

r dr dφ

r4
= ẑ

Q2

32ǫπa2
. ◭
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◮ Example 3.13: Force on adjacent line charges

Consider two identical line charges parallel to the z-axis and located at x = ±d/2, y = 0
in free space. Find the force on one line charge due to the other by integrating Maxwell’s
stress tensor over the yz-plane.

Solution: From (3.44) we find that the total electric field on the yz-plane is

E(y, z) =
y

y2 + (d/2)2
ρl
πǫ0

ŷ

where ρl is the line charge density. The force density for either line charge is −T̄e · n̂, where
we use n̂ = ±x̂ to obtain the force on the charge at x = ∓d/2. The force density for the
charge at x = −d/2 is

T̄e · n̂ =
1

2
(D ·E)Ī · x̂−DE · x̂ =

ǫ0
2

[

y

y2 + (d/2)2
ρl
πǫ0

]2

x̂

and the total force is

F− = −
∫ ∞

−∞

∫ ∞

−∞

ρ2l
2π2ǫ0

y2

[y2 + (d/2)2]2
x̂ dy dz.

On a per-unit-length basis, the force is

F−

l
= −x̂

ρ2l
2π2ǫ0

∫ ∞

−∞

y2

[y2 + (d/2)2]2
dy = −x̂

ρ2l
2πdǫ0

.

Note that the force is repulsive as expected. ◭

3.3.6.2 Electrostatic stored energy

In § 2.9.5 we considered the energy relations for the electromagnetic field. Those relations
remain valid in the static case. Since our interpretation of the dynamic relations was
guided in part by our knowledge of the energy stored in a static field, we must, for
completeness, carry out a study of that effect here.

The energy of a static configuration is taken to be the work required to assemble the
configuration from a chosen starting point. For a configuration of static charges, the
stored electric energy is the energy required to assemble the configuration, starting with
all charges removed to infinite distance (the assumed zero potential reference). If the
assembled charges are not held in place by an external mechanical force, they will move,
thereby converting stored electric energy into other forms of energy (e.g., kinetic energy
and radiation).

By (3.42), the work required to move a point charge q from a reservoir at infinity to a
point P at r in a potential field Φ is

W = qΦ(r).

If instead we have a continuous charge density ρ present, and wish to increase this to
ρ+ δρ by bringing in a small quantity of charge δρ, a total work

δW =

∫

V∞

δρ(r)Φ(r) dV (3.59)

is required, and the potential field is increased to Φ+ δΦ. Here V∞ denotes all of space.
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FIGURE 3.9

Computation of electrostatic stored energy via the assembly energy of a charge distribu-
tion.

(We could restrict the integral to the region containing the charge, but we shall find it
helpful to extend the domain of integration to all of space.)
Now consider the situation shown in Figure 3.9. Here we have charge in the form of

both volume densities and surface densities on conducting bodies. Also present may be
linear material bodies. We can think of assembling the charge in two distinctly different
ways. We could, for instance, bring small portions of charge (or point charges) together
to form the distribution ρ. Or, we could slowly build up ρ by adding infinitesimal, but
spatially identical, distributions. That is, we can create the distribution ρ from a zero
initial state by repeatedly adding a charge distribution

δρ(r) =
ρ(r)

N
,

where N is a large number. Whenever we add δρ we must perform the work given by
(3.59), but we also increase the potential proportionately (remembering that all materials
are assumed linear). At each step, more work is required. The total work is

W =

N
∑

n=1

∫

V∞

δρ(r)[(n− 1)δΦ(r)] dV =

[

N
∑

n=1

(n− 1)

]

∫

V∞

ρ(r)

N

Φ(r)

N
dV. (3.60)

We must use an infinite number of steps so that no energy is lost to radiation at any step
(since the charge we add each time is infinitesimally small). Using

N
∑

n=1

(n− 1) =
N(N − 1)

2
,
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(3.60) becomes

W =
1

2

∫

V∞

ρ(r)Φ(r) dV (3.61)

as N → ∞. Finally, since some assembled charge will be in the form of a volume density
and some in the form of the surface density on conductors, we can generalize (3.61) to

W =
1

2

∫

V ′

ρ(r)Φ(r) dV +
1

2

I
∑

i=1

QiVi. (3.62)

Here V ′ is the region outside the conductors, Qi is the total charge on the ith conductor
(i = 1, . . . , I), and Vi is the absolute potential (referred to infinity) of the ith conductor.

◮ Example 3.14: Energy stored in a ball of volume charge, using potential

Use (3.62) to find the stored energy for the charge distribution of Example 3.5.

Solution: Substituting

Φ(r) =
ρv
6ǫ

(3a2 − r2)

into (3.62), we obtain

W =
1

2

∫ 2π

0

∫ π

0

∫ a

0

ρ2v
6ǫ

(3a2 − r2)r2 sin θ dr dθ dφ =
4πρ2va

5

15ǫ
. ◭

An intriguing property of electrostatic energy is that the charges on the conductors
will arrange themselves, while seeking static equilibrium, into a minimum-energy config-
uration (Thomson’s theorem). See § 3.5.3.

In keeping with our field-centered view of electromagnetics, we now wish to write the
energy (3.61) entirely in terms of the field vectors E and D. Since ρ = ∇ ·D we have

W =
1

2

∫

V∞

[∇ ·D(r)]Φ(r) dV.

Then, by (B.48),

W =
1

2

∫

V∞

∇ · [Φ(r)D(r)] dV − 1

2

∫

V∞

D(r) · [∇Φ(r)] dV.

The divergence theorem and (3.10) imply

W =
1

2

∮

S∞

Φ(r)D(r) · dS+
1

2

∫

V∞

D(r) ·E(r) dV

where S∞ is the bounding surface that recedes toward infinity to encompass all of space.
Because Φ ∼ 1/r and D ∼ 1/r2 as r → ∞, the integral over S∞ tends to zero and

W =
1

2

∫

V∞

D(r) · E(r) dV. (3.63)

Hence we may compute the assembly energy in terms of the fields supported by the
charge ρ.
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◮ Example 3.15: Energy stored in a ball of volume charge, using the electric field

Use (3.63) to find the stored energy for the charge distribution of Example 3.3.

Solution: Substituting

E(r) =











r̂
ρvr

3ǫ
, r < a,

r̂
ρva

3

3ǫr2
, r > a,

into (3.63), we obtain

W =
1

2

∫ 2π

0

∫ π

0

∫ a

0

(ρvr

3
r̂
)

·
(ρvr

3ǫ
r̂
)

r2 sin θ dr dθ dφ

+
1

2

∫ 2π

0

∫ π

0

∫ ∞

a

(

ρva
3

3r2
r̂

)

·
(

ρva
3

3ǫr2
r̂

)

r2 sin θ dr dθ dφ

=
2πρ2v
9ǫ

(
∫ a

0

r4 dr + a6
∫ ∞

a

dr

r2

)

=
4πρ2va

5

15ǫ

as in Example 3.14. ◭

It is significant that the assembly energy W is identical to the term within the time
derivative in Poynting’s theorem (2.234). Hence our earlier interpretation, that this term
represents the time-rate of change of energy “stored” in the electric field, has a firm basis.
Of course, the assembly energy is a static concept, and our generalization to dynamic
fields is purely intuitive. We face similar questions regarding the meaning of energy
density, and whether energy can be “localized” in space. The discussions in § 2.9.5 still
apply.

3.3.7 Multipole expansion

Consider an arbitrary but spatially localized charge distribution of total charge Q in an
unbounded homogeneous medium (Figure 3.10). We have already obtained the potential
(3.41) of the source; as we move the observation point away, Φ should decrease in a
manner roughly proportional to 1/r. The actual variation depends on the nature of the
charge distribution and can be complicated. Often this dependence is dominated by
a specific inverse power of distance for observation points far from the source, and we
can investigate it by expanding the potential in powers of 1/r. Although such multipole
expansions of the potential are rarely used to perform actual computations, they can
provide insight into both the behavior of static fields and the physical meaning of the
polarization vector P.
Let us place our origin of coordinates somewhere within the charge distribution, as

shown in Figure 3.10, and expand the Green’s function spatial dependence in a three-
dimensional Taylor series about the origin:

1

R
=

∞
∑

n=0

1

n!
(r′ · ∇′)n

1

R

∣

∣

∣

∣

r′=0

=
1

r
+ (r′ · ∇′)

1

R

∣

∣

∣

∣

r′=0

+
1

2
(r′ · ∇′)2

1

R

∣

∣

∣

∣

r′=0

+ · · · , (3.64)

where R = |r−r′|. Convergence occurs if |r| > |r′|. In the notation (r′ ·∇′)n we interpret
a power on a derivative operator as the order of the derivative. Substituting (3.64) into
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FIGURE 3.10

Multipole expansion.

(3.41) we obtain

Φ(r) =
1

4πǫ

∫

V

ρ(r′)

[

1

R

∣

∣

∣

∣

r′=0

+ (r′ · ∇′)
1

R

∣

∣

∣

∣

r′=0

+
1

2
(r′ · ∇′)2

1

R

∣

∣

∣

∣

r′=0

+ · · ·
]

dV ′. (3.65)

For the second term we can use (3.37) to write

(r′ · ∇′)
1

R

∣

∣

∣

∣

r′=0

= r′ ·
(

∇′ 1

R

)∣

∣

∣

∣

r′=0

= r′ ·
(

R̂

R2

)

∣

∣

∣

∣

r′=0

= r′ · r̂

r2
. (3.66)

The third term is complicated. Let us denote (x, y, z) by (x1, x2, x3) and perform an
expansion in rectangular coordinates:

(r′ · ∇′)2
1

R

∣

∣

∣

∣

r′=0

=

3
∑

i=1

3
∑

j=1

x′ix
′
j

∂2

∂x′i∂x
′
j

1

R

∣

∣

∣

∣

r′=0

.

It turns out [173] that this can be written as

(r′ · ∇′)2
1

R

∣

∣

∣

∣

r′=0

=
1

r3
r̂ · (3r′r′ − r′2Ī) · r̂.

Substitution into (3.65) gives

Φ(r) =
Q

4πǫr
+

r̂ · p
4πǫr2

+
1

2

r̂ · Q̄ · r̂
4πǫr3

+ · · · , (3.67)

which is the multipole expansion for Φ(r). It converges for all r > rm where rm is the
radius of the smallest sphere completely containing the charge centered at r′ = 0 (Figure
3.10). In (3.67) the terms Q, p, Q̄, and so on are called the multipole moments of ρ(r).
The first moment is merely the total charge

Q =

∫

V

ρ(r′) dV ′.

The second moment is the electric dipole moment vector

p =

∫

V

r′ρ(r′) dV ′.
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The third moment is the electric quadrupole moment dyadic

Q̄ =

∫

V

(3r′r′ − r′2Ī)ρ(r′) dV ′.

The expansion (3.67) allows us to identify the dominant power of r for r ≫ rm.
The first nonzero term in (3.67) dominates the potential at points far from the source.
Interestingly, the first nonvanishing moment is independent of the location of the origin
of r′, while all subsequent higher moments depend on the location of the origin [92].

◮ Example 3.16: Multipole moments of a point charge

Compute the multipole moments of a single point charge q located at r0.

Solution: Write ρ(r) = qδ(r− r0). The first moment of ρ is

Q =

∫

V

qδ(r′ − r0) dV
′ = q.

Note that this is independent of r0. The second moment

p =

∫

V

r
′qδ(r′ − r0) dV

′ = qr0

depends on r0, as does the third moment

Q̄ =

∫

V

(3r′r′ − r′2Ī)qδ(r′ − r0) dV
′ = q(3r0r0 − r20 Ī).

If r0 = 0 then only the first moment is nonzero, as is obvious from (3.41). ◭

◮ Example 3.17: Multipole moments of a dipole

Compute the multipole moments of the dipole shown in Figure 3.11.

FIGURE 3.11
A dipole distribution.

Solution: Write ρ(r) = −qδ(r− r0 + d/2) + qδ(r− r0 − d/2). The first moment is

Q =

∫

V

[−qδ(r− r0 + d/2) + qδ(r− r0 − d/2)] dV ′ = −q + q = 0.
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The second moment is

p =

∫

V

r
′[−qδ(r− r0 + d/2) + qδ(r− r0 − d/2)] dV ′

= −q(r0 − d/2) + q(r0 + d/2) = qd.

The third moment is

Q̄ =

∫

V

(3r′r′ − r′2Ī)[−qδ(r− r0 + d/2) + qδ(r− r0 − d/2)] dV ′

= −q[3(r0 − d/2)(r0 − d/2) − |r0 − d/2|2 Ī ]

+ q[3(r0 + d/2)(r0 + d/2) − |r0 + d/2|2 Ī ].

Use of |r0 ± d/2|2 = (r0 ± d/2) · (r0 ± d/2) = r20 + d2/4± r0 · d gives

Q̄ = q[3(r0d + dr0)− 2(r0 · d)Ī ].

Only the first nonzero moment, in this case p, is independent of r0. For r0 = 0 the only
nonzero multipole moment would be the dipole moment p. If the dipole is aligned along the
z-axis with d = dẑ and r0 = 0, then the exact potential is

Φ(r) =
1

4πǫ

p cos θ

r2
.

By (3.10) we have

E(r) =
1

4πǫ

p

r3
(r̂2 cos θ + θ̂ sin θ), (3.68)

which is the classic result for the electric field of a dipole. ◭

◮ Example 3.18: Multipole moments of a quadrupole

Compute the multipole moments of the quadrupole shown in Figure 3.12.

FIGURE 3.12
A quadrupole distribution.

Solution: Write the charge density as

ρ(r) = −qδ(r− r0) + qδ(r− r0 − d1) + qδ(r− r0 − d2)− qδ(r− r0 − d1 − d2).
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The first moment is

Q =

∫

V

[−qδ(r− r0) + qδ(r− r0 − d1)

+ qδ(r− r0 − d2)− qδ(r− r0 − d1 − d2)] dV
′ = −q + q + q − q = 0.

The second moment is

p =

∫

V

r
′[−qδ(r− r0) + qδ(r− r0 − d1)

+ qδ(r− r0 − d2)− qδ(r− r0 − d1 − d2)] dV
′

= −qr0 + q(r0 + d1) + q(r0 + d2)− q(r0 + d1 + d2) = 0.

The third moment is

Q̄ =

∫

V

(3r′r′ − r′2Ī)[−qδ(r− r0) + qδ(r− r0 − d1)

+ qδ(r− r0 − d2)− qδ(r− r0 − d1 − d2)] dV
′

= −q(3r0r0 − r20 Ī)

+ q[3(r0 + d1)(r0 + d1)− (r0 + d1) · (r0 + d1)Ī ]

+ q[3(r0 + d2)(r0 + d2)− (r0 + d2) · (r0 + d2)Ī ]

− q[3(r0 + d1 + d2)(r0 + d1 + d2)− (r0 + d1 + d2) · (r0 + d1 + d2)Ī ].

Simplification yields
Q̄ = q[−3(d1d2 + d2d1) + 2(d1 · d2)Ī ].

As expected, the first two moments of ρ vanish, while the third is independent of r0. ◭

It is tedious to carry (3.67) beyond the quadrupole term using the Taylor expansion.
Another approach is to expand 1/R in spherical harmonics. Referring to Appendix E.3
we find that

1

|r− r′| = 4π
∞
∑

n=0

n
∑

m=−n

1

2n+ 1

r′n

rn+1
Y ∗
nm(θ′, φ′)Ynm(θ, φ)

(see Jackson [92] or Arfken [6] for a detailed derivation). This expansion converges for
|r| > |rm|. Substitution into (3.41) gives

Φ(r) =
1

ǫ

∞
∑

n=0

1

rn+1

[

1

2n+ 1

n
∑

m=−n
qnmYnm(θ, φ)

]

(3.69)

where

qnm =

∫

V

ρ(r′)r′nY ∗
nm(θ′, φ′) dV ′.

We can now identify any inverse power of r in the multipole expansion, but at the price
of dealing with a double summation. For a charge distribution with axial symmetry (no
φ-variation), only the coefficient qn0 is nonzero. The relation

Yn0(θ, φ) =

√

2n+ 1

4π
Pn(cos θ)
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allows us to simplify (3.69) and obtain

Φ(r) =
1

4πǫ

∞
∑

n=0

1

rn+1
qnPn(cos θ) (3.70)

where

qn = 2π

∫

r′

∫

θ′
ρ(r′, θ′)r′nPn(cos θ

′)r′2 sin θ′ dθ′ dr′.

◮ Example 3.19: Multipole expansion coefficients for a spherical charge

Compute the multipole expansion coefficients for a spherical distribution of charge given by

ρ(r) =
3Q

πa3
cos θ (r ≤ a).

Solution: This can be viewed as two adjacent hemispheres carrying total charges ±Q. Since
cos θ = P1(cos θ), we compute

qn = 2π

∫ a

0

∫ π

0

3Q

πa3
P1(cos θ

′)r′nPn(cos θ
′)r′2 sin θ′ dθ′ dr′

= 2π
3Q

πa3
an+3

n+ 3

∫ π

0

P1(cos θ)Pn(cos θ
′) sin θ′ dθ′.

Using the orthogonality relation (E.125) we find

qn = 2π
3Q

πa3
an+3

n+ 3
δ1n

2

2n+ 1
.

Hence the only nonzero coefficient is q1 = Qa and

Φ(r) =
1

4πǫ

1

r2
QaP1(cos θ) =

Qa

4πǫr2
cos θ.

Since a dipole with moment p = ẑQa produces this same potential when r ≫ a, we could
replace the sphere with point charges ∓Q at z = ∓a/2 without changing the field far from
the source. ◭

3.3.7.1 Physical interpretation of the polarization vector in a dielectric

We have used the Maxwell–Minkowski equations to determine the electrostatic potential
of a charge distribution in the presence of a dielectric medium. Alternatively, we can use
the Maxwell–Boffi equations

∇×E = 0, (3.71)

∇ ·E =
1

ǫ0
(ρ−∇ ·P). (3.72)

Equation (3.71) allows us to define a scalar potential through (3.10). Substitution into
(3.72) gives

∇2Φ(r) = − 1

ǫ0
[ρ(r) + ρP (r)] (3.73)
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where ρP = −∇ · P. This has the form of Poisson’s equation (3.30), but with charge
density term ρ(r) + ρP (r). Hence the solution is

Φ(r) =
1

4πǫ0

∫

V

ρ(r′)−∇′ ·P(r′)

|r− r′| dV ′.

To this we must add any potential produced by surface sources such as ρs. If there is a
discontinuity in the dielectric region, there is also a surface polarization source ρPs = n̂·P
according to (3.15). Separating the volume into regions with bounding surfaces Si across
which the permittivity is discontinuous, we may write

Φ(r) =
1

4πǫ0

∫

V

ρ(r′)

|r− r′| dV
′ +

1

4πǫ0

∫

S

ρs(r
′)

|r− r′| dS
′

+
∑

i

[

1

4πǫ0

∫

Vi

−∇′ ·P(r′)

|r− r′| dV ′ +
1

4πǫ0

∮

Si

n̂′ ·P(r′)

|r− r′| dS′
]

, (3.74)

where n̂ points outward from region i. Using the divergence theorem on the fourth term
and employing (B.48), we obtain

Φ(r) =
1

4πǫ0

∫

V

ρ(r′)

|r− r′| dV
′ +

1

4πǫ0

∫

S

ρs(r
′)

|r− r′| dS
′

+
∑

i

[

1

4πǫ0

∫

Vi

P(r′) · ∇′
(

1

|r− r′|

)

dV ′
]

.

Since ∇′(1/R) = R̂/R2, the third term is a sum of integrals of the form

1

4πǫ

∫

Vi

P(r′) · R̂

R2
dV.

Comparing this to the second term of (3.67), we see that this integral represents a volume
superposition of dipole terms where P is a volume density of dipole moments.
Thus, a dielectric with permittivity ǫ is equivalent to a volume distribution of dipoles

in free space. No higher-order moments are required, and no zero-order moments are
needed, since any net charge is included in ρ. Note that we have arrived at this conclusion
based only on Maxwell’s equations and the assumption of a linear, isotropic relationship
between D and E. Assuming our macroscopic theory is correct, we are tempted to make
assumptions about the behavior of matter on a microscopic level (e.g., atoms exposed to
fields are polarized and their electron clouds are displaced from their positively charged
nuclei), but this area of science is better studied from the viewpoints of particle physics
and quantum mechanics.

3.3.7.2 Potential of an azimuthally symmetric charged spherical surface

In several of our example problems we shall be interested in evaluating the potential of
a charged spherical surface. When the charge is azimuthally symmetric, the potential is
particularly simple.
We will need the value of the integral

F (r) =
1

4π

∫

S

f(θ′)

|r− r′| dS
′ (3.75)
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where r = rr̂ describes an arbitrary observation point and r′ = ar̂′ identifies the source
point on the surface of the sphere of radius a. The integral is most easily done using the
expansion (E.204) for |r− r′|−1 in spherical harmonics. We have

F (r) = a2
∞
∑

n=0

n
∑

m=−n

Ynm(θ, φ)

2n+ 1

rn<
rn+1
>

∫ π

−π

∫ π

0

f(θ′)Y ∗
nm(θ′, φ′) sin θ′ dθ′ dφ′

where r< = min{r, a} and r> = max{r, a}. Using orthogonality of the exponentials, we
find that only the m = 0 terms contribute:

F (r) = 2πa2
∞
∑

n=0

Yn0(θ, φ)

2n+ 1

rn<
rn+1
>

∫ π

0

f(θ′)Y ∗
n0(θ

′, φ′) sin θ′ dθ′.

Finally, since

Yn0 =

√

2n+ 1

4π
Pn(cos θ)

we have

F (r) =
1

2
a2

∞
∑

n=0

Pn(cos θ)
rn<
rn+1
>

∫ π

0

f(θ′)Pn(cos θ
′) sin θ′ dθ′. (3.76)

◮ Example 3.20: Potential integral for f(θ) = cos θ

Compute the integral F (r) in (3.75) for f(θ) = cos θ.

Solution: Note that f(θ) = cos θ = P1(cos θ). Then by (3.76)

F (r) =
1

2
a2

∞
∑

n=0

Pn(cos θ)
rn<
rn+1
>

∫ π

0

P1(cos θ
′)Pn(cos θ

′) sin θ′ dθ′.

The orthogonality of the Legendre polynomials can be used to show that

∫ π

0

P1(cos θ
′)Pn(cos θ

′) sin θ′ dθ′ = 2
3
δ1n,

hence

F (r) =
a2

3
cos θ

r<
r2>
. ◭ (3.77)

3.3.8 Field produced by a permanently polarized body

Certain materials, called electrets, exhibit polarization in the absence of an external
electric field. A permanently polarized material produces an electric field both internal
and external to the material, hence there must be a charge distribution to support the
fields. We can interpret this charge as being caused by the permanent separation of
atomic charge within the material, but if we are only interested in the macroscopic field
then we need not worry about the microscopic implications of such materials. Instead, we
can use the Maxwell–Boffi equations and find the potential produced by the material by
using (3.74). Thus, the field of an electret with known polarization P occupying volume
region V in free space is dipolar in nature and is given by

Φ(r) =
1

4πǫ0

∫

V

−∇′ ·P(r′)

|r− r′| dV ′ +
1

4πǫ0

∮

S

n̂′ ·P(r′)

|r− r′| dS′
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where n̂ points out of the volume region V .

◮ Example 3.21: Potential of a permanently polarized sphere

A material sphere of radius a, is permanently polarized along its axis with uniform polar-
ization P(r) = ẑP0. Compute Φ everywhere.

Solution: We have the equivalent source densities

ρp = −∇ ·P = 0, ρPs = n̂ ·P = r̂ · ẑP0 = P0 cos θ.

Then

Φ(r) =
1

4πǫ0

∮

S

ρPs(r
′)

|r− r′| dS
′ =

1

4πǫ0

∮

S

P0 cos θ
′

|r− r′| dS
′.

The integral takes the form (3.75), hence by (3.77) the solution is

Φ(r) = P0
a2

3ǫ0
cos θ

r<
r2>
. ◭ (3.78)

◮ Example 3.22: Multipole expansion of the potential of a permanently polarized sphere

Consider the potential of the permanently polarized material sphere found in Example 3.21.
Perform a multipole expansion of the potential external to the sphere, and show that it is a
dipole field.

Solution: For r > a we can use the multipole expansion (3.70) to obtain

Φ(r) =
1

4πǫ0

∞
∑

n=0

1

rn+1
qnPn(cos θ) (r > a)

where

qn = 2π

∫ π

0

ρPs(θ
′)anPn(cos θ

′)a2 sin θ′ dθ′.

Substituting for ρPs and remembering that cos θ = P1(cos θ), we have

qn = 2πan+2P0

∫ π

0

P1(cos θ
′)Pn(cos θ

′) sin θ′ dθ′.

Using the orthogonality relation (E.125) we find

qn = 2πan+2P0δ1n
2

2n+ 1
.

Therefore, the only nonzero coefficient is q1 = 4
3
πa3P0, and

Φ(r) =
1

4πǫ0

1

r2
4πa3P0

3
P1(cos θ) =

P0a
3

3ǫ0r2
cos θ (r > a).

This is a dipole field, and matches (3.78) as expected. ◭

3.3.9 Potential of a dipole layer

Surface charge layers sometimes occur in bipolar form, such as in the membrane sur-
rounding an animal cell. These can be modeled as a dipole layer consisting of parallel
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FIGURE 3.13

A dipole layer.

surface charges of opposite sign.
Consider a surface S located in free space as shown in Figure 3.13. Parallel to this

surface, and a distance ∆/2 below, is located a surface charge layer of density ρs(r) =
Ps(r). Also parallel to S, but a distance ∆/2 above, is a surface charge layer of density
ρs(r) = −Ps(r). We define the surface dipole moment density Ds as

Ds(r) = ∆Ps(r).

Letting the position vector r′0 point to the surface S we can write the potential (3.41)
produced by the two charge layers as

Φ(r) =
1

4πǫ0

∫

S+

Ps(r
′)

1

|r− r′0 − n̂′∆
2 |
dS′ − 1

4πǫ0

∫

S−

Ps(r
′)

1

|r− r′0 + n̂′∆
2 |
dS′.

We are interested in the case in which the two charge layers collapse onto the surface S,
and wish to compute the potential produced by a given dipole moment density. When
∆ → 0 we have r′0 → r′ and may write

Φ(r) = lim
∆→0

1

4πǫ0

∫

S

Ds(r
′)

∆

(

1

|R− n̂′∆
2 |

− 1

|R+ n̂′ ∆
2 |

)

dS′,

where R = r − r′. By the binomial theorem, the limit of the parenthetical term can be
written as

lim
∆→0







[

R2 +

(

∆

2

)2

− 2R · n̂′∆

2

]− 1
2

−
[

R2 +

(

∆

2

)2

+ 2R · n̂′∆

2

]− 1
2







= lim
∆→0

{

R−1

[

1 +
R̂ · n̂′

R

∆

2

]

−R−1

[

1− R̂ · n̂′

R

∆

2

]}

= ∆n̂′ · R

R3
.

Thus

Φ(r) =
1

4πǫ0

∫

S

Ds(r
′) · R

R3
dS′ (3.79)

where Ds = n̂Ds is the surface vector dipole moment density. The potential of a dipole
layer decreases more rapidly (∼ 1/r2) than that of a unipolar charge layer. We saw
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FIGURE 3.14

Auxiliary disk for studying the potential distribution across a dipole layer.

similar behavior in the dipole term of the multipole expansion (3.67) for a general charge
distribution.
We can use (3.79) to study the behavior of the potential across a dipole layer. As we

approach the layer from above, the greatest contribution to Φ comes from the charge
region immediately beneath the observation point. Assuming that the surface dipole
moment density is continuous beneath the point, we can compute the difference in the
fields across the layer at point r by replacing the arbitrary surface layer by a disk of
constant surface dipole moment density D0 = Ds(r). For simplicity we center the disk
at z = 0 in the xy-plane as shown in Figure 3.14 and compute the potential difference
∆V across the layer; i.e., ∆V = Φ(h) − Φ(−h) on the disk axis as h → 0. Using (3.79)
along with r′ = ±hẑ− ρ′ρ̂′, we obtain

∆V = lim
h→0

[

1

4πǫ0

∫ 2π

0

∫ a

0

(ẑD0) ·
ẑh− ρ̂

′ρ′

(h2 + ρ′2)3/2
ρ′ dρ′ dφ′

− 1

4πǫ0

∫ 2π

0

∫ a

0

(ẑD0) ·
−ẑh− ρ̂

′ρ′

(h2 + ρ′2)3/2
ρ′ dρ′ dφ′

]

where a is the disk radius. Integration yields

∆V =
D0

2ǫ0
lim
h→0

[

−2
√

1 + (a/h)2
+ 2

]

=
D0

ǫ0
,

independent of a. Generalizing this to an arbitrary surface dipole moment density, we
find that the boundary condition on the potential is given by

Φ2(r)− Φ1(r) =
Ds(r)

ǫ0
(3.80)

where “1” denotes the positive side of the dipole moments and “2” the negative side.
Physically, the potential difference in (3.80) is produced by the line integral of E “inter-
nal” to the dipole layer. Since there is no field internal to a unipolar surface layer, V is
continuous across a surface containing charge ρs but having Ds = 0.
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FIGURE 3.15

A conducting edge.

3.3.10 Behavior of electric charge density near a conducting edge

Sharp corners are often encountered in the application of electrostatics to practical ge-
ometries. The behavior of the charge distribution near these corners must be understood
in order to develop numerical techniques for solving more complicated problems. We can
use a simple model of a corner if we restrict our interest to the region near the edge.
Consider the intersection of two planes as shown in Figure 3.15. The region near the in-
tersection represents the corner we wish to study. We assume that the planes are held at
zero potential and that the charge on the surface is induced by a two-dimensional charge
distribution ρ(r), or by a potential difference between the edge and another conductor
far removed from the edge.

We can find the potential in the region near the edge by solving Laplace’s equation in
cylindrical coordinates. This problem is studied in Appendix A where the separation of
variables solution is found to be either (A.128) or (A.129). Using (A.129) and enforcing
Φ = 0 at both φ = 0 and φ = β, we obtain the null solution. Hence the solution must
take the form (A.128):

Φ(ρ, φ) = [Aφ sin(kφφ) +Bφ cos(kφφ)](aρρ
−kφ + bρρ

kφ).

Since the origin is included, we cannot have negative powers of ρ and must put aρ = 0.
The boundary condition Φ(ρ, 0) = 0 requires Bφ = 0. The condition Φ(ρ, β) = 0 then
requires sin(kφβ) = 0, which holds only if kφ = nπ/β, n = 1, 2, . . .. The general solution
for the potential near the edge is therefore

Φ(ρ, φ) =

N
∑

n=1

An sin

(

nπ

β
φ

)

ρnπ/β

where the constants An depend on the excitation source or system of conductors. (Note
that if the corner is held at potential V0 6= 0, we must merely add V0 to the solution.)
The charge on the conducting surfaces can be computed from the boundary condition
on normal D. Using (3.10) we have

Eφ = −1

ρ

∂

∂φ

N
∑

n=1

An sin

(

nπ

β
φ

)

ρnπ/β = −
N
∑

n=1

An
nπ

β
cos

(

nπ

β
φ

)

ρ(nπ/β)−1,
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hence

ρs(x) = −ǫ
N
∑

n=1

An
nπ

β
x(nπ/β)−1

on the surface at φ = 0. Near the edge, at small values of x, the variation of ρs is dom-
inated by the lowest power of x. (Here we ignore those special excitation arrangements
that produce A1 = 0.) Thus

ρs(x) ∼ x(π/β)−1. (3.81)

The behavior of the charge clearly depends on the wedge angle β. For a sharp edge
(half plane) we put β = 2π and find that the field varies as x−1/2. This square-root edge
singularity is very common on thin plates, fins, etc., and means that charge tends to
accumulate near the edge of a flat conducting surface. For a right-angle corner where
β = 3π/2, there is the somewhat weaker singularity x−1/3. When β = π, the two
surfaces fold out into an infinite plane and the charge, not surprisingly, is invariant with
x to lowest order near the folding line. When β < π the corner becomes interior and we
find that the charge density varies with a positive power of distance from the edge. For
very sharp interior angles the power is large, meaning that little charge accumulates on
the inner surfaces near an interior corner.

3.3.11 Solution to Laplace’s equation for bodies immersed in an im-
pressed field

An important class of problems is based on the idea of placing a body into an existing
electric field, assuming that the field arises from sources so remote that the introduction
of the body does not alter the original field. The pre-existing field is often referred to as
the applied or impressed field, and the solution external to the body is usually formulated
as the sum of the applied field and a secondary or scattered field that satisfies Laplace’s
equation. This total field differs from the applied field, and must satisfy the appropriate
boundary condition on the body. If the body is a conductor then the total potential must
be constant everywhere on the boundary surface. If the body is a solid homogeneous
dielectric then the total potential field must be continuous across the boundary.

◮ Example 3.23: Potential for a dielectric sphere in a uniform electric field

A dielectric sphere of permittivity ǫ and radius a, is centered at the origin in free space and
immersed in a uniform electric field E0(r) = E0 ẑ. Find Φ everywhere.

Solution: By (3.10) the applied potential field is

Φ0(r) = −E0z = −E0r cos θ

(to within a constant). Outside the sphere (r > a) we write the total potential field as

Φ2(r) = Φ0(r) + Φs(r),

where Φs(r) is the secondary or scattered potential. Since Φs must satisfy Laplace’s equation,
we can write it as a separation of variables solution (§ A.5.3). By azimuthal symmetry, the
potential has an r-dependence as in (A.146), and a θ-dependence as in (A.142) with Bθ = 0
and m = 0. Thus Φs has a representation identical to (A.147), except that we cannot use
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terms that are unbounded as r → ∞. We therefore use

Φs(r, θ) =
∞
∑

n=0

Bnr
−(n+1)Pn(cos θ). (3.82)

The potential inside the sphere also obeys Laplace’s equation, so we can use the same form
(A.147) while discarding terms unbounded at the origin. Thus

Φ1(r, θ) =

∞
∑

n=0

Anr
nPn(cos θ) (3.83)

for r < a. To find the constants An and Bn, we apply (3.16) and (3.17) to the total field.
Application of (3.16) at r = a gives

−E0a cos θ +
∞
∑

n=0

Bna
−(n+1)Pn(cos θ) =

∞
∑

n=0

Ana
nPn(cos θ).

Multiplying through by Pm(cos θ) sin θ, integrating from θ = 0 to θ = π, and using the
orthogonality relationship (E.125), we obtain

−E0a+ a−2B1 = A1a, (3.84)

Bna
−(n+1) = Ana

n (n 6= 1), (3.85)

where we have used P1(cos θ) = cos θ. Next, since ρs = 0, Equation (3.17) requires

ǫ1
∂Φ1(r)

∂r
= ǫ2

∂Φ2(r)

∂r

at r = a. This gives

−ǫ0E0 cos θ + ǫ0

∞
∑

n=0

[−(n+ 1)Bn]a
−n−2Pn(cos θ) = ǫ

∞
∑

n=0

[nAn]a
n−1Pn(cos θ).

By orthogonality of the Legendre functions, we have

−ǫ0E0 − 2ǫ0B1a
−3 = ǫA1, (3.86)

−ǫ0(n+ 1)Bna
−n−2 = ǫnAna

n−1 (n 6= 1). (3.87)

Equations (3.85) and (3.87) cannot both hold unless An = Bn = 0 for n 6= 1. Solving (3.84)
and (3.86), we have

A1 = −E0
3ǫ0

ǫ + 2ǫ0
, B1 = E0a

3 ǫ− ǫ0
ǫ+ 2ǫ0

.

Hence

Φ1(r) = −E0
3ǫ0

ǫ+ 2ǫ0
r cos θ = −E0z

3ǫ0
ǫ+ 2ǫ0

, (3.88)

Φ2(r) = −E0r cos θ + E0
a3

r2
ǫ− ǫ0
ǫ+ 2ǫ0

cos θ. ◭ (3.89)

◮ Example 3.24: Electric field for a dielectric sphere in a uniform electric field

Consider the dielectric sphere immersed in a uniform electric field described in Example
3.23. Find E inside the sphere and show that it is uniform and aligned with the applied



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 199 — #223
✐

✐

✐

✐

✐

✐

The static and quasistatic fields 199

field. Is the internal field larger or smaller than the applied field? Explain.

Solution: The electric field inside the sphere is given by

E1(r) = −∇Φ1(r) = ẑ
∂

∂z

(

−E0z
3ǫ0

ǫ+ 2ǫ0

)

= ẑE0
3ǫ0

ǫ + 2ǫ0
.

We see that E1 is constant with position and is aligned with the applied external field
E0 = E0ẑ. However, E1 is weaker than E0, since ǫ > ǫ0. To explain this, we compute the
polarization charge within and on the sphere. Using D = ǫE = ǫ0E+P, we have

P1 = ẑ(ǫ− ǫ0)E0
3ǫ0

ǫ + 2ǫ0
. (3.90)

The volume polarization charge density −∇·P is zero, while the polarization surface charge
density is

ρPs = r̂ ·P = (ǫ− ǫ0)E0
3ǫ0

ǫ+ 2ǫ0
cos θ.

Hence the secondary electric field can be attributed to an induced surface polarization charge,
and is in a direction opposing the applied field. According to the Maxwell–Boffi viewpoint,
we should be able to replace the sphere by the surface polarization charge in free space and
use (3.41) to reproduce (3.88)–(3.89). This is left as an exercise for the reader. ◭

3.4 Magnetostatics

The large-scale forms of the magnetostatic field equations are

∮

Γ

H · dl =
∫

S

J · dS, (3.91)

∮

S

B · dS = 0,

while the point forms are

∇×H(r) = J(r), (3.92)

∇ ·B(r) = 0.

Note the interesting dichotomy between the electrostatic field equations and the magne-
tostatic field equations. Whereas the electrostatic field exhibits zero curl and a divergence
proportional to the source (charge), the magnetostatic field has zero divergence and a
curl proportional to the source (current). Because the vector relationship between the
magnetostatic field and its source is of a more complicated nature than the scalar rela-
tionship between the electrostatic field and its source, more effort is required to develop a
strong understanding of magnetic phenomena. Also, it must always be remembered that
although the equations describing the electrostatic and magnetostatic field sets decou-
ple, the phenomena themselves remain linked. Since current is moving charge, electrical
phenomena are associated with the establishment of the current that supports a magne-
tostatic field. We know, for example, that in order to have current in a wire, an electric
field must be present to drive electrons through the wire.
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3.4.1 Direct solutions to Ampere’s law

In circumstances where current is highly symmetric, Ampere’s law (in either integral
or point form) may be solved directly for the magnetic field. Any of these symmetry
conditions is appropriate:

1. The current is z-directed and depends only on the cylindrical coordinate ρ. Then
H(r) = Hφ(ρ)φ̂.

2. The current is φ-directed and depends only on the cylindrical coordinate ρ. Then
H(r) = Hz(ρ)ẑ.

3. The current is x-directed and depends only on the variable z in rectangular coor-
dinates. Then H(r) = Hy(z)ŷ. Similarly for y or z-directed currents.

To employ the integral form of Ampere’s law, we choose an integration path (Amperian
path) on which the magnetic field is either constant in magnitude and tangential to the
path, or perpendicular to the path (or on which some combination of these conditions
holds). Then the magnetic field may be removed from the integral and determined. For
employment of the law in point form, the volume is separated into regions in each of which
the partial differential equation reduces to an ordinary differential equation, solvable by
direct integration. The solutions are then connected across the adjoining surfaces using
boundary conditions.

◮ Example 3.25: Solution to the integral form of Ampere’s law for a line current

Find H produced by a filamentary wire carrying current I along the z-axis.

Solution: We start with the volume current density

J(r) = ẑ I
δ(ρ)

2πρ
.

Since the current is z-directed and depends only on the cylindrical radius variable ρ, we have
H(r) = Hφ(ρ)φ̂. Choose a circular path Γ of radius ρ0 in the z = 0 plane. Then Ampere’s
law requires

∮

Γ

H · dl =
∫

S

J · dS,

where
∮

Γ

H · dl =
∫ 2π

0

Hφ(ρ0)φ̂ · φ̂ρ0 dφ = 2πρ0Hφ(ρ0)

and the current linked by Γ is

∫

S

J · dS =

∫ 2π

0

∫ ρ0

0

I
δ(ρ)

2πρ
ẑ · ẑρ dρ dφ = I.

Hence, 2πρ0Hφ(ρ0) = I , and we obtain

Hφ(ρ0) =
I

2πρ0
.

Noting that ρ0 is arbitrary, we finally write

H(ρ) = φ̂
I

2πρ
. ◭ (3.93)
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◮ Example 3.26: Solution to the integral form of Ampere’s law for a volume current

A uniform cylindrical beam of charge having radius a carries current I in free space, and is
aligned on the z-axis. Find H everywhere.

Solution: The volume current density of the beam is

J(r) =







ẑ
I

πa2
, ρ ≤ a,

0, ρ > a.

Since J(r) depends only on ρ, we have

H(r) = Hφ(ρ)φ̂.

Take Γ as a circle of radius ρ0 centered in the z = 0 plane. Then

∮

Γ

H · dl =
∫ 2π

0

Hφ(ρ0)φ̂ · φ̂ρ0 dφ = 2πρ0Hφ(ρ0)

and

∫

S

J · dS =















∫ 2π

0

∫ ρ0

0

I

πa2
ρ dρ dφ = I

ρ20
a2
, ρ0 ≤ a,

∫ 2π

0

∫ a

0

I

πa2
ρ dρ dφ = I, ρ0 > a.

In view of the arbitrariness of ρ0, we finally write

H(ρ) =















φ̂
Iρ

2πa2
, ρ ≤ a,

φ̂
I

2πρ
, ρ > a.

(3.94)

At points outside the beam, the form of H matches that for a filamentary wire carrying
current I on the z-axis (Example 3.25). ◭

◮ Example 3.27: Solution to the point form of Ampere’s law for a volume current

Use the point form of Ampere’s law to solve the problem of Example 3.26.

Solution: With H(r) = Hφ(ρ)φ̂ as in Example 3.26, we have

∇×H = ẑ
1

ρ

∂

∂ρ
(ρHφ).

For ρ ≤ a, Ampere’s law yields
1

ρ

∂

∂ρ
(ρHφ) =

I

πa2

and hence by integration

Hφ =
I

2πa2
ρ+

C1

ρ
.

Finiteness of Hφ as ρ→ 0 requires C1 = 0. For ρ > a we have

1

ρ

∂

∂ρ
(ρHφ) = 0,
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hence Hφ = C2/ρ. Continuity of tangential H at ρ = a (§ 3.4.5) requires

I

2πa
=
C2

a

and yields C2 = I/2π. The answer is once again (3.94). ◭

3.4.2 The magnetic scalar potential

Under certain conditions, the equations of magnetostatics have the same form as those
of electrostatics. If J = 0 in a region V , the magnetostatic equations are

∇×H(r) = 0, (3.95)

∇ ·B(r) = 0; (3.96)

compare with (3.1)–(3.2) when ρ = 0. Using (3.95) we can define a magnetic scalar
potential Φm:

H = −∇Φm. (3.97)

The negative sign is chosen for consistency with (3.10). We can then define a magnetic
potential difference between two points as

Vm21 = −
∫ P2

P1

H · dl = −
∫ P2

P1

−∇Φm(r) · dl =
∫ P2

P1

dΦm(r) = Φm(r2)− Φm(r1).

Unlike the electrostatic potential difference, Vm21 is not unique. Consider Figure 3.16,
which shows a plane passing through the cross-section of a wire carrying total current I.
Although there is no current within the region V (external to the wire), Equation (3.91)
still gives

∫

Γ2

H · dl−
∫

Γ3

H · dl = I.

Thus
∫

Γ2

H · dl =
∫

Γ3

H · dl+ I,

and the integral
∫

Γ H · dl is not path-independent. However,
∫

Γ1

H · dl =
∫

Γ2

H · dl

since no current passes through the surface bounded by Γ1 − Γ2. So we can artificially
impose uniqueness by demanding that no path cross a cut such as that indicated by the
line L in the figure.

Because Vm21 is not unique, the field H is nonconservative. In point form this is
shown by the fact that ∇ ×H is not identically zero. We are not too concerned about
energy-related implications of the nonconservative nature of H; the electric point charge
has no magnetic analogue that might fail to conserve potential energy if moved around
in a magnetic field.

Assuming a linear, isotropic region where B(r) = µ(r)H(r), we can substitute (3.97)
into (3.96) and expand to obtain

∇µ(r) · ∇Φm(r) + µ(r)∇2Φm(r) = 0.
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FIGURE 3.16

Magnetic potential.

For a homogeneous medium, this reduces to Laplace’s equation

∇2Φm = 0.

We can also obtain an analogue to Poisson’s equation of electrostatics if we use

B = µ0(H+M) = −µ0∇Φm + µ0M

in (3.96); we have

∇2Φm = −ρM
where

ρM = −∇ ·M

is called the equivalent magnetization charge density. This form can be used to describe
fields of permanent magnets in the absence of J. Comparison with (3.73) shows that ρM
is analogous to the polarization charge ρP .
Since Φm obeys Poisson’s equation, the details regarding uniqueness and the construc-

tion of solutions follow from those of the electrostatic case. If we include the possibility of
a surface density of magnetization charge, then the integral solution for Φm in unbounded
space is

Φm(r) =
1

4π

∫

V

ρM (r′)

|r− r′| dV
′ +

1

4π

∫

S

ρMs(r
′)

|r− r′| dS
′. (3.98)

Here ρMs, the surface density of magnetization charge, is identified as n̂ · M in the
boundary condition (3.121).

3.4.3 The magnetic vector potential

Although the magnetic scalar potential is useful for describing fields of permanent mag-
nets and for solving certain boundary value problems, it does not include the effects of
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source current. A second type of potential function, called the magnetic vector poten-
tial, can be used with complete generality to describe the magnetostatic field. Because
∇ ·B = 0, we can write by (B.55)

B(r) = ∇×A(r) (3.99)

where A is the vector potential. Now A is not determined by (3.99) alone, since the
gradient of any scalar field can be added to A without changing the value of ∇ × A.
Such “gauge transformations” are discussed in Chapter 5, where we find that ∇·A must
also be specified for uniqueness of A.

The vector potential can be used to develop a simple formula for the magnetic flux
passing through an open surface S:

Ψm =

∫

S

B · dS =

∫

S

(∇×A) · dS =

∮

Γ

A · dl, (3.100)

where Γ is the contour bounding S.
In the linear isotropic case where B = µH, we can find a partial differential equation

for A by substituting (3.99) into (3.92). Using (B.49) we have

∇×
[

1

µ(r)
∇×A(r)

]

= J(r),

hence
1

µ(r)
∇× [∇×A(r)]− [∇×A(r)] ×∇

(

1

µ(r)

)

= J(r).

In a homogeneous region, we have

∇× (∇×A) = µJ (3.101)

or

∇(∇ ·A)−∇2A = µJ (3.102)

by (B.53). As mentioned above, we must eventually specify ∇·A. Although the choice is
arbitrary, certain selections make the computation of A both mathematically tractable
and physically meaningful. The “Coulomb gauge condition” ∇ ·A = 0 reduces (3.102)
to

∇2A = −µJ. (3.103)

The vector potential concept can also be applied to the Maxwell–Boffi magnetostatic
equations

∇×B = µ0(J+∇×M), (3.104)

∇ ·B = 0. (3.105)

By (3.105) we may still define A through (3.99). Substituting this into (3.104), we have,
under the Coulomb gauge,

∇2A = −µ0(J+ JM ) (3.106)

where JM = ∇×M is the magnetization current density.
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3.4.3.1 Integral solution for the vector potential

The differential equations (3.103) and (3.106) are vector versions of Poisson’s equation,
and may be solved quite easily for unbounded space by decomposing the vector source
into rectangular components. For instance, dotting (3.103) with x̂ we find that

∇2Ax = −µJx.

This scalar version of Poisson’s equation has solution

Ax(r) =
µ

4π

∫

V

Jx(r
′)

|r− r′| dV
′

in unbounded space. Repeating this for each component and assembling the results, we
obtain the solution for the vector potential in an unbounded homogeneous medium:

A(r) =
µ

4π

∫

V

J(r′)

|r− r′| dV
′. (3.107)

Any surface sources can be easily included through a surface integral:

A(r) =
µ

4π

∫

V

J(r′)

|r− r′| dV
′ +

µ

4π

∫

S

Js(r
′)

|r− r′| dS
′.

In unbounded free space containing materials represented by M, we have

A(r) =
µ0

4π

∫

V

J(r′) + JM (r′)

|r− r′| dV ′ +
µ0

4π

∫

S

Js(r
′) + JMs(r

′)

|r− r′| dV ′ (3.108)

where JMs = −n̂ × M is the surface density of magnetization current as described in
(3.122). It may be verified directly from (3.108) that ∇ ·A = 0.

◮ Example 3.28: Magnetic field of a line current segment

Find B produced by a filamentary wire carrying a current I , extending from −L to L along
the z-axis within a material of permeability µ.

Solution: The volume current density is

J(r) = ẑ I
δ(ρ)

2πρ
.

In cylindrical coordinates, we have r = zẑ+ ρρ̂ and r′ = z′ẑ+ ρ′ρ̂′, so that

|r− r
′| =

√

(z − z′)2 + ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′).

Substitution into (3.107) gives

A(r) = ẑ
µI

4π

∫ L

−L

∫ 2π

0

∫ ∞

0

δ(ρ′)

2πρ′
ρ′ dρ′ dφ′ dz′

√

(z − z′)2 + ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′)

= ẑ
µI

4π

∫ L

−L

[

dz′
√

(z − z′)2 + ρ2

]

∫ 2π

0

dφ′

2π
= ẑ

µI

4π

∫ z+L

z−L

du
√

u2 + ρ2
.

Rather than computing the integral and then taking the curl, we will differentiate under the
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integral sign:

B(r) = ∇×A(r) = −φ̂
∂Az(ρ)

∂ρ
= −φ̂

µI

4π

∫ z+L

z−L

d

dρ

[

du
√

u2 + ρ2

]

= φ̂
µI

4π

∫ z+L

z−L

ρ

(ρ2 + u2)3/2
du.

Integration gives

B(ρ, z) = φ̂
µI

4πρ

[

z + L
√

ρ2 + (z + L)2
− z − L
√

ρ2 + (z − L)2

]

. ◭ (3.109)

◮ Example 3.29: Magnetic field of an infinite line current

Find H produced by an infinitely long filamentary wire carrying a current I along the z-axis
through a material of permeability µ.

Solution: We simply let L→ ∞ in (3.109):

B(r) = lim
L→∞

φ̂
µI

4πρ





z
L
+ 1

√

(

ρ
L

)2
+ ( z

L
+ 1)2

−
z
L
− 1

√

(

ρ
L

)2
+ ( z

L
− 1)2



 = φ̂
µI

2πρ
.

Using B = µH we have (3.93) of Example 3.25. ◭

◮ Example 3.30: Vector potential of a circular loop current

Find A produced by a circular wire loop of radius a carrying a current I , centered in the
z = 0 plane in a material of permeability µ (Figure 3.17).

FIGURE 3.17
Circular loop of wire.

Solution: The volume current density is

J(r′) = Iφ̂
′
δ(z′)δ(ρ′ − a).
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In cylindrical coordinates, we have

r = zẑ+ ρρ̂, r
′ = z′ẑ+ ρ′ρ̂′,

so that
|r− r

′| =
√

(z − z′)2 + ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′).

Substitution into (3.107) gives

A(r) =
µI

4π

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

φ̂
′ δ(z′)δ(ρ′ − a)ρ′ dρ′ dφ′ dz′
√

(z − z′)2 + ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′)

=
µIa

4π

∫ 2π

0

φ̂
′ dφ′

√

z2 + ρ2 + a2 − 2ρa cos(φ− φ′)
.

Since ρ̂ · φ̂′
= sin(φ − φ′), the integrand for Aρ is odd in φ − φ′ and thus Aρ = 0. Using

φ̂ · φ̂′
= cos(φ−φ′) and the change of variable u = φ−φ′ gives the remaining component as

Aφ(r) =
µIa

4π

∫ 2π

0

cosu du
√

z2 + ρ2 + a2 − 2ρa cosu
.

We put the integral into standard form by setting u = π − 2x:

A(r) = −µIa
4π

φ̂

∫ π/2

−π/2

1− 2 sin2 x
[

ρ2 + a2 + z2 + 2aρ(1− 2 sin2 x)
]1/2

2 dx.

Letting

k2 =
4aρ

(a+ ρ)2 + z2
, F 2 = (a+ ρ)2 + z2,

we have

A(r) = −µIa
4π

φ̂
4

F

∫ π/2

0

1− 2 sin2 x

[1− k2 sin2 x]1/2
dx.

Then, since

1− 2 sin2 x

[1− k2 sin2 x]1/2
=
k2 − 2

k2
[1− k2 sin2 x]−1/2 +

2

k2
[1− k2 sin2 x]1/2,

we have

A(r) = φ̂
µI

πk

√

a

ρ

[(

1− 1

2
k2
)

K(k2)− E(k2)

]

. (3.110)

Here

K(k2) =

∫ π/2

0

du

[1− k2 sin2 u]1/2
, E(k2) =

∫ π/2

0

[1− k2 sin2 u]1/2 du,

are complete elliptic integrals of the first and second kinds, respectively. ◭

◮ Example 3.31: Magnetic field of a circular loop current

Find B produced by a circular wire loop of radius a carrying a current I , centered in the
z = 0 plane in a material of permeability µ.

Solution: We have B = ∇×A where A is given by (3.110). From

∇×A = −ρ̂
∂Aφ
∂z

+ ẑ
1

ρ

∂

∂ρ
(ρAφ)
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we find Bφ = 0. The remaining components are found by computing the indicated derivatives
of Aφ. This process is somewhat tedious and is left to the reader as Problem 3.17. The
results,

Bz =
µI

2πF

[

a2 − ρ2 − z2

(a− ρ)2 + z2
E(k2) +K(k2)

]

,

Bρ =
µI

2π

(

z

ρ

)

1

F

[

a2 + ρ2 + z2

(a− ρ)2 + z2
E(k2)−K(k2)

]

,

should be compared with those of Example 3.34. ◭

3.4.3.2 Magnetic field of a small circular current loop

If in Example 3.31 the distance to the observation point is large compared to the size of
the loop, then r2 = ρ2 + z2 ≫ a2 and hence k2 ≪ 1. Using the expansions [41]

K(k2) =
π

2

[

1 +
1

4
k2 +

9

64
k4 + · · ·

]

, E(k2) =
π

2

[

1− 1

4
k2 − 3

64
k4 − · · ·

]

,

in (3.110) and keeping the first nonzero term, we find that

A(r) ≈ φ̂
µI

4πr2
(πa2) sin θ. (3.111)

Defining the magnetic dipole moment of the loop as

m = ẑ Iπa2,

we can write (3.111) as

A(r) =
µ

4π

m× r̂

r2
.

Generalization to an arbitrarily oriented circular loop with center located at r0 is accom-
plished by writing m = n̂IA, where A is the loop area and n̂ is normal to the loop in
the right-hand sense. Then

A(r) =
µ

4π
m× r− r0

|r− r0|3
.

We shall find, upon investigating the general multipole expansion of A below, that this
holds for any planar loop.

The magnetic field of the loop can be found by direct application of (3.99). For the
case r2 ≫ a2, we take the curl of (3.111) and find that

B(r) =
µ

4π

m

r3
(r̂ 2 cos θ + θ̂ sin θ). (3.112)

Comparison with (3.68) shows why we often refer to a small loop as a magnetic dipole.
But (3.112) is approximate, and since there are no magnetic monopoles we cannot con-
struct an exact magnetic analogue to the electric dipole. On the other hand, we shall
find below that the multipole expansion of a finite-extent steady current begins with the
dipole term (since the current must form closed loops). We may regard small loops as
the elemental units of steady current from which all other currents may be constructed.
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3.4.4 Multipole expansion

It is possible to derive a general multipole expansion for A analogous to (3.69). But
the vector nature of A requires that we use vector spherical harmonics, hence the result
is far more complicated than (3.69). A simpler approach yields the first few terms and
requires only the Taylor expansion of 1/R. Consider a steady current localized near the
origin and contained within a sphere of radius rm. We substitute the expansion (3.64)
into (3.107) to obtain

A(r) =
µ

4π

∫

V

J(r′)

[

1

R

∣

∣

∣

∣

r′=0

+ (r′ · ∇′)
1

R

∣

∣

∣

∣

r′=0

+
1

2
(r′ · ∇′)2

1

R

∣

∣

∣

∣

r′=0

+ · · ·
]

dV ′, (3.113)

which we view as
A(r) = A(0)(r) +A(1)(r) +A(2)(r) + · · · .

The first term is merely

A(0)(r) =
µ

4πr

∫

V

J(r′) dV ′ =
µ

4πr

3
∑

i=1

x̂i

∫

V

Ji(r
′) dV ′

where (x, y, z) = (x1, x2, x3). However, by (3.6) each of the integrals is zero and we have

A(0)(r) = 0;

the leading term in the multipole expansion ofA for a general steady current distribution
vanishes.
Using (3.66), we can write the second term as

A(1)(r) =
µ

4πr3

∫

V

J(r′)
3
∑

i=1

xix
′
i dV

′ =
µ

4πr3

3
∑

j=1

x̂j

3
∑

i=1

xi

∫

V

x′iJj(r
′) dV ′. (3.114)

By adding the null relation (3.8) we can write
∫

V

x′iJj dV
′ =

∫

V

x′iJj dV
′ +

∫

V

[x′iJj + x′jJi] dV
′ = 2

∫

V

x′iJj dV
′ +

∫

V

x′jJi dV
′

or
∫

V

x′iJj dV
′ =

1

2

∫

V

[x′iJj − x′jJi] dV
′. (3.115)

By this and (3.114), the second term in the multipole expansion is

A(1)(r) =
µ

4πr3
1

2

∫

V

3
∑

j=1

x̂j

3
∑

i=1

xi[x
′
iJj − x′jJi] dV

′ = − µ

4πr3
1

2

∫

V

r× [r′ × J(r′)] dV ′.

Defining the dipole moment vector

m =
1

2

∫

V

r× J(r) dV (3.116)

we have

A(1)(r) =
µ

4π
m×

(

r̂

r2

)

= − µ

4π
m×∇1

r
. (3.117)

This is the dipole moment potential for the steady current J. Since steady currents of
finite extent consist of loops, the dipole component is generally the first nonzero term
in the expansion of A. Higher-order components may be calculated, but extension of
(3.113) beyond the dipole term is quite tedious and will not be attempted.
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◮ Example 3.32: Dipole moment of a planar loop

Compute the dipole moment of the planar but otherwise arbitrary loop shown in Figure
3.18.

FIGURE 3.18
A planar wire loop.

Solution: Specializing (3.116) for a line current, we have

m =
I

2

∮

Γ

r× dl.

Examining Figure 3.18, we see that 1
2
r×dl = n̂ dS, where dS is the area of the sector swept

out by r as it moves along dl, and n̂ is the normal to the loop in the right-hand sense. Thus

m = n̂IA (3.118)

where A is the area of the loop. ◭

3.4.4.1 Physical interpretation of M in a magnetic material

In (3.108) we presented an expression for the vector potential produced by a magnetized
material in terms of equivalent magnetization surface and volume currents. Suppose
a magnetized medium is separated into volume regions with bounding surfaces across
which the permeability is discontinuous. With JM = ∇ ×M and JMs = −n̂ × M, we
obtain

A(r) =
µ0

4π

∫

V

J(r′)

|r− r′| dV
′ +

µ0

4π

∫

S

Js(r
′)

|r− r′| dS
′

+
∑

i

µ0

4π

[∫

Vi

∇′ ×M(r′)

|r− r′| dV ′ +

∫

Si

−n̂′ ×M(r′)

|r− r′| dS′
]

.
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Here n̂ points outward from region Vi. Using the curl theorem on the fourth term and
employing (B.49), we have

A(r) =
µ0

4π

∫

V

J(r′)

|r− r′| dV
′ +

µ0

4π

∫

S

Js(r
′)

|r− r′| dS
′

+
∑

i

[

µ0

4π

∫

Vi

M(r′)×∇′
(

1

|r− r′|

)

dV ′
]

.

But ∇′(1/R) = R̂/R2, hence the third term is a sum of integrals of the form

µ0

4π

∫

Vi

M(r′)× R̂

R2
dV ′.

Comparison with (3.117) shows that this integral represents a volume superposition of
dipole moments where M is a volume density of magnetic dipole moments. Hence a
magnetic material with permeability µ is equivalent to a volume distribution of magnetic
dipoles in free space. As with our interpretation of the polarization vector in a dielectric,
we base this conclusion only on Maxwell’s equations and the assumption of a linear,
isotropic relationship between B and H.

3.4.5 Boundary conditions for the magnetostatic field

The boundary conditions found for the dynamic magnetic field remain valid in the mag-
netostatic case. Hence

n̂12 × (H1 −H2) = Js (3.119)

and

n̂12 · (B1 −B2) = 0, (3.120)

where n̂12 points into region 1 from region 2. Since the magnetostatic curl and divergence
equations are independent, so are the boundary conditions (3.119) and (3.120). We can
also write (3.120) in terms of equivalent sources by (2.98):

n̂12 · (H1 −H2) = ρMs1 + ρMs2, (3.121)

where ρMs = n̂ ·M is called the equivalent magnetization surface charge density. Here n̂
points outward from the material body.
For a linear, isotropic material described by B = µH, Equation (3.119) becomes

n̂12 ×
(

B1

µ1
− B2

µ2

)

= Js.

With (2.98) we can also write (3.119) as

n̂12 × (B1 −B2) = µ0 (Js + JMs1 + JMs2) (3.122)

where JMs = −n̂×M is the equivalent magnetization surface current density.
We may also write the boundary conditions in terms of the scalar or vector potential.

Using H = −∇Φm, we can write (3.119) as

Φm1(r) = Φm2(r) (3.123)
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provided that the surface current Js = 0. As was the case with (3.16), the possibility of
an additive constant here is generally ignored. To write (3.120) in terms of Φm we first
note that B/µ0 −M = −∇Φm; substitution into (3.120) gives

∂Φm1

∂n
− ∂Φm2

∂n
= −ρMs1 − ρMs2 (3.124)

where the normal derivative is taken in the direction of n̂12. For a linear isotropic material
where B = µH, we have

µ1
∂Φm1

∂n
= µ2

∂Φm2

∂n
. (3.125)

Note that (3.123) and (3.125) are independent.
Boundary conditions on A may be derived using the approach of § 2.8.2. Consider

Figure 2.6. Here the surface may carry either an electric surface current Js or an equiv-
alent magnetization current JMs, and thus may be a surface of discontinuity between
differing magnetic media. If we integrate ∇×A over the volume regions V1 and V2 and
add the results, we find that

∫

V1

∇×A dV +

∫

V2

∇×A dV =

∫

V1+V2

B dV.

By the curl theorem,

∫

S1+S2

n̂×A dS +

∫

S10

−n̂10 ×A1 dS +

∫

S20

−n̂20 ×A2 dS =

∫

V1+V2

B dV,

where A1 is the field on the surface S10 and A2 is the field on S20. As δ → 0, the
surfaces S1 and S2 combine to give S. Also S10 and S20 coincide, as do the normals
n̂10 = −n̂20 = n̂12. Thus

∫

S

(n̂×A) dS −
∫

V

B dV =

∫

S10

n̂12 × (A1 −A2) dS. (3.126)

Now let us integrate over the entire volume region V including the surface of discontinuity.
This gives

∫

S

(n̂×A) dS −
∫

V

B dV = 0,

and for agreement with (3.126) we must have

n̂12 × (A1 −A2) = 0.

A similar development shows that

n̂12 · (A1 −A2) = 0.

Therefore A is continuous across a surface carrying electric or magnetization current.

3.4.6 Uniqueness of the magnetostatic field

Because the uniqueness conditions established for the dynamic field do not apply to mag-
netostatics, we begin with the magnetostatic field equations. Consider a region of space
V bounded by a surface S. There may be source currents and magnetic materials both



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 213 — #237
✐

✐

✐

✐

✐

✐

The static and quasistatic fields 213

inside and outside V . Assume (B1,H1) and (B2,H2) are solutions to the magnetostatic
field equations with source J. We seek conditions under which B1 = B2 and H1 = H2.
The difference field H0 = H2 −H1 obeys ∇×H0 = 0. Using (B.50) we examine the

quantity

∇ · (A0 ×H0) = H0 · (∇×A0)−A0 · (∇×H0) = H0 · (∇×A0)

where A0 is defined by B0 = B2 −B1 = ∇×A0 = ∇× (A2 −A1). Integrating over V
we obtain

∮

S

(A0 ×H0) · dS =

∫

V

H0 · (∇×A0) dV =

∫

V

H0 ·B0 dV.

Then, since (A0 ×H0) · n̂ = −A0 · (n̂×H0), we have

−
∮

S

A0 · (n̂×H0)dS =

∫

V

H0 ·B0 dV. (3.127)

If A0 = 0 or n̂×H0 = 0 everywhere on S, or A0 = 0 on part of S and n̂ ×H0 = 0 on
the remainder, then

∫

V

H0 ·B0 dS = 0. (3.128)

So H0 = 0 or B0 = 0 by arbitrariness of V . Assuming H and B are linked by the
constitutive relations, we have H1 = H2 and B1 = B2. The fields within V are unique
provided that A, the tangential component of H, or some combination of the two, is
specified over the bounding surface S.
One other condition will cause the left-hand side of (3.127) to vanish. If S recedes to

infinity, then, provided that the potential functions vanish sufficiently fast, the condition
(3.128) still holds and uniqueness is guaranteed. Equation (3.107) shows that A ∼ 1/r
as r → ∞, hence B,H ∼ 1/r2. So uniqueness is ensured by the specification of J in
unbounded space.

3.4.6.1 Integral solution for the vector potential

We have used the scalar Green’s theorem to find a solution for the electrostatic potential
within a region V in terms of the source charge in V and the values of the potential and
its normal derivative on the boundary surface S. Analogously, we may find A within V
in terms of the source current in V and the values of A and its derivatives on S. The
vector relationship between B and A complicates the derivation somewhat, requiring
Green’s second identity for vector fields.
Let P and Q be continuous with continuous first and second derivatives throughout

V and on S. The divergence theorem shows that
∫

V

∇ · [P× (∇×Q)] dV =

∫

S

[P× (∇×Q)] · dS.

By virtue of (B.50) we have
∫

V

[(∇×Q) · (∇×P)−P · (∇× {∇×Q})] dV =

∫

S

[P× (∇×Q)] · dS.

We now interchange P and Q and subtract the result from the above, obtaining
∫

V

[Q · (∇× {∇×P})−P · (∇× {∇×Q})] dV

=

∫

S

[P× (∇×Q)−Q× (∇×P)] · dS. (3.129)
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Note that n̂ points outward from V . This is Green’s second identity for vector fields.
Now assume that V contains a magnetic material of uniform permeability µ and set

P = A(r′), Q = c/R,

in (3.129) written in terms of primed coordinates. Here c is a constant vector, nonzero
but otherwise arbitrary. We first examine the volume integral terms. Note that

∇′ × (∇′ ×Q) = ∇′ ×
(

∇′ × c

R

)

= −∇′2
( c

R

)

+∇′
[

∇′ ·
( c

R

)]

.

By (B.59) and (3.38) we have

∇′2
( c

R

)

=
1

R
∇′2c+ c∇′2

(

1

R

)

+ 2

(

∇′ 1

R
· ∇′

)

c = c∇′2
(

1

R

)

= −c4πδ(r− r′),

hence

P · [∇′ × (∇′ ×Q)] = 4πc ·Aδ(r− r′) +A · ∇′
[

∇′ ·
( c

R

)]

.

Since ∇ ·A = 0, the second term on the right-hand side can be rewritten using (B.48):

∇′ · (ψA) = A · (∇′ψ) + ψ∇′ ·A = A · (∇′ψ).

Thus

P · [∇′ × (∇′ ×Q)] = 4πc ·Aδ(r− r′) +∇′ ·
[

A

{

c · ∇′
(

1

R

)}]

,

where we have again used (B.48). The other volume integral term can be found by
substituting from (3.101):

Q · [∇′ × (∇′ ×P)] = µ
1

R
c · J(r′).

Next we investigate the surface integral terms. Consider

n̂′ · [P× (∇′ ×Q)] = n̂′ ·
{

A×
[

∇′ ×
( c

R

)]}

= n̂′ ·
{

A×
[

1

R
∇′ × c− c×∇′

(

1

R

)]}

= −n̂′ ·
{

A×
[

c×∇′
(

1

R

)]}

.

This can be put in slightly different form via (B.8). Note that

(A×B) · (C×D) = A · [B× (C×D)] = (C×D) · (A×B) = C · [D× (A×B)],

hence

n̂′ · [P× (∇′ ×Q)] = −c ·
[

∇′
(

1

R

)

× (n̂′ ×A)

]

.

The other surface term is given by

n̂′ · [Q× (∇′ ×P)] = n̂′ ·
[ c

R
× (∇′ ×A)

]

= n̂′ ·
( c

R
×B

)

= − c

R
· (n̂′ ×B).



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 215 — #239
✐

✐

✐

✐

✐

✐

The static and quasistatic fields 215

We can substitute each of the terms into (3.129) and obtain

µc ·
∫

V

J(r′)

R
dV ′ − 4πc ·

∫

V

A(r′)δ(r − r′) dV ′ − c ·
∮

S

[n̂′ ·A(r′)]∇′
(

1

R

)

dS′

= −c ·
∮

S

∇′
(

1

R

)

× [n̂′ ×A(r′)] dS′ + c ·
∮

S

1

R
n̂′ ×B(r′) dS′.

Since c is arbitrary, we can remove the dot products to obtain a vector equation. Then

A(r) =
µ

4π

∫

V

J(r′)

R
dV ′ − 1

4π

∮

S

{

[n̂′ ×A(r′)]×∇′
(

1

R

)

+
1

R
n̂′ ×B(r′) + [n̂′ ·A(r′)]∇′

(

1

R

)}

dS′. (3.130)

We have expressed A in a closed region in terms of the sources within the region and
the values of A and B on the surface. While uniqueness requires specification of either
A or n̂×B on S, the expression (3.130) includes both quantities. This is similar to (3.36)
for electrostatic fields, which required both the scalar potential and its normal derivative.
The reader may be troubled by the fact that we require P and Q to be somewhat well

behaved, then proceed to involve the singular function c/R and integrate over the singu-
larity. We choose this approach to simplify the presentation; a more rigorous approach
which excludes the singular point with a small sphere also gives (3.130). This approach
was used in § 3.3.5.3 to establish (3.38). The interested reader should see Stratton [183]
for details on the application of this technique to obtain (3.130).
It is interesting to note that as S → ∞, the surface integral vanishes, since A ∼ 1/r

and B ∼ 1/r2, and we recover (3.107). Moreover, (3.130) returns the null result when
evaluated at points outside S (see Stratton [183]). We shall see this again when studying
the integral solutions for electrodynamic fields in § 6.1.3.
Finally, with

Q = ∇′
(

1

R

)

× c

we can find an integral expression for B within an enclosed region, representing a gener-
alization of the Biot–Savart law. However, this case will be covered in the more general
development of § 6.1.1.

3.4.6.2 The Biot–Savart law

We can obtain an expression for B in unbounded space by performing the curl operation
directly on the vector potential:

B(r) = ∇× µ

4π

∫

V

J(r′)

|r− r′| dV
′ =

µ

4π

∫

V

∇× J(r′)

|r− r′| dV
′.

Using (B.49) and ∇× J(r′) = 0, we have

B(r) = − µ

4π

∫

V

J(r′)×∇ 1

|r− r′| dV
′.

The Biot–Savart law

B(r) =
µ

4π

∫

V

J(r′)× R̂

R2
dV ′ (3.131)

follows from (3.37).
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◮ Example 3.33: Magnetic field of an infinite line current from the Biot-Savart law

Find the magnetic field of an infinitely long filamentary wire carrying a current I along the
z-axis through a material of permeability µ.

Solution: The volume current density is

J(r) = ẑ I
δ(ρ)

2πρ
.

In cylindrical coordinates, r = zẑ+ ρρ̂ and r′ = z′ẑ+ ρ′ρ̂′, so that

R = r− r
′ = (z − z′)ẑ+ (ρ cosφ− ρ′ cosφ′)x̂+ (ρ sinφ− ρ′ sinφ′)ŷ,

and
R = |r− r

′| =
√

(z − z′)2 + ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′).

Substitution into (3.131) gives

B(r) =
µI

4π

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

δ(ρ′)

2πρ′
·

· (ρ cos φ− ρ′ cos φ′)ŷ − (ρ sinφ− ρ′ sinφ′)x̂

[(z − z′)2 + ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′)]3/2
ρ′ dρ′ dφ′ dz′

=
µI

4π

∫ ∞

−∞

∫ 2π

0

ρ(ŷ cosφ− x̂ sin φ)

[(z − z′)2 + ρ2]3/2
dφ′

2π
dz′

= φ̂
µIρ

4π

∫ ∞

−∞

du

[u2 + ρ2]3/2

∫ 2π

0

dφ′

2π

= φ̂
µI

2πρ
,

which is identical to the results of Examples 3.25 and 3.29. ◭

We use delta-functions in the example above to represent the line current. Alterna-
tively, we can replace J dV ′ by Idl′ and obtain

B(r) = I
µ

4π

∫

Γ

dl′ × R̂

R2
. (3.132)

For an infinitely long line current on the z-axis, we then have the more direct result

B(r) = I
µ

4π

∞
∫

−∞

ẑ× ẑ(z − z′) + ρ̂ρ

[(z − z′)2 + ρ2]3/2
dz′

= φ̂
µI

2πρ
. (3.133)

◮ Example 3.34: Magnetic field of a circular loop current from the Biot–Savart law

Find B produced by a circular wire loop of radius a carrying a current I , centered in the
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z = 0 plane within a material of permeability µ (Figure 3.17).

Solution: In cylindrical coordinates, r = zẑ+ ρρ̂ and r′ = aρ̂′ so that

R = r− r
′ = zẑ+ (ρ cos φ− a cosφ′)x̂+ (ρ sinφ− a sinφ′)ŷ,

and
R = |r− r

′| =
√

z2 + ρ2 + a2 − 2aρ cos(φ− φ′).

Since dl′ = a dφ′φ̂
′
= a dφ′(−x̂ sinφ′ + ŷ cosφ′), we also have

dl
′ ×R = a dφ′ (−x̂ sinφ′ + ŷ cos φ′)×

[

zẑ+ (ρ cosφ− a cos φ′)x̂+ (ρ sinφ− a sinφ′)ŷ
]

= ρ̂a dφ′z cos(φ− φ′) + φ̂a dφ′z sin(φ− φ′) + ẑa dφ′
[

a− ρ cos(φ− φ′)
]

.

Substitution into (3.132) yields

Bφ =
µI

4π
az

∫ 2

0

π
sin u du

[z2 + ρ2 + a2 − 2aρ cos u]3/2
= 0.

We also have

Bz =
µI

4π
a

∫ 2

0

π
a− ρ cosu du

[z2 + ρ2 + a2 − 2aρ cos u]3/2
,

Bρ =
µI

4π
az

∫ 2

0

π
cos u du

[z2 + ρ2 + a2 − 2aρ cos u]3/2
.

These last two integrals may be converted to standard form via the substitution u = π−2x:

Bz =
µI

2πF

[

a2 − ρ2 − z2

(a− ρ)2 + z2
E(k2) +K(k2)

]

,

Bρ =
µI

2π

(

z

ρ

)

1

F

[

a2 + ρ2 + z2

(a− ρ)2 + z2
E(k2)−K(k2)

]

,

exactly as in Example 3.31. The details are left as Problem 3.17. Here the quantities k and
F are defined in Example 3.30, as are the elliptic integrals E(k2) and K(k2). ◭

◮ Example 3.35: Lower bound on the magnetic field of a filamentary loop current using the
Biot–Savart law

A steady current I flows around a planar filamentary loop C. Assuming the loop is star-

shaped with respect to a given point P inside C (i.e., that every ray leaving P cuts C in a
single point), show that the magnitude of the magnetic field at P satisfies

HP = |H(r = rP )| ≥
I

2

√

π

A

where A is the loop area.

Solution: Without loss of generality we can place the loop in the x-y plane with the origin
of coordinates at the point P (Figure 3.19). Then R = r − r′ = −r′, and the Biot–Savart
law states

H =
1

4π

∮

C

Idl′ ×R

|R|3 .



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 218 — #242
✐

✐

✐

✐

✐

✐

218 Electromagnetics

We note that dl′ ×R = ẑRdl′ sinα and so

HP =
I

4π

∮

C

sinαdl′

R2
.

But since from Figure 3.19 we see that dl′ sinα = Rdφ′,

HP =
I

4π

∫ 2π

0

dφ′

R
.

FIGURE 3.19
A star-shaped filamentary current loop.

To establish the bound on HP we need Hölder’s inequality for integrals, which states that

∫ b

a

f(x)g(x)dx ≤
(
∫ b

a

fp(x) dx

)1/p (∫ b

a

gq(x) dx

)1/q

,

where p > 1 and q is its conjugate exponent satisfying p−1 + q−1 = 1. Setting p = 3/2 and
q = 3, we have

2π =

∫ 2π

0

dφ′ =

∫ 2π

0

(

1

R

)2/3

(R2)1/3 dφ′

≤
(∫ 2π

0

dφ′

R

)2/3 (∫ 2π

0

R2 dφ′

)1/3

≤
(

4πHP

I

)2/3

(2A)1/3,

which yields the result. By invoking the condition for equality in Hölder’s inequality, we can
show that equality holds in the present situation if and only if R is constant: i.e., C is a
circle. ◭



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 219 — #243
✐

✐

✐

✐

✐

✐

The static and quasistatic fields 219

3.4.7 Force and energy

3.4.7.1 Ampere force on a system of currents

If a steady current J(r) occupying a region V is exposed to a magnetic field, the force
on the moving charge is given by the Lorentz force law

dF(r) = J(r) ×B(r). (3.134)

This can be integrated to give the total force on the current distribution:

F =

∫

V

J(r) ×B(r) dV.

It is apparent that the charge flow composing a steady current must be constrained in
some way, or the Lorentz force will accelerate the charge and destroy the steady nature
of the current. This constraint is often provided by a conducting wire.

◮ Example 3.36: Magnetic force on a cylindrical wire

An infinitely long wire of circular cross-section is centered on the z-axis in free space and
carries a current I . Find the force density within the wire and integrate to find the total
force on the wire.

Solution: If current I is uniformly distributed over the cross-section, then the current
density is

J(r) =







ẑ
I

πa2
, ρ ≤ a,

0, ρ > a,

where a is the wire radius. Thus, the magnetic field produced by the wire is identical to the
field produced by the beam of charge in Example 3.26:

B(ρ) =











φ̂
µ0Iρ

2πa2
, ρ ≤ a,

φ̂
µ0I

2πρ
, ρ > a.

(3.135)

The force density within the wire,

dF = J×B = −ρ̂
µ0I

2ρ

2π2a4
,

is directed inward and tends to compress the wire. Volume integration gives zero net force
because

∫ 2π

0
ρ̂ dφ = 0. ◭

◮ Example 3.37: Magnetic force on a split cylindrical wire

The cylindrical wire of Example 3.36 is split in half axially. Find the force on the top half,
described by 0 ≤ φ ≤ π.

Solution: Using ρ̂ = x̂ cos φ+ ŷ sinφ, we obtain

Fx = − µ0I
2

2π2a4

∫

dz

∫ a

0

ρ2 dρ

∫ π

0

cosφ dφ = 0
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and

Fy = − µ0I
2

2π2a4

∫

dz

∫ a

0

ρ2 dρ

∫ π

0

sinφ dφ

= −µ0I
2

3π2a

∫

dz.

The force per unit length

F

l
= −ŷ

µ0I
2

3π2a
(3.136)

is directed toward the bottom half as expected. The force on the bottom half is directed
oppositely by Newton’s third law. ◭

If the wire takes the form of a loop carrying current I, then (3.134) becomes

dF(r) = Idl(r)×B(r) (3.137)

and the total force acting is

F = I

∮

Γ

dl(r) ×B(r).

We can write the force on J in terms of the current producing B. Assuming this latter
current J′ occupies region V ′, the Biot–Savart law (3.131) yields

F =
µ

4π

∫

V

J(r) ×
∫

V ′

J(r′)× r− r′

|r− r′|3 dV
′ dV.

This can be specialized to describe the force between line currents. Assume current 1,
following a path Γ1 along the direction dl, carries current I1, while current 2, following
path Γ2 along the direction dl′, carries current I2. Then the force on current 1 is

F1 = I1I2
µ

4π

∮

Γ1

∮

Γ2

dl×
(

dl′ × r− r′

|r− r′|3
)

.

This equation, known as Ampere’s force law, can be cast in a better form for computa-
tional purposes. We use (B.7) and ∇(1/R) from (3.37):

F1 = I1I2
µ

4π

∮

Γ2

dl′
∮

Γ1

dl · ∇′
(

1

|r− r′|

)

− I1I2
µ

4π

∮

Γ1

∮

Γ2

(dl · dl′) r− r′

|r− r′|3 .

The first term involves an integral of a perfect differential about a closed path, producing
a null result. Thus

F1 = −I1I2
µ

4π

∮

Γ1

∮

Γ2

(dl · dl′) r− r′

|r− r′|3 .

◮ Example 3.38: Force on parallel wires

Find the force between two parallel wires separated by a distance d and carrying currents
I1 and I2 in a medium with permeability µ (Figure 3.20).
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FIGURE 3.20
Parallel current-carrying wires.

Solution: To find the force on wire 1 we set

r = − 1
2
d ẑ+ z ẑ, r

′ = 1
2
d ẑ+ z′ ẑ, dl = ẑ dz, dl

′ = ẑ dz′.

Thus,
r− r

′ = −dx̂+ (z − z′)ẑ, |r− r
′| =

√

d2 + (z − z′)2

and

F1 = −I1I2 µ
4π

∫
[
∫ ∞

−∞

−dx̂+ (z − z′)ẑ

[d2 + (z − z′)2]3/2
dz′
]

dz.

The z-component of the force is

F1z = −I1I2
µ

4π

∫ [∫ ∞

−∞

u

[d2 + u2]3/2
dz′
]

dz = 0

because the integrand is odd. The x-component is

F1x = I1I2
µd

4π

∫ [∫ ∞

−∞

1

[d2 + u2]3/2
du

]

dz

= I1I2
µd

4π

[

u

d2
√
d2 + u2

∣

∣

∣

∣

∞

−∞

]

∫

dz = I1I2
µ

2πd
x̂

∫

dz,

so the force per unit length is
F1

l
= x̂ I1I2

µ

2πd
. (3.138)

The force is attractive if I1I2 ≥ 0 (i.e., if the currents flow in the same direction). ◭

3.4.7.2 Maxwell’s stress tensor

The magnetostatic version of the stress tensor can be obtained from (2.225) by setting
E = D = 0:

T̄m = 1
2 (B ·H)Ī−BH.

The total magnetic force on the current in a region V surrounded by surface S is given
by

Fm = −
∮

S

T̄m · dS =

∫

V

fm dV
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where fm = J×B is the magnetic force volume density.

◮ Example 3.39: Force on parallel wires from Maxwell’s stress tensor

Find the force between two parallel wires separated by a distance d and carrying identical
currents I in a medium with permeability µ. This is the case shown in Figure 3.20 with
I1 = I2 = I .

Solution: The force on the wire at x = −d/2 can be computed by integrating T̄m · n̂ over
the yz-plane with n̂ = x̂. Using (3.133) we see that in this plane the total magnetic field is

B =
µI

2π

−x̂ sin ξ + ŷ cos ξ
√

y2 +
(

d
2

)2
+
µI

2π

−x̂ sin ξ − ŷ cos ξ
√

y2 +
(

d
2

)2
= −x̂

µI

π

sin ξ
√

y2 +
(

d
2

)2

where
sin ξ =

y
√

y2 +
(

d
2

)2
.

Thus,

B = −x̂µ
I

π

y

y2 + d2/4
,

and

T̄m · n̂ =
1

2
Bx

Bx
µ

x̂− x̂Bx
Bx
µ

= −1

2

B2
x

µ
x̂ = −µ0

I2

2π2

y2

[y2 + d2/4]2
x̂.

Upon integration, we obtain

F1 = µ
I2

2π2
x̂

∫

dz

∫ ∞

−∞

y2

[y2 + d2/4]2
dy

= µ
I2

2π2
x̂

∫

dz





1

d
tan−1

(

2y

d

)

− y

2
[

y2 +
(

d
2

)2
]





∣

∣

∣

∣

∣

∞

−∞

= I2
µ

2πd
x̂

∫

dz.

The resulting force per unit length agrees with (3.138) when I1 = I2 = I . ◭

3.4.7.3 Torque in a magnetostatic field

The torque exerted on a current-carrying conductor immersed in a magnetic field plays
an important role in many engineering applications. If a rigid body is exposed to a force
field of volume density dF(r), the torque on that body about a certain origin is given by

T =

∫

V

r× dF dV

where integration is performed over the body and r extends from the origin of torque.
If the force arises from the interaction of a current with a magnetostatic field, then
dF = J×B and

T =

∫

V

r× (J×B) dV.

For a line current, we can replace J dV with Idl to obtain

T = I

∫

Γ

r× (dl×B). (3.139)
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◮ Example 3.40: Torque on a circular loop in a nonuniform magnetic field

A circular loop of radius a is centered in the z = 0 plane in free space, and immersed in a
magnetic field given by B = ŷB0(x/a)

2 in the region of the loop. Find the torque acting on
the loop.

Solution: We have r = aρ and dl = a dφ φ̂ so that by (B.7),

r× (dl×B) = dl(r ·B)−B(r · dl) = dl(r ·B),

since r · dl = 0. Next, note that r ·B = aρ̂ · ŷB0(x/a)
2 = B0a sinφ cos

2 φ. Hence,

r× (dl×B) = φ̂B0a
2 dφ sin φ cos2 φ.

Substitution into (3.139) gives

Tx = −IB0a
2

∫ 2π

0

sin2 φ cos2 φ dφ = − I
4
B0πa

2, (3.140)

Ty = IB0a
2

∫ 2π

0

sinφ cos3 φdφ = 0.

The torque attempts to rotate the loop about the x-axis. ◭

If B is uniform, then by (B.7) we have

T =

∫

V

[J(r ·B)−B(r · J)] dV.

The second term can be written as

∫

V

B(r · J) dV = B
3
∑

i=1

∫

V

xiJi dV = 0

where (x1, x2, x3) = (x, y, z), and where we have employed (3.7). Thus

T =

∫

V

J(r ·B) dV =

3
∑

j=1

x̂j

∫

V

Jj

3
∑

i=1

xiBi dV =

3
∑

i=1

Bi

3
∑

j=1

x̂j

∫

V

Jjxi dV.

We can replace the integral using (3.115) to get

T =
1

2

∫

V

3
∑

j=1

x̂j

3
∑

i=1

Bi[xiJj − xjJi] dV

= −1

2

∫

V

B× (r× J) dV.

Since B is uniform, we have, by (3.116),

T = m×B (3.141)

where m is the dipole moment. For a planar loop, (3.118) yields T = IAn̂×B.
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◮ Example 3.41: Torque on a circular loop in a uniform magnetic field

Modify Example 3.40 for a loop in a uniform magnetic field B = ŷB0.

Solution: We have n̂ = ẑ, so T = IAn̂ ×B = I(πa2)ẑ × ŷB0 = −x̂IB0πa
2. Comparison

with (3.140) shows that the field nonuniformity reduces the torque by a factor of four. ◭

3.4.7.4 Joule’s law

In § 2.9.5 we showed that when a moving charge interacts with an electric field in a
volume region V , energy is transferred between the field and the charge. If the source of
that energy is outside V , the energy is carried into V as an energy flux over the boundary
surface S. The energy balance described by Poynting’s theorem (2.234) also holds for
static fields supported by steady currents: we must simply recognize that we have no
time-rate of change of stored energy. Thus

−
∫

V

J · E dV =

∮

S

(E×H) · dS. (3.142)

The term

P = −
∫

V

J ·E dV (3.143)

describes the rate at which energy is supplied to the fields by the currents within V ; we
have P > 0 if there are sources within V that result in energy transferred to the fields,
and P < 0 if there is energy transferred to the currents. The latter case occurs when
there are conducting materials in V . Within these conductors,

P = −
∫

V

σE · E dV. (3.144)

Here P < 0; energy is transferred from the fields to the currents, and from the currents
into heat (i.e., into lattice vibrations via collisions). Equation (3.144) is called Joule’s
law, and the transfer of energy from the fields into heat is Joule heating. Joule’s law is
the power relationship for a conducting material.

◮ Example 3.42: Power balance for a wire segment

A straight section of conducting wire having circular cross-section of radius a carries a total
current I uniformly distributed over its cross-section. The wire is centered on the z-axis and
extends between the planes z = 0, L. Assume a potential difference V between the ends,
and verify satisfaction of the power balance relation (3.142).

Solution: Using (3.135) we see that at the surface of the wire

H = φ̂
I

2πa
, E = ẑ

V

L
.

The corresponding Poynting flux is

E×H = −ρ̂
IV

2πaL
,

which, since it is −ρ̂ directed, implies that energy flows into wire volume through the curved
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side surface. The total power flowing into the wire is just

∮

S

(E×H) · dS =

∫ 2π

0

∫ L

0

(

−ρ̂
IV

2πaL

)

· ρ̂a dφdz = −IV,

as expected from circuit theory. The density of the power supplied to the fields within the
wire by the current is

J ·E =
IV

πa2L
,

and thus the total power supplied to the fields is

−
∫

V

J · E dV = −
∫ L

0

∫ 2π

0

∫ a

0

IV

πa2L
ρdρ dφdz = −IV,

again as expected from circuit theory. Since the power supplied to the fields equals the flow
of power across the boundary of the wire, the power balance relation (3.142) is verified. ◭

3.4.7.5 Stored magnetic energy

We have shown that the energy stored in a static charge distribution may be regarded as
the “assembly energy” required to bring charges from infinity against the Coulomb force.
By proceeding very slowly with this assembly, we are able to avoid any complications
resulting from the motion of the charges.
Similarly, we may equate the energy stored in a steady current distribution to the en-

ergy required for its assembly from current filaments∗ brought in from infinity. However,
the calculation of assembly energy is more complicated in this case: moving a current
filament into the vicinity of existing filaments changes the total magnetic flux passing
through the existing loops, regardless of how slowly we assemble the filaments. As de-
scribed by Faraday’s law, this change in flux must be associated with an induced emf,
which will tend to change the current flowing in the filament (and any existing filaments)
unless energy is expended to keep the current constant (by the application of a battery
emf in the opposite direction). We therefore regard the assembly energy as consisting
of two parts: (1) the energy required to bring a filament with constant current from
infinity against the Ampere force, and (2) the energy required to keep the current in this
filament, and any existing filaments, constant. We ignore the energy required to keep
the steady current flowing through an isolated loop (i.e., the energy needed to overcome
Joule losses).
We begin by computing the amount of energy required to bring a filament with current

I from infinity to a given position within an applied magnetostatic field B(r). In this
first step we assume that the field is supported by localized sources, hence vanishes at
infinity, and that it will not be altered by the motion of the filament. The force on each
small segment of the filament is given by Ampere’s force law (3.137), and the total force
is found by integration. Suppose an external agent displaces the filament incrementally
from a starting position 1 to an ending position 2 along a vector δr, as shown in Figure
3.21. The work required is

δW = −(Idl×B) · δr = (Idl× δr) ·B

for each segment of the wire. Figure 3.21 shows that dl × δr describes a small patch of
surface area between the starting and ending positions of the filament, hence −(dl×δr)·B

∗Recall that a flux tube of a vector field is bounded by streamlines of the field. A current filament is a
flux tube of current having vanishingly small, but nonzero, cross-section.
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FIGURE 3.21

Calculation of work to move a filamentary loop in an applied magnetic field.

is the outward flux of B through the patch. Integrating over all segments composing the
filament, we obtain

∆W = I

∮

Γ

(dl× δr) ·B = −I
∫

S0

B · dS

for the total work required to displace the entire filament through δr; here the surface S0

is described by the superposition of all patches. If S1 and S2 are the surfaces bounded
by the filament in its initial and final positions, respectively, then S1, S2, and S0 taken
together form a closed surface. The outward flux of B through this surface is

∮

S0+S1+S2

B · dS = 0

so that

∆W = −I
∫

S0

B · dS = I

∫

S1+S2

B · dS

where n̂ is outward from the closed surface. Finally, let Ψ1,2 be the flux of B through
S1,2 in the direction determined by dl and the right-hand rule. Then

∆W = −I(Ψ2 −Ψ1) = −I∆Ψ. (3.145)

Now suppose that the initial position of the filament is at infinity. We bring the filament
into a final position within the field B through a succession of small displacements,
each requiring work (3.145). By superposition over all displacements, the total work is
W = −I(Ψ − Ψ∞), where Ψ∞ and Ψ are the fluxes through the filament in its initial
and final positions, respectively. However, since the source of the field is localized, we
know that B is zero at infinity. Therefore Ψ∞ = 0 and

W = −IΨ = −I
∫

S

B · n̂ dS (3.146)

where n̂ is determined from dl in the right-hand sense.
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Now let us find the work required to position two current filaments in a field-free region
of space, starting with both filaments at infinity. Assume filament 1 carries current I1
and filament 2 carries current I2, and that we hold these currents constant as we move
the filaments into position. We can think of assembling these filaments in two ways: by
placing filament 1 first, or by placing filament 2 first. In either case, placing the first
filament requires no work since (3.146) is zero. The work required to place the second
filament is W1 = −I1Ψ1 if filament 2 is placed first, where Ψ1 is the flux passing through
filament 1 in its final position, caused by the presence of filament 2. If filament 1 is
placed first, the work required is W2 = −I2Ψ2. Since the work cannot depend on which
loop is placed first, we have W1 = W2 = W , where we can use either W = −I1Ψ1 or
W = −I2Ψ2. It is even more convenient, as we shall see, to average these values and use

W = − 1
2 (I1Ψ1 + I2Ψ2) . (3.147)

We must determine the energy required to keep the currents constant as we move the
filaments into position. When moving the first filament into place there is no induced
emf, since no applied field is yet present. However, when moving the second filament
into place we will change the flux linked by both the first and second loops. This change
of flux will induce an emf in each of the loops, and this will change the current. To keep
the current constant we must supply an opposing emf. Let dWemf/dt be the rate of work
required to keep the current constant. Then by (2.128) and (3.143) we have

dWemf

dt
= −

∫

V

J · E dV = −I
∫

E · dl = −I dΨ
dt
.

Integrating, we find the total work ∆W required to keep the current constant in either
loop as the flux through the loop is changed by an amount ∆Ψ:

∆Wemf = I∆Ψ.

So the total work required to keep I1 constant as the loops are moved from infinity (where
the flux is zero) to their final positions is I1Ψ1. Similarly, a total work I2Ψ2 is required
to keep I2 constant during the same process. Adding these to (3.147), the work required
to position the loops, we obtain the complete assembly energy

W = 1
2 (I1Ψ1 + I2Ψ2)

for two filaments. The extension to N filaments is

Wm =
1

2

N
∑

n=1

InΨn. (3.148)

Consequently, the energy of a single current filament is

Wm = 1
2IΨ.

We may interpret this as the “assembly energy” required to bring the single loop into
existence by bringing vanishingly small loops (magnetic dipoles) in from infinity. We
may also interpret it as the energy required to establish the current in this single filament
against the back emf. That is, if we establish I by slowly increasing the current from
zero in N small steps ∆I = I/N , an energy Ψn∆I will be required at each step. Since
Ψn increases proportionally to I, we have

Wm =

N
∑

n=1

I

N

[

(n− 1)
Ψ

N

]
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where Ψ is the flux when the current is fully established. Since
∑N

n=1(n−1) = N(N−1)/2
we obtain

Wm = 1
2IΨ

as N → ∞.
A volume current J can be treated as though it were composed of N current filaments.

Equations (3.100) and (3.148) give

Wm =
1

2

N
∑

n=1

In

∮

Γn

A · dl.

Since the total current is

I =

∫

CS

J · dS =

N
∑

n=1

In

where CS denotes the cross-section of the steady current, we have as N → ∞

Wm =
1

2

∫

V

A · J dV. (3.149)

Alternatively, using (3.107), we may write

Wm =
1

2

∫

V

∫

V

J(r) · J(r′)
|r− r′| dV dV ′.

Note the similarity between (3.149) and (3.61). We now manipulate (3.149) into a
form involving only the electromagnetic fields. By Ampere’s law

Wm =
1

2

∫

V

A · (∇×H) dV.

Using (B.50) and the divergence theorem, we can write

Wm =
1

2

∮

S

(H×A) · dS+
1

2

∫

V

H · (∇×A) dV.

We now let S expand to infinity. This does not change the value of Wm since we do not
enclose any more current; however, since A ∼ 1/r and H ∼ 1/r2, the surface integral
vanishes. Thus, remembering that ∇×A = B, we have

Wm =
1

2

∫

V∞

H ·B dV (3.150)

where V∞ denotes all of space.
Although we do not provide a derivation, (3.150) is also valid within linear materials.

For nonlinear materials, the total energy required to build up a magnetic field from B1

to B2 is

Wm =
1

2

∫

V∞

[

∫

B2

B1

H · dB
]

dV. (3.151)

This accounts for the work required to drive a ferromagnetic material through its hystere-
sis loop. Readers interested in a complete derivation of (3.151) should consult Stratton
[183].
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◮ Example 3.43: Magnetic energy stored between coaxial cylinders

Two thin-walled, coaxial, current-carrying cylinders have radii a, b (b > a). The intervening
region is a linear magnetic material having permeability µ. Assume that the inner and outer
conductors carry total currents I in the ±z directions, respectively. Compute the stored
magnetic energy per unit length.

Solution: From the large-scale form of Ampere’s law we find that

H =











0, ρ ≤ a,

φ̂ I/2πρ, a ≤ ρ ≤ b,

0, ρ > b,

(3.152)

hence by (3.150)

Wm =
1

2

∫

dz

∫ 2π

0

∫ b

a

µI2

(2πρ)2
ρ dρ dφ.

Integration gives the energy value per unit length:

Wm

l
= µ

I2

4π
ln(b/a). ◭ (3.153)

◮ Example 3.44: Magnetic energy stored between and within coaxial cylinders

Consider the coaxial cylinders described in Example 3.43, except that the inner cylinder is
solid and current is spread uniformly throughout. Compute the stored magnetic energy per
unit length.

Solution: The field between the cylinders is still given by (3.152) but within the inner
conductor we have

H = φ̂
Iρ

2πa2

by (3.135). Thus, to (3.153) we must add the energy

Wm,inside

l
=

1

2

∫ 2π

0

∫ a

0

µ0I
2ρ2

(2πa2)2
ρ dρ dφ

= µ0
I2

16π

stored within the solid wire. The result is

Wm

l
= µ0

I2

4π
[µr ln(b/a) +

1
4
]. ◭

3.4.8 Magnetic field of a permanently magnetized body

We now have the tools necessary to compute the magnetic field produced by a permanent
magnet (a body with permanent magnetization M). As an example, we shall find the
field due to a uniformly magnetized ball in three different ways: by computing the vector
potential integral and taking the curl, by computing the scalar potential integral and
taking the gradient, and by finding the scalar potential using separation of variables and
applying the boundary condition across the surface of the sphere.
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◮ Example 3.45: Magnetic field of uniformly magnetized ball by curl of vector potential

Consider a ball of radius a, residing in free space and having permanent magnetization
M(r) =M0ẑ. Find the magnetic field by computing the curl of the vector potential.

Solution: The equivalent magnetization current and charge densities are

JM = ∇×M = 0,

JMs = −n̂×M = −r̂×M0ẑ =M0φ̂ sin θ,

ρM = −∇ ·M = 0,

ρMs = n̂ ·M = r̂ ·M0ẑ =M0 cos θ. (3.154)

The vector potential is produced by the equivalent magnetization surface current. Using
(3.108) we find that

A(r) =
µ0

4π

∫

S

JMs

|r− r′| dS
′ =

µ0

4π

∫ π

−π

∫ π

0

M0φ̂
′
sin θ′

|r− r′| sin θ′ dθ′ dφ′.

Since φ̂
′
= −x̂ sin φ′ + ŷ cos φ′, the rectangular components of A are

{

−Ax
Ay

}

=
µ0

4π

∫ π

−π

∫ π

0

M0
sinφ′

cosφ′ sin θ
′

|r− r′| a2 sin θ′ dθ′ dφ′.

The integrals are most easily computed via the spherical harmonic expansion (E.204) for
the inverse distance |r− r′|−1:

{

−Ax
Ay

}

= µ0M0a
2

∞
∑

n=0

n
∑

m=−n

Ynm(θ, φ)

2n+ 1

rn<
rn+1
>

∫ π

−π

∫ π

0

sinφ′

cos φ′ sin
2 θ′Y ∗

nm(θ′, φ′) dθ′ dφ′.

All the integrals vanish except when n = 1, m = ±1. Since

Y1,−1(θ, φ) =

√

3

8π
sin θe−jφ,

Y1,1(θ, φ) = −
√

3

8π
sin θejφ,

we have
{

−Ax
Ay

}

=µ0M0
a2

3

r<
r2>

3

8π
sin θ

∫ π

0

sin3 θ′ dθ′

·
[

e−jφ
∫ π

−π

sinφ′

cos φ′ e
jφ′

dφ′ + ejφ
∫ π

−π

sinφ′

cos φ′ e
−jφ′

dφ′

]

.

Carrying out the integrals, we find that

{

−Ax
Ay

}

= µ0M0
a2

3

r<
r2>

sin θ

{

sinφ
cosφ

}

or

A = µ0M0
a2

3

r<
r2>

sin θ φ̂.
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Finally, B = ∇×A gives

B =











2µ0M0

3
ẑ, r < a,

µ0M0a
3

3r3
(r̂ 2 cos θ + θ̂ sin θ), r > a.

(3.155)

Within the sphere, B is uniform and in the same direction as M, while outside it has the
form of the magnetic dipole field with moment m = 4

3
πa3M0. ◭

◮ Example 3.46: Magnetic field of uniformly magnetized ball by gradient of scalar potential
found from potential integral

Consider a ball of radius a, residing in free space and having permanent magnetization
M(r) = M0ẑ. Find the magnetic field everywhere by computing the gradient of the scalar
potential found using the potential integral (3.98).

Solution: The equivalent magnetization surface charge density ρMs is given by (3.154).
Substituting into (3.98), we have

Φm(r) =
1

4π

∫

S

ρMs(r
′)

|r− r′| dS
′ =

1

4π

∫ π

−π

∫ π

0

M0 cos θ
′

|r− r′| sin θ′ dθ′ dφ′.

This integral has the form of (3.75) with f(θ) =M0 cos θ. Thus, from (3.77),

Φm(r) =M0
a2

3
cos θ

r<
r2>
. (3.156)

The magnetic field H is then

H = −∇Φm =











−M0

3
ẑ, r < a,

M0a
3

3r3
(r̂ 2 cos θ + θ̂ sin θ), r > a.

Inside the sphere B is given by B = µ0(H+M), while outside it is merely B = µ0H. These
observations lead again to (3.155). ◭

◮ Example 3.47: Magnetic field of uniformly magnetized ball by gradient of scalar potential
found from solution to Laplace’s equation

Consider a ball of radius a, residing in free space and having permanent magnetization
M(r) = M0ẑ. Find the magnetic field everywhere by computing the gradient of the scalar
potential found by solving Laplace’s equation.

Solution: Since the scalar potential obeys Laplace’s equation both inside and outside the
sphere, Φm may be found as the separation of variables solution discussed in § A.5.3. We can
repeat our earlier arguments for the dielectric sphere in an impressed electric field (§ 3.3.11).
Copying Equations (3.82) and (3.83), we can write for r ≤ a

Φm1(r, θ) =
∞
∑

n=0

Anr
nPn(cos θ), (3.157)
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and for r ≥ a

Φm2(r, θ) =
∞
∑

n=0

Bnr
−(n+1)Pn(cos θ). (3.158)

The boundary condition (3.123) at r = a requires that

∞
∑

n=0

Ana
nPn(cos θ) =

∞
∑

n=0

Bna
−(n+1)Pn(cos θ);

upon application of the orthogonality of the Legendre functions, this becomes

Ana
n = Bna

−(n+1). (3.159)

We can write (3.124) as

−∂Φm1

∂r
+
∂Φm2

∂r
= −ρMs

so that at r = a

−
∞
∑

n=0

Anna
n−1Pn(cos θ)−

∞
∑

n=0

Bn(n+ 1)a−(n+2)Pn(cos θ) = −M0 cos θ.

After application of orthogonality, this becomes

A1 + 2B1a
−3 =M0, (3.160)

nan−1An = −(n+ 1)Bna
−(n+2) (n 6= 1). (3.161)

Solving (3.159) and (3.160) simultaneously for n = 1, we find

A1 =
M0

3
, B1 =

M0

3
a3.

We also see that (3.159) and (3.161) are inconsistent unless An = Bn = 0, n 6= 1. Substi-
tuting these results into (3.157) and (3.158), we have

Φm =











M0

3
r cos θ, r ≤ a,

M0

3

a3

r2
cos θ, r ≥ a,

which is (3.156). The gradient operation reproduces (3.155). ◭

3.5 Static field theorems

3.5.1 Mean value theorem of electrostatics

The average value of the electrostatic potential over a sphere is equal to the potential
at the center of the sphere, provided that the sphere encloses no electric charge. To see
this, write

Φ(r) =
1

4πǫ

∫

V

ρ(r′)

R
dV ′ +

1

4π

∮

S

[

−Φ(r′)
R̂

R2
+

∇′Φ(r′)

R

]

· dS′;



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 233 — #257
✐

✐

✐

✐

✐

✐

The static and quasistatic fields 233

FIGURE 3.22

System of conductors used to derive Thomson’s theorem.

put ρ ≡ 0 in V , and use the obvious facts that if S is a sphere centered at point r then
(1) R is constant on S and (2) n̂′ = −R̂:

Φ(r) =
1

4πR2

∮

S

Φ(r′) dS′ − 1

4πR

∮

S

E(r′) · dS′.

The last term vanishes by Gauss’s law, giving the desired result.

3.5.2 Earnshaw’s theorem

It is impossible for a charge to rest in stable equilibrium under the influence of electro-
static forces alone. This is an easy consequence of the mean value theorem of electro-
statics, which precludes the existence of a point where Φ can assume a maximum or a
minimum.

3.5.3 Thomson’s theorem

Static charge on a system of perfect conductors distributes itself so that the electric
stored energy is a minimum. Figure 3.22 shows a system of n conducting bodies held at
potentials Φ1, . . . ,Φn. Suppose the potential field associated with the actual distribution
of charge on these bodies is Φ, giving

We =
ǫ

2

∫

V

E · E dV =
ǫ

2

∫

V

∇Φ · ∇Φ dV

for the actual stored energy. Now assume a slightly different charge distribution, resulting
in a new potential Φ′ = Φ+ δΦ that satisfies the same boundary conditions (i.e., assume
δΦ = 0 on each conducting body). The stored energy associated with this hypothetical
situation is

W ′
e =We + δWe =

ǫ

2

∫

V

∇(Φ + δΦ) · ∇(Φ + δΦ) dV
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so that

δWe = ǫ

∫

V

∇Φ · ∇(δΦ) dV +
ǫ

2

∫

V

|∇(δΦ)|2 dV ;

Thomson’s theorem will be proved if we can show that
∫

V

∇Φ · ∇(δΦ) dV = 0, (3.162)

because then we shall have

δWe =
ǫ

2

∫

V

|∇(δΦ)|2 dV ≥ 0.

To establish (3.162), we use Green’s first identity
∫

V

(∇u · ∇v + u∇2v) dV =

∮

S

u∇v · dS

with u = δΦ and v = Φ:
∫

V

∇Φ · ∇(δΦ) dV =

∮

S

δΦ∇Φ · dS.

Here S is composed of (1) the exterior surfaces Sk (k = 1, . . . , n) of the n bodies, (2)
the surfaces Sc of the “cuts” that are introduced in order to keep V a simply-connected
region (a condition for the validity of Green’s identity), and (3) the sphere S∞ of very
large radius r. Thus

∫

V

∇Φ · ∇(δΦ) dV =

n
∑

k=1

∫

Sk

δΦ∇Φ · dS+

∫

Sc

δΦ∇Φ · dS+

∫

S∞

δΦ∇Φ · dS.

The first term on the right vanishes because δΦ = 0 on each Sk. The second term
vanishes because the contributions from opposite sides of each cut cancel (note that n̂
occurs in pairs that are oppositely directed). The third term vanishes because Φ ∼ 1/r,
∇Φ ∼ 1/r2, and dS ∼ r2 where r → ∞ for points on S∞.

Thomson’s theorem is used to find the voltage across series capacitors in Example 3.49.

3.5.4 Green’s reciprocation theorem

Consider a system of n conducting bodies as in Figure 3.23. An associated mathematical
surface St consists of the exterior surfaces S1, . . . , Sn of the n bodies, taken together with
a surface S that enclosed all of the bodies. Suppose Φ and Φ′ are electrostatic potentials
produced by two distinct distributions of stationary charge over the set of conductors.
Then ∇2Φ = 0 = ∇2Φ′, and Green’s second identity gives

∮

St

(

Φ
∂Φ′

∂n
− Φ′ ∂Φ

∂n

)

dS = 0

or
n
∑

k=1

∫

Sk

Φ
∂Φ′

∂n
dS +

∫

S

Φ
∂Φ′

∂n
dS =

n
∑

k=1

∫

Sk

Φ′ ∂Φ

∂n
dS +

∫

S

Φ′ ∂Φ

∂n
dS.

Now let S be a sphere of very large radius R so that at points on S we have

Φ,Φ′ ∼ 1

R
,

∂Φ

∂n
,
∂Φ′

∂n
∼ 1

R2
, dS ∼ R2;
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FIGURE 3.23

System of conductors used to derive Green’s reciprocation theorem.

then, as R → ∞,
n
∑

k=1

∫

Sk

Φ
∂Φ′

∂n
dS =

n
∑

k=1

∫

Sk

Φ′ ∂Φ

∂n
dS.

Furthermore, the conductors are equipotentials so that

n
∑

k=1

Φk

∫

Sk

∂Φ′

∂n
dS =

n
∑

k=1

Φ′
k

∫

Sk

∂Φ

∂n
dS

and we therefore have
n
∑

k=1

q′kΦk =

n
∑

k=1

qkΦ
′
k (3.163)

where the kth conductor (k = 1, . . . , n) has potential Φk when it carries charge qk, and
has potential Φ′

k when it carries charge q′k. This is Green’s reciprocation theorem.

◮ Example 3.48: Charge induced on a grounded conductor

A total charge q is placed on a conductor, as shown in Figure 3.24, and as a result the
potential of the conductor is V1. Next, the conductor is grounded and a point charge q′p is
placed at the point P . Find the total charge q′ induced on the grounded conductor.

Solution: Consider the two situations shown in Figure 3.24. In the first situation, compute
the potential Vp at point P with the conductor ungrounded. In the second situation, model
the point charge qP near the grounded conductor as a very small conducting body designated
as body 2 and located at point P in space. For the first situation, set q1 = q, q2 = 0, Φ1 = V1,
Φ2 = VP , while for the second, set q′1 = q′, q′2 = q′P , Φ

′
1 = 0, Φ′

2 = V ′
P . Substituting these

into Green’s reciprocation theorem (3.163) specialized to two bodies,

q′1Φ1 + q′2Φ2 = q1Φ
′
1 + q2Φ

′
2,

gives q′V1 + q′PVP = 0 so that

q′ = −q′PVP /V1. (3.164)
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FIGURE 3.24
Application of Green’s reciprocation theorem. (a) The “unprimed” situation. (b) The
“primed” situation. ◭

3.6 Quasistatics

Subsequent chapters are concerned with the solutions to Maxwell’s equations for gen-
erally time-varying fields (including the time harmonic case). Good approximations to
time-varying fields can sometimes be achieved without resorting to complete solutions
of Maxwell’s equations. Important situations arise when the temporal variation of the
field is slow compared to the transit time of the electromagnetic disturbance across an
object. A classic example is AC circuit theory, where elements are said to be lumped
when they are of sizes small compared to the wavelength of the AC signal. A rigor-
ous, electromagnetics-based description of circuit theory is provided in the book by King
[103], which also describes the circumstances under which the radiation properties of
circuit elements may be neglected. The most extensive use of quasistatics is in circuit
theory, but it also finds wide application in other areas, such as induction heating and
eddy current braking.

In this and the following section we provide a short introduction to the topic of qua-
sistatics and its application to shielding. For more extensive coverage of quasistatics,
the interested reader is referred to the book by Haus and Melcher [83]. The two specific
cases of electro-quasistatics and magneto-quasistatics are considered in turn.

3.6.1 Electro-quasistatics

An electromagnetic system is said to be electro-quasistatic (EQS) when it can be suffi-
ciently treated using the point form equations

∇×E(r, t) = 0, (3.165)

∇×H(r, t) = J(r, t) +
∂D(r, t)

∂t
, (3.166)

∇ ·D(r, t) = ρ(r, t), (3.167)

∇ ·B(r, t) = 0, (3.168)

∇ · J(r, t) + ∂ρ(r, t)

∂t
= 0, (3.169)
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or the large-scale equations
∮

Γ

E(r, t) · dl = 0, (3.170)

∮

Γ

H(r, t) · dl =
∫

S

J(r, t) · dS+
d

dt

∫

S

D(r, t) · dS, (3.171)

∮

S

D(r, t) · dS =

∫

V

ρ(r, t) dV, (3.172)

∮

S

B(r, t) · dS = 0, (3.173)

∮

S

J(r, t) · dS = − d

dt

∫

V

ρ(r, t) dV. (3.174)

Of course, the notion of “sufficiently” is subjective and situation dependent. In addition
to these equations we also have the Lorentz force equation

fem(r, t) = ρE(r, t) + J×B(r, t),

and, for linear, isotropic, nondispersive materials, the constitutive relations

D(r, t) = ǫ(r)E(r, t),

J(r, t) = σ(r)E(r, t).

We can also express the equations for EQS systems in the frequency or phasor domains.
(See Chapter 4 for detailed discussion of these domains.) In the frequency domain,
(3.165)–(3.169) become

∇× Ẽ(r, ω) = 0,

∇× H̃(r, ω) = J̃(r, ω) + jωD̃(r, ω),

∇ · D̃(r, ω) = ρ̃(r, ω),

∇ · B̃(r, ω) = 0,

∇ · J̃(r, ω) + jωρ̃(r, ω) = 0,

while (3.170)–(3.174) become
∮

Γ

Ẽ(r, ω) · dl = 0,

∮

Γ

H̃(r, ω) · dl =
∫

S

J̃(r, ω) · dS+ jω

∫

S

D̃(r, ω) · dS,
∮

S

D̃(r, ω) · dS =

∫

V

ρ̃(r, ω) dV,

∮

S

B̃(r, ω) · dS = 0,

∮

S

J̃(r, ω) · dS = −jω
∫

V

ρ̃(r, ω) dV.

3.6.1.1 Characteristics of an EQS system

The primary characteristic of an EQS system is that the electric field is the predominant
descriptor of system behavior. The magnetic field, while secondary, is important to
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understand energy transfer. Several other characteristics of an EQS system may be
identified:

1. field interactions leading to wave phenomena are assumed insignificant;

2. a unique potential difference is defined between any two points in space;

3. capacitive effects dominate inductive effects, and the latter may be ignored;

4. stored electric energy is much greater than stored magnetic energy, and the latter
may be ignored.

The first characteristic is evident from the absence of the magnetic flux term in Fara-
day’s law. Without the link between the curl ofE and magnetic flux, wave phenomena are
not possible. This allows the separation of space and time dependence of the dominant
electric field:

E(r, t) = fE(t)E(r). (3.175)

In the frequency domain, the analogous separation is with space and frequency:

Ẽ(r, ω) = f̃E(ω)E(r).

The magnetic field is secondary and dependent on the electric field through (3.166). As
such, its time dependence is dictated both by the electric field and the current density.
For example, in a conductor where J(r, t) = σE(r, t), the magnetic field will have terms
dependent both on the electric field waveform (through the current) and on its derivative
(through the displacement current).

The second characteristic follows from (3.165), which says that E(r, t) may be com-
pletely specified using a potential function:

E(r, t) = −∇Φ(r, t).

Since E and Φ are related through a spatial derivative, we can also write Φ(r, t) =
fE(t)Φ(r) with

E(r) = −∇Φ(r). (3.176)

This allows the specification of a unique potential difference between two points as

V (t) = −
∫ b

a

E(r, t) · dl = fE(t)

[

−
∫ b

a

E(r) · dl
]

.

Since ∇ · D(r, t) = ρ(r, t) by (3.167), ρ(r, t) = fE(t)ρ(r), and taking the divergence of
(3.176) we find that for a homogeneous medium Φ(r) satisfies Poisson’s equation

∇2Φ(r) = −ρ(r)
ǫ
,

or, in a source-free region, Laplace’s equation

∇2Φ(r) = 0.

We also find that a perfect electric conductor must present an equipotential surface, and
that the boundary conditions on E and D are those for the electrostatic field. Since the
electric field and potential obey the same spatial relationships as in electrostatics, many
of the calculations under the EQS assumptions are no more difficult than in electrostatics.
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This also allows the introduction of capacitance and resistance for EQS systems, as shown
below.
The third characteristic is evident from the absence of the magnetic flux term

∫

S
B ·dS

in Faraday’s law, which precludes the description of inductive effects. In contrast, the
presence of displacement current in Ampere’s law allows for the description of capacitive
effects. Capacitance is discussed in detail below.
The fourth characteristic is evident in Poynting’s theorem. To establish Poynting’s

theorem for EQS, begin with the formula for electromagnetic energy density (2.229)

wem = J · E.

Substitution of J from (3.166) gives wem = (∇×H) · E− ∂D
∂t · E and thus

wem = −∇ · (E×H) +H · (∇×E)− ∂D

∂t
·E

by (B.50). Substituting ∇×E = 0 from (3.165), we have

wem = −∇ · (E×H)−E · ∂D
∂t

.

For a linear, isotropic, nondispersive medium, we have

E · ∂D
∂t

= ǫE · ∂E
∂t

=
1

2
ǫ
∂

∂t
(E ·E) =

1

2

∂

∂t
(D · E),

giving

∇ · Sem +
∂

∂t
Wem = −J · E

where
Wem = 1

2D ·E
and

Sem = E×H.

Integration over a volume and use of the divergence theorem gives the large-scale form
of Poynting’s theorem for EQS systems:

−
∫

V

J · E dV =

∫

V

1

2

∂

∂t
(D ·E) dV +

∮

S

(E×H) · dS. (3.177)

Note that compared to the general form of Poynting’s theorem (2.234), the stored mag-
netic energy term is missing. However, the interpretation of Poynting’s vector Sem as
the density of electromagnetic energy flow remains.

3.6.1.2 Capacitance and resistance

Two important concepts in electro-quasistatics are capacitance and resistance. Consider
the two perfectly conducting bodies shown in Figure 3.25. They are immersed in a
uniform, isotropic, nondispersive medium of permittivity ǫ and conductivity σ. A voltage
V0(t) is applied between the bodies such that conductor A receives a positive charge Q(t)
and conductor B receives a negative charge −Q(t). Under the EQS assumption, the
conductors are equipotentials, and the voltage V0(t) is given by the line integral of the
electric field between any point on conductor A and any point on conductor B :

V0(t) = −
∫ A

B

E(r, t) · dl.
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FIGURE 3.25

A two-body system.

The charge induced on A may be found by using the boundary condition (2.166). The
surface charge density is

ρs(r, t) = n ·D(r, t) = ǫn ·E(r, t),

hence the total charge is

Q(t) =

∫

SA

ǫn · E(r, t) dS.

The capacitance is then defined as

C =
Q(t)

V0(t)
=

∫

SA
ǫn · E(r, t) dS

−
∫ A

B E(r, t) · dl
=

∫

SA
ǫn · E(r) dS

−
∫A

B E(r) · dl
. (3.178)

Since the electric field may be written as the product shown in (3.175), the capacitance
is time-independent. We can easily find the stored electric energy in terms of capacitance
using (3.62). Substituting Q(t) = CV0(t), we have

W (t) =
1

2
Q(t)V0(t) =

1

2
CV 2

0 (t). (3.179)

◮ Example 3.49: Voltage distribution across capacitors connected in series

A dc voltage source of value Vs is connected in series with two initially uncharged capacitors
C1 and C2 as shown in Figure 3.26. Use the minimum property of electrostatic energy
(Thomson’s theorem) to determine how the source voltage divides across the individual
capacitors. Also find the individual stored energy and charge values.
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C2

C1

V
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+

-

FIGURE 3.26
Two capacitors in series with a voltage source.

Solution: Using (3.179), the electric stored energy is given by

W (V ) =W1(V ) +W2(V ) = 1
2
C1(Vs − V )2 + 1

2
C2V

2.

The necessary condition for an extremum, W ′(V ) = 0, yields the value

V = V =
C1

C1 +C2
Vs.

This value gives

W1(V) = 1

2

C1C
2
2

(C1 + C2)2
V 2
s , W2(V) = 1

2

C2
1C2

(C1 + C2)2
V 2
s ,

and

W (V) =W1(V) +W2(V) = 1

2

C1C2

C1 + C2
V 2
s = 1

2
CeV

2
s

where

Ce =
C1C2

C1 + C2
.

Use of the relation Q = CV gives Q1 = Q2 = CeVs = Qe. To see that V minimizes W (V ),
we can write

W (V + δ) = 1
2
C1

[

Vs −
(

C1

C1 + C2
Vs + δ

)]2

+ 1
2
C2

[

C1

C1 + C2
Vs + δ

]2

= 1
2
CeV

2
s + 1

2
(C1 + C2)δ

2

and see that
W (V + δ)−W (V) = 1

2
(C1 +C2)δ

2 ≥ 0

for any real value of δ. Additional problems may be found in [71]. ◭

The capacitance concept may be introduced using electrostatic fields and defined using
(3.178), but its usefulness is not evident until electro-quasistatics is considered. Since we
retain the displacement current term in Ampere’s law (3.166) we can compute the total
displacement current flowing from conductor A to conductor B as

Id(t) =

∫

SA

∂D(r, t)

∂t
· n dS.

Assuming SA is stationary,

Id(t) =
d

dt

∫

SA

D · n dS =
dQ(t)

dt
= C

dV0(t)

dt
.
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This expression may be used to describe the behavior of circuits containing bulk capaci-
tive elements (capacitors). A system of conductors is considered in Problem 3.22.

To determine the resistance of the EQS system, the current passing from conductor A
to conductor B is computed:

I(t) =

∫

SA

σE(r, t) · n dS.

Resistance is then defined as

R =
V0(t)

I(t)
=

−
∫A

B E(r, t) · dl
∫

SA
σE(r, t) · n dS =

−
∫ A

B E(r) · dl
∫

SA
σE(r) · n dS . (3.180)

Since the electric field may be written as the product shown in (3.175), the resistance
is independent of time. Note that when (3.180) is multiplied by (3.178) we get the
interesting relationship

RC = ǫ/σ. (3.181)

◮ Example 3.50: Electro-quasistatic analysis of a resistive capacitor

A resistive capacitor consists of a cylinder of material with uniform permittivity ǫ and
uniform conductivity σ. Circular perfectly conducting plates are attached to the top and
bottom of the cylinder (Figure 3.27). A voltage V0(t) is applied across the plates. Find the
electric and magnetic fields in the resistor using EQS analysis. Neglect fringing. Investigate
the system power balance and identify the capacitance and resistance of the system.
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FIGURE 3.27
A resistive capacitor.
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Solution: Here we treat the device as a lumped element by employing electro-quasistatics.
Using symmetry and neglecting fringing, we expect that

E(r, t) = ẑEz(ρ, z, t).

However, since there is no free charge, Gauss’s law implies ∂Ez/∂z = 0 and thus Ez is
independent of z. Also, since the conductors are equipotential surfaces,

V0(t) = −
∫ L

0

Ez(ρ, t) dz = −Ez(ρ, t)L,

and thus Ez must be independent of ρ, and

Ez(t) = −V0(t)

L
.

To find H, examine Ampere’s law (3.166). Since J and D are z-directed and spatially
constant within the resistor, we must have H(r, t) = φ̂Hφ(ρ, t) and

∇×H = ẑ
1

ρ

∂(ρHφ)

∂ρ
= ẑσEz + ẑ ǫ

∂Ez
∂t

= −ẑ
σ

L
V0(t)− ẑ

ǫ

L

dV0(t)

dt
.

Integration over ρ gives

Hφ(ρ, t) = −ρ
2

σ

L
V0(t)− ρ

2

ǫ

L

dV0(t)

dt
.

Note the presence of terms with time variation proportional to both the electric field and to
its derivative.

The charge density on the top (positively charged) plate is, by the boundary condition
(2.166),

ρs(t) = −ẑ ·
(

−ẑ ǫ
V0(t)

L

)

= ǫ
V0(t)

L
,

hence the total charge is

Q(t) =

∫

S

ρs(t) dS = ǫA
V0(t)

L

where A = πa2 is the plate area. With this, the capacitance is

C =
Q(t)

V0(t)
= ǫ

A

L
.

The current density within the material is J(t) = σE(t) so that the total current flowing in
the resistor is

I(t) =

∫

S

J(t) · n̂ dS = Aσ
V0(t)

L
.

The resistance is then

R =
V0(t)

I(t)
=

L

σA
. (3.182)

Note that RC = ǫ/σ as in (3.181).
Finally, we examine the terms in Poynting’s theorem (3.177). Write the power balance as

−
∮

S

(E×H) · dS =

∫

V

J ·E dV +

∫

V

1

2

∂

∂t
(D ·E) dV

or
Pin = PR + PW ,
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which states that the power entering the system is transferred to power dissipated in the
resistor plus power in the time-rate of change of stored electric energy. The instantaneous
power dissipated in the resistor is

PR(t) =

∫

V

J(t) · E(t) dV =

∫

V

σ|Ez(t)|2 dV

= σLA

(

V0(t)

L

)2

=
V 2
0 (t)
(

L
σA

) =
V 2
0 (t)

R
.

The time-rate of change of stored energy is

PW (t) =

∫

V

1

2

∂

∂t
(D · E) dV =

∫

V

1

2

∂

∂t
ǫ|Ez(t)|2 dV =

1

2

∫

V

d

dt
ǫ

(

V0(t)

L

)2

dV

= ǫA
V0(t)

L

dV0(t)

dt
= V0(t)

[

C
dV0(t)

dt

]

.

The sum of these powers is

PR(t) + PW (t) =
V 2
0 (t)

R
+ V0(t)

[

C
dV0(t)

dt

]

. (3.183)

Finally, the Poynting vector at the outer surface of the resistor is given by

E(t)×H(ρ, t)
∣

∣

ρ=a
= −V0(t)

L

[

−a
2

σ

L
V0(t)−

a

2

ǫ

L

dV0(t)

dt

]

(ẑ× φ̂)

= −
[

σa

2L2
V 2
0 (t) +

ǫa

2L

V0(t)

L

dV0(t)

dt

]

ρ̂,

and thus the power enters the resistor radially from the outside. The power entering the
system is therefore

Pin(t) =

∮

S

(E×H) · dS = −2πaL

[

σa

2L2
V 2
0 (t) +

ǫa

2L

V0(t)

L

dV0(t)

dt

]

ρ̂ · (−ρ̂)

=
V 2
0 (t)

R
+ V0(t)

[

C
dV0(t)

dt

]

,

which balances with (3.183). ◭

3.6.2 Magneto-quasistatics

An electromagnetic system is said to be magneto-quasistatic (MQS) when it can be
analyzed to good accuracy using the point forms

∇×E(r, t) = −∂B(r, t)

∂t
, (3.184)

∇×H(r, t) = J(r, t), (3.185)

∇ ·D(r, t) = ρ(r, t), (3.186)

∇ ·B(r, t) = 0, (3.187)

∇ · J(r, t) = 0, (3.188)
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or the integral forms

∮

Γ

E(r, t) · dl = − d

dt

∫

S

B(r, t) · dS, (3.189)

∮

Γ

H(r, t) · dl =
∫

S

J(r, t) · dS, (3.190)

∮

S

D(r, t) · dS =

∫

V

ρ(r, t) dV, (3.191)

∮

S

B(r, t) · dS = 0, (3.192)

∮

S

J(r, t) · dS = 0. (3.193)

In addition, we have the Lorentz force equation

fem(r, t) = ρE(r, t) + J×B(r, t),

and, for linear, isotropic, nondispersive materials, the constitutive relations

D(r, t) = ǫ(r)E(r, t),

J(r, t) = σ(r)E(r, t).

The frequency domain counterparts to (3.184)–(3.188) are

∇× Ẽ(r, ω) = −jωB̃(r, ω), (3.194)

∇× H̃(r, ω) = J̃(r, ω), (3.195)

∇ · D̃(r, ω) = ρ̃(r, ω), (3.196)

∇ · B̃(r, ω) = 0, (3.197)

∇ · J̃(r, ω) = 0. (3.198)

and the counterparts to (3.189)–(3.193) are

∮

Γ

Ẽ(r, ω) · dl = −jω
∫

S

B̃(r, ω) · dS,
∮

Γ

H̃(r, ω) · dl =
∫

S

J̃(r, ω) · dS,
∮

S

D̃(r, ω) · dS =

∫

V

ρ̃(r, ω) dV,

∮

S

B̃(r, ω) · dS = 0,

∮

S

J̃(r, ω) · dS = 0.
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Some qualitative characteristics of MQS systems are as follows:

1. there is no time-rate of change of charge density and thus all currents are steady;

2. inductive effects dominate over capacitive effects, and the latter may be ignored;

3. stored magnetic energy is much greater than stored electric energy, and the latter
may be ignored.

The first of these characteristics follows from (3.188). In a homogeneous conducting
material where J(r, t) = σE(r, t) and D(r, t) = ǫE(r, t), the condition of a steady current
requires

∇ · J(r, t) = 0 = σ∇ · E(r, t) =
σ

ǫ
∇ ·D(r, t),

and thus ρ(r, t) = 0. The second characteristic is evident by the absence of the displace-
ment current term in (3.185). In contrast, the presence of the magnetic flux term in
Faraday’s law (3.184) allows for inductive effects. The third characteristic is evident in
Poynting’s theorem. To establish Poynting’s theorem for MQS, begin with the formula
for electromagnetic energy density (2.229)

wem = J ·E.

Substitution of J from (3.185) gives wem = (∇×H) · E and thus

wem = −∇ · (E×H) +H · (∇×E)

by (B.50). Substituting ∇×E = −∂B/∂t from (3.184), we have

wem = −∇ · (E×H)−
(

H · ∂B
∂t

)

.

For a linear, isotropic, nondispersive medium, we have

H · ∂B
∂t

= µH · ∂H
∂t

=
1

2
µ
∂

∂t
(H ·H) =

1

2

∂

∂t
(B ·H),

giving

∇ · Sem +
∂

∂t
Wem = −J ·E

where
Wem = 1

2B ·H
and

Sem = E×H.

Integration over a volume and use of the divergence theorem gives the large-scale form
of Poynting’s theorem for MQS systems:

−
∫

V

J · E dV =

∫

V

1

2

∂

∂t
(B ·H) dV +

∮

S

(E×H) · dS.

Note that in comparison with the general form of Poynting’s theorem (2.234), the stored
electric energy term is missing. However, the interpretation of the Poynting vector Sem
as the density of electromagnetic energy flow remains.
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3.6.2.1 Magnetic potentials for MQS systems

By the magnetic source law (3.187) we can write the MQS field in terms of a vector
potential A(r, t) as

B(r, t) = ∇×A(r, t).

Easily calculated is the magnetic flux passing through an open surface:

Ψm(t) =

∫

S

B(r, t) · dS =

∫

S

[∇×A(r, t)] · dS =

∮

Γ

A(r, t) · dl. (3.199)

In a homogeneous isotropic material where B(r, t) = µH(r, t), Ampere’s law (3.185)
requires

∇× [∇×A(r, t)] = µJ(r, t).

Expanding the curl–curl operator and assuming the Coulomb gauge condition∇·A(r, t) =
0, we get a differential equation for A:

∇2A(r, t) = −µJ(r, t).

In a source-free region of space, we have by Ampere’s law (3.185)

∇×H(r, t) = 0,

and thus we may write the magnetic field in terms of a scalar potential function as

H(r, t) = −∇Φm(r, t).

In a homogeneous isotropic region where B(r, t) = µH(r, t), the magnetic source law
(3.187) requires

∇ ·B(r, t) = −µ∇ · [∇Φm(r, t)] = 0

and so Φm obeys Laplace’s equation:

∇2Φm(r, t) = 0.

3.6.2.2 Fields in nonconducting media and inductance

For currents in free space, or in nonconducting materials, the interpretation of MQS is
similar to EQS. The spatial and temporal dependences of the magnetic field separate and
the spatial dependence obeys the magnetostatic field equations. The situation is much
different in conductors, where the presence of a strong time-changing magnetic flux den-
sity (∂B/∂t) induces eddy currents, which are associated with Joule heating (particularly
in transformer cores). These currents reside near the surface of the conductor in what is
termed the skin effect region. This is discussed further below.
In nonconducting media the time and spatial dependencies of the current and magnetic

field are multiplicative:

H(r, t) = fH(t)H(r), J(r, t) = fH(t)J(r). (3.200)

Thus, Ampere’s law relates the spatial dependence of the fields through

∇×H(r) = J(r).

In a nondispersive medium where B(r, t) = µH(r, t), the time and spatial dependences
of the magnetic flux density also separate:

B(r, t) = fH(t)µH(r) = fH(t)B(r).
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FIGURE 3.28

A wire coil with a gap.

The magnetic vector and scalar potentials separate similarly as

A(r, t) = fH(t)A(r)

and

Φm(r, t) = fH(t)Φm(r).

This means the spatial dependencies of the fields are related to those of the potentials as

B(r) = ∇×A(r), H(r) = −∇Φm(r),

and therefore obey the same relationships as the magnetostatic fields (e.g., the Biot-
Savart law).

Through Faraday’s law (3.189) we have the electromotive force (circulation of E) as

emf (t) =

∮

Γ

E(r, t) · dl = −dΨm(t)
dt

where

Ψm(t) =

∫

S

B(r, t) · dS = fH(t)

∫

S

B(r) · dS

is the magnetic flux. Of particular importance is when the circulation is taken around a
coil with a gap, as shown in Figure 3.28. The coil consists of N closely wound turns of
perfectly conducting wire. Since the tangential component of E(r, t) vanishes everywhere
along the integration path except in the gap, the entire contribution is given by this “gap
voltage” as

V (t) = −
∫ a

b

E(r, t) · dl = − d

dt

∫

SC

B(r, t) · dS,

where SC is the surface bounded by the coil windings. Care is required to compute the
flux. Since the surface SC is folded back on itself N times, the total flux will be N times
that through one turn of the coil, which is assumed to bound a shared surface S. It is
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Coupled coils.

therefore helpful to define the flux linkage Λ as the total flux “linked” by the current as
it traverses its path. Then

Λ(t) = N

∫

S

B(r, t) · dS = NfH(t)

∫

S

B(r) · dS,

and

V (t) = −dΛ(t)
dt

. (3.201)

Although flux linkage is easily defined in the case of current-carrying wire coils in free
space, the concept is a bit trickier when the current is volume distributed (e.g., within a
thick wire). We shall consider this when treating the internal inductance of a wire below.
The gap voltage (3.201) can be related to the current creating the magnetic flux density

through a quantity called inductance. Consider two tightly wound coils of wire immersed
in a nonconducting medium (Figure 3.29). The first coil has N1 turns and carries steady
current I1(t) = IfH(t), while the second has N2 turns with a gap. The first coil creates a
magnetic flux density B1(r, t) = µH1(r, t) by Ampere’s law. Since the time dependence
separates as in (3.200), the flux linked by the second coil is given by (3.199):

Λ2(t) = fH(t)

∮

Γc2

A1(r) · dl2 = N2fH(t)

∮

Γ2

A1(r) · dl2,

where Γc2 is the contour following all N2 turns of coil 2 and Γ2 follows one of the closely
spaced turns of the coil. Furthermore, since the spatial dependence of the vector potential
produced by coil 1 satisfies the magnetostatic field relations, it can be computed using
(3.107) as

A1(r) =
µ

4π

∮

ΓC1

I1dl
′
1

|r− r′1|
.

Here ΓC1 is the contour following all N1 turns of coil 1. Since the turns of the coil are
closely spaced, the vector potential can also be written as

A1(r) = N1
µ

4π

∮

Γ1

I1dl
′
1

|r− r′1|
,
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where Γ1 bounds one of the closely-spaced turns. It is thus helpful to define the flux
linked by coil 2 to include the effects of both N1 and N2 as

Λ2(t) = N1N2fH(t)
µ

4π

∮

Γ2

∮

Γ1

I1
|r2 − r′1|

dl′1 · dl2. (3.202)

Finally, the mutual inductance between the coils is defined as

L21 =
Λ2(t)

I1(t)
, (3.203)

such that the voltage appearing at the gap of coil 2 is

V2(t) = L21
dI1(t)

dt
.

Substitution of (3.202) into (3.203) gives

L21 = N1N2
µ

4π

∮

Γ2

∮

Γ1

dl′1 · dl2
|r2 − r′1|

. (3.204)

This expression is called the Neumann formula for the mutual inductance. We may also
define the self inductance as the ratio of flux linked by any coil due to the current in
that same coil. Specializing (3.204) by letting r2 = r, r′1 = r′, N1 = N2 = N , and
Γ1 = Γ2 = Γ, we have Neumann’s formula for the self inductance:

L = N2 µ

4π

∮

Γ

∮

Γ

dl′ · dl
|r− r′| .

Note that because of the product relationship (3.200), the self and mutual inductances
are time-independent. The inductance of a system of loops is considered in Problem 3.25.

◮ Example 3.51: Mutual inductance of coaxial circular loops

Two single-turn coaxial wire loops in free space are separated axially by distance d. Each
wire has circular cross-section with radius a, and the mean radii of the loops are b1 and b2.
See Figure 3.30. Find the mutual inductance between the loops.

�

�

�

�

�
 

!"

!#� = $

FIGURE 3.30
Coaxial loops.

Solution: Assume the current is a line current residing on the inner edge of the loop
periphery, at radius c = b1 − a.



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 251 — #275
✐

✐

✐

✐

✐

✐

The static and quasistatic fields 251

Although the current may be placed at the center of the wire, an offset by the loop radius will
be useful in the next example for determining self inductance. For the mutual inductance

we use (3.204) with r′1 = cρ̂′, r2 = dẑ+ b2ρ̂, dl
′
1 = cdφ′φ̂

′
, and dl2 = b2dφφ̂. Substitution

gives

L21 =
µ0

4π
cb2

∫ 2π

0

∫ 2π

0

cos(φ′ − φ) dφ′ dφ
√

d2 + c2 + b22 − 2cb2 cos(φ′ − φ)
.

The change of variables u = φ′ − φ renders one integral trivial, leaving

L21 =
µ0

2
cb2

∫ 2π

0

cosu du
√

d2 + c2 + b22 − 2cb2 cos u
.

With the change of variables u = π − 2β (so that cos u = 2 sin2 β − 1) we have

L21 = µ02cb2

∫ π
2

0

(2 sin2 β − 1) dβ
√

d2 + c2 + b22 − 2cb2(2 sin
2 β − 1)

.

The term under the radical can be written as

d2 + c2 + b22 − 2cb2(2 sin
2 β − 1) =

4cb2
k2

(1− k2 sin2 β)

where

k2 =
4cb2

d2 + (c+ b2)2
.

Substituting and rearranging, we get

L21 = µ0

√
cb2

[(

2

k
− k

)

F (k, π
2
)− 2

k
E(k, π

2
)

]

. (3.205)

Here

F (k, ψ) =

∫ ψ

0

dβ
√

1− k2 sin2 β

is the incomplete elliptic integral of the first kind, and

E(k, ψ) =

∫ ψ

0

√

1− k2 sin2 β dβ

is the incomplete elliptic integral of the second kind. ◭

◮ Example 3.52: External self inductance of a circular loop

Find the self inductance of a circular loop.

Solution: We can set b2 = b1 and d = 0 in (3.205):

L = µ0(2b1 − a)

[(

1− k2

2

)

F (k, π
2
)− E(k, π

2
)

]

,

where

k2 =
4b1 (b1 − a)

(2b1 − a)2
.
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If the wire is thin (a≪ b1), then k → 1− and we can use the limiting approximations [1]

F (1−, π
2
) ≈ ln

(

4√
1− k2

)

, E(1−, π
2
) ≈ 1,

to obtain

L ≈ µ0b1

[

ln

(

8b1
a

)

− 2

]

for a/b1 ≪ 1. ◭

In a conducting material with J = σE, Ampere’s law (3.185) becomes

∇×H(r, t) = σE(r, t).

But Faraday’s law (3.184) relates the electric field to the magnetic field through the
magnetic flux density and the relation B = µH. This complicated interaction requires
that inductance be defined somewhat differently within conductors. Only when the link
back to the magnetic flux density is ignored can the usual definition of inductance as
magnetic flux per unit current be used, as in the following example.

◮ Example 3.53: Internal inductance of a wire — uniform current assumption

A long cylindrical metallic wire of radius a, conductivity σ, and permeability µ lies along
the z-axis. Compute its internal inductance.

Solution: We take the current density to be z-directed and uniform over the wire cross-
section. By (3.188), J is also independent of z. Thus

J(r, t) = ẑ
I(t)

πa2
,

where I(t) is the current carried by the wire. Since E = J/σ is also uniform, ∇ × E = 0
and thus by Faraday’s law (3.184) we have ∂B/∂t = 0. This will only hold for fields varying
slowly with time, such as low-frequency time-harmonic fields. Hence the internal inductance
obtained from the constant current assumption applies only to currents having slow time
variation. We explore this further in Examples 3.55 and 3.56.

To find the magnetic field, examine Ampere’s law (3.185). Since J is z-directed and
uniform within the wire, we have H(r, t) = φ̂Hφ(ρ, t) and

∇×H = ẑ
1

ρ

∂(ρHφ)

∂ρ
= ẑ Jz = ẑ

I

πa2
(ρ < a).

Integration over ρ gives

Hφ(ρ, t) =
ρI(t)

2πa2
.

The flux linkage for a section of wire of length hmust be considered carefully. The differential
flux passing through a rectangle of height dz extending from ρ to ρ+ dρ is given by

dΦm(ρ, t) = φ̂Bφ(ρ, t) · φ̂ dρ dz.

However, not all of the current is linked by this flux; only the current out to radius ρ will
link, giving the total linking current as I(t)ρ2/a2. Hence the differential flux linkage is

dΛ(ρ, t) = µ
ρ
[

ρ2

a2
I(t)

]

2πa2
dρ dz,



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 253 — #277
✐

✐

✐

✐

✐

✐

The static and quasistatic fields 253

and the total flux linkage is

Λ(t) =
µI(t)

2πa4

∫ h

z=0

∫ a

ρ=0

ρ3dρ = h
µI(t)

8π
.

The inductance per unit length is therefore

L

h
=

Λ(t)

I(t)
=

µ

8π
. (3.206)

Because this was computed using only the magnetic flux internal to the wire, it is called the
internal inductance of the wire. Note that it is independent of a. ◭

When the link between magnetic flux density and electric field is considered, it is
found that the current within a conductor cannot be uniform, but must obey a specific
relationship called the diffusion equation, as discussed next.

3.6.2.3 MQS and conductors: diffusion, eddy currents, and skin depth

Consider a homogeneous conductor with permeability µ and conductivity σ. By Ampere’s
law (3.185),

∇×H(r, t) = J(r, t) = σE(r, t).

Taking the curl and substituting from Faraday’s law (3.184), we have

∇×∇×H(r, t) = σ∇×E(r, t) = −µσ∂H(r, t)

∂t
.

Finally, expanding ∇×∇×H = ∇(∇ ·H) −∇2H and using ∇ ·H = µ∇ ·B = 0 from
(3.187), we get

∇2H(r, t) = µσ
∂H(r, t)

∂t
.

So, in a conductor, H satisfies a diffusion equation. For frequency domain fields this
takes the form

∇2H̃(r, ω) = jωµσH̃(r, ω) = γ2H̃(r, ω), (3.207)

where

γ =
√

jωµσ =
1 + j

δ
.

Here

δ =
1√
πfµσ

is called the skin depth for reasons discussed in Example 3.54. The fact that H̃ obeys a
diffusion equation suggests that the magnetic field diffuses into the conductor from the
outer surface. The following examples will confirm this.
It is interesting to compare the diffusion equation to the Helmholtz (wave) equation

that incorporates the effects of displacement current. In Chapter 4 we show that the
magnetic field in a simple, homogeneous, conducting medium obeys the Helmholtz equa-
tion

∇2H̃(r, ω) + k2H̃(r, ω) = 0,

where

k = ω
√
µǫ

√

1− j
σ

ωǫ
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is the wave number. At low frequencies where σ/(ωǫ) ≫ 1, we have k2 ≈ −jωµσ = −γ2
and the Helmholtz equation reduces to the diffusion equation (3.207). Again, MQS
analysis is appropriate for systems with slow time variation. The condition σ/(ωǫ) ≫ 1
states that the conduction current σẼ dominates the displacement current jωǫẼ.

The electric field and current density also obey the diffusion equation. To show this,
take the curl of Faraday’s law (3.184) to get

∇×∇×E(r, t) = −µ ∂
∂t

∇×H(r, t)

and substitute from Ampere’s law (3.185):

∇×∇×E(r, t) = −µ∂J(r, t)
∂t

= −µσ∂E(r, t)

∂t
.

Then expand the curl and use ∇ · E = σ∇ · J = 0 from the continuity equation (3.188):

∇2E(r, t) = µσ
∂E(r, t)

∂t
,

or
∇2Ẽ(r, ω) = γ2Ẽ(r, ω)

in the frequency domain. Finally, since E = J/σ,

∇2J(r, t) = µσ
∂J(r, t)

∂t

and
∇2J̃(r, ω) = γ2J̃(r, ω). (3.208)

Finally, we show that the frequency-domain vector potential also obeys a diffusion
equation. Substituting B̃ = µH̃ = ∇× Ã into Faraday’s law (3.194), we obtain

∇× (Ẽ− jωÃ) = 0

and thus
Ẽ = −jωÃ−∇φ̃. (3.209)

Substitution into Ampere’s law (3.195) gives

∇×∇× Ã = µJ̃ = µσẼ = −jωµσÃ− µσ∇φ̃.

By the identity ∇×∇× Ã = ∇(∇ · Ã)−∇2Ã we have

∇(∇ · Ã+ µσφ̃)−∇2Ã = −jωµσÃ.

Finally, under the gauge condition

∇ · Ã = −µσφ̃ (3.210)

we obtain
∇2Ã(r, ω) = γ2Ã(r, ω). (3.211)

To see how diffusion affects the spatial dependence of the current, consider the following
simple example.
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◮ Example 3.54: Diffusion into a planar conductor

A conductor with uniform permeability µ and conductivity σ occupies the half space x > 0.
The region x ≤ 0 consists of free space. An electric field Ẽ(r, ω) = ẑẼ0(ω) exists in the free
space region at the interface. Find the spatial distribution of current in the conductor.

Solution: By symmetry, the conduction current depends only on x: J̃(r, ω) = ẑJ̃z(x, ω).
The diffusion equation (3.208), i.e.,

d2J̃z(x,ω)

dx2
− γ2J̃z(x,ω) = 0,

has solution

J̃z(x, ω) = C1(ω)e
−γx +C2(ω)e

+γx

where C1 and C2 are constants in x and

γ(ω) =
√

jωµσ =
1 + j

δ
. (3.212)

We reject the growing exponential as nonphysical, leaving

J̃z(x, ω) = σẼ0(ω)e
−γx = σẼ0(ω)e

−x
δ e−j

x
δ (3.213)

where we have required continuity of Ẽ across the interface.
The quantity δ in (3.212), given by

δ(ω) =
1√
πfµσ

,

is the conductor skin depth. It describes the depth of diffusion, or penetration, of the current
into the conductor. Within one skin depth of the surface, the current density is reduced by
a factor of 1/e to 37% of its value at the surface. The region 0 ≤ x ≤ δ is referred to as the
skin of the conductor since the majority of the current resides there.

The total current per unit width flowing in the conductor may be computed as

Ĩ(ω)

w
=

∫ ∞

0

J̃(x, ω) · ẑ dx =

∫ ∞

0

σẼ0(ω)e
−

(1+j)
δ

x dx = σẼ0(ω)
δ

1 + j
. (3.214)

Using this, we can define a surface impedance as

Zs(ω) =
Ẽ0(ω)

Ĩ(ω)/w
=

1 + j

σδ
,

which has units of ohms. Often the units are given as “Ohms per square” (Ω/�) since each
square section of the surface determines the impedance of the conductor beneath, regardless
of the size of the square.

The magnetic field may be found from Ampere’s law. By symmetry we have H̃(r, ω) =
ŷH̃y(x,ω) and

∇× H̃(r, ω) = ẑ
dH̃y(x,ω)

dx
= ẑ J̃z(x, ω) = ẑσẼ0(ω)e

− 1+j
δ
x.

Integration yields

H̃(r, ω) = −ŷ
δ

1 + j
σẼ0(ω)e

− 1+j
δ
x.
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If we apply the boundary condition on the internal magnetic field at the interface

n̂× H̃(r, ω) = −x̂×
[

−ŷ
δ

1 + j
σẼ0(ω)e

− 1+j
δ
x

] ∣

∣

∣

∣

x=0

= σẼ0(ω)
δ

1 + j
, (3.215)

we get the total current per unit width (3.214) found earlier. ◭

The simple geometry used in this example leads to a conduction current that is linearly
directed. In practical situations, the current is induced by the presence of a localized
magnetic flux density imposed from the air region, possibly by a coil of wire. The resulting
current will produce an additional magnetic field within the conductor that will also leak
back into the air region and oppose the impressed magnetic flux. Since all currents
under the assumption of MQS are steady, the currents induced in the conductor will
form loops, or eddies. These eddy currents are significant sources of loss in transformers.
However, they can also reveal structural defects within conductors in a process known
as nondestructive evaluation [85].

The surface impedance found in the example has both real and imaginary components.
The real component,

Rs =
1

σδ
, (3.216)

is called the surface resistance. The imaginary part shows that the surface impedance is
inductively reactive and allows us to define a surface inductance Ls via

ωLs =
1

σδ
. (3.217)

Produced by the linkage of magnetic flux within the conductor, this parameter is also
called the internal inductance. This effect was examined for a circular wire in Example
3.53. There, however, we assumed the current was uniform. We now know that current
may concentrate near the surface of a planar conductor, and anticipate a similar effect
in a wire. Let us revisit Example 3.53 without the assumption of a uniform current.

◮ Example 3.55: Internal impedance of a wire — diffusion and skin depth

A long cylindrical metallic wire of radius a, conductivity σ, and permeability µ lies along the
z-axis. Compute the internal impedance by solving the diffusion equation. Plot the current
density in the wire as a function of position for various values of a/δ, where δ is the skin
depth.

Solution: As in Example 3.54, assume an external electric field Ẽ(r, ω) = ẑẼ0(ω) at the wire
boundary in the air region. By symmetry, the current within the wire is J̃(r, ω) = ẑJ̃z(ρ, ω).
The diffusion equation (3.208) requires

∇2
J̃(r, ω) = ẑ∇2J̃z(ρ, ω) = ẑ

1

ρ

∂

∂ρ

(

ρ
∂J̃z(ρ, ω)

∂ρ

)

= ẑ γ2J̃z(ρ, ω).

Rearrangement gives the second-order ordinary differential equation

d2J̃z
dρ2

+
1

ρ

dJ̃z
dρ

− γ2J̃z = 0.

This is the modified Bessel equation of order zero; its solution is

J̃z(ρ, ω) = C(ω)I0(γρ), (3.218)
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where I0(x) is the modified Bessel function of the first kind and order zero and C(ω) is
independent of ρ (we rejected the nonphysical solution K0(γρ)). To find C(ω) we use
Ẽ = J̃/σ and require continuity of Ẽ at the boundary:

Ẽ0(ω) = C(ω)
I0(γa)

σ
.

Thus C(ω) = σẼ0(ω)/I0(γa) and

J̃z(ρ, ω) = σẼ0(ω)
I0(γρ)

I0(γa)
.

Recall that γ = (1 + j)/δ where δ = 1/
√
πfµσ is the skin depth. Thus, the arguments of

the Bessel functions are
γρ = (1 + j)

ρ

δ
, γa = (1 + j)

a

δ
,

and we are prompted to normalize all distances to the skin depth. Figure 3.31 shows the
magnitude of the current density for various values of wire radius. When the radius is a skin
depth or less, the current is nearly uniform. However, as the radius increases, the current
begins to concentrate near the edge of the wire; for large a/δ it lies primarily within one
skin depth of the surface (cf., Example 3.54).
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FIGURE 3.31
Normalized current density |J̃z(ρ)/J̃z(a)| in a circular wire.

The total current carried by the wire is

Ĩ(ω) =

∫

S

ẑ · ẑJ̃z(ρ, ω) dS =

∫ 2π

0

∫ a

0

σẼ0(ω)
I0(γρ)

I0(γa)
ρ dρ dφ.

Integration over φ and the change of variables x = γρ give

Ĩ(ω) =
2πσẼ0(ω)

γ2I0(γa)

∫ γa

0

xI0(x) dx.

The integral is
∫

xI0(x) dx = xI1(x). Evaluation at the limits gives

Ĩ(ω) =
2πaσẼ0(ω)

γ

I1(γa)

I0(γa)
.



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 258 — #282
✐

✐

✐

✐

✐

✐

258 Electromagnetics

Finally, the internal impedance per unit length is just

Zi
h

=
Ẽ0(ω)

Ĩ(ω)
=

γ

2πaσ

I0(γa)

I1(γa)
=

1

2πaσδ
F (γa), (3.219)

where

F (γa) = (1 + j)
I0(γa)

I1(γa)
= Fr(γa) + jFi(γa). (3.220)

To determine the internal inductance, note that Zi is complex with ImZi > 0. Thus

Zi
h

=
Ri
h

+ jω
Li
h
.

With this, we can write the internal inductance per unit length as

Li
h

=
1

2πaδσω
Fi(γa) =

(

2δ

a

)

µ

8π
Fi(γa) (3.221)

and the resistance per unit length as

Ri
h

=
1

2πaδσ
Fr(γa) =

( a

2δ

) 1

πa2σ
Fr(γa). ◭ (3.222)

Because the Bessel function arguments in the internal impedance are complex, it is
difficult to gain physical understanding of the dependence of Zi on frequency. It is
therefore helpful to examine low- and high-frequency limits of the expression.

◮ Example 3.56: Internal impedance of a wire at low frequency

Specialize (3.219) to the low-frequency case.

Solution: The condition |γa| ≪ 1 implies
√
ωµσ a ≪ 1 or a ≪ δ/

√
2, so the wire radius

is much less than a skin depth. Hence we may use two-term approximations for the Bessel
functions:

I0(z) ≈ 1 +
z2

4
,

I1(z) ≈
z

2
+
z3

16
.

Now (3.218) shows that the current density in the wire is nearly constant with ρ. So the
low-frequency assumption is consistent with the uniform current assumption of Example
3.53.

Substituting the Bessel function approximations into (3.220), we get

F (γa) ≈ (1 + j)
1 + γ2a2

4

γa
2

(

1 + γ2a2

8

)

≈ (1 + j)
2

γa

(

1 +
γ2a2

4

)(

1− γ2a2

8

)

,

where we have used 1/(1 + x) ≈ 1− x. Retaining terms to order γ2, we have

F (γa) ≈ (1 + j)
2

γa

(

1 +
γ2a2

8

)

.
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Finally, using γ = (1 + j)/δ, we have

F (γa) ≈ 2δ

a
+ j

a

2δ
.

Hence the low-frequency resistance per unit length is

Rlow

h
≈ 1

πa2σ
, (3.223)

while the low-frequency inductance per unit length is

Llow

h
≈ µ

8π
. (3.224)

The resistance per unit length matches the value (3.182) computed in Example 3.50 under
EQS. The internal inductance per unit length matches the value (3.206) computed using the
constant current approximation in Example 3.53. So the general expression reduces to that
found earlier for low frequency. ◭

◮ Example 3.57: Internal impedance of a wire at high frequency

Specialize (3.219) to the high frequency case.

Solution: At high frequencies we have |γa| ≫ 1, hence
√
ωµσa ≫ 1 so that a ≫ δ. Using

the large argument approximations [1]

I0(z) ≈ ez√
2πz

(

1 +
1

8z

)

, I1(z) ≈ ez√
2πz

(

1− 3

8z

)

,

in (3.220), we obtain

F (γa) ≈ (1 + j)

(

1 +
1

8γa

)(

1 +
3

8γa

)

.

Keeping terms to order 1/(γa) and remembering that γ = (1 + j)/δ, we have F (γa) ≈
1 + j + δ/2a. Thus we have the high-frequency resistance per unit length

Rhigh

h
≈
(

a

2δ
+

1

4

)

Rlow

h
, (3.225)

and the high-frequency inductance per unit length

Lhigh

h
≈
(

2δ

a

)

Llow

h
=

µ

4π

(

δ

a

)

. (3.226)

It is interesting to compare the high-frequency resistance given by (3.225) to the low-
frequency resistance for a wire where the current is concentrated within one skin depth of
the surface, but uniformly distributed, as shown in Figure 3.32. Use of (3.223) with the
annular area A = πa2 − π(a− δ)2 gives the resistance per unit length

Rann

h
=

1

σ [πa2 − π(a− δ)2]
=

1

σπaδ
[

2− δ
a

] .

Thus we have
Rann

h
=

(

a

2δ

1

1− δ
2a

)

Rlow

h
≈
(

a

2δ
+

1

4

)

Rlow

h
,
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where we have used 1/(1 − x) ≈ 1 + x. This expression is identical to the high-frequency
approximation for the resistance per unit length (3.225). Hence the annular model of Figure
3.32 is often used to compute high-frequency resistance.

FIGURE 3.32
Current in a wire at high frequency uniformly distributed in an annulus within one skin
depth of the surface. ◭

◮ Example 3.58: Comparison of wire internal impedance formulas

Compare the exact formula for the internal impedance of a wire to the low and high-frequency
approximations by plotting values as a function of a/δ.

Solution: It is most efficient to plot the inductance and resistance relative to their low-
frequency values. Figure 3.33 shows the inductance Li found using (3.221) normalized to
the low-frequency value from (3.224). (Note that this ratio is independent of wire length.)
Also plotted is the high-frequency result (3.226) normalized to (3.224). For 0 < a/δ < 1 the
low-frequency formula gives very good results. For a/δ > 3, the high-frequency formula is
very accurate. Similar results are shown in Figure 3.34 for the internal resistance. Here Ri
is plotted using (3.222) normalized to (3.223), along with the high-frequency result (3.225)
normalized to (3.223). Again, for 0 < a/δ < 1 the low-frequency formula gives very good
results. The high-frequency result is quite accurate for a/δ > 2.
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FIGURE 3.33
Internal inductance of a wire normalized to its low-frequency value.
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FIGURE 3.34
Internal resistance of a wire normalized to its low-frequency value. ◭

3.7 Application: electromagnetic shielding

Shielding is an essential concept in the area of electromagnetic compatibility [146]. There
are many instances in which an undesired electromagnetic field is either created by an
electrical system or interacts and interferes with a device or system. A simple solution
is to enclose the system in a metal container, called a shield, thereby disrupting the flow
of electromagnetic energy or lines of flux into or out of the system. Quite simply, the
presence of the shield reduces the strength of the field from one side of the enclosure to
the other. The physical basis for this reduction depends on the properties of the fields.
In the case of static electric fields, the charges induced on the surface of a metal enclosure
produce an oppositely directed field that cancels the impressed field. Alternatively, the
enclosure may be constructed from a material with a large dielectric constant, in which
case the polarization charge creates a canceling field. In the case of magnetostatic fields,
a highly permeable material may be used to reduce the field by inducing magnetization
currents in the shield. Fields associated with an electromagnetic wave may be reduced
by a combination of reflection and absorption of wave energy. Dynamic fields that may
be better described using quasistatic concepts may also be reduced by shielding, in which
case canceling effects are often produced by the induction of eddy currents within the
shield, or by ducting the field through the shield. Each of these situations is considered
below. In every case, the amount by which the field is reduced may be described using
the shielding effectiveness.

3.7.1 Shielding effectiveness

Shielding effectiveness, designated SE and described in dB, quantifies the amount that
the field strength is reduced due to the presence of the shield [29]. For the case of
electrostatics, or quasistatics with the electric field dominant, the shielding effectiveness



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 262 — #286
✐

✐

✐

✐

✐

✐

262 Electromagnetics

is taken as the ratio of the electric field magnitudes on either side of the shield:

SE = 20 log10
|Ei|
|Et|

.

Here Ei is some measure of the field on the side of the shield where the source of the field
resides, and Et is some measure of the field on the other side. For instance, Ei could be
some component of the impressed (or applied) field, while Et could be the magnitude
of the total field. Since the purpose of the shield is to reduce the field strength, SE is
normally a positive number in dB.

For the case of magnetostatics, or quasistatics with the magnetic field dominant, the
shielding effectiveness is defined as

SE = 20 log10
|Hi|
|Ht|

.

When the field on the source side is associated with an impinging electromagnetic wave,
generally the electric field ratio is used, since E can be more easily measured, and the
ratio of E toH is often prescribed by the physics of the wave. In this case Ei is usually the
amplitude of the field incident on the shield, and Et is the amplitude of the transmitted
field.

Shielding effectiveness is not a straightforward concept. For complicated structures it
depends on geometry and polarization, and for electromagnetic shielding it depends on
the arrival angle of the wave. However, several simple canonical problems are available
to illustrate the underlying properties of shielding enclosures.

3.7.2 Electrostatic shielding

Electrostatic shielding is usually accomplished with properly grounded conductors. If
the conductors are perfect, the shield can completely eliminate the presence of the elec-
trostatic field. This can be shown quite elegantly for shields of arbitrary shape. Partial
shielding may be accomplished using material with a high dielectric constant.

3.7.2.1 Shielding using perfectly conducting enclosures

An effective way to provide electrostatic shielding is to use a metallic enclosure. If the
metal is assumed to be perfectly conducting, then it is easy to show that no electric field
penetrates the shield.

Consider a closed, grounded, perfectly conducting shell with charge outside but not
inside (Figure 3.35). By (3.51) the potential at points inside the shell may be written in
terms of the Dirichlet Green’s function as

Φ(r) =

∮

SB

Φ(r′)
∂GD(r|r′)

∂n′ dS′,

where SB is tangential to the inner surface of the shell and we have used ρ = 0 within
the shell. Because Φ(r′) = 0 for all r′ on SB, we have Φ(r) = 0 everywhere in the region
enclosed by the shell. This result is independent of the charge outside the shell, and the
interior region is “shielded” from the effects of that charge.

Conversely, consider a grounded perfectly conducting shell with charge contained in-
side. If we surround the outside of the shell by a surface S1 and let SB recede to infinity,
then (3.51) becomes

Φ(r) = lim
SB→∞

∮

SB

Φ(r′)
∂GD(r|r′)

∂n′ dS′ +

∮

S1

Φ(r′)
∂GD(r|r′)

∂n′ dS′.
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FIGURE 3.35

Electrostatic shielding by a perfectly conducting shell.

Again there is no charge in V (since the charge lies completely inside the shell). The
contribution from SB vanishes. Since S1 lies adjacent to the outer surface of the shell,
Φ(r′) ≡ 0 on S1. Thus Φ(r) = 0 for all points outside the conducting shell.

3.7.2.2 Perfectly conducting enclosures with apertures

A metallic enclosure may have apertures to allow passage of cables or to provide ventila-
tion. The presence of apertures degrades the shielding effectiveness, and it is worthwhile
to explore the penetration of the electrostatic field by considering a simple canonical
problem.
Figure 3.36 shows an infinite conducting screen, grounded at zero potential, with a

circular aperture. Above the screen is a uniform impressed field E0 = −E0ẑ, associated
with potential Φ(r) = E0z. The field induces charge on the conductor with azimuthal
symmetry. This in turn produces a scattered potential Φs(ρ, z) that is azimuthally sym-
metric and even in z, and an electric field Es(ρ, z) that is azimuthally symmetric and
odd in z. The total potential is

Φ(ρ, z) =

{

−E0z +Φs(ρ, z), z > 0,

Φs(ρ, z), z < 0,

while the z-component of the total electric field is

Ez(ρ, z) =

{

−E0 + Esz(ρ, z), z > 0,

Esz(ρ, z), z < 0.

Within the aperture, the normal component of the electric field is continuous:

−E0 + Esz(ρ, 0
+) = Esz(ρ, 0

−) (0 ≤ ρ < a).

Hence, because Esz(ρ, z) is odd,

Esz(ρ, 0
+) = −Esz(ρ, 0−) =

E0

2
(0 ≤ ρ < a)



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 264 — #288
✐

✐

✐

✐

✐

✐

264 Electromagnetics

FIGURE 3.36

Conducting screen with circular aperture.

or
∂Φs(ρ, z)

∂z

∣

∣

∣

∣

z=0+
= −E0

2
(0 ≤ ρ < a). (3.227)

Since the potential is azimuthally symmetric, it can be represented using the inverse
transform formula (A.58):

Φs(ρ, z) =

∫ ∞

0

B(kρ)e
−kρzJ0(kρρ) dkρ (z > 0).

Substituting this into (3.227) and noting that the scattered potential must vanish on the
conducting plane, we are led to a set of dual integral equations for the amplitude function
B(kρ):

∫ ∞

0

B(kρ)J0(kρρ)kρ dkρ =
E0

2
(0 ≤ ρ < a),

∫ ∞

0

B(kρ)J0(kρρ) dkρ = 0 (ρ ≥ a).

The solution to these is [92]

B(kρ) =
E0a

2

π
j1(kρa), (3.228)

where j1(x) is the ordinary spherical Bessel function of the first kind. Finally, with
(3.228) we have the z-component of the field penetrating the slot:

Esz(ρ, z) = −
∫ ∞

0

E0a
2

π
j1(kρa)e

−kρ|z|J0(kρρ) kρ dkρ (z < 0).

This may be written in normalized form through the use of the formula

j1(x) =
sinx

x2
− cosx

x
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and the substitution u = kρa:

Esz(ρ, z)

E0
= − 1

π

∫ ∞

0

e−u
|z|
a

(

sinu

u
− cosu

)

J0

(

u
ρ

a

)

du (z < 0). (3.229)

This canonical problem permits us to explore the charge induced on the underside
of the screen as the rim of the hole is approached. The conductor boundary condition
ρs(ρ) = n̂ ·D yields ρs(ρ) = −ǫ0Esz(ρ, 0), and thus

ρs(ρ)

ǫ0E0
=

1

π

∫ ∞

0

(

sinu

u
− cosu

)

J0

(

u
ρ

a

)

du.

Using the handbook integrals [74]

∫ ∞

0

J0(αx) cos(x) dx =
1√

α2 − 1
(α > 1),

∫ ∞

0

J0(αx)
sin x

x
dx = csc−1(α) (α > 1),

we have

ρs(ρ)

ǫ0E0
=

1

π



csc−1
(ρ

a

)

− 1
√

(

ρ
a

)2 − 1



 (ρ > a). (3.230)

Thus, as ρ→ a+,
ρs(ρ)

ǫ0E0
≈ 1

2
− 1

π
√
2

1
√ ρ

a − 1
. (3.231)

We see that the charge near the sharp edge of the hole is singular, varying as an inverse
square root of distance from the edge, as predicted by (3.81).
To determine the shielding effectiveness, the field below the conducting screen must

be computed. The field is quite large immediately below the edge of the aperture, due to
the charge singularity discussed above. However, the field rapidly decays away from the
edge, and it is helpful to examine the field along the z-axis to determine how the shielding
effectiveness depends on distance beneath the screen. Since there is only a z-component
of the scattered field on the z-axis, we may set ρ = 0 in (3.229) to obtain

Esz(0, z)

E0
= − 1

π

∫ ∞

0

e−u
|z|
a

(

sinu

u
− cosu

)

du (z < 0).

This can be evaluated in closed form using the integrals [74]

∫ ∞

0

e−βx cosx dx =
β

β2 + 1
,

∫ ∞

0

e−βx
sinx

x
dx = tan−1 1

β
,

which give

Esz(0, z)

E0
= − 1

π



tan−1 a

|z| −
1

|z|
a + a

|z|



 (z < 0). (3.232)

As expected, we have Esz(0, z)/E0 → −1/2 as z → 0− (see Problem 3.48).
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◮ Example 3.59: Charge density near a circular aperture in a conducting screen

A circular aperture of radius a is cut into a conducting screen as shown in Figure 3.36. Plot
the density of the charge induced on the underside of the screen as a function of the distance
from the aperture edge. Compare to the expected square-root edge singularity.

Solution: The charge density, given by (3.230), is plotted in Figure 3.37. Also shown is the
approximate charge density (3.231). As ρ→ a+, the charge density displays the square-root
edge singularity. The approximation is quite good for distances up to about 0.1a from the
aperture. Beyond that, the simple approximation rapidly loses accuracy.
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FIGURE 3.37
Charge density on a conducting screen with a circular aperture. ◭

◮ Example 3.60: Electrostatic shielding by a PEC screen with a hole

A circular aperture of radius a is cut into a conducting screen as shown in Figure 3.36. Plot
the shielding effectiveness as a function of distance from the hole along the z-axis. Determine
an approximation for the shielding effectiveness, valid when the observation point is far from
the hole, and compare to the exact result.

Solution: Figure 3.38 shows a plot of the shielding effectiveness

SE = 20 log10
|E0|
|Esz |

as a function of the distance from the hole along the z-axis, found using (3.232). At z = 0,
at the center of the hole, we have SE = 20 log10(1/0.50) = 6 dB. The shielding effectiveness
increases with increasing depth. An expression for SE at large depth may be obtained by
using the small argument approximation tan−1(x) ≈ x− 1

3
x3 in (3.232):

Esz(0, z)

E0
≈ 2

3π

∣

∣

∣

a

z

∣

∣

∣

3

.

With this,
SE ≈ 13.46 dB + 60 log10 |z/a| (|z/a| ≫ 1). (3.233)
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Thus, when the distance from the hole is large, the shielding effectiveness increases by 60 dB
for every factor of 10 increase in |z|. Equation (3.233) is plotted as the dashed line in Figure
3.38; it is clear that the approximation is quite good (within a difference of less than a dB)
beyond about |z/a| = 3.
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FIGURE 3.38
Electrostatic shielding effectiveness of a PEC screen with a circular hole. ◭

◮ Example 3.61: Shielding effectiveness for a PEC screen with a hole

At what distance beneath a PEC screen will a 40 dB shielding effectiveness be achieved
when the screen has a hole of radius a? Repeat for SE = 80 dB.

Solution: Restricting ourselves to the axis of the hole, we can use (3.232) or obtain the
shielding effectiveness from Figure 3.38. We see that |z/a| must be about 2.62 for SE =
40 dB. Thus, the field drops from 0.5E0 at the center of the hole to 0.01E0 at a distance a bit
more than one hole diameter. If we use the approximation (3.233) we obtain |z/a| ≈ 2.77,
which is reasonably close even though |z/a| is not significantly larger than unity.

We might try to use Figure 3.38 for SE = 80 dB, but the curve is not plotted far enough
to find this. Instead, since |z/a| must be larger than 10, we note that |z/a| ≫ 1 and use the
approximation (3.233). Setting

13.46 dB + 60 log10 |z/a| = 80 dB

we find |z/a| = 12.85. ◭

3.7.2.3 Shielding with high-permittivity dielectric materials

A cylindrical shell is often used as a canonical problem to study shielding effectiveness.
Its two-dimensional nature simplifies analysis, and limiting cases such as a very thin shell
or a high permittivity shell may be easily examined.
Consider a cylindrical shell of dielectric material in free space, aligned along the z-axis

and immersed in a uniform applied field E0 = E0x̂ (Figure 3.39). The inner radius of the
shell is a, the outer radius is b, and the permittivity of the shell is ǫ. To determine the
shielding effectiveness, we must compute the internal field. Assume the impressed field
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FIGURE 3.39

A cylindrical dielectric shell illuminated by a uniform electric field.

is created by sources far removed from the cylinder. Then we can express the potentials
as solutions to Laplace’s equation in cylindrical coordinates.

Let us begin by examining the separation of variables solution (A.128). Since E0 =
−∇Φ0 where Φ0 = −E0x, only the term with kφ = 1 is needed to represent the applied
field. By continuity of the potentials, this will also be true for the scattered potential in
each region. In region 1 we have both the scattered and applied potentials, whereas in
regions 2 and 3 we have only scattered potentials:

Φ1(r) = Ab2E0ρ
−1 cosφ− E0ρ cosφ = Ab2E0

x

x2 + y2
− E0x,

Φ2(r) = Bb2E0ρ
−1 cosφ+ CE0ρ cosφ = Bb2E0

x

x2 + y2
+ CE0x,

Φ3(r) = DE0ρ cosφ = DE0x.

Here we have chosen the decaying scattered potential in region 1 so that the total poten-
tial remains finite as ρ→ ∞, and the growing potential in region 3 so that the potential
is finite at ρ = 0; we must use both in region 2. The coefficients A,B,C,D are found by
applying boundary conditions at ρ = a and ρ = b. By continuity of the scalar potential
across each boundary, we have

A− 1 = B + C,
b2

a2
B + C = D.

By (3.17), the quantity ǫ∂Φ/∂ρ is also continuous at ρ = a and ρ = b; this gives two
more equations:

−A− 1 = −ǫrB + ǫrC, − b2

a2
B + C =

1

ǫr
D.

The solutions are

A =

(

1− a2

b2

)

ǫ2r − 1

K
, B = −2

a2

b2
ǫr − 1

K
, C = −2

ǫr + 1

K
, D = −4

ǫr
K
,
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where

K = (ǫr + 1)2 − (ǫr − 1)2
a2

b2
.

The electric field in each region may be computed using E = −∇Φ. Taking the gradient
in rectangular coordinates, we get

E1

E0
= x̂

[

X2 − Y 2

(X2 + Y 2)2
A+ 1

]

+ ŷ

[

2XY

(X2 + Y 2)2
A

]

, (3.234)

E2

E0
= x̂

[

X2 − Y 2

(X2 + Y 2)2
B − C

]

+ ŷ

[

2XY

(X2 + Y 2)2
B

]

, (3.235)

E3

E0
= −x̂D. (3.236)

Here X = x/b, Y = y/b.

◮ Example 3.62: Shielding by a dielectric shell

Consider a dielectric shell with a/b = 0.9 and ǫr = 10. Plot the electric field streamlines for
a shell immersed in a uniform electric field E = E0 x̂.

Solution: The streamlines may be plotted using the total electric field given by (3.234)–(3.236).
Since the streamlines follow the vector field, they may be traced by projecting along the di-
rection of the field. The result is shown in Figure 3.40.
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FIGURE 3.40
Electric field streamlines for a dielectric shell immersed in a uniform static electric field.
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Note that the electric field lines are concentrated within the wall of the dielectric shell
and are thus ducted away from the interior. This effect causes the field strength within
the interior to be lower than the applied field strength E0. Ducting of the electric flux is
enhanced as the dielectric constant is increased, but since materials with very high dielectric
constants are difficult to create, significant levels of shielding effectiveness are usually not
attainable by this method. In contrast, the availability of high-permeability materials allows
the technique to be used to provide considerable levels of magnetic shielding effectiveness.
This is explored in examples below. ◭

From (3.236) we can write the field interior to the dielectric shell as

Et
E0

= κx̂,

where κ = 4ǫr/K. This field is uniform, and, since κ < 1 for ǫr > 1, it is weaker than the
applied field. So a simple definition of shielding effectiveness for this canonical problem
is

SE = 20 log10
|E0|
|Et|

= 20 log10
K

4ǫr
. (3.237)

To identify conditions under which the shield will be effective, write

K

4ǫr
=
b2 + a2

2b2

(

ǫ2r + 1

2ǫr
∆

b+ a

b2 + a2
+ 1

)

,

where ∆ = b − a is the shield thickness. A large shielding effectiveness requires the first
term in brackets to be much larger than unity, which is satisfied when

ǫ2r + 1

ǫr
≫ 4

b

∆
.

Since ∆ < b, we can only have a good shielding effectiveness when ǫr ≫ 1, in which case

K

4ǫr
≈
(

1 +
a

b

) ǫr
4

∆

b
.

Finally, if the shield is also thin so that a ≈ b, then

SE = 20 log10

(

ǫr∆

2b

)

. (3.238)

◮ Example 3.63: Electrostatic shielding using a medium-permittivity dielectric shell

Compute the shielding effectiveness for the dielectric shell of Example 3.62.

Solution: Using a/b = 0.9 and ǫr=10, we compute K = 55.39. Substituting into (3.237)
we get SE = 2.8 dB. So the interior field is reduced only slightly below the external field.
Significant reductions require very large dielectric constants, as demonstrated next. ◭

◮ Example 3.64: Electrostatic shielding using a high-permittivity dielectric shell

A dielectric must have a very large permittivity to provide useful shielding. For a shield
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with a/b = 0.99, what value of ǫr is needed to attain 40 dB shielding effectiveness?

Solution: Since the dielectric constant is large and a ≈ b, we can use (3.238):

ǫr∆

2b
= 1040/20 = 100.

Using ∆ = b− a, we obtain
ǫr
2

(

1− a

b

)

= 100

and hence ǫr = 20000. It is unlikely that a dielectric constant will be this large. ◭

3.7.3 Magnetostatic shielding

The canonical problem of a cylindrical shell of magnetic material can be easily adapted
from the electrostatic canonical problem considered above. Assume the shell is immersed
in an applied magnetic field H0 = H0x̂. Write H0 = −∇Φ0 where Φ0 = H0x is the
impressed magnetic scalar potential, and proceed as in the electrostatic case. We find
that we need only change ǫr to µr to obtain the shielding effectiveness. For a thin shield
(a ≈ b) we have

SE = 20 log10

(

µr∆

2b

)

. (3.239)

◮ Example 3.65: Magnetostatic shielding using a high-permeability cylindrical shell

Repeat Example 3.64 for the case of magnetostatic shielding. Again let a/b = 0.99, and
assume the permeability of the shell is large. What value of µr is needed to achieve 40 dB
shielding effectiveness?

Solution: Since the permeability is large and a ≈ b, we can use (3.239):

µr∆

2b
= 1040/20 = 100.

With ∆ = b− a we get
µr
2

(

1− a

b

)

= 100

and hence µr = 20000, a value that is not unreasonable. ◭

A canonical problem often used to predict shielding effectiveness is the spherical shell.
Although for thin shells of high permeability, the SE predicted using the spherical shell
is similar to that predicted by the cylindrical shell, it is worth examining the spherical
shell as a three-dimensional alternative.
Consider a spherical shell of highly permeable material (Figure 3.41); assume it is

immersed in a uniform impressed field H0 = H0ẑ. We wish to determine the internal
field and the factor by which it is reduced from the external applied field. Because there
are no sources (the applied field is assumed to be created by sources far removed), we
may use magnetic scalar potentials to represent the fields everywhere. We may represent
the scalar potentials using a separation of variables solution to Laplace’s equation, with
a contribution only from the n = 1 term in the series. In region 1 we have both scattered
and applied potentials, where the applied potential is just Φ0 = −H0z = −H0r cos θ,
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FIGURE 3.41

Spherical shell of magnetic material.

since H0 = −∇Φ0 = H0ẑ. We have

Φ1(r) = AH0b
3r−2 cos θ −H0r cos θ, (3.240)

Φ2(r) = (BH0b
3r−2 + CH0r) cos θ, (3.241)

Φ3(r) = DH0r cos θ. (3.242)

We choose (3.82) for the scattered potential in region 1 so that it decays as r → ∞,
and (3.83) for the scattered potential in region 3 so that it remains finite at r = 0. In
region 2 we have no restrictions and therefore include both contributions. The coefficients
A,B,C,D are found by applying the appropriate boundary conditions at r = a and r = b.
By continuity of the scalar potential across each boundary, we have

A− 1 = B + C, B
b3

a3
+ C = D.

By (3.125), the quantity µ∂Φ/∂r is also continuous at r = a and r = b; this gives two
more equations:

−2A− 1 = −2Bµr + Cµr, −2B
b3

a3
+ C =

D

µr
.

Simultaneous solution yields

D = −9µr
K

where

K = (2 + µr)(1 + 2µr)− 2(a/b)3(µr − 1)2.

Substituting this into (3.242) and using H = −∇Φm, we find that

H = κH0ẑ

within the enclosure, where κ = 9µr/K. This field is uniform, and, since κ < 1 for
µr > 1, it is weaker than the applied field.
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For µr ≫ 1 we have K ≈ 2µ2
r[1− (a/b)3]. Denoting the shell thickness by ∆ = b− a,

we find that K ≈ 6µ2
r∆/a when ∆/a≪ 1. Thus, for a shell with µr ≫ 1 and ∆/a≪ 1,

the shielding effectiveness is

SE = 20 log10

(

2µr∆

3b

)

. (3.243)

Compare this formula to (3.239) for the case of a cylindrical shell.

◮ Example 3.66: Magnetostatic shielding using a high-permeability spherical shell

Repeat Example 3.65 for the case of a spherical shell. Again let a/b = 0.99, and assume the
permeability of the shell is large. What value of µr is required to achieve 40 dB shielding
effectiveness?

Solution: Since the permeability is large and a ≈ b, we can use (3.243):

2µr∆

3b
= 1040/20 = 100.

Using ∆ = b− a, we find
2µr
3

(

1− a

b

)

= 100,

hence µr = 15000. This is smaller than the permeability found for a cylindrical shield in
Example 3.65. ◭

3.7.4 Quasistatic shielding

Metallic shields are often used to prevent interference from AC magnetic fields. Let’s
repeat the canonical problem of a cylindrical shell of magnetic material immersed in a
magnetic field considered in § 3.7.3, except now we allow the shell to be conducting and
we assume that the impressed field varies sinusoidally with time. See Figure 3.42. The
shield (region 2) is homogeneous with permeability µ = µrµ0 and conductivity σ. Both
regions 1 and 3 are free space. We further assume that the frequency is low enough that
the system is MQS and wave effects may be ignored.
The impressed magnetic field is taken to be x-directed with H̃0(r, ω) = x̂ H̃0(ω). This

can be written as the curl of a z-directed vector potential:

Ã0(r, ω) = ẑµ0yH̃0(ω) = ẑµ0ρ sinφH̃0(ω).

By symmetry, we expect the scattered vector potential to be z-directed. Thus, in regions
1 and 3, which are source-free and nonconducting, the scattered vector potential obeys
Laplace’s equation

∇2Ãz(r, ω) = 0,

while in region 2, which is conducting, Ãz obeys the diffusion equation (3.211)

∇2Ãz(r, ω)− γ2Ãz(r, ω) = 0. (3.244)

To find the vector potential in regions 1 and 3, examine the separation of variables
solution to Laplace’s equation (A.128). Since the impressed vector potential varies as
sinφ we only need this term in the expansion of Ãz . In region 1 we have both the
impressed and scattered potentials, while in region 3 we have only the scattered potential.
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FIGURE 3.42

Cylindrical shell of conducting magnetic material illuminated by an AC magnetic field.

Furthermore, we must have the potential decay as ρ→ ∞ in region 1, and remain finite
in region 3. Thus we may write

Ãz1 = Aρ−1 sinφ+ µ0H̃0ρ sinφ, Ãz3 = Dρ sinφ.

In region 2 we must use the solution to the diffusion equation (3.244), which in cylin-
drical coordinates is written as

1

ρ

∂

∂ρ

(

ρ
∂Ãz
∂ρ

)

− γ2Ãz = 0. (3.245)

Taking a separation of variables approach, we write Ãz as a product solution

Ãz = P (ρ)Φ(φ)

and substitute into (3.245). We find that P (ρ) and Φ(φ) satisfy the separated ordinary
differential equations

d2Φ

dφ2
+ n2Φ = 0

and
d2P

dρ2
+

1

ρ

dP

dρ
−
(

γ2 +
n2

ρ2

)

P = 0. (3.246)

So the φ-dependence of Ãz is trigonometric. Equation (3.246) is Bessel’s modified dif-
ferential equation with solutions In(γρ) and Kn(γρ). Thus, with n = 1 to match the
impressed vector potential, the vector potential in region 2 may be written as

Ãz2 = [BI1(γρ) + CK1(γρ)] sinφ.
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To determine the constants, we apply the tangential field boundary conditions at ρ = a
and ρ = b. The magnetic field in each region may be found using the curl:

B̃ = ∇× Ã = ρ̂
1

ρ

∂Ãz
∂φ

− φ̂
∂Ãz
∂ρ

.

Thus, continuity of tangential H̃ is equivalent to continuity of (1/µ)∂Ãz/∂ρ. The electric
field may be found from (3.209). However, by the gauge condition (3.210) we see that
φ̃ = 0 since ∇ · Ã = ∂Ãz/∂z = 0. So Ẽ = −jωÃ, and continuity of tangential Ẽ is
equivalent to continuity of Ã. Note that continuity of normal B̃ is also equivalent to
continuity of Ã.
Continuity of Ãz at ρ = a and ρ = b gives

Da = BI1(γa) + CK1(γa),
A

b
+ µ0H̃0b = BI1(γb) + CK1(γb).

Continuity of (1/µ)∂Ãz/∂ρ at ρ = a and ρ = b gives

Da =
γa

µr
[BI ′1(γa) + CK ′

1(γa)] , −A
b
+ µ0H̃0b =

γb

µr
[BI ′1(γb) + CK ′

1(γb)] .

Solving these equations simultaneously, we obtain

D =

[

µ0H̃0
2µrb

a

]

{[µrK1(γa)− γaK ′
1(γa)] [µrI1(γb) + γbI ′1(γb)]

− [µrI1(γa)− γaI ′1(γa)] [µrK1(γb) + γbK ′
1(γb)]}

−1
. (3.247)

Now, note that the magnetic field in region 3 is just

H̃ =
1

µ0
∇× (ẑDρ sinφ) =

1

µ0
∇× (ẑDy) =

1

µ0
D x̂,

and thus the field interior to the shield is uniform. This allows us to calculate the
shielding effectiveness as

SE = 20 log10 |µ0H̃0/D| (3.248)

where D is given by (3.247).

◮ Example 3.67: MQS shielding by a conducting cylindrical shell

Explore the dependence of the cylindrical shell-shielding effectiveness for various shield radii
and thicknesses.

Solution: We plot shielding effectiveness as a function of shield thickness for various values
of the inner radius a. It is expedient to normalize all distances to the skin depth. Figure
3.43 shows the shielding effectiveness found from (3.248) with µr = 100 as a function of
w/δ = (b − a)/δ for various values of a/δ. Note that even for very small w/δ, a shield can
be effective provided µr is sufficiently large. This is due to ducting of the magnetic field
through the shell, which is most effective for shells of smaller inner radius. For a detailed
discussion of MQS shielding by cylindrical shells, see [88] and [209].
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FIGURE 3.43
MQS shielding effectiveness of a conducting cylindrical shell. ◭

3.7.5 Electromagnetic shielding

When the frequency is high enough for displacement current to be important, a qua-
sistatic analysis of shields is no longer accurate, and the wave nature of the electromag-
netic field must be taken into account. We shall consider the shielding of electromagnetic
waves by planar materials in § 4.11.6, and examine the penetration of electromagnetic
waves through a rectangular aperture in a conducting screen in § 7.7.

3.8 Problems

3.1 The z-axis carries a line charge of nonuniform density ρl(z). Show that the electric
field in the plane z = 0 is given by

E(ρ, φ) =
1

4πǫ

[

ρ̂ρ

∫ ∞

−∞

ρl(z
′) dz′

(ρ2 + z′2)3/2
− ẑ

∫ ∞

−∞

ρl(z
′)z′ dz′

(ρ2 + z′2)3/2

]

.

Compute E when ρl = ρ0 sgn(z), where sgn(z) is the signum function (A.7).

3.2 The ring ρ = a, z = 0, carries a line charge of nonuniform density ρl(φ). Show that
the electric field at an arbitrary point on the z-axis is given by

E(z) =
−a2

4πǫ(a2 + z2)3/2

[

x̂

∫ 2π

0

ρl(φ
′) cosφ′ dφ′ + ŷ

∫ 2π

0

ρl(φ
′) sinφ′ dφ′

]

+ ẑ
az

4πǫ(a2 + z2)3/2

∫ 2π

0

ρl(φ
′) dφ′.

Compute E when ρl(φ) = ρ0 sinφ. Repeat for ρl(φ) = ρ0 cos
2 φ.
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3.3 The plane z = 0 carries a surface charge of nonuniform density ρs(ρ, φ). Show that
at an arbitrary point on the z-axis, the rectangular components of E are given by

Ex(z) = − 1

4πǫ

∫ ∞

0

∫ 2π

0

ρs(ρ
′, φ′) ρ′2 cosφ′ dφ′ dρ′

(ρ′2 + z2)3/2
,

Ey(z) = − 1

4πǫ

∫ ∞

0

∫ 2π

0

ρs(ρ
′, φ′) ρ′2 sinφ′ dφ′ dρ′

(ρ′2 + z2)3/2
,

Ez(z) =
z

4πǫ

∫ ∞

0

∫ 2π

0

ρs(ρ
′, φ′) ρ′ dφ′ dρ′

(ρ′2 + z2)3/2
.

Compute E when ρs(ρ, φ) = ρ0U(ρ − a), where U(ρ) is the unit step function (A.6).
Repeat for ρs(ρ, φ) = ρ0[1− U(ρ− a)].

3.4 The sphere r = a carries a surface charge of nonuniform density ρs(θ). Show that
the electric intensity at an arbitrary point on the z-axis is given by

E(z) = ẑ
a2

2ǫ

∫ π

0

ρs(θ
′)(z − a cos θ′) sin θ′ dθ′

(a2 + z2 − 2az cos θ′)3/2
.

Compute E(z) when ρs(θ) = ρ0, a constant. Repeat for ρs(θ) = ρ0 sgn(θ − π
2 ).

3.5 Beginning with the postulates for the electrostatic field

∇×E = 0, ∇ ·D = ρ,

use the technique of § 2.8.2 to derive the boundary conditions (3.12)–(3.13).

3.6 A material half space of permittivity ǫ1 occupies the region z > 0, while a second
material half space of permittivity ǫ2 occupies z < 0. Find the polarization surface charge
densities and compute the total induced surface polarization charge for a point charge Q
located at z = h.

3.7 Consider a point charge between two grounded conducting plates as shown in Figure
3.44. Write the Green’s function as the sum of primary and secondary terms and apply
the boundary conditions to show that the secondary Green’s function is

Gs(r|r′) = −1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

[

e−kρ(d−z)
sinh kρz

′

sinh kρd
+ e−kρz

sinh kρ(d− z′)

sinh kρd

]

ejkρ·(r−r
′)

2kρ
d2kρ.

(3.249)

3.8 Use the expansion

1

sinh kρd
= cschkρd = 2

∞
∑

n=0

e−(2n+1)kρd

to show that the secondary Green’s function for parallel conducting plates (3.249) may
be written as an infinite sequence of images of the primary point charge. Identify the
geometrical meaning of each image term.
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FIGURE 3.44

Geometry for computing Green’s function for parallel plates.

3.9 Find the Green’s functions for a dielectric slab of thickness d placed over a perfectly
conducting ground plane located at z = 0.

3.10 Referring to the system of Figure 3.8, find the charge density on the surface of the
sphere and integrate to show that the total charge is equal to the image charge.

3.11 Use the method of Green’s functions to find the potential inside a conducting sphere
for ρ inside the sphere.

3.12 Solve for the total potential and electric field of a grounded conducting sphere
centered at the origin within a uniform impressed electric field E = E0ẑ. Find the total
charge induced on the sphere.

3.13 Consider a spherical cavity of radius a centered at the origin within a homogeneous
dielectric material of permittivity ǫ = ǫ0ǫr. Solve for the total potential and electric field
inside the cavity in the presence of an impressed field E = E0ẑ. Show that the field in
the cavity is stronger than the applied field, and explain this using polarization surface
charge.

3.14 Find the field of a point charge Q located at z = d above a perfectly conducting
ground plane at z = 0. Use the boundary condition to find the charge density on the
plane and integrate to show that the total charge is −Q. Integrate Maxwell’s stress
tensor over the surface of the ground plane and show that the force on the ground plane
is the same as the force on the image charge found from Coulomb’s law.

3.15 Consider in free space a point charge −q at r = r0 + d, a point charge −q at
r = r0 −d, and a point charge 2q at r0. Find the first three multipole moments and the
resulting potential produced by this charge distribution.

3.16 A spherical charge distribution of radius a in free space has the density

ρ(r) =
Q

πa3
cos 2θ.

Compute the multipole moments for the charge distribution and find the resulting po-
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FIGURE 3.45

Parallel plate capacitor.

tential.

3.17 Compute the magnetic flux density B for the circular wire loop of Figure 3.17 by
(a) using the Biot–Savart law (3.132), and (b) computing the curl of (3.110).

3.18 Two circular current-carrying wires are arranged coaxially along the z-axis. Loop
1 has radius a1, carries current I1, and is centered in the z = 0 plane. Loop 2 has radius
a2, carries current I2, and is centered in the z = d plane. Find the force between the
loops.

3.19 Obtain (3.136) by integration of Maxwell’s stress tensor over the xz-plane.

3.20 Consider two thin conducting parallel plates embedded in a region of permittivity ǫ
(Figure 3.45). The bottom plate is connected to ground, and we apply an excess charge
+Q to the top plate (and thus −Q is drawn onto the bottom plate). Neglecting fringing,
(a) solve Laplace’s equation to show that

Φ(z) =
Q

Aǫ
z.

Use (3.62) to show that

W =
Q2d

2Aǫ
.

(b) Verify W using (3.63). (c) Use F = −ẑdW/dz to show that the force on the top plate
is

F = −ẑ
Q2

2Aǫ
.

(d) Verify F by integrating Maxwell’s stress tensor over a closed surface surrounding the
top plate.

3.21 Consider two thin conducting parallel plates embedded in a region of permittivity ǫ
(Figure 3.45). The bottom plate is connected to ground, and we apply a potential V0 to
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the top plate using a battery. Neglecting fringing, (a) solve Laplace’s equation to show
that

Φ(z) =
V0
d
z.

Use (3.62) to show that

W =
V 2
0 Aǫ

2d
.

(b) Verify W using (3.63). (c) Use F = −ẑdW/dz to show that the force on the top plate
is

F = −ẑ
V 2
0 Aǫ

2d2
.

(d) Verify F by integrating Maxwell’s stress tensor over a closed surface surrounding the
top plate.

3.22 A group of N perfectly conducting bodies is arranged in free space. Body n is held
at potential Vn with respect to ground, and charge Qn is induced upon its surface. By
linearity we may write

Qm =
N
∑

n=1

cmnVn

where the cmn are called the capacitance coefficients. Using Green’s reciprocation the-
orem, demonstrate that cmn = cnm. Hint: Use (3.163). Choose one set of voltages so
that Vk = 0, k 6= n, and place Vn at some potential, say Vn = V0, producing the set of
charges {Qk}. For the second set choose V ′

k = 0, k 6= m, and Vm = V0, producing {Q′
k}.

3.23 For the set of conductors of Problem 3.22, show that we may write

Qm = CmmVm +
∑

k 6=m
Cmk(Vm − Vk)

where

Cmn = −cmn, m 6= n, Cmm =

N
∑

k=1

cmk.

Here Cmm, called the self capacitance, describes the interaction between the mth con-
ductor and ground, while Cmn, called the mutual capacitance, describes the interaction
between the mth and nth conductors.

3.24 For the set of conductors of Problem 3.22, show that the stored electric energy is
given by

W =
1

2

N
∑

m=1

N
∑

n=1

cmnVnVm.

3.25 A group of N wires is arranged in free space as shown in Figure 3.46. Wire n carries
a steady current In, and a flux Ψn passes through the surface defined by its contour Γn.
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FIGURE 3.46

A system of current-carrying wires.

By linearity we may write

Ψm =

N
∑

n=1

LmnIn

where the Lmn are called the coefficients of inductance. Derive Neumann’s formula

Lmn =
µ0

4π

∮

Γn

∮

Γm

dl · dl′
|r− r′| ,

and thereby demonstrate the reciprocity relation Lmn = Lnm.

3.26 For the group of wires shown in Figure 3.46, show that the stored magnetic energy
is given by

W =
1

2

N
∑

m=1

N
∑

n=1

LmnInIm.

3.27 Prove the minimum heat generation theorem: steady electric currents distribute
themselves in a conductor in such a way that the dissipated power is a minimum. Hint:
Let J be the actual distribution of current in a conducting body, and let the power it
dissipates be P . Let J′ = J+ δJ be any other current distribution, and let the power it
dissipates be P ′ = P + δP . Show that

δP =
1

2

∫

V

1

σ
|δJ|2 dV ≥ 0.

3.28 Establish the following cylindrical harmonic expansion of the line charge potential:

− λ

2πǫ
lnR =























λ

2πǫ

[ ∞
∑

n=1

1

n

(

ρ0
ρ

)n

(cosnφ0 cosnφ+ sinnφ0 sinnφ)− ln ρ

]

, ρ > ρ0,

λ

2πǫ

[ ∞
∑

n=1

1

n

(

ρ

ρ0

)n

(cosnφ0 cosnφ+ sinnφ0 sinnφ)− ln ρ0

]

, ρ < ρ0.
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The line charge is located at (ρ0, φ0), and the field point is located at (ρ, φ).

3.29 (a) Use spherical harmonics to write down the general solution to Laplace’s equa-
tion in spherical coordinates. (b) Specialize the result of part (a) for a problem having
azimuthal symmetry. (c) Evaluate the result of part (b) for a point on the z-axis. (d)
Explain how the result of part (c) can be used to determine the potential at points off
the z-axis. (e) Apply this technique, along with the expansion (E.167)–(E.169), to the
following problem. Suppose charge Q is distributed uniformly over a ring. The ring is
centered on the z-axis, and its radius and height above the z = 0 plane are described by
(1) the distance c from the origin to the ring (to the ring itself — not to its center!) and
(2) the polar angle α measured from the z-axis to the ring. (Note: in (E.168), γ is the
angle between r and r′.)

3.30 The electric field in an anisotropic material is given (in spherical coordinates) by

E = r̂
2

r2
V/m.

If the permittivity of the material is ǭ = θ̂θ̂3ǫ0 + θ̂r̂4ǫ0 + r̂r̂ǫ0, calculate (a) D, (b) P,
and (c) the equivalent polarization volume charge density.

3.31 Show by direct substitution that the Coulomb field

E(r) =
1

4πǫ0

∫

V

ρ(r′)
r− r′

|r− r′| dV
′

satisfies Gauss’s law ∇ · E = ρ/ǫ0.

3.32 A parallel-plate capacitor has plates of area A located at z = 0 and z = d. A
voltage V0 is applied to the plates such that the electric field between the plates is
E = −ẑV0/d. Find the force on the bottom plate by integrating Maxwell’s stress tensor.
Neglect fringing.

3.33 A conducting plate of area 10 m2 is located in the z = 0 plane. The field above the
plate is given by E = ẑE0(z

2 + 1) V/m, while the field below the plate is zero. Find the
force on the plate by integrating Maxwell’s stress tensor.

3.34 An infinite static line charge of density ρ0δ(x)δ(y) lies on the interface between two
dielectric half spaces: ǫ = ǫ1 for y > 0, and ǫ = ǫ2 for y < 0. Using the Fourier transform
approach, calculate the potential Φ in each region.

3.35 Calculate the charge distribution that supports the static electric field

E =
e−r/a

r

(

1

r
+

1

a

)

r̂.

Here a is a constant.
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3.36 Find the charge distribution that supports the electrostatic potential

Φ =
e−ar

r

(

1 +
ar

2

)

.

Here a is a constant.

3.37 A volume charge is distributed throughout an infinite slab of thickness 2a symmet-
rically placed about the xy-plane. Consider the charge density to be uniform in x and y
but not necessarily in z. Use the integral form of Coulomb’s law to obtain an expression
for E.

3.38 A surface charge η is distributed over a spherical surface of radius a and centered
at the origin. Consider the charge density to be uniform in φ but not necessarily in θ,
and show that the potential at a point (0, 0, z) is given by

Φ(z) =
a2

2ǫ0

∫ π

0

η(θ′) sin θ′ dθ′√
a2 + z2 − 2az cos θ′

.

3.39 Given

H = H0

(

a

ρ

)

e−ρ/aφ̂

in cylindrical coordinates, find J.

3.40 A sphere of radius a and permeability µ is centered at the origin in free space, and
within a uniform primary magnetic field H = H0ẑ. Find H everywhere.

3.41 A disk of radius a centered in the xy-plane carries a uniform surface charge of
density η0 and rotates with angular velocity ω. Calculate A and B at the point (0, 0, z).

3.42 In the region 0 ≤ r ≤ a of free space, the electric field is given by

E(r) =
Q0

4πǫ0r

(

1

r
− 1

a

)

r̂

where a and Q0 are constants. Calculate the charge density and total charge within the
region 0 ≤ r ≤ a.

3.43 A slab of material occupies the region −a ≤ z ≤ a in otherwise free space. The
material is permanently polarized so that

P(r) = ẑP0

[

(z/a)
2 − 1

]

where P0 is a constant. (a) Calculate the equivalent polarization surface and volume
charge densities. (b) Find E in the region −a ≤ z ≤ a.

3.44 A hollow, perfectly conducting cylinder of infinite length and radius a is aligned
along the z-axis. The cylinder is split into two parts so that the portion 0 ≤ φ ≤ π is
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held at potential Φ = V0 while the portion π < φ < 2π is held at Φ = 0. Calculate
Φ(ρ, φ) for ρ > a.

3.45 A perfectly conducting sphere of radius a, centered on the origin, is split into halves.
The portion 0 ≤ θ ≤ π/2 is held at potential Φ = V0 while the portion π/2 < φ ≤ π is
held at Φ = 0. Calculate Φ(r, θ) for r < a and r > a.

3.46 An electrostatic dipole having moment p = p0ẑ resides at the center of a spherical
dielectric shell. The shell has permittivity ǫ and occupies the region a ≤ r ≤ b. The
regions r > b and r < a are free space regions. Calculate the electrostatic potential for
r > 0.

3.47 A conducting sphere of radius a, centered at the origin, is split into halves described
by 0 ≤ θ ≤ π/2 and π/2 < θ ≤ π. The sphere is immersed in a uniform electrostatic
field E = E0ẑ. Find the force tending to separate the two halves of the sphere.

3.48 Consider a PEC screen with a circular aperture, as shown in Figure 3.36. Show
that the field on the z-axis as z approaches zero from below is given by −E0/2.

3.49 Consider a PEC screen with a circular aperture, as shown in Figure 3.36. Show
that when |z| ≫ a, the shielding effectiveness may be approximated as

SE ≈ 13.5 dB + 60 log10

∣

∣

∣

z

a

∣

∣

∣ .

3.50 Consider the cylindrical dielectric shell shown in Figure 3.39. Assume that instead
of being x-directed, the applied electric field is z-directed: E0 = ẑE0. Demonstrate that
under this condition there is no shielding of the interior region from the applied field.

3.51 Consider the cylindrical shell illuminated by an AC magnetic field shown in Figure
3.42. Solve the system of linear equations resulting from the boundary conditions and
show that the amplitude coefficient of the magnetic field internal to the cylindrical shell
is given by (3.247). You will need to use the Wronskian relationship for the modified
Bessel functions.
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Temporal and spatial frequency domain

representation

4.1 Interpretation of the temporal transform

When a field is represented by a continuous superposition of elemental components, the
resulting decomposition can simplify computation and provide physical insight. Such
representation is usually accomplished through the use of an integral transform. Al-
though several different transforms are used in electromagnetics, we shall concentrate on
the powerful and efficient Fourier transform.
Let us consider the Fourier transform of the electromagnetic field. The field depends

on x, y, z, t, and we can transform with respect to any or all of these variables. However,
a consideration of units leads us to consider a transform over t separately. Let ψ(r, t)
represent any rectangular component of the electric or magnetic field. Then the temporal
transform will be designated by ψ̃(r, ω):

ψ(r, t) ↔ ψ̃(r, ω).

Here ω is the transform variable. The transform field ψ̃ is calculated using (A.1):

ψ̃(r, ω) =

∫ ∞

−∞
ψ(r, t) e−jωt dt. (4.1)

The inverse transform is, by (A.2),

ψ(r, t) =
1

2π

∫ ∞

−∞
ψ̃(r, ω) ejωt dω. (4.2)

Since ψ̃ is complex, it may be written in the amplitude–phase form

ψ̃(r, ω) = |ψ̃(r, ω)|ejξψ(r,ω) (−π < ξψ(r, ω) ≤ π).

Since ψ(r, t) must be real, (4.1) shows that

ψ̃(r,−ω) = ψ̃∗(r, ω). (4.3)

Furthermore, the transform of the derivative of ψ may be found by differentiating (4.2):

∂

∂t
ψ(r, t) =

1

2π

∫ ∞

−∞
jωψ̃(r, ω) ejωt dω,

hence
∂

∂t
ψ(r, t) ↔ jωψ̃(r, ω).

285
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By virtue of (4.2), any electromagnetic field component can be decomposed into a
continuous, weighted superposition of elemental temporal terms ejωt. Note that the
weighting factor ψ̃(r, ω), often called the frequency spectrum of ψ(r, t), is not arbitrary
because ψ(r, t) must obey a scalar wave equation such as (2.269). For a source-free region
of space, we have

(

∇2 − µσ
∂

∂t
− µǫ

∂2

∂t2

)

1

2π

∫ ∞

−∞
ψ̃(r, ω) ejωt dω = 0.

Differentiating under the integral sign, we have

1

2π

∫ ∞

−∞
[(∇2 − jωµσ + ω2µǫ)ψ̃(r, ω)]ejωt dω = 0

and hence by the Fourier integral theorem

(∇2 + k2)ψ̃(r, ω) = 0 (4.4)

where

k = ω
√
µǫ

√

1− j
σ

ωǫ

is the wavenumber . The scalar Helmholtz equation (4.4) represents the wave equation in
the temporal frequency domain.

4.2 The frequency-domain Maxwell equations

If the region of interest contains sources, we can return to Maxwell’s equations and rep-
resent all quantities using the temporal inverse Fourier transform. We have, for example,

E(r, t) =
1

2π

∫ ∞

−∞
Ẽ(r, ω) ejωt dω

where

Ẽ(r, ω) =

3
∑

i=1

îiẼi(r, ω) =

3
∑

i=1

îi|Ẽi(r, ω)|ejξ
E
i (r,ω). (4.5)

All other field quantities will be written similarly with an appropriate superscript on the
phase. Substitution into Ampere’s law gives

∇× 1

2π

∫ ∞

−∞
H̃(r, ω) ejωt dω =

∂

∂t

1

2π

∫ ∞

−∞
D̃(r, ω) ejωt dω +

1

2π

∫ ∞

−∞
J̃(r, ω) ejωt dω,

hence
1

2π

∫ ∞

−∞
[∇× H̃(r, ω)− jωD̃(r, ω)− J̃(r, ω)]ejωt dω = 0

after we differentiate under the integral signs and combine terms. So

∇× H̃ = jωD̃+ J̃ (4.6)
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by the Fourier integral theorem. This version of Ampere’s law involves only the frequency-
domain fields. By similar reasoning, we have

∇× Ẽ = −jωB̃, (4.7)

∇ · D̃ = ρ̃, (4.8)

∇ · B̃(r, ω) = 0, (4.9)

and the continuity equation ∇ · J̃ + jωρ̃ = 0. Relations (4.6)–(4.9) govern the tem-
poral spectra of the electromagnetic fields. We may manipulate them to obtain wave
equations, and apply the boundary conditions from the following section. After finding
the frequency-domain fields, we may find the temporal fields by Fourier inversion. The
frequency-domain equations involve one fewer derivative (the time derivative has been
replaced by multiplication by jω), hence they may be easier to solve. However, the
inverse transform may be difficult to compute.

4.3 Boundary conditions on the frequency-domain fields

Several boundary conditions on the source and mediating fields were derived in § 2.8.2.
For example, the tangential electric field must obey

n̂12 ×E1(r, t)− n̂12 ×E2(r, t) = −Jms(r, t).

The technique of the previous section yields

n̂12 × [Ẽ1(r, ω)− Ẽ2(r, ω)] = −J̃ms(r, ω)

as the condition satisfied by the frequency-domain electric field. The remaining boundary
conditions are treated similarly. Let us summarize the results, including the effects of
fictitious magnetic sources:

n̂12 × (H̃1 − H̃2) = J̃s,

n̂12 × (Ẽ1 − Ẽ2) = −J̃ms,

n̂12 · (D̃1 − D̃2) = ρ̃s,

n̂12 · (B̃1 − B̃2) = ρ̃ms,

and

n̂12 · (J̃1 − J̃2) = −∇s · J̃s − jωρ̃s,

n̂12 · (J̃m1 − J̃m2) = −∇s · J̃ms − jωρ̃ms.

Here n̂12 points into region 1 from region 2.
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4.4 Constitutive relations in the frequency domain and the
Kramers–Kronig relations

All materials are to some extent dispersive. If a field applied to a material undergoes
a sufficiently rapid change, there is a time lag in the response of the polarization or
magnetization of the atoms. It has been found that such materials have constitutive
relations involving products in the frequency domain, and that the frequency-domain
constitutive parameters are complex, frequency-dependent quantities. We shall restrict
ourselves to the special case of anisotropic materials and refer the reader to Kong [108]
and Lindell [120] for the more general case. For anisotropic materials, we write

P̃ = ǫ0 ˜̄χe · Ẽ, (4.10)

M̃ = ˜̄χm · H̃, (4.11)

D̃ = ˜̄ǫ · Ẽ = ǫ0[Ī+ ˜̄χe] · Ẽ, (4.12)

B̃ = ˜̄µ · H̃ = µ0[Ī+ ˜̄χm] · H̃, (4.13)

J̃ = ˜̄σ · Ẽ. (4.14)

By the convolution theorem and the assumption of causality, we immediately obtain the
dyadic versions of (2.20)–(2.22):

D(r, t) = ǫ0

(

E(r, t) +

∫ t

−∞
χ̄e(r, t− t′) · E(r, t′) dt′

)

,

B(r, t) = µ0

(

H(r, t) +

∫ t

−∞
χ̄m(r, t− t′) ·H(r, t′) dt′

)

,

J(r, t) =

∫ t

−∞
σ̄(r, t− t′) · E(r, t′) dt′.

These describe the essential behavior of a dispersive material. The susceptances and
conductivity, describing the response of the atomic structure to an applied field, depend
not only on the present value of the applied field but on all past values as well.

As D(r, t), B(r, t), and J(r, t) are real, so are the entries in the dyadic matrices ǭ(r, t),
µ̄(r, t), and σ̄(r, t). Applying (4.3) to each entry, we must have

˜̄χe(r,−ω) = ˜̄χ∗
e(r, ω), ˜̄χm(r,−ω) = ˜̄χ∗

m(r, ω), ˜̄σ(r,−ω) = ˜̄σ∗(r, ω), (4.15)

and hence
˜̄ǫ(r,−ω) = ˜̄ǫ∗(r, ω), ˜̄µ(r,−ω) = ˜̄µ∗(r, ω). (4.16)

In terms of real and imaginary parts, these conditions become

Re{ǫ̃ij(r,−ω)} = Re{ǫ̃ij(r, ω)} , Im{ǫ̃ij(r,−ω)} = − Im{ǫ̃ij(r, ω)} ,

and so on. The real parts of the constitutive parameters are even functions of frequency,
and the imaginary parts are odd functions of frequency.

In most instances, the presence of an imaginary part in the constitutive parameters
implies that the material is either dissipative (lossy), transforming some of the electro-
magnetic energy in the fields into thermal energy, or active, transforming the chemical or
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mechanical energy of the material into energy in the fields. We investigate this further
in § 4.5 and § 4.8.3.
The constitutive equations may also be expressed in amplitude–phase form. Letting

ǫ̃ij = |ǫ̃ij |ejξ
ǫ
ij , µ̃ij = |µ̃ij |ejξ

µ
ij , σ̃ij = |σ̃ij |ejξ

σ
ij ,

and using the notation (4.5), we can write (4.12)–(4.14) as

D̃i = |D̃i|ejξ
D
i =

3
∑

j=1

|ǫ̃ij ||Ẽj |ej[ξ
E
j +ξǫij ], (4.17)

B̃i = |B̃i|ejξ
B
i =

3
∑

j=1

|µ̃ij ||H̃j |ej[ξ
H
j +ξµij ], (4.18)

J̃i = |J̃i|ejξ
J
i =

3
∑

j=1

|σ̃ij ||Ẽj |ej[ξ
E
j +ξσij ]. (4.19)

Here we remember that the amplitudes and phases may be functions of both r and ω.
For isotropic materials, these reduce to

D̃i = |D̃i|ejξ
D
i = |ǫ̃||Ẽi|ej(ξ

E
i +ξǫ), (4.20)

B̃i = |B̃i|ejξ
B
i = |µ̃||H̃i|ej(ξ

H
i +ξµ), (4.21)

J̃i = |J̃i|ejξ
J
i = |σ̃||Ẽi|ej(ξ

E
i +ξσ). (4.22)

4.4.1 The complex permittivity

As mentioned above, dissipative effects may be associated with complex entries in the
permittivity matrix. Since conduction effects can also lead to dissipation, the permittivity
and conductivity matrices are often combined to form a complex permittivity. Writing
the current as a sum of impressed and secondary conduction terms (J̃ = J̃i + J̃c) and
substituting (4.12) and (4.14) into Ampere’s law, we find

∇× H̃ = J̃i + ˜̄σ · Ẽ+ jω˜̄ǫ · Ẽ.

Defining the complex permittivity

˜̄ǫc(r, ω) =
˜̄σ(r, ω)

jω
+ ˜̄ǫ(r, ω), (4.23)

we have
∇× H̃ = J̃i + jω˜̄ǫc · Ẽ.

Using the complex permittivity, we can include the effects of conduction current by merely
replacing the total current with the impressed current. Since Faraday’s law is unaffected,
any equation (such as the wave equation) derived previously using total current retains
its form with the same substitution.
By (4.15) and (4.16) the complex permittivity obeys

˜̄ǫc(r,−ω) = ˜̄ǫc∗(r, ω) (4.24)

or

Re
{

ǫ̃cij(r,−ω)
}

= Re
{

ǫ̃cij(r, ω)
}

, Im
{

ǫ̃cij(r,−ω)
}

= − Im
{

ǫ̃cij(r, ω)
}

. (4.25)



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 290 — #314
✐

✐

✐

✐

✐

✐

290 Electromagnetics

For an isotropic material it takes the particularly simple form

ǫ̃c =
σ̃

jω
+ ǫ̃ =

σ̃

jω
+ ǫ0 + ǫ0χ̃e, (4.26)

and we have

Re{ǫ̃c(r,−ω)} = Re{ǫ̃c(r, ω)} , Im{ǫ̃c(r,−ω)} = − Im{ǫ̃c(r, ω)} . (4.27)

4.4.2 High and low frequency behavior of constitutive parameters

At low frequencies the permittivity reduces to the electrostatic permittivity. Since Re{ǫ̃}
is even in ω and Im{ǫ̃} is odd, we have for small ω

Re ǫ̃ ∼ ǫ0ǫr, Im ǫ̃ ∼ ω.

If the material has some dc conductivity σ0, then for low frequencies the complex per-
mittivity behaves as

Re ǫ̃c ∼ ǫ0ǫr, Im ǫ̃c ∼ σ0/ω. (4.28)

It is possible for E or H to vary so rapidly that polarization or magnetization effects
are precluded. Indeed, the atomic structure of a material may be unable to respond to
sufficiently rapid oscillations in an applied field. Above some frequency then, we can
assume ˜̄χe = 0 = ˜̄χm so that P̃ = 0 = M̃ and

D̃ = ǫ0Ẽ, B̃ = µ0H̃.

In our simple models of dielectric materials (§ 4.6) we find that as ω becomes large,

Re ǫ̃− ǫ0 ∼ 1/ω2, Im ǫ̃ ∼ 1/ω3. (4.29)

Our assumption of a macroscopic model of matter provides a fairly strict upper frequency
limit to the range of validity of the constitutive parameters. We must assume the wave-
length of the electromagnetic field is large compared to the size of the atomic structure.
This limit suggests that permittivity and permeability might remain meaningful even at
optical frequencies, and for dielectrics this is indeed the case since the values of P̃ remain
significant. However, M̃ becomes insignificant at much lower frequencies, and at optical
frequencies we may use B̃ = µ0H̃ [113].

4.4.3 The Kramers–Kronig relations

The causality principle is clearly implicit in (2.20)–(2.22). We shall demonstrate that
causality leads to explicit relationships between the real and imaginary parts of the
frequency-domain constitutive parameters. For simplicity we focus on the isotropic case
and merely note that the present analysis holds for all the dyadic components of an
anisotropic constitutive parameter. We also focus on the complex permittivity and extend
the results to permeability by analogy.

The implications of causality on the behavior of the constitutive parameters in the
time domain are easily identified. Writing (2.20) and (2.22) after setting u = t− t′ and
then u = t′, we have

D(r, t) = ǫ0E(r, t) + ǫ0

∫ ∞

0

χe(r, t
′)E(r, t− t′) dt′,

J(r, t) =

∫ ∞

0

σ(r, t′)E(r, t− t′) dt′.
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Clearly the values of χe(r, t) or σ(r, t) for times t < 0 do not contribute. So we can write

D(r, t) = ǫ0E(r, t) + ǫ0

∫ ∞

−∞
χe(r, t

′)E(r, t− t′) dt′,

J(r, t) =

∫ ∞

−∞
σ(r, t′)E(r, t− t′) dt′,

with the additional assumption

χe(r, t) = 0 (t < 0), σ(r, t) = 0 (t < 0). (4.30)

By (4.30) the frequency-domain complex permittivity (4.26) is

ǫ̃c(r, ω)− ǫ0 =
1

jω

∫ ∞

0

σ(r, t′)e−jωt
′

dt′ + ǫ0

∫ ∞

0

χe(r, t
′)e−jωt

′

dt′. (4.31)

To derive the Kramers–Kronig relations, we must understand the behavior of ǫ̃c(r, ω)−ǫ0
in the complex ω-plane. Writing ω = ωr + jωi, we require the following two properties.

Property 1: The function ǫ̃c(r, ω) − ǫ0 is analytic in the lower half-plane (ωi < 0)
except for a simple pole at ω = 0.

We can establish the analyticity of σ̃(r, ω) by integrating over any closed contour in
the lower half-plane. We have
∮

Γ

σ̃(r, ω) dω =

∮

Γ

[∫ ∞

0

σ(r, t′)e−jωt
′

dt′
]

dω =

∫ ∞

0

σ(r, t′)

[∮

Γ

e−jωt
′

dω

]

dt′. (4.32)

Note that an exchange in the order of integration in the above expression is only valid for
ω in the lower half-plane where limt′→∞ e−jωt

′

= 0. Since f(ω) = e−jωt
′

is analytic in the
lower half-plane, its closed contour integral vanishes by the Cauchy–Goursat theorem.
Hence (4.32) yields

∮

Γ

σ̃(r, ω) dω = 0.

Then, since σ̃ may be assumed continuous in the lower half-plane for a physical medium,
and since its closed path integral is zero for all possible paths Γ, it is by Morera’s theorem
[116] analytic in the lower half-plane. Similarly, so is χe(r, ω). Because the function 1/ω
has a simple pole at ω = 0, the composite function ǫ̃c(r, ω)−ǫ0 given by (4.31) is analytic
in the lower half-plane excluding ω = 0 where it has a simple pole.

Property 2: We have
lim

ω→±∞
ǫ̃c(r, ω)− ǫ0 = 0.

Here we require the Riemann–Lebesgue lemma [144], which states that if f(t) is absolutely
integrable on the interval (a, b) for finite or infinite constants a and b, then

lim
ω→±∞

∫ b

a

f(t)e−jωt dt = 0.

This implies

lim
ω→±∞

σ̃(r, ω)

jω
= lim

ω→±∞
1

jω

∫ ∞

0

σ(r, t′)e−jωt
′

dt′ = 0,

lim
ω→±∞

ǫ0χe(r, ω) = lim
ω→±∞

ǫ0

∫ ∞

0

χe(r, t
′)e−jωt

′

dt′ = 0,
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FIGURE 4.1

Complex integration contour used to establish the Kramers–Kronig relations.

and hence
lim

ω→±∞
ǫ̃c(r, ω)− ǫ0 = 0.

To establish the Kramers–Kronig relations, we examine the integral
∮

Γ

ǫ̃c(r,Ω) − ǫ0
Ω− ω

dΩ

where Γ is shown in Figure 4.1. Since the points Ω = 0, ω are excluded, the integrand is
analytic everywhere within and on Γ, and the integral vanishes by the Cauchy–Goursat
theorem. By Property 2

lim
R→∞

∫

C∞

ǫ̃c(r,Ω)− ǫ0
Ω− ω

dΩ = 0,

hence
∫

C0+Cω

ǫ̃c(r,Ω)− ǫ0
Ω− ω

dΩ + P.V.

∫ ∞

−∞

ǫ̃c(r,Ω) − ǫ0
Ω− ω

dΩ = 0. (4.33)

Here “P.V.” denotes an integral computed in the Cauchy principal value sense (Appendix
A). To evaluate the integrals over C0 and Cω , consider a function f(Z) analytic in the
lower half of the Z-plane (Z = Zr + jZi). If the point z lies on the real axis as shown in
Figure 4.1, we can calculate the integral

F (z) = lim
δ→0

∫

Γ

f(Z)

Z − z
dZ

through the parameterization Z − z = δejθ. Since dZ = jδejθ dθ, we have

F (z) = lim
δ→0

∫ 0

−π

f
(

z + δejθ
)

δejθ
[

jδejθ
]

dθ = jf(z)

∫ 0

−π
dθ = jπf(z).
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Replacing Z by Ω and z by 0, we can compute

lim
∆→0

∫

C0

ǫ̃c(r,Ω)− ǫ0
Ω− ω

dΩ

= lim
∆→0

∫

C0

[

1
j

∫∞
0
σ(r, t′)e−jΩt

′

dt′ +Ωǫ0
∫∞
0
χe(r, t

′)e−jΩt
′

dt′
]

1
Ω−ω

Ω
dΩ

= −π
∫∞
0
σ(r, t′) dt′

ω
.

We recognize
∫ ∞

0

σ(r, t′) dt′ = σ0(r)

as the dc conductivity and write

lim
∆→0

∫

C0

ǫ̃c(r,Ω)− ǫ0
Ω− ω

dΩ = −πσ0(r)
ω

.

If we replace Z by Ω and z by ω we get

lim
δ→0

∫

Cω

ǫ̃c(r,Ω) − ǫ0
Ω− ω

dΩ = jπǫ̃c(r, ω)− jπǫ0.

Substituting these into (4.33), we have

ǫ̃c(r, ω)− ǫ0 = − 1

jπ
P.V.

∫ ∞

−∞

ǫ̃c(r,Ω)− ǫ0
Ω− ω

dΩ+
σ0(r)

jω
. (4.34)

By equating real and imaginary parts in (4.34) we find that

Re{ǫ̃c(r, ω)} − ǫ0 = − 1

π
P.V.

∫ ∞

−∞

Im{ǫ̃c(r,Ω)}
Ω− ω

dΩ, (4.35)

Im{ǫ̃c(r, ω)} =
1

π
P.V.

∫ ∞

−∞

Re{ǫ̃c(r,Ω)} − ǫ0
Ω− ω

dΩ− σ0(r)

ω
. (4.36)

These are the Kramers–Kronig relations, named after H.A. Kramers and R. de L. Kronig,
who derived them independently. The expressions show that causality requires the real
and imaginary parts of the permittivity to depend upon each other through the Hilbert
transform pair [144].
It is often more convenient to express the relations purely in terms of positive frequen-

cies. This is accomplished using the even–odd behavior of the real and imaginary parts
of ǫ̃c. Breaking the integrals in (4.35)–(4.36) into the ranges (−∞, 0) and (0,∞), and
substituting from (4.27), we find that

Re{ǫ̃c(r, ω)} − ǫ0 = − 2

π
P.V.

∫ ∞

0

Ω Im{ǫ̃c(r,Ω)}
Ω2 − ω2

dΩ, (4.37)

Im{ǫ̃c(r, ω)} =
2ω

π
P.V.

∫ ∞

0

Re{ǫ̃c(r,Ω)} − ǫ0
Ω2 − ω2

dΩ− σ0(r)

ω
. (4.38)

The symbol P.V. in this case indicates that values of the integrand around both Ω = 0
and Ω = ω must be excluded from the integration. The details of deriving (4.37)–(4.38)
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are left as an exercise. We use (4.37) in § 4.6 to demonstrate the Kramers–Kronig
relationship for a model of complex permittivity of an actual material.

We cannot specify Re ǫ̃c arbitrarily; for a passive medium Im ǫ̃c must be zero or negative
at all values of ω, and (4.36) will not necessarily return these required values. However,
if we have a good measurement or physical model for Im ǫ̃c, as might come from studies
of the absorbing properties of the material, we can approximate the real part of the
permittivity using (4.35). We shall demonstrate this using simple models for permittivity
in § 4.6.

The Kramers–Kronig properties hold for µ as well. We must for practical reasons
consider the fact that magnetization becomes unimportant at a much lower frequency
than does polarization, so that the infinite integrals in the Kramers–Kronig relations
should be truncated at some upper frequency ωmax. If we use a model or measured
values of Im µ̃ to determine Re µ̃, the form of the relation (4.37) should be [113]

Re{µ̃(r, ω)} − µ0 = − 2

π
P.V.

∫ ωmax

0

Ω Im{µ̃(r,Ω)}
Ω2 − ω2

dΩ,

where ωmax is the frequency at which magnetization ceases to be important, and above
which µ̃ = µ0.

4.5 Dissipated and stored energy in a dispersive medium

Let us write down Poynting’s power balance theorem for a dispersive medium. Writing
J = Ji + Jc, we have (§ 2.9.5)

−Ji ·E = Jc · E+∇ · (E×H) +

(

E · ∂D
∂t

+H · ∂B
∂t

)

. (4.39)

We cannot express this in terms of the time rate of change of a stored energy density
because of the difficulty in interpreting the term

E · ∂D
∂t

+H · ∂B
∂t

(4.40)

for constitutive parameters of the form (2.20)–(2.22). Physically, this term describes
both the energy stored in the electromagnetic field and the energy dissipated by the
material because of time lags between the application of E and H and the polarization
or magnetization of the atoms (and thus the response fields D and B). In principle it
can also be used to describe active media that transfer mechanical or chemical energy of
the material into field energy.

Instead of trying to interpret (4.40), we concentrate on the physical meaning of

−∇ · S(r, t) = −∇ · [E(r, t)×H(r, t)].

We shall postulate that this term describes the net flow of electromagnetic energy into
the point r at time t. Then (4.39) shows that in the absence of impressed sources
the energy flow must act to (1) increase or decrease the stored energy density at r,
(2) dissipate energy in ohmic losses through the term involving Jc, or (3) dissipate (or
provide) energy through the term (4.40). Assuming linearity, we may write

−∇ · S(r, t) = ∂

∂t
we(r, t) +

∂

∂t
wm(r, t) +

∂

∂t
wQ(r, t), (4.41)
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where the terms on the right represent the time rates of change of, respectively, stored
electric, stored magnetic, and dissipated energies.

4.5.1 Dissipation in a dispersive material

Although we may, in general, be unable to separate the individual terms in (4.41), we
can examine these terms under certain conditions. For example, consider a field that
builds from zero starting from time t = −∞ and then decays back to zero at t = ∞.
Then by direct integration∗

−
∫ ∞

−∞
∇ · S(t) dt = wem(t = ∞)− wem(t = −∞) + wQ(t = ∞)− wQ(t = −∞)

where wem = we + wm is the volume density of stored electromagnetic energy. This
stored energy is zero at t = ±∞ since the fields are zero at those times. So

∆wQ = −
∫ ∞

−∞
∇ · S(t) dt = wQ(t = ∞)− wQ(t = −∞)

represents the volume density of the net energy dissipated by a lossy medium (or supplied
by an active medium). We may thus classify materials according to the scheme

∆wQ = 0, lossless,

∆wQ > 0, lossy,

∆wQ ≥ 0, passive,

∆wQ < 0, active.

For an anisotropic material with the constitutive relations

D̃ = ˜̄ǫ · Ẽ, B̃ = ˜̄µ · H̃, J̃c = ˜̄σ · Ẽ,

we find that dissipation is associated with negative imaginary parts of the constitutive
parameters. To see this we write

E(r, t) =
1

2π

∫ ∞

−∞
Ẽ(r, ω)ejωt dω, D(r, t) =

1

2π

∫ ∞

−∞
D̃(r, ω′)ejω

′t dω′,

and thus find

Jc ·E+E · ∂D
∂t

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
Ẽ(ω) · ˜̄ǫc(ω′) · Ẽ(ω′)ej(ω+ω

′)tjω′ dω dω′

where ˜̄ǫc is the complex dyadic permittivity (4.23). Then

∆wQ =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

[

Ẽ(ω) · ˜̄ǫc(ω′) · Ẽ(ω′) + H̃(ω) · ˜̄µ(ω′) · H̃(ω′)
]

·

·
[∫ ∞

−∞
ej(ω+ω

′)t dt

]

jω′ dω dω′. (4.42)

∗Note that in this section we suppress the r-dependence of most quantities for clarity of presentation.
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Using (A.5) and integrating over ω we obtain

∆wQ =
1

2π

∫ ∞

−∞

[

Ẽ(−ω′) · ˜̄ǫc(ω′) · Ẽ(ω′) + H̃(−ω′) · ˜̄µ(ω′) · H̃(ω′)
]

jω′ dω′. (4.43)

Let us examine (4.43) more closely for the simple case of an isotropic material for
which

∆wQ =
1

2π

∫ ∞

−∞

{

[j Re{ǫ̃c(ω′)} − Im{ǫ̃c(ω′)}] Ẽ(−ω′) · Ẽ(ω′)

+ [jRe{µ̃(ω′)} − Im{µ̃(ω′)}] H̃(−ω′) · H̃(ω′)
}

ω′ dω′.

Using the frequency symmetry property for complex permittivity (4.16) (which also holds
for permeability), we find that for isotropic materials,

Re{ǫ̃c(r, ω)} = Re{ǫ̃c(r,−ω)} , Im{ǫ̃c(r, ω)} = − Im{ǫ̃c(r,−ω)} , (4.44)

Re{µ̃(r, ω)} = Re{µ̃(r,−ω)} , Im{µ̃(r, ω)} = − Im{µ̃(r,−ω)} . (4.45)

Thus, the products of ω′ and the real parts of the constitutive parameters are odd
functions, while for the imaginary parts these products are even. Since the dot products
of the vector fields are even functions, the integrals of the terms containing the real parts
of the constitutive parameters vanish and leave

∆wQ = 2
1

2π

∫ ∞

0

[

− Im{ǫ̃c} |Ẽ|2 − Im{µ̃} |H̃|2
]

ω dω. (4.46)

Here we have used (4.3) in the form

Ẽ(r,−ω) = Ẽ∗(r, ω), H̃(r,−ω) = H̃∗(r, ω). (4.47)

Equation (4.46) leads us to associate the imaginary parts of the constitutive parameters
with dissipation. Moreover, a lossy isotropic material for which ∆wQ > 0 must have at
least one of Im ǫc and Imµ less than zero over some range of positive frequencies, while
an active isotropic medium must have at least one of these greater than zero. In general,
we speak of a lossy material as having negative imaginary constitutive parameters:

Im ǫ̃c < 0, Im µ̃ < 0 (ω > 0). (4.48)

A lossless medium must have Im ǫ̃ = Im µ̃ = σ̃ = 0 for all ω.
The more general anisotropic case is not as simple. Integration of (4.42) over ω′ instead

of ω produces

∆wQ = − 1

2π

∫ ∞

−∞

[

Ẽ(ω) · ˜̄ǫc(−ω) · Ẽ(−ω) + H̃(ω) · ˜̄µ(−ω) · H̃(−ω)
]

jω dω.

Adding half of this expression to half of (4.43) and using (4.24), (4.16), and (4.47), we
obtain

∆wQ =
1

4π

∫ ∞

−∞

[

Ẽ∗ · ˜̄ǫc · Ẽ− Ẽ · ˜̄ǫc∗ · Ẽ∗ + H̃∗ · ˜̄µ · H̃− H̃ · ˜̄µ∗ · H̃∗
]

jω dω.

Finally, dyadic identity (A.78) yields

∆wQ =
1

4π

∫ ∞

−∞

[

Ẽ∗ ·
(

˜̄ǫc − ˜̄ǫc†
)

· Ẽ+ H̃∗ ·
(

˜̄µ− ˜̄µ†) · H̃
]

jω dω
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where the dagger (†) denotes the hermitian (conjugate-transpose) operation. The condi-
tion for a lossless anisotropic material is

˜̄ǫc = ˜̄ǫc†, ˜̄µ = ˜̄µ†, (4.49)

or
ǫ̃ij = ǫ̃∗ji, µ̃ij = µ̃∗

ji, σ̃ij = σ̃∗
ji. (4.50)

These relationships imply that in the lossless case the diagonal entries of the constitutive
dyadics are purely real.
Equations (4.50) show that complex entries in a permittivity or permeability matrix do

not necessarily imply loss. For example, we will show in § 4.6.2 that an electron plasma
exposed to a z-directed dc magnetic field has a permittivity of the form

[̃̄ǫ] =





ǫ −jδ 0
jδ ǫ 0
0 0 ǫz





where ǫ, ǫz, δ are real functions of space and frequency. Since ˜̄ǫ is hermitian it describes a
lossless plasma. Similarly, a gyrotropic medium such as a ferrite exposed to a z-directed
magnetic field has a permeability dyadic

[˜̄µ] =





µ −jκ 0
jκ µ 0
0 0 µ0



 ,

which also describes a lossless material.

4.5.2 Energy stored in a dispersive material

In the last section we were able to isolate the dissipative effects for a dispersive mate-
rial under special circumstances. It is not generally possible, however, to isolate a term
describing the stored energy. The Kramers–Kronig relations imply that if the consti-
tutive parameters of a material are frequency-dependent, they must have both real and
imaginary parts; such a material, if isotropic, must be lossy. So dispersive materials
are generally lossy and must have both dissipative and energy-storage characteristics.
However, many materials have frequency ranges called transparency ranges over which
Im ǫ̃c and Im µ̃ are small compared to Re ǫ̃c and Re µ̃. By restricting our interest to
these ranges, we may approximate the material as lossless and compute a stored energy.
An important case involves a monochromatic field oscillating at a frequency within this
range.
To study the energy stored by a monochromatic field in a dispersive material, we

must consider the transient period during which energy accumulates in the fields. The
assumption of purely sinusoidal field variation would not include the effects described by
the temporal constitutive relations (2.20)–(2.21), which show that as the field builds, the
energy must be added with a time lag. Instead we shall assume fields with the temporal
variation

E(r, t) = f(t)

3
∑

i=1

îi|Ei(r)| cos[ω0t+ ξEi (r)] (4.51)

where f(t) is an appropriate function describing the build-up of the sinusoidal field. To
compute the stored energy of a sinusoidal wave, we must parameterize f(t) so that we
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FIGURE 4.2

Temporal (top) and spectral magnitude (bottom) dependences of E used to compute
energy stored in a dispersive material.

may drive it to unity as a limiting case of the parameter. A simple choice is

f(t) = e−α
2t2 ↔ F̃ (ω) =

√

π

α2
e−

ω2

4α2 . (4.52)

Note that since f(t) approaches unity as α→ 0, we have the generalized Fourier transform
relation

lim
α→0

F̃ (ω) = 2πδ(ω). (4.53)

Substituting (4.51) into the Fourier transform formula (4.1), we find that

Ẽ(r, ω) =
1

2

3
∑

i=1

îi|Ei(r)|ejξ
E
i (r)F̃ (ω − ω0) +

1

2

3
∑

i=1

îi|Ei(r)|e−jξ
E
i (r)F̃ (ω + ω0).

We can simplify this by defining

Ě(r) =

3
∑

i=1

îi|Ei(r)|ejξ
E
i (r) (4.54)

as the phasor vector field, to obtain

Ẽ(r, ω) = 1
2 [Ě(r)F̃ (ω − ω0) + Ě∗(r)F̃ (ω + ω0)]. (4.55)

We shall discuss the phasor concept in detail in § 4.7.
The field E(r, t) appears in Figure 4.2 as a function of t, while Ẽ(r, ω) appears in

Figure 4.2 as a function of ω. As α becomes small, the spectrum of E(r, t) concentrates
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around ω = ±ω0. We assume the material is transparent for all values α of interest so
that we may treat ǫ as real. Then, since there is no dissipation, we conclude that the
term (4.40) represents the time rate of change of stored energy at time t, including the
effects of field build-up. Hence the interpretation†

E · ∂D
∂t

=
∂we
∂t

, H · ∂B
∂t

=
∂wm
∂t

.

We focus on the electric field term and infer the magnetic field term by analogy.
Since for periodic signals it is more convenient to deal with the time-averaged stored

energy than with the instantaneous stored energy, we compute the time average of we(r, t)
over the period of the sinusoid centered at the time origin. That is, we compute

〈we〉 =
1

T

∫ T/2

−T/2
we(t) dt (4.56)

where T = 2π/ω0. With α → 0, this time-average value is accurate for all periods of the
sinusoidal wave.
Because the most expedient approach to the computation of (4.56) is to employ the

Fourier spectrum of E, we use

E(r, t) =
1

2π

∫ ∞

−∞
Ẽ(r, ω)ejωt dω =

1

2π

∫ ∞

−∞
Ẽ∗(r, ω′)e−jω

′t dω′,

∂D(r, t)

∂t
=

1

2π

∫ ∞

−∞
(jω)D̃(r, ω)ejωt dω =

1

2π

∫ ∞

−∞
(−jω′)D̃∗(r, ω′)e−jω

′t dω′.

We have obtained the second form of each expression via property (4.3) for the transform
of a real function along with the change of variables ω′ = −ω. Multiplying the two forms
of the expressions and adding half of each, we have

∂we
∂t

=
1

2

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π

[

jωẼ∗(ω′) · D̃(ω)− jω′Ẽ(ω) · D̃∗(ω′)
]

e−j(ω
′−ω)t. (4.57)

Now let us consider a dispersive isotropic medium described by the constitutive rela-
tions D̃ = ǫ̃Ẽ and B̃ = µ̃H̃. Since the imaginary parts of ǫ̃ and µ̃ are associated with
power dissipation in the medium, we shall approximate ǫ̃ and µ̃ as purely real. Then
(4.57) becomes

∂we
∂t

=
1

2

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
Ẽ∗(ω′) · Ẽ(ω) [jωǫ̃(ω)− jω′ǫ̃(ω′)] e−j(ω

′−ω)t.

Substitution from (4.55) now gives

∂we
∂t

=
1

8

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
[jωǫ̃(ω)− jω′ǫ̃(ω′)] ·

·
[

Ě · Ě∗F̃ (ω − ω0)F̃ (ω
′ − ω0) + Ě · Ě∗F̃ (ω + ω0)F̃ (ω

′ + ω0)

+ Ě · ĚF̃ (ω − ω0)F̃ (ω′ + ω0) + Ě∗ · Ě∗F̃ (ω + ω0)F̃ (ω
′ − ω0)

]

e−j(ω
′−ω)t.

†Note that in this section we suppress the r-dependence of most quantities for clarity of presentation.
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Let ω → −ω wherever the term F̃ (ω + ω0) appears, and ω′ → −ω′ wherever the term
F̃ (ω′ + ω0) appears. Since F̃ (−ω) = F̃ (ω) and ǫ̃(−ω) = ǫ̃(ω), we find that

∂we
∂t

=
1

8

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
F̃ (ω − ω0)F̃ (ω

′ − ω0) ·

·
[

Ě · Ě∗[jωǫ̃(ω)− jω′ǫ̃(ω′)]ej(ω−ω
′)t + Ě · Ě∗[jω′ǫ̃(ω′)− jωǫ̃(ω)]ej(ω

′−ω)t

+ Ě · Ě[jωǫ̃(ω) + jω′ǫ̃(ω′)]ej(ω+ω
′)t + Ě∗ · Ě∗[−jωǫ̃(ω)− jω′ǫ̃(ω′)]e−j(ω+ω

′)t
]

.

(4.58)

For small α the spectra are concentrated near ω = ω0 or ω′ = ω0. For terms involving
the difference in the permittivities, we can expand g(ω) = ωǫ̃(ω) in a Taylor series about
ω0 to obtain the approximation

ωǫ̃(ω) ≈ ω0ǫ̃(ω0) + (ω − ω0)g
′(ω0) where g′(ω0) =

∂[ωǫ̃(ω)]

∂ω

∣

∣

∣

∣

ω=ω0

.

This is not required for terms involving a sum of permittivities since these will not tend
to cancel. For such terms we merely substitute ω = ω0 or ω′ = ω0. With these, (4.58)
becomes

∂we
∂t

=
1

8

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
F̃ (ω − ω0)F̃ (ω

′ − ω0) ·

·
[

Ě · Ě∗g′(ω0)[j(ω − ω′)]ej(ω−ω
′)t + Ě · Ě∗g′(ω0)[j(ω

′ − ω)]ej(ω
′−ω)t

+ Ě · Ěǫ̃(ω0)[j(ω + ω′)]ej(ω+ω
′)t + Ě∗ · Ě∗ǫ̃(ω0)[−j(ω + ω′)]e−j(ω+ω

′)t
]

.

By integration

we(t) =
1

8

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
F̃ (ω − ω0)F̃ (ω′ − ω0) ·

·
[

Ě · Ě∗g′(ω0)e
j(ω−ω′)t + Ě · Ě∗g′(ω0)e

j(ω′−ω)t

+ Ě · Ěǫ̃(ω0)e
j(ω+ω′)t + Ě∗ · Ě∗ǫ̃(ω0)e

−j(ω+ω′)t
]

.

Our last step is to compute the time-average value of we and let α → 0. Applying
(4.56) we find

〈we〉 =
1

8

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
F̃ (ω − ω0)F̃ (ω

′ − ω0) ·

·
[

2Ě · Ě∗g′(ω0) sinc

(

[ω − ω′]
π

ω0

)

+
{

Ě∗ · Ě∗ + Ě · Ě
}

ǫ̃(ω0) sinc

(

[ω + ω′]
π

ω0

)]

where sincx is defined in (A.10) and satisfies sinc(−x) = sincx. Finally, we let α → 0
and use (4.53) to replace F̃ (ω) by a δ-function. Upon integration, these δ-functions set
ω = ω0 and ω′ = ω0. As sinc(0) = 1 and sinc(2π) = 0, the time-average stored electric
energy density is simply

〈we〉 = 1
4 |Ě|2 ∂(ωǫ̃)

∂ω

∣

∣

∣

∣

ω=ω0

. (4.59)
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Similarly

〈wm〉 = 1
4 |Ȟ|2 ∂(ωµ̃)

∂ω

∣

∣

∣

∣

ω=ω0

.

When applied to anisotropic materials, this approach gives [38]

〈we〉 = 1
4 Ě

∗ · ∂(ω
˜̄ǫ)

∂ω

∣

∣

∣

∣

ω=ω0

· Ě, (4.60)

〈wm〉 = 1
4Ȟ

∗ · ∂(ω
˜̄µ)

∂ω

∣

∣

∣

∣

ω=ω0

· Ȟ. (4.61)

For a lossless, nondispersive material where the constitutive parameters are frequency
independent, we can use (4.49) and (A.78) to obtain

〈we〉 = 1
4 Ě

∗ · ǭ · Ě = 1
4 Ě · Ď∗, (4.62)

〈wm〉 = 1
4Ȟ

∗ · µ̄ · Ȟ = 1
4Ȟ · B̌∗, (4.63)

in the anisotropic case, and

〈we〉 = 1
4ǫ|Ě|

2 = 1
4 Ě · Ď∗, (4.64)

〈wm〉 = 1
4µ|Ȟ|2 = 1

4Ȟ · B̌∗, (4.65)

in the isotropic case. Here Ě, Ď, B̌, Ȟ are all phasor fields as defined by (4.54).

4.5.3 The energy theorem

A convenient expression for the time-average stored energies (4.60) and (4.61) is found
by manipulating the frequency-domain Maxwell equations. Beginning with the complex
conjugates of the two frequency-domain curl equations for anisotropic media,

∇× Ẽ∗ = jω ˜̄µ∗ · H̃∗,

∇× H̃∗ = J̃∗ − jω˜̄ǫ∗ · Ẽ∗,

we differentiate with respect to frequency:

∇× ∂Ẽ∗

∂ω
= j

∂(ω ˜̄µ∗)

∂ω
· H̃∗ + jω ˜̄µ∗ · ∂H̃

∗

∂ω
, (4.66)

∇× ∂H̃∗

∂ω
=
∂J̃∗

∂ω
− j

∂(ω˜̄ǫ∗)

∂ω
· Ẽ∗ − jω˜̄ǫ∗ · ∂Ẽ

∗

∂ω
. (4.67)

These terms also appear as a part of the expansion

∇ ·
(

Ẽ× ∂H̃∗

∂ω
+
∂Ẽ∗

∂ω
× H̃

)

=

∂H̃∗

∂ω
· (∇× Ẽ)− Ẽ · ∇ × ∂H̃∗

∂ω
+ H̃ · ∇ × ∂Ẽ∗

∂ω
− ∂Ẽ∗

∂ω
· (∇× H̃)
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where we have used (B.50). Substituting from (4.66)–(4.67) and eliminating ∇× Ẽ and
∇× H̃ by Maxwell’s equations, we have

1

4
∇ ·
(

Ẽ× ∂H̃∗

∂ω
+
∂Ẽ∗

∂ω
× H̃

)

=

j
1

4
ω

(

Ẽ · ˜̄ǫ∗ · ∂Ẽ
∗

∂ω
− ∂Ẽ∗

∂ω
· ˜̄ǫ · Ẽ

)

+ j
1

4
ω

(

H̃ · ˜̄µ∗ · ∂H̃
∗

∂ω
− ∂H̃∗

∂ω
· ˜̄µ · H̃

)

+j
1

4

(

Ẽ · ∂(ω
˜̄ǫ∗)

∂ω
· Ẽ∗ + H̃ · ∂(ω

˜̄µ∗)

∂ω
· H̃∗

)

− 1

4

(

Ẽ · ∂J̃
∗

∂ω
+ J̃ · ∂Ẽ

∗

∂ω

)

.

Let us assume that the sources and fields are narrowband, centered on ω0, and that ω0

lies within a transparency range so that within the band the material may be considered
lossless. Invoking from (4.49) the facts that ˜̄ǫ = ˜̄ǫ† and ˜̄µ = ˜̄µ†, we find that the first two
terms on the right are zero. Integrating over a volume and taking the complex conjugate
of both sides, we obtain

1

4

∮

S

(

Ẽ∗ × ∂H̃

∂ω
+
∂Ẽ

∂ω
× H̃∗

)

· dS =

−j 1
4

∫

V

(

Ẽ∗ · ∂(ω
˜̄ǫ)

∂ω
· Ẽ+ H̃∗ · ∂(ω

˜̄µ)

∂ω
· H̃
)

dV − 1

4

∫

V

(

Ẽ∗ · ∂J̃
∂ω

+ J̃∗ · ∂Ẽ
∂ω

)

dV.

Evaluating each of the terms at ω = ω0 and using (4.60)–(4.61), we have

1

4

∮

S

(

Ẽ∗ × ∂H̃

∂ω
+
∂Ẽ

∂ω
× H̃∗

)

∣

∣

∣

∣

ω=ω0

· dS =

−j [〈We〉+ 〈Wm〉]− 1

4

∫

V

(

Ẽ∗ · ∂J̃
∂ω

+ J̃∗ · ∂Ẽ
∂ω

)

∣

∣

∣

∣

ω=ω0

dV (4.68)

where 〈We〉+〈Wm〉 is the total time-average electromagnetic energy stored in the volume
region V . This is known as the energy theorem. In § 4.11.3 it will help determine the
velocity of energy transport for a plane wave.

4.6 Some simple models for constitutive parameters

Our discussion of electromagnetic fields has been restricted to macroscopic phenomena.
Although we recognize that matter is composed of microscopic constituents, we have cho-
sen to describe materials using constitutive relationships whose parameters, such as per-
mittivity, conductivity, and permeability, are viewed in the macroscopic sense. Through
experiments on the laboratory scale, we can measure the constitutive parameters to the
precision required for engineering applications.

At some point it becomes useful to establish models of the macroscopic behavior of
materials based on microscopic considerations, formulating expressions for the consti-
tutive parameters using atomic descriptors such as number density, atomic charge, and
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molecular dipole moment. These models allow us to predict the behavior of broad classes
of materials, such as dielectrics and conductors, over wide ranges of frequency and field
strength.
Accurate models for the behavior of materials under the influence of electromagnetic

fields must account for many complicated effects, including those best described by quan-
tum mechanics. However, many simple models can be obtained using classical mechanics
and field theory. We shall investigate several of the most useful of these, and in the
process try to gain a feeling for the relationship between the field applied to a material
and the resulting polarization or magnetization of the underlying atomic structure.
For simplicity, we consider only homogeneous materials. The fundamental atomic de-

scriptor of “number density,” N , is thus taken to be independent of position and time.
The result may be more generally applicable since we may think of an inhomogeneous
material in terms of the spatial variation of constitutive parameters originally deter-
mined assuming homogeneity. However, we shall not attempt to study the microscopic
conditions that give rise to inhomogeneities.

4.6.1 Complex permittivity of a nonmagnetized plasma

A plasma is an ionized gas in which the charged particles are free to move under the
influence of an applied field and through particle–particle interactions. A plasma differs
from other materials in that there is no atomic lattice restricting particle motion. How-
ever, even in a gas the interactions between the particles and the fields give rise to a
polarization effect, causing the permittivity of the gas to differ from that of free space.
In addition, exposing the gas to an external field will cause a secondary current to flow
as a result of the Lorentz force on the particles. As the moving particles collide with one
another they relinquish their momentum, an effect describable in terms of a conductivity.
In this section we perform a simple analysis to determine the complex permittivity of a
nonmagnetized plasma.
To make our analysis tractable, we shall make several assumptions.

1. We assume that the plasma is neutral : i.e., that the free electrons and positive ions
are of equal number and distributed in like manner. If the particles are sufficiently
dense to be considered in the macroscopic sense, then there is no net field produced
by the gas and thus no electromagnetic interaction between the particles. We also
assume the plasma is homogeneous and that the number density of the electrons N
(number of electrons per m3) is independent of time and position. In contrast to
this are electron beams, whose properties differ significantly from neutral plasmas
because of bunching of electrons by the applied field [152].

2. We ignore the motion of the positive ions in the computation of the secondary
current, since the ratio of the mass of an ion to that of an electron is at least as
large as the ratio of a proton to an electron (mp/me = 1836), and thus the ions
accelerate much more slowly.

3. We assume that the applied field is that of an electromagnetic wave. In § 2.10.6
we found that for a wave in free space the ratio of magnetic to electric field is
|H|/|E| =

√

ǫ0/µ0, so that |B|/|E| = µ0

√

ǫ0/µ0 =
√
µ0ǫ0 = 1/c. So the force on

an electron is approximately

F = −e(E+ v ×B) ≈ −eE
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if v ≪ c. Here e is the unsigned charge on an electron, e = 1.6022× 10−19 C. Note
that when an external static magnetic field accompanies the field of the wave, as
is the case in the earth’s ionosphere, for example, we cannot ignore the magnetic
component of the Lorentz force. This case will be considered in § 4.6.2.

4. We assume that the mechanical interactions between particles can be described
using a collision frequency ν, which describes the rate at which a directed plasma
velocity becomes random in the absence of external forces.

With these assumptions, we can write the equation of motion for the plasma medium.
Let v(r, t) represent the macroscopic velocity of the plasma medium. By Newton’s second
law, the force acting at each point on the medium is balanced by the time-rate of change
in momentum at that point. Because of collisions, the total change in momentum density
is described by

F(r, t) = −NeE(r, t) =
d℘(r, t)

dt
+ ν℘(r, t) (4.69)

where ℘(r, t) = Nmev(r, t) is the volume density of momentum. Note that if there is no
externally applied electromagnetic force, (4.69) becomes

d℘(r, t)

dt
+ ν℘(r, t) = 0.

Hence ℘(r, t) = ℘0(r)e
−νt, and ν describes the rate at which the electron velocities move

toward a random state, producing a macroscopic plasma velocity v of zero.
The time derivative in (4.69) is the total derivative defined in (A.60):

d℘(r, t)

dt
=
∂℘(r, t)

∂t
+ (v · ∇)℘(r, t). (4.70)

The second term on the right accounts for the time-rate of change of momentum per-
ceived as the observer moves through regions of spatially changing momentum. Since
the electron velocity is induced by the electromagnetic field, we anticipate that for a
sinusoidal wave the spatial variation will be on the order of the wavelength of the field:
λ = 2πc/ω. Thus, while the first term in (4.70) is proportional to ω, the second term is
proportional to ωv/c and can be neglected for non-relativistic particle velocities. Then,
writing E(r, t) and v(r, t) as inverse Fourier transforms, we see that (4.69) yields

−eẼ = jωmeṽ +meνṽ (4.71)

and thus,

ṽ = −
e
me

Ẽ

ν + jω
. (4.72)

The secondary current associated with the moving electrons is (since e is unsigned)

J̃s = −Neṽ =
ǫ0ω

2
p

ω2 + ν2
(ν − jω)Ẽ (4.73)

where

ω2
p =

Ne2

ǫ0me
(4.74)

is the plasma frequency.
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The frequency-domain Ampere’s law for primary and secondary currents in free space
is merely

∇× H̃ = J̃i + J̃s + jωǫ0Ẽ.

Substitution from (4.73) gives

∇× H̃ = J̃i +
ǫ0ω

2
pν

ω2 + ν2
Ẽ+ jωǫ0

(

1−
ω2
p

ω2 + ν2

)

Ẽ.

We can determine the material properties of the plasma by realizing that the above
expression can be written as

∇× H̃ = J̃i + J̃s + jωD̃

with the constitutive relations J̃s = σ̃Ẽ and D̃ = ǫ̃Ẽ. Here we identify the conductivity
of the plasma as

σ̃(ω) =
ǫ0ω

2
pν

ω2 + ν2
(4.75)

and the permittivity as

ǫ̃(ω) = ǫ0

(

1−
ω2
p

ω2 + ν2

)

.

We can also write Ampere’s law as

∇× H̃ = J̃i + jωǫ̃cẼ

where ǫ̃c is the complex permittivity

ǫ̃c(ω) = ǫ̃(ω) +
σ̃(ω)

jω
= ǫ0

(

1−
ω2
p

ω2 + ν2

)

− j
ǫ0ω

2
pν

ω(ω2 + ν2)
. (4.76)

To describe the plasma in terms of a polarization vector, we merely use D̃ = ǫ0Ẽ+P̃ = ǫ̃Ẽ
to obtain the polarization vector P̃ = (ǫ̃ − ǫ0)Ẽ = ǫ0χ̃eẼ, where χ̃e is the electric
susceptibility

χ̃e(ω) = −
ω2
p

ω2 + ν2
.

Note that P̃ is directed opposite the applied field Ẽ, resulting in ǫ̃ < ǫ0.
The plasma is dispersive since both its permittivity and conductivity depend on ω.

When a transient plane wave propagates through a dispersive medium, the frequency
dependence of the constitutive parameters tends to cause spreading of the waveshape.

◮ Example 4.1: Frequency characteristics of a nonmagnetized plasma

Show that the behavior of the permittivity of a nonmagnetized plasma obeys the frequency-
symmetry condition (4.27), the low frequency behavior (4.28), and the high-frequency be-
havior (4.29).

Solution: From (4.76) we have the real and imaginary parts of the plasma permittivity,

Re ǫ̃c = ǫ0

(

1− ω2
p

ω2 + ν2

)

, (4.77)

Im ǫ̃c = − ǫ0ω
2
pν

ω(ω2 + ν2)
. (4.78)
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Since Re{ǫ̃c(−ω)} = Re{ǫ̃c(ω)} and Im{ǫ̃c(−ω)} = − Im{ǫ̃c(ω)}, the frequency symmetry
conditions (4.27) are satisfied.

As ω → 0 we have Re ǫ̃c → ǫ0ǫr where

ǫr = 1− ω2
p

ν2
,

and Im ǫ̃c ∼ ω−1. Hence conditions (4.28) are satisfied. As ω → ∞ we have Re ǫ̃c−ǫ0 ∼ ω−2

and Im ǫ̃c ∼ ω−3 as required by (4.29). ◭

◮ Example 4.2: Permittivity of the ionosphere

The ionosphere may be viewed as a plasma with characteristics highly dependent on altitude,
latitude, and time of day. Although the earth’s magnetic field plays an important role in
the plasma properties, we will postpone its consideration until a later example. For mid
latitudes, the D-layer at 80 km altitude has daytime electron density Ne = 1010 m−3 and
collision frequency ν = 106 s−1 [20]. Plot the real and imaginary parts of the permittivity
as functions of frequency.

Solution: The plasma frequency is

ωp =

√

Nee2

ǫ0me
= 5.641 × 106 s−1.

As ω → 0 we find ǫr = 1−ω2
p/ν

2 = −30.82, so the permittivity is negative at low frequencies.
Figure 4.3 shows a plot of the real and imaginary parts of the complex permittivity vs.

frequency. Above about 2 MHz, Re ǫ̃c ≈ ǫ0 and Im ǫ̃c ≈ 0. Thus, during the day, this
region of the ionosphere is transparent to electromagnetic waves above this frequency, and
no reflection occurs. Two interesting characteristics of the permittivity can be seen in the
plot. The real part of the complex permittivity is zero at ω = (ω2

p − ν2)1/2, which occurs at
f = 884 kHz for the quoted ionospheric parameters. Also, we have Re ǫ̃c = Im ǫ̃c at ω = ν,
which occurs at f = 159 kHz.
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FIGURE 4.3
Permittivity of the ionosphere, neglecting the earth’s magnetic field. ◭
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We see that the plasma conductivity (4.75) is proportional to the collision frequency
ν, and that, since Im ǫ̃c < 0 by the arguments of § 4.5, the plasma must be lossy. Loss
arises from the transfer of electromagnetic energy into heat through electron collisions.
In the absence of collisions (ν = 0), this mechanism disappears and the conductivity of
a lossless (or “collisionless”) plasma reduces to zero as expected.

◮ Example 4.3: Energy stored in a low-loss nonmagnetized plasma

Determine the time-average electromagnetic energy stored in a low-loss plasma (ν → 0) for
sinusoidal excitation at frequency ω̌. Interpret the terms.

Solution: To determine the stored electromagnetic energy, we must be careful to use (4.59),
which holds for materials with dispersion. By applying the simpler formula (4.64), we find
that for ν → 0

〈we〉 = 1
4
ǫ0|Ě|2 − 1

4
ǫ0|Ě|2 ω

2
p

ω̌2
.

For excitation frequencies ω̌ < ωp, we have 〈we〉 < 0, and the material is active. Since
there is no mechanism for the plasma to produce energy, this is obviously not valid. But an
application of (4.59) gives

〈we〉 = 1
4
|Ě|2 ∂

∂ω

[

ǫ0ω

(

1− ω2
p

ω2

)] ∣

∣

∣

∣

ω=ω̌

= 1
4
ǫ0|Ě|2 + 1

4
ǫ0|Ě|2 ω

2
p

ω̌2
≥ 0. (4.79)

The first term represents the time-average energy stored in the vacuum, while the second
term represents the energy stored in the kinetic energy of the electrons. For harmonic exci-
tation, the time-average electron kinetic energy density is 〈wq〉 = 1

4
Nmev̌ · v̌∗. Substituting

v̌ from (4.72) with ν = 0 we see that

1
4
Nmev̌ · v̌∗ =

Ne2

4meω̌2
|Ě|2

= 1
4
ǫ0|Ě|2 ω

2
p

ω̌2
,

which matches the second term of (4.79). ◭

◮ Example 4.4: Kramers–Kronig relations for a low-loss nonmagnetized plasma

Show that the complex permittivity of a nonmagnetized plasma obeys the Kramers–Kronig
relations for a causal material.

Solution: Substituting the imaginary part of the complex plasma permittivity from (4.78)
into (4.37), we have

Re{ǫ̃c(ω)} − ǫ0 = − 2

π
P.V.

∫ ∞

0

[

− ǫ0ω
2
pν

Ω(Ω2 + ν2)

]

Ω

Ω2 − ω2
dΩ.

We can evaluate the principal value integral and thus verify that it produces Re ǫ̃c by using
the contour method of § A.2. Because the integrand is even, we can extend the domain of
integration to (−∞,∞) and divide the result by two:

Re{ǫ̃c(ω)} − ǫ0 =
1

π
P.V.

∫ ∞

−∞

ǫ0ω
2
pν

(Ω− jν)(Ω + jν)

dΩ

(Ω− ω)(Ω + ω)
.
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FIGURE 4.4
Integration contour used in Kramers–Kronig relations to find Re ǫ̃c from Im ǫ̃c for a non-
magnetized plasma.

We integrate around the closed contour shown in Figure 4.4. Since the integrand decays as
Ω−4 the contribution from C∞ is zero. The contributions from the semicircles Cω and C−ω

are πj times the residues of the integrand at Ω = ±ω, which are equal but opposite. These
cancel and leave only the contribution from the residue at the upper-half-plane pole Ω = jν.
Its evaluation yields

Re{ǫ̃c(ω)} − ǫ0 =
1

π
2πj

ǫ0ω
2
pν

jν + jν

1

(jν − ω)(jν + ω)
= − ǫ0ω

2
p

ν2 + ω2

and thus

Re{ǫ̃c(ω)} = ǫ0

(

1− ω2
p

ν2 + ω2

)

,

which matches (4.77) as expected. ◭

4.6.2 Complex dyadic permittivity of a magnetized plasma

When an electron plasma is exposed to a magnetostatic field, as occurs in the earth’s
ionosphere, the behavior of the plasma is altered so that the secondary current no longer
aligns with the electric field, requiring the constitutive relationships to be written in
terms of a complex dyadic permittivity. If the static field is B0, the velocity field of the
plasma is determined by adding the magnetic component of the Lorentz force to (4.71),
giving −e(Ẽ+ ṽ ×B0) = ṽ(jωme +meν), or equivalently

ṽ − j
e

me(ω − jν)
ṽ ×B0 = j

e

me(ω − jν)
Ẽ. (4.80)

Writing this expression generically as

v + v ×C = A, (4.81)
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we can solve for v as follows. Dotting both sides of (4.81) with C we get C · v = C ·A.
Crossing both sides of (4.81) with C, using (B.7), and substituting C · A for C · v, we
have v×C = A×C+v(C ·C)−C(A ·C). Finally, substituting v×C back into (4.81),
we obtain

v =
A−A×C+ (A ·C)C

1 +C ·C . (4.82)

Let us first consider a lossless plasma for which ν = 0. We can solve (4.80) for ṽ by
setting

C = −jωc
ω

and A = j
ǫ0ω

2
p

ωNe
Ẽ where ωc =

e

me
B0.

Here ωc = eB0/me = |ωc| is called the electron cyclotron frequency (see § 2.11.4 for its
relevance to electron motion in a steady magnetic field). Substituting these into (4.82),
we have

(

ω2 − ω2
c

)

ṽ = j
ǫ0ωω

2
p

Ne
Ẽ+

ǫ0ω
2
p

Ne
ωc × Ẽ− j

ωc

ω

ǫ0ω
2
p

Ne
ωc · Ẽ.

Since the secondary current produced by the moving electrons is just J̃s = −Neṽ, we
have

J̃s = jω

(

−
ǫ0ω

2
p

ω2 − ω2
c

Ẽ+ j
ǫ0ω

2
p

ω(ω2 − ω2
c )
ωc × Ẽ+

ωc

ω2

ǫ0ω
2
p

ω2 − ω2
c

ωc · Ẽ
)

. (4.83)

Now, by the Ampere–Maxwell law, we can write for currents in free space

∇× H̃ = J̃i + J̃s + jωǫ0Ẽ. (4.84)

Considering the plasma as material implies that we can describe the gas in terms of a
complex permittivity dyadic ˜̄ǫc such that the Ampere–Maxwell law is

∇× H̃ = J̃i + jω˜̄ǫc · Ẽ.

Substituting (4.83) into (4.84), and defining the dyadic ω̄c so that ω̄c · Ẽ = ωc × Ẽ, we
identify the dyadic permittivity

˜̄ǫc(ω) =

(

ǫ0 − ǫ0
ω2
p

ω2 − ω2
c

)

Ī+ j
ǫ0ω

2
p

ω(ω2 − ω2
c )
ω̄c +

ǫ0ω
2
p

ω2(ω2 − ω2
c )
ωcωc. (4.85)

Note that in rectangular coordinates

[ω̄c] =





0 −ωcz ωcy
ωcz 0 −ωcx
−ωcy ωcx 0



 . (4.86)

To examine the properties of the dyadic permittivity it is useful to write it in matrix
form. To do this we must choose a coordinate system. We shall align B0 with the z-axis
so that B0 = ẑB0 and ωc = ẑωc. Then (4.86) becomes

[ω̄c] =





0 −ωc 0
ωc 0 0
0 0 0



 (4.87)
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and we can write the permittivity dyadic (4.85) as

[̃̄ǫ(ω)] =





ǫ −jδ 0
jδ ǫ 0
0 0 ǫz



 (4.88)

where

ǫ = ǫ0

(

1−
ω2
p

ω2 − ω2
c

)

, ǫz = ǫ0

(

1−
ω2
p

ω2

)

, δ =
ǫ0ωcω

2
p

ω(ω2 − ω2
c )
.

Note that its form is that for a lossless gyrotropic material (2.25).
Since the plasma is lossless, (4.49) shows that the dyadic permittivity must be hermi-

tian. Equation (4.88) confirms this. Moreover, since the sign of ωc is determined by the
sign of B0, the dyadic permittivity obeys the symmetry relation

ǫ̃cij(B0) = ǫ̃cji(−B0) (4.89)

as does the permittivity matrix of any material having anisotropic properties dependent
on an externally applied magnetic field [143]. We will find later in this section that the
permeability matrix of a magnetized ferrite also obeys such a symmetry condition.

We can let ω → ω − jν in (4.83) to obtain the secondary current in a plasma with
collisions:

J̃s(r, ω) = jω

[

−
ǫ0ω

2
p(ω − jν)

ω[(ω − jν)2 − ω2
c ]
Ẽ(r, ω)

+ j
ǫ0ω

2
p(ω − jν)

ω(ω − jν)[(ω − jν)2 − ω2
c )]

ωc × Ẽ(r, ω)

+
ωc

(ω − jν)2
ǫ0ω

2
p(ω − jν)

ω[(ω − jν)2 − ω2
c ]
ωc · Ẽ(r, ω)

]

.

From this we find

˜̄ǫc(ω) =

[

ǫ0 −
ǫ0ω

2
p(ω − jν)

ω[(ω − jν)2 − ω2
c ]

]

Ī+ j
ǫ0ω

2
p

ω[(ω − jν)2 − ω2
c )]

ω̄c

+
1

(ω − jν)

ǫ0ω
2
p

ω[(ω − jν)2 − ω2
c ]
ωcωc.

Assuming B0 is aligned with the z-axis, we can use (4.87) to find the components of the
dyadic permittivity matrix:

ǫ̃cxx(ω) = ǫ̃cyy(ω) = ǫ0

(

1−
ω2
p(ω − jν)

ω[(ω − jν)2 − ω2
c ]

)

, (4.90)

ǫ̃cxy(ω) = −ǫ̃cyx(ω) = −jǫ0
ω2
pωc

ω[(ω − jν)2 − ω2
c )]
, (4.91)

ǫ̃czz(ω) = ǫ0

(

1−
ω2
p

ω(ω − jν)

)

, (4.92)
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and

ǫ̃czx = ǫ̃cxz = ǫ̃czy = ǫ̃cyz = 0. (4.93)

Each dyadic entry can be separated into real and imaginary parts. The diagonal terms
are given by

Re{ǫ̃cxx(ω)}
ǫ0

− 1 = −ω2
p

ω2 + ν2 − ω2
c

(ω2 + ν2 − ω2
c )

2 + 4ω2
cν

2
, (4.94)

Im{ǫ̃cxx(ω)}
ǫ0

= −ω2
p

ν

ω

ω2 + ν2 + ω2
c

(ω2 + ν2 − ω2
c )

2 + 4ω2
cν

2
, (4.95)

Re{ǫ̃czz(ω)}
ǫ0

− 1 = −
ω2
p

ω2 + ν2
, (4.96)

Im{ǫ̃czz(ω)}
ǫ0

= −
ǫ0ω

2
pν

ω(ω2 + ν2)
. (4.97)

Note that the last two expressions match (4.77) and (4.78). Thus, the zz-component
of the permittivity dyadic is identical to the scalar permittivity of the nonmagnetized
plasma. Finally, the off-diagonal terms are given by

Re
{

ǫ̃cxy(ω)
}

ǫ0
=

2νω2
pωc

(ω2 + ν2 − ω2
c )

2 + 4ω2
cν

2
, (4.98)

Im
{

ǫ̃cxy(ω)
}

ǫ0
= −ω2

p

ωc
ω

ω2 − ν2 − ω2
c

(ω2 + ν2 − ω2
c )

2 + 4ω2
cν

2
. (4.99)

Note that when B0 → 0 and thus ωc → 0, the off-diagonal elements vanish and the
diagonal elements reduce to those for a nonmagnetized plasma (4.76).
We see that [ǫ̃c] is not hermitian when ν 6= 0. We expect this since the plasma is

lossy when collisions occur. However, we can decompose [̃̄ǫc] as the sum of matrices
[̃̄ǫc] = [̃̄ǫ] + [˜̄σ]/jω, where [̃̄ǫ] and [˜̄σ] are hermitian [143]. The details are left as an
exercise. We also note that, as in the case of the lossless plasma, the permittivity dyadic
obeys the symmetry condition ǫ̃cij(B0) = ǫ̃cji(−B0).

◮ Example 4.5: Frequency characteristics of a magnetized plasma

Show that the behavior of each element of the permittivity dyadic of a magnetized plasma
obeys the frequency-symmetry condition (4.25), the low-frequency behavior (4.28) and the
high-frequency behavior (4.29).

Solution: By inspection, expressions (4.94), (4.96), and (4.98) are even in ω and thus obey
the condition Re

{

ǫ̃cij(−ω)
}

= Re
{

ǫ̃cij(ω)
}

. Similarly, (4.95), (4.97), and (4.99) are odd in ω
and obey Im

{

ǫ̃cij(−ω)
}

= − Im
{

ǫ̃cij(ω)
}

.
As ω → 0 we find that Re ǫ̃cij → ǫ0ǫij,r where

ǫ̃xx,r = 1− ω2
p(ν

2 − ω2
c )

(ν2 − ω2
c )2 + 4ω2

cν2
, ǫ̃zz,r = 1− ω2

p

ν2
, ǫ̃xy,r =

2νω2
pωc

(ν2 − ω2
c )2 + 4ω2

cν2
.

Hence, conditions (4.28) are satisfied for each dyadic element. As ω → ∞, we find that
Re ǫ̃cij − ǫ0 ∼ ω−2 and Im ǫ̃cij ∼ ω−3 for each dyadic element, as required by (4.29). ◭
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◮ Example 4.6: Permittivity of the ionosphere including effects of the earth’s magnetic field

Reconsider the earth’s ionosphere as described in Example 4.2, including the effects of the
earth’s magnetic field.

Solution: According to the National Oceanic and Atmospheric Administration, the earth’s
magnetic field has a value of approximately 52,000 nT at an altitude of 80 km. This field
magnetizes the plasma along the direction of the field lines (which is skewed at altitude)
and we must regard the plasma permittivity as a dyadic described by (4.94)–(4.99). Here
we align the z-direction with the magnetic field lines.

The magnetized plasma has cyclotron frequency

ωc =
e

me
B0 = 9.146 × 106 s−1

or fc = 1.46 MHz. Using values of the plasma and collision frequencies from Example 4.2,
we find that as ω → 0,

ǫ̃xx,r = 1− ω2
p

ν2 − ω2
c

(ν2 − ω2
c )2 + 4ω2

cν2
= 1.367,

ǫ̃zz,r = 1− ω2
p

ν2
= −30.82,

ǫ̃xy,r =
2νω2

pωc

(ν2 − ω2
c )2 + 4ω2

cν2
= 0.08125.

At low frequencies the dyadic permittivity is dominated by the zz-element, and the off-
diagonal elements are quite small.
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FIGURE 4.5
xx-element of the permittivity dyadic of the ionosphere, including the effects of the earth’s
magnetic field.

Since ǫ̃czz is identical to ǫ̃c for the non-magnetized plasma, a plot of this dyadic element
appears in Figure 4.3. Figure 4.5 shows a plot of the real and imaginary parts of the
diagonal element ǫ̃cxx as functions of frequency. We can clearly see a resonance effect near
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the cyclotron frequency at 1.46 MHz. The real part of the relative permittivity passes
through unity near that frequency and the imaginary part peaks there. In contrast, the zz-
component is independent of ωc. Figure 4.6 shows a plot of the real and imaginary parts of
the off-diagonal element ǫ̃cxy as functions of frequency. Again, a resonance can be seen near
the cyclotron frequency. In contrast to the diagonal element, the real part peaks near the
cyclotron frequency, while the imaginary part passes through zero. Above about 3 MHz, the
real parts of both the diagonal and off-diagonal elements approach ǫ0 while the imaginary
parts approach zero. Thus, above this frequency the ionosphere looks transparent.
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FIGURE 4.6
xy-element of the permittivity dyadic of the ionosphere, including the effects of the earth’s
magnetic field. ◭

4.6.3 Simple models of dielectrics

We define an isotropic dielectric material (also called an insulator) as one that obeys the
macroscopic frequency-domain constitutive relationship

D̃(r, ω) = ǫ̃(r, ω)Ẽ(r, ω).

Since the polarization vector P was defined in Chapter 2 as P(r, t) = D(r, t)− ǫ0E(r, t),
an isotropic dielectric can also be described through

P̃(r, ω) = [ǫ̃(r, ω)− ǫ0]Ẽ(r, ω) = χ̃e(r, ω)ǫ0Ẽ(r, ω)

where χ̃e is the susceptibility parameter. In this section we model a homogeneous dielec-
tric consisting of a single, uniform material type.
We found in Chapter 3 that for a dielectric material immersed in a static electric field,

P can be regarded as a volume density of dipole moments. We choose to retain this
view as the fundamental link between microscopic dipole moments and the macroscopic
polarization vector. Within the framework of our model, we thus describe the polarization
through the expression

P(r, t) =
1

∆V

∑

r−ri(t)∈B
pi. (4.100)
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Here pi is the dipole moment of the ith elementary microscopic constituent, and we form
the macroscopic density function as in § 1.3.1.

We may also write (4.100) as

P(r, t) =
NB
∆V

(

1

NB

NB
∑

i=1

pi

)

= N(r, t)p(r, t) (4.101)

where NB is the number of constituent particles within ∆V . We identify

p(r, t) =
1

NB

NB
∑

i=1

pi(r, t)

as the average dipole moment within ∆V , and N(r, t) = NB/∆V as the dipole moment
number density. In this model a dielectric material does not require higher-order multi-
pole moments to describe its behavior. Since we are interested in homogeneous materials
in this section, we assume the number density is constant: N(r, t) = N .

To understand how dipole moments arise, we choose to adopt the simple idea that
matter consists of atomic particles, each of which has a positively charged nucleus sur-
rounded by a negatively charged electron cloud. Isolated, these particles have no net
charge or electric dipole moment. However, there are several ways in which individual
particles, or aggregates of particles, may take on a dipole moment. When exposed to an
external electric field the electron cloud of an individual atom may be displaced, resulting
in an induced dipole moment that gives rise to electronic polarization. When groups of
atoms form a molecule, the individual electron clouds may combine to form an asym-
metric structure having a permanent dipole moment. In some materials these molecules
are randomly distributed and no net dipole moment results. However, upon application
of an external field the torque acting on the molecules may tend to align them, creating
an induced dipole moment and orientation, or dipole, polarization. In other materials,
the asymmetric structure of the molecules may be weak until an external field causes
the displacement of atoms within each molecule, resulting in an induced dipole moment
causing atomic, or molecular, polarization. If a material maintains a permanent polar-
ization without the application of an external field, it is called an electret (and is thus
similar in behavior to a permanently magnetized magnet).

To describe the constitutive relations, we must establish a link between P (now de-
scribable in microscopic terms) and E. For this we postulate that the average constituent
dipole moment is proportional to the local electric field strength E′:

p = αE′, (4.102)

where α is called the polarizability of the elementary constituent. Each polarization effect
listed above may have its own polarizability: αe for electronic polarization, αa for atomic
polarization, and αd for dipole polarization. The total polarizability is merely the sum
α = αe + αa + αd.

In a rarefied gas the particles are so far apart that their interaction can be neglected.
Here the local field E′ is the same as the applied field E. In liquids and solids where
particles are tightly packed, E′ depends on the manner in which the material is polarized
and may differ from E. So we need a relationship between E′ and P.

4.6.3.1 The Clausius–Mosotti equation

We seek the local field at an observation point within a polarized material. Let us first
assume that the fields are static. We surround the observation point with an artificial
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spherical surface of radius a and write the field at the observation point as a superposition
of the field E applied, the field E2 of the polarized molecules external to the sphere, and
the field E3 of the polarized molecules within the sphere. We take a large enough that
we may describe the molecules outside the sphere in terms of the macroscopic dipole
moment density P, but small enough to assume that P is uniform over the surface of the
sphere. We also assume the major contribution to E2 comes from the dipoles nearest the
observation point. We then approximate E2 using the electrostatic potential produced
by the equivalent polarization surface charge on the sphere ρPs = n̂ ·P (where n̂ points
toward the center of the sphere). Placing the origin of coordinates at the observation
point and orienting the z-axis with the polarization P so that P = P0ẑ, we find that
n̂ · P = − cos θ and thus the electrostatic potential at any point r within the sphere is
merely

Φ(r) = − 1

4πǫ0

∮

S

P0 cos θ
′

|r− r′| dS
′.

This integral has been computed in § 3.3.8 with the result given by (3.78). Hence

Φ(r) = − P0

3ǫ0
r cos θ = − P0

3ǫ0
z

and

E2 =
P

3ǫ0
. (4.103)

Note that this is uniform and independent of a.
The assumption that the localized field varies spatially as the electrostatic field, even

when P may depend on frequency, is quite good. In Chapter 5 we will find that for a
frequency-dependent source (or, equivalently, a time-varying source), the fields very near
the source have a spatial dependence nearly identical to that of the electrostatic case.
We now have the seemingly more difficult task of determining the field E3 produced

by the dipoles within the sphere. This would seem difficult since the field produced by
dipoles near the observation point should be highly dependent on the particular dipole
arrangement. As mentioned above, there are various mechanisms for polarization, and
the distribution of charge near any particular point depends on the molecular arrange-
ment. However, Lorentz showed [122] that for crystalline solids with cubical symmetry,
or for a randomly structured gas, the contribution from dipoles within the sphere is zero.
Indeed, it is convenient and reasonable to assume that for most dielectrics the effects of
the dipoles immediately surrounding the observation point cancel so that E3 = 0. This
was first suggested by O.F. Mosotti in 1850 [46].
With E2 approximated as (4.103) and E3 assumed to be zero, we have the value of

the resulting local field:

E′(r) = E(r) +
P(r)

3ǫ0
. (4.104)

This is called the Mosotti field. Substituting it into (4.102) and using P = Np, we obtain

P(r) = NαE′(r) = Nα

(

E(r) +
P(r)

3ǫ0

)

.

This yields

P(r) =

(

3ǫ0Nα

3ǫ0 −Nα

)

E(r) = χeǫ0E(r).



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 316 — #340
✐

✐

✐

✐

✐

✐

316 Electromagnetics

So the electric susceptibility of a dielectric may be expressed as

χe =
3Nα

3ǫ0 −Nα
. (4.105)

Using χe = ǫr − 1 we can rewrite (4.105) as

ǫ = ǫ0ǫr = ǫ0
3 + 2Nα/ǫ0
3−Nα/ǫ0

, (4.106)

which we can rearrange to obtain

α = αe + αa + αd =
3ǫ0
N

ǫr − 1

ǫr + 2
.

This is the Clausius–Mosotti formula, named after O.F. Mosotti, who proposed it in
1850, and R. Clausius, who proposed it independently in 1879. When written in terms of
the index of refraction n (where n2 = ǫr), it is also known as the Lorentz–Lorenz formula,
after H. Lorentz and L. Lorenz, who proposed it independently for optical materials in
1880. The formula allows us to determine the dielectric constant from the polarizability
and number density of a material. It is reasonably accurate for certain simple gases
(with pressures up to 1000 atmospheres) but becomes less reliable for liquids and solids,
especially for those with large dielectric constants.

The response of the microscopic structure of matter to an applied field is not in-
stantaneous. When exposed to a rapidly oscillating sinusoidal field, the induced dipole
moments may lag in time. The result is a loss mechanism describable macroscopically
by a complex permittivity. We can modify the Clausius–Mosotti formula by assuming
that both the relative permittivity and polarizability are complex numbers, but this will
not model the dependence of these parameters on frequency. Instead we shall (in later
sections) model the time response of the dipole moments to the applied field.

4.6.3.2 Maxwell–Garnett and Rayleigh mixing formulas

An interesting application of the Clausius–Mosotti formula is to determine the permit-
tivity of a mixture of dielectrics with different permittivities. Consider the simple case
in which many small spheres of permittivity ǫ2, radius a, and volume V are embedded
within a dielectric matrix of permittivity ǫ1. If we assume a is much smaller than the
wavelength of the electromagnetic field and the spheres are sparsely distributed within
the matrix, we may ignore any mutual interaction between the spheres.We can use the
Clausius–Mosotti formula to define an effective permittivity ǫe for a material consisting
of spheres in a background dielectric by replacing ǫ0 with ǫ1 in (4.106) to obtain

ǫe = ǫ1
3 + 2Nα/ǫ1
3−Nα/ǫ1

. (4.107)

In this expression, α is the polarizability of a single dielectric sphere embedded in the
background dielectric, and N is the number density of dielectric spheres. To find α
we use the static field solution for a dielectric sphere immersed in a field (§ 3.3.11).
Remembering that p = αE and that for a uniform region of volume V we have p = VP,
we can make the replacements ǫ0 → ǫ1 and ǫ→ ǫ2 in (3.90) to get

α = 3ǫ1V
ǫ2 − ǫ1
ǫ2 + 2ǫ1

. (4.108)
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Defining f = NV as the fractional volume occupied by the spheres, we can substitute
(4.108) into (4.107) to find that

ǫe = ǫ1
1 + 2fy

1− fy
where y =

ǫ2 − ǫ1
ǫ2 + 2ǫ1

.

This is the Maxwell–Garnett mixing formula. Its rearrangement

ǫe − ǫ1
ǫe + 2ǫ1

= f
ǫ2 − ǫ1
ǫ2 + 2ǫ1

is the Rayleigh mixing formula. As expected, ǫe → ǫ1 as f → 0. Even though as f → 1 the
formula also reduces to ǫe = ǫ2, our initial assumption that f ≪ 1 (sparsely distributed
spheres) is violated and the result is inaccurate for non-spherical inhomogeneities [91].
For a discussion of more accurate mixing formulas, see Ishimaru [91] or Sihvola [175].

4.6.3.3 The dispersion formula of classical physics; Lorentz and Sellmeier
equations

We may determine the frequency dependence of the permittivity by modeling the time re-
sponse of induced dipole moments. This was done by H. Lorentz using the simple atomic
model we introduced earlier. Consider what happens when a molecule consisting of heavy
particles (nuclei) surrounded by clouds of electrons is exposed to a time-harmonic elec-
tromagnetic wave. Using the same arguments we made when studying the interactions
of fields with a plasma in § 4.6.1, we assume each electron experiences a Lorentz force
Fe = −eE′. We neglect the magnetic component of the force for nonrelativistic charge
velocities, and ignore the motion of the much heavier nuclei in favor of studying the
motion of the electron cloud. However, several important distinctions exist between the
behavior of charges within a plasma and those within a solid or liquid material. Because
of the surrounding polarized matter, any molecule responds to the local field E′ instead
of the applied field E. Also, as the electron cloud is displaced by the Lorentz force, the
attraction from the positive nuclei provides a restoring force Fr. In the absence of loss
the restoring force causes the electron cloud (and thus the induced dipole moment) to
oscillate in phase with the applied field. In addition, there will be loss due to radiation
by the oscillating molecules and collisions between charges that can be modeled using a
“frictional force” Fs in the same manner as for a mechanical harmonic oscillator.
We can express the restoring and frictional forces by the use of a mechanical analogue.

The restoring force acting on each electron is taken to be proportional to the displacement
from equilibrium l:

Fr(r, t) = −meω
2
r l(r, t),

where me is the mass of an electron and ωr is a material constant that depends on the
molecular structure. The frictional force is similar to the collisional term in § 4.6.1 in
that it is assumed to be proportional to the electron momentum mev:

Fs(r, t) = −2Γmev(r, t)

where Γ is a material constant. With these we can apply Newton’s second law:

F(r, t) = −eE′(r, t) −meω
2
r l(r, t)− 2Γmev(r, t) = me

dv(r, t)

dt
.

Since v = dl/dt, the equation of electron motion is

d2l(r, t)

dt2
+ 2Γ

dl(r, t)

dt
+ ω2

r l(r, t) = − e

me
E′(r, t). (4.109)
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We recognize this differential equation as the damped harmonic equation. When E′ = 0
we have the homogeneous solution

l(r, t) = l0(r)e
−Γt cos

(

t
√

ω2
r − Γ2

)

.

Thus the electron position is a damped oscillation. The resonant frequency
√

ω2
r − Γ2 is

usually only slightly reduced from ωr since radiation damping is generally quite low.
Since the dipole moment for an electron displaced from equilibrium by l is p = −el,

and the polarization density is P = Np from (4.101), we can write

P(r, t) = −Nel(r, t).

Multiplying (4.109) by −Ne and substituting the above expression, we have a differential
equation for the polarization:

d2P

dt2
+ 2Γ

dP

dt
+ ω2

rP =
Ne2

me
E′.

To obtain a constitutive equation, we must relate the polarization to the applied field E.
We accomplish this by relating the local field E′ to the polarization using the Mosotti
field (4.104). Substitution gives

d2P

dt2
+ 2Γ

dP

dt
+ ω2

0P =
Ne2

me
E (4.110)

where

ω0 =

√

ω2
r −

Ne2

3meǫ0

is the resonance frequency of the dipole moments. It is less than the resonance frequency
of the electron oscillation because of the polarization of the surrounding medium.

We can obtain a dispersion equation for the electrical susceptibility by taking the
Fourier transform of (4.110). Since

−ω2P̃+ jω2ΓP̃+ ω2
0P̃ =

Ne2

me
Ẽ,

we have

χ̃e(ω) =
P̃

ǫ0Ẽ
=

ω2
p

ω2
0 − ω2 + jω2Γ

where ωp is the plasma frequency (4.74). Since ǫ̃r(ω) = 1 + χ̃e(ω) we also have

ǫ̃(ω) = ǫ0 + ǫ0
ω2
p

ω2
0 − ω2 + jω2Γ

. (4.111)

If more than one type of oscillating moment contributes to the permittivity, we may
extend (4.111) to

ǫ̃(ω) = ǫ0 +
∑

i

ǫ0
ω2
pi

ω2
i − ω2 + jω2Γi

(4.112)

where ωpi = Nie
2/ǫ0mi is the plasma frequency of the ith resonance component, and

ωi and Γi are the oscillation frequency and damping coefficient, respectively, of this



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 319 — #343
✐

✐

✐

✐

✐

✐

Temporal and spatial frequency domain representation 319

component. This expression is the dispersion formula for classical physics, so called
because it neglects quantum effects. It is also called the Lorentz permittivity model of a
dielectric in honor of H. Lorentz. Under negligible losses (4.112) reduces to the Sellmeier
equation:

ǫ̃(ω) = ǫ0 +
∑

i

ǫ0
ω2
pi

ω2
i − ω2

. (4.113)

Let us study the frequency behavior of the dispersion relation (4.112). Splitting the
permittivity into real and imaginary parts, we have

Re{ǫ̃(ω)} − ǫ0 = ǫ0
∑

i

ω2
pi

ω2
i − ω2

[ω2
i − ω2]2 + 4ω2Γ2

i

,

Im{ǫ̃(ω)} = −ǫ0
∑

i

ω2
pi

2ωΓi
[ω2
i − ω2]2 + 4ω2Γ2

i

.

As ω → 0, the permittivity reduces to

ǫ = ǫ0

(

1 +
∑

i

ω2
pi

ω2
i

)

,

which is the static permittivity of the material. As ω → ∞,

Re{ǫ̃(ω)} → ǫ0

(

1−
∑

i ω
2
pi

ω2

)

, Im{ǫ̃(ω)} → −ǫ0
2
∑

i ω
2
piΓi

ω3
.

This high-frequency behavior mimics that of a plasma as described by (4.76).
The major characteristic of the dispersion relation (4.112) is the presence of one or

more resonances. Figure 4.7 shows a plot of a single resonance component, where we
have normalized the permittivity as

Re{ǫ̃(ω)} − ǫ0
ǫ0ω̄2

p

=
1− ω̄2

[1− ω̄2]
2
+ 4ω̄2Γ̄2

,
− Im{ǫ̃(ω)}

ǫ0ω̄2
p

=
2ω̄Γ̄

[1− ω̄2]
2
+ 4ω̄2Γ̄2

,

with ω̄ = ω/ω0, ω̄p = ωp/ω0, and Γ̄ = Γ/ω0. We see a distinct resonance centered at
ω = ω0. Approaching this resonance through frequencies less than ω0, we watch Re ǫ̃
increase slowly and peak at ωmax = ω0

√

1− 2Γ/ω0 where it attains a value

Re{ǫ̃}max = ǫ0 +
1
4ǫ0

ω̄2
p

Γ̄(1− Γ̄)
.

After peaking, Re ǫ̃ undergoes a rapid decrease, passing through Re ǫ̃ = ǫ0 at ω = ω0,
and then continuing to decrease until reaching a minimum value

Re{ǫ̃}min = ǫ0 − 1
4ǫ0

ω̄2
p

Γ̄(1 + Γ̄)

at ωmin = ω0

√

1 + 2Γ/ω0. As ω continues to increase, Re ǫ̃ again increases slowly toward
a final value of Re ǫ̃ = ǫ0. The regions of slow variation of Re ǫ̃ are called regions
of normal dispersion, while the region where Re ǫ̃ decreases abruptly is the region of
anomalous dispersion. Anomalous dispersion is unusual only in the sense that it occurs
over a narrower range of frequencies than normal dispersion.
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FIGURE 4.7

Real and imaginary parts of permittivity for a single resonance model of a dielectric with
Γ/ω0 = 0.2. Permittivity normalized by dividing by ǫ0(ωp/ω0)

2.

The imaginary part of the permittivity peaks near the resonant frequency, dropping
monotonically in each direction away from the peak. The width of the curve is an
important parameter most easily determined by approximating the behavior of Im ǫ̃ near
ω0. Letting ∆ω̄ = (ω0 − ω)/ω0 and using

ω2
0 − ω2 = (ω0 − ω)(ω0 + ω) ≈ 2ω2

0∆ω̄,

we get

Im{ǫ̃(ω)} ≈ − 1
2ǫ0ω̄

2
p

Γ̄

(∆ω̄)2 + Γ̄2
.

This approximation has a maximum value

Im{ǫ̃}max = Im{ǫ̃(ω0)} = − 1
2ǫ0ω̄

2
p

1

Γ̄

located at ω = ω0, and has half-amplitude points located at ∆ω̄ = ±Γ̄. So the width
of the resonance curve is W = 2Γ. Note that for a material characterized by a low-
loss resonance (Γ ≪ ω0), the location of Re{ǫ̃}max can be approximated as ωmax =

ω0

√

1− 2Γ/ω0 ≈ ω0 − Γ while Re{ǫ̃}min is located at ωmin = ω0

√

1 + 2Γ/ω0 ≈ ω0 + Γ.
The region of anomalous dispersion thus lies between the half amplitude points of Im ǫ̃:
ω0 − Γ < ω < ω0 + Γ.

As Γ → 0, the resonance curve gets more sharply peaked. Thus, a material character-
ized by a very low-loss resonance may be modeled very simply using Im ǫ̃ = Aδ(ω − ω0),
where A is a constant to be determined. We can find A from the Kramers–Kronig
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formula (4.37):

Re{ǫ̃(ω)} − ǫ0 = − 2

π
P.V.

∞
∫

0

Aδ(Ω− ω0)
Ω dΩ

Ω2 − ω2
= − 2

π
A

ω0

ω2
0 − ω2

.

Since the material approaches the lossless case, this expression should match the Sellmeier
equation (4.113):

− 2

π
A

ω0

ω2
0 − ω2

= ǫ0
ω2
p

ω2
0 − ω2

,

giving A = −πǫ0ω2
p/2ω0. Hence the permittivity of a material characterized by a low-loss

resonance may be approximated as

ǫ̃(ω) = ǫ0

(

1 +
ω2
p

ω2
0 − ω2

)

− jǫ0
π

2

ω2
p

ω0
δ(ω − ω0).

The Lorentz resonance formula may be written in a more general form for materials
that have conductivity and a static dielectric constant other than unity. For these we
write the complex permittivity (4.26) as

ǫ̃c(ω) = ǫ∞ +
(ǫs − ǫ∞)ω2

0

ω2
0 − ω2 + jω2Γ

− j
σ

ω
, (4.114)

where ǫs is the low-frequency (static) permittivity, and ǫ∞ is the high-frequency permit-
tivity. Note that we may also use a multi-resonance model similar to (4.112).

◮ Example 4.7: Permittivity of a circuit-board material

The common circuit-board material designated FR-4 consists of a glass-reinforced epoxy
that can be described using the extended Lorentzian model (4.114). A certain sample of the
board has parameters ǫs = 4.307ǫ0 , ǫ∞ = 4.181ǫ0 , ω0 = 34π × 109 s−1, Γ = 150π × 109 s−1,
and σ = 0.00293 S/m [107]. Plot the real and imaginary parts of the permittivity vs.
frequency.
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FIGURE 4.8
Relative permittivity of FR-4 circuit-board material. ◭
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Solution: The operational band of this circuit-board material is from VHF to low mi-
crowave frequencies. Because the resonance frequency is much higher than the operational
frequency, the Lorentz model is useful for describing the slow variation of permittivity across
the operational band that is observed with FR-4. Figure 4.8 shows the relative permittivity
of FR-4 computed using (4.114). The dielectric constant is seen to vary slightly over the
operational band from about 4.31 at the low end of the band to 4.18 at the high end. The
imaginary part is always fairly small, peaking at −0.06 around 2 GHz.

4.6.3.4 Debye relaxation and the Cole–Cole equation

In solids or liquids consisting of polar molecules (those retaining a permanent dipole
moment, e.g., water), the resonance effect is replaced by relaxation. We can view the
molecule as attempting to rotate in response to an applied field within a background
medium dominated by the frictional term in (4.109). The rotating molecule experiences
many weak collisions that continuously drain off energy, preventing it from accelerating
under the force of the applied field. J.W.P. Debye proposed that such materials are
described by an exponential damping of their polarization and a complete absence of
oscillations. If we neglect the acceleration term in (4.109) we have the equation of motion

2Γ
dl(r, t)

dt
+ ω2

r l(r, t) = − e

me
E′(r, t),

which has the homogeneous solution

l(r, t) = l0(r)e
− ω2

r
2Γ t = l0(r)e

−t/τ

where τ is Debye’s relaxation time.
By neglecting the acceleration term in (4.110), we obtain from (4.111) the dispersion

equation, or relaxation spectrum:

ǫ̃(ω) = ǫ0 + ǫ0
ω2
p

ω2
0 + jω2Γ

.

Debye proposed a relaxation spectrum a bit more general than this, now called the Debye
equation:

ǫ̃(ω) = ǫ∞ +
ǫs − ǫ∞
1 + jωτ

. (4.115)

Here ǫs is the real static permittivity obtained when ω → 0, while ǫ∞ is the real “optical”
permittivity describing the high frequency behavior of ǫ̃. If we split (4.115) into real and
imaginary parts, we find that

Re{ǫ̃(ω)} − ǫ∞ =
ǫs − ǫ∞
1 + ω2τ2

,

Im{ǫ̃(ω)} = −ωτ(ǫs − ǫ∞)

1 + ω2τ2
.

For a passive material we must have Im ǫ̃ < 0, which requires ǫs > ǫ∞. It is straightfor-
ward to show that these expressions obey the Kramers–Kronig relationships. The details
are left as an exercise.

A plot of − Im ǫ̃ vs. Re ǫ̃ traces out a semicircle centered along the real axis at (ǫs +
ǫ∞)/2 and with radius (ǫs − ǫ∞)/2. Such a plot (Figure 4.9) was first described by K.S.
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FIGURE 4.9

Arc plots for Debye and Cole–Cole descriptions of a polar material.

Cole and R.H. Cole [37] and is thus called a Cole–Cole diagram or “arc plot.” We can
think of the vector extending from the origin to a point on the semicircle as a phasor
whose phase angle δ is described by the loss tangent of the material:

tan δ = − Im ǫ̃

Re ǫ̃
=
ωτ(ǫs − ǫ∞)

ǫs + ǫ∞ω2τ2
. (4.116)

The Cole–Cole plot shows that the maximum value of − Im ǫ̃ is (ǫs − ǫ∞)/2 and that
Re ǫ̃ = (ǫs + ǫ∞)/2 at this point.
A Cole–Cole plot for water, shown in Figure 4.10, displays the typical semicircular

nature of the arc plot. However, not all polar materials have a relaxation spectrum
that follows the Debye equation as closely as water. Cole and Cole found that for many
materials the arc plot traces a circular arc centered below the real axis, and that the line
through its center makes an angle of α(π/2) with the real axis as shown in Figure 4.9.
This relaxation spectrum can be described in terms of a modified Debye equation

ǫ̃(ω) = ǫ∞ +
ǫs − ǫ∞

1 + (jωτ)1−α
,

called the Cole–Cole equation. A nonzero Cole–Cole parameter α tends to broaden the
relaxation spectrum, and results from a spread of relaxation times centered around τ [4].
For water the Cole–Cole parameter is only α = 0.02, suggesting that a Debye description
is sufficient, but for other materials α may be much higher.
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FIGURE 4.10

Cole–Cole diagram for water at 20◦ C.

◮ Example 4.8: Permittivity of water

At T = 20◦ C the Debye parameters for water are ǫs = 78.3ǫ0 , ǫ∞ = 5ǫ0, and τ = 9.6×10−12 s
[45]. Plot the permittivity as a function of frequency and identify any pertinent features of
the Debye spectrum.

Solution: Figure 4.11 shows the Debye spectrum over several decades of frequency. We see
that Re ǫ̃ decreases over the entire frequency range.

The frequency dependence of the imaginary part of the permittivity is similar to that
found in the resonance model, forming a curve that peaks at the critical frequency ωmax =
1/τ = 1.1× 1011 s−1 where it attains the value Im{ǫ̃(ωmax)} = (ǫs− ǫ∞)/2 = 36.65. At this
point Re ǫ̃ takes the average value of ǫs and ǫ∞: Re{ǫ̃(ωmax)} = (ǫs + ǫ∞)/2 = 41.65.
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FIGURE 4.11
Relaxation spectrum for water at 20◦ C via the Debye equation. ◭
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◮ Example 4.9: Permittivity of transformer oil

A transformer oil has a measured Cole–Cole parameter α = 0.23, along with measured
relaxation time τ = 2.3 × 10−9 s, static permittivity ǫs = 5.9ǫ0, and optical permittivity
ǫ∞ = 2.9ǫ0 [4]. Draw the Cole–Cole diagram and plot the permittivity for the oil using both
the Debye and Cole–Cole equations.

Solution: Figure 4.12 shows the Cole–Cole plot calculated using both α = 0 and α =
0.23, demonstrating a significant divergence from the Debye model. Figure 4.13 shows the
relaxation spectrum for oil calculated with these same two parameters. The Cole–Cole
model produces a more spread-out spectrum, with a reduced imaginary permittivity.
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FIGURE 4.12
Cole–Cole diagram for oil via Debye equation and Cole–Cole equation with α = 0.23.
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4.6.4 Permittivity and conductivity of a conductor; the Drude model

The free electrons within a conductor may be considered as an electron gas free to move
under the influence of an applied field. Since the electrons are not bound to the atoms
of the conductor, no restoring force acts on them. However, there is a damping term
associated with electron collisions. The net result is a dispersion equation analogous to
(4.111), but with no resonance frequency. Setting ω0 = 0 gives the permittivity

ǫ̃(ω) = ǫ0

(

1−
ω2
p

ω2 − jω2Γ

)

.

This is the Drude model for dispersion in a conductor, named for the German physicist
Paul Karl Ludwig Drude, whose work on modeling the electrical properties of materials
preceded that of Lorentz.

Alternatively, we may model a conductor as a plasma, but with a very high collision
frequency; in a good metallic conductor ν is typically in the range 1013–1014 Hz. We
therefore have the conductivity of a conductor from (4.75) as

σ̃(ω) =
ǫ0ω

2
pν

ω2 + ν2

and the permittivity as

ǫ̃(ω) = ǫ0

(

1−
ω2
p

ω2 + ν2

)

.

Since ν is so large, the conductivity is approximately

σ̃(ω) ≈
ǫ0ω

2
p

ν
=
Ne2

meν

and the permittivity is ǫ̃(ω) ≈ ǫ0 well past microwave frequencies and into the infrared.
Hence the dc conductivity is often employed by engineers throughout the communications
bands. When approaching the visible spectrum, the permittivity and conductivity begin
to show a strong frequency dependence. In the violet and ultraviolet frequency ranges
the free-charge conductivity becomes proportional to 1/ω and is driven toward zero.
However, at these frequencies the resonances of the bound electrons of the metal are
important and the permittivity behaves more like that of a dielectric. The permittivity
is best described using the resonance formula (4.112).

4.6.5 Permeability dyadic of a ferrite

The magnetic properties of materials are complicated and diverse. The formation of
accurate models based on atomic behavior requires an understanding of quantum me-
chanics, but simple models may be constructed using classical mechanics along with very
simple quantum-mechanical assumptions, such as the existence of a spin moment. For
an excellent review of the magnetic properties of materials, see Elliott [56].

The magnetic properties of matter ultimately result from atomic currents. In our sim-
ple microscopic view these currents arise from the spin and orbital motion of negatively
charged electrons. These atomic currents potentially give each atom a magnetic moment
m. In diamagnetic materials the orbital and spin moments cancel unless the material is
exposed to an external magnetic field, in which case the orbital electron velocity changes



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 327 — #351
✐

✐

✐

✐

✐

✐

Temporal and spatial frequency domain representation 327

to produce a net moment opposite the applied field. In paramagnetic materials the spin
moments are greater than the orbital moments, leaving the atoms with a net permanent
magnetic moment. When exposed to an external magnetic field, these moments align in
the same direction as an applied field. In either case, the density of magnetic moments
M is zero in the absence of an applied field.
In most paramagnetic materials the alignment of the permanent moment of neigh-

boring atoms is random. However, in the subsets of paramagnetic materials known as
ferromagnetic, antiferromagnetic, and ferrimagnetic materials, there is a strong coupling
between the spin moments of neighboring atoms resulting in either parallel or antiparal-
lel alignment of moments. The most familiar case is the parallel alignment of moments
within the domains of ferromagnetic permanent magnets made of iron, nickel, and cobalt.
Anti-ferromagnetic materials, such as chromium and manganese, have strongly coupled
moments that alternate in direction between small domains, resulting in zero net mag-
netic moment. Ferrimagnetic materials also have alternating moments, but these are
unequal and thus do not cancel completely.
Ferrites form a particularly useful subgroup of ferrimagnetic materials. They were

first developed during the 1940s by researchers at the Phillips Laboratories as low-loss
magnetic media for supporting electromagnetic waves [56]. Typically, ferrites have con-
ductivities ranging from 10−4 to 100 S/m (compared to 107 for iron), relative permeabil-
ities in the thousands, and dielectric constants in the range 10–15. Their low loss makes
them useful for constructing transformer cores and for a variety of microwave applica-
tions. Their chemical formula is XO · Fe2O3, where X is a divalent metal or mixture of
metals, such as cadmium, copper, iron, or zinc. When exposed to static magnetic fields,
ferrites exhibit gyrotropic magnetic (or gyromagnetic) properties and have permeability
matrices of the form (2.24). The properties of a wide variety of ferrites are given by von
Aulock [207].
To determine the permeability matrix of a ferrite we will model its electrons as simple

spinning tops and examine the torque exerted on the magnetic moment by the application
of an external field. Each electron has an angular momentum L and a magnetic dipole
moment m, with these two vectors anti-parallel:

m(r, t) = −γL(r, t)

where γ = e/me = 1.7588× 1011 C/kg is the gyromagnetic ratio.
Let us first consider a single spinning electron immersed in an applied static magnetic

field B0. Any torque applied to the electron results in a change of angular momentum:

T(r, t) =
dL(r, t)

dt
.

We found in (3.141) that a very small loop of current in a magnetic field experiences
a torque m × B. Thus, when first placed into a static magnetic field B0 an electron’s
angular momentum obeys the equation

dL(r, t)

dt
= −γL(r, t)×B0(r) = ω0(r)× L(r, t) (4.117)

where ω0 = γB0. This equation of motion describes the precession of the electron spin
axis about the direction of the applied field, which is analogous to the precession of a
gyroscope [130]. The spin axis rotates at the Larmor precessional frequency ω0 = γB0 =
γµ0H0.
We can use this to understand what happens when we place a homogeneous ferrite in

a uniform static magnetic field B0 = µ0H0. The internal field Hi experienced by any



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 328 — #352
✐

✐

✐

✐

✐

✐

328 Electromagnetics

magnetic dipole is not the same as the external field H0, and need not even be in the
same direction. In general

H0(r, t)−Hi(r, t) = Hd(r, t)

where Hd is the demagnetizing field produced by the magnetic dipole moments of the
material. Each electron responds to the internal field by precessing as described above
until the precession damps out and the electron moments align with the magnetic field.
At this point the ferrite is saturated. Because the demagnetizing field depends strongly
on the shape of the material, we choose to ignore it as a first approximation, and this
allows us to focus on the fundamental atomic properties of the ferrite.

For purposes of understanding its magnetic properties, we view the ferrite as a dense
collection of electrons and write M(r, t) = Nm(r, t), where N is the electron number
density. Under the assumption that the ferrite is homogeneous, we take N to be indepen-
dent of time and position. Multiplying (4.117) by −Nγ, we get an equation describing
the evolution of M:

dM(r, t)

dt
= −γM(r, t)×Bi(r, t). (4.118)

To determine the temporal response of the ferrite we must include a time-dependent
component of the applied field. We let

H0(r, t) = Hi(r, t) = HT (r, t) +Hdc

whereHT is the time-dependent component superimposed with the uniform static biasing
field Hdc. Using B = µ0(H+M) we have from (4.118)

dM(r, t)

dt
= −γµ0M(r, t)× [HT (r, t) +Hdc +M(r, t)].

With M = MT (r, t) +Mdc and M×M = 0 this becomes

dMT (r, t)

dt
+
dMdc

dt
= −γµ0[MT (r, t)×HT (r, t) +MT (r, t)×Hdc

+Mdc ×HT (r, t) +Mdc ×Hdc]. (4.119)

Suppose the ferrite is saturated. Then Mdc is aligned with Hdc and their cross product
vanishes. Suppose further that the spectrum of HT is small compared to Hdc at all
frequencies: |H̃T (r, ω)| ≪ Hdc. This small-signal assumption allows us to neglect MT ×
HT . With these and the fact that the time derivative of Mdc is zero, (4.119) reduces to

dMT (r, t)

dt
= −γµ0[MT (r, t)×Hdc +Mdc ×HT (r, t)]. (4.120)

To determine the frequency response we write (4.120) in terms of inverse Fourier
transforms and invoke the Fourier integral theorem to find that

jωM̃T (r, ω) = −γµ0[M̃T (r, ω)×Hdc +Mdc × H̃T (r, ω)].

Defining γµ0Mdc = ωM where ωM = |ωM | is the saturation magnetization frequency, we
find that

M̃T + M̃T ×
(

ω0

jω

)

= − 1

jω
ωM × H̃T , (4.121)
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where ω0 = γµ0Hdc with ω0 now called the gyromagnetic response frequency. This has
the form v + v × C = A, which has solution (4.82). Substituting into this expression
and remembering that ω0 is parallel to ωM , we find that

M̃T =
− 1
jωωM × H̃T + 1

ω2 [ωM (ω0 · H̃T )− (ω0 · ωM )H̃T ]

1− ω2
0/ω

2
.

If we define the dyadic ω̄M such that ω̄M · H̃T = ωM × H̃T , then we identify the dyadic
magnetic susceptibility

˜̄χm(ω) =
jωω̄M + ωMω0 − ωMω0Ī

ω2 − ω2
0

(4.122)

with which we can write M̃(r, ω) = χ̄m(ω) · H̃(r, ω). In rectangular coordinates, ω̄M is
represented by

[ω̄M ] =





0 −ωMz ωMy

ωMz 0 −ωMx

−ωMy ωMx 0



 . (4.123)

Finally, using B̃ = µ0(H̃+ M̃) = µ0(Ī+ ˜̄χm) · H̃ = ˜̄µ · H̃, we find that

˜̄µ(ω) = µ0[Ī+ ˜̄χm(ω)].

To examine the properties of the dyadic permeability, it is useful to write it in matrix
form. To do this we must choose a coordinate system. We align Hdc with the z-axis so
that Hdc = ẑHdc and thus ωM = ẑωM and ω0 = ẑω0. Then (4.123) becomes

[ω̄M ] =





0 −ωM 0
ωM 0 0
0 0 0





and we can write the susceptibility dyadic (4.122) as

[˜̄χm(ω)] =
ωM

ω2 − ω2
0





−ω0 −jω 0
jω −ω0 0
0 0 0



 .

The permeability dyadic becomes

[˜̄µ(ω)] =





µ −jκ 0
jκ µ 0
0 0 µ0



 (4.124)

where

µ = µ0

(

1− ω0ωM
ω2 − ω2

0

)

, (4.125)

κ = µ0
ωωM
ω2 − ω2

0

. (4.126)

Because its permeability dyadic is that for a lossless gyrotropic material (2.25), we call
the ferrite gyromagnetic.
Since the ferrite is lossless, the dyadic permeability must be hermitian according to

(4.49). The form of (4.124) shows this explicitly. We also note that since the sign of
ωM is determined by that of Hdc, the dyadic permeability obeys the symmetry relation
µ̃ij(Hdc) = µ̃ji(−Hdc), which is the symmetry condition observed for a plasma in (4.89).
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◮ Example 4.10: Properties of a representative ferrite

The commercially available ferrite G-1010 manufactured by Trans-Tech [197] has a typical
saturation magnetization of 4πMs = 1000 G. If the applied dc magnetic field is 1000 Oe,
find the gyromagnetic response frequency f0 and the saturation magnetization frequency
fM . Assuming the ferrite is lossless, find µ and κ for f = 0.8f0 and f = 1.2f0.

Solution: Manufacturers often specify the parameters of magnetic materials in units other
than SI. Thus, we must make appropriate conversions. The conversion from Oe to A/m is
given by 1Oe = 1000/4π A/m. We have the gyromagnetic response frequency

f0 =
ω0

2π
=
γµ0Hdc

2π
= 2× 10−7γHdc = 3.5184 × 104Hdc Hz

when Hdc is in A/m. Converting Hdc to Oersteds gives

f0 = 3.5184 × 104
1000

4π
Hdc = 2.800 × 106Hdc Hz

when Hdc is in Oe.
Manufacturers further assume that application of the static dc magnetic field saturates

the ferrite and thus specify a saturation magnetization 4πMs, which is equivalent to theMdc

in the equations above. However, the units are given in terms of magnetic flux density as
opposed to magnetic field, which causes some confusion. Here the conversion is 4πMs =
104µ0Mdc = 10−3(4πMdc) since 1T = 104G. So 4πMdc = 103(4πMs), where Mdc is in A/m
and 4πMs is in G. We have the saturation magnetization frequency

fM =
ωM
2π

=
γµ0Mdc

2π
= 3.5184 × 104Mdc = 2.800 × 103(4πMdc) Hz

when Mdc is in A/m. Conversion to Gauss gives

fM = 2.800 × 103 × 103(4πMs) = 2.800 × 106(4πMs) Hz

when 4πMs is in G. Conveniently, with these units we have fM/f0 = 4πMs/Hdc.
So, for Hdc = 1500 Oe we have f0 = 2.800×106×1500 = 4.200×109 Hz, or f0 = 4.2 GHz.

For 4πMs = 1000 G, we have fM = 2.800 × 106 × 1000 = 2.8 × 109 Hz, or fM = 2.8 GHz.
It is useful to normalize (4.125) and (4.126) according to

µ

µ0
= 1− fM/f0

(f/f0)2 − 1
,

κ

µ0
=

(f/f0)(fM/f0)

(f/f0)2 − 1
.

We can now use fM/f0 = 1000/1500 = 1/1.5. Then, at f/f0 = 0.8,

µ

µ0
= 1− 1/1.5

0.82 − 1
= 2.8518,

κ

µ0
=

0.8/1.5

0.82 − 1
= −1.4815.

Similarly, at f/f0 = 1.2,

µ

µ0
= 1− 1/1.5

1.22 − 1
= −0.5152,

κ

µ0
=

1.2/1.5

1.22 − 1
= 1.8182. ◭

A lossy ferrite material can be modeled by adding a damping term to (4.120):

dM(r, t)

dt
= −γµ0 [MT (r, t)×Hdc +Mdc ×HT (r, t)] + α

Mdc

Mdc
× dMT (r, t)

dt
,

where α is the damping parameter [39, 207]. This term tends to reduce the angle of



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 331 — #355
✐

✐

✐

✐

✐

✐

Temporal and spatial frequency domain representation 331

precession. Fourier transformation gives

jωM̃T = ω0 × M̃T − ωM × H̃T + α
ωM

ωM
× jωM̃T .

Remembering that ω0 and ωM are aligned we can write this as

M̃T + M̃T ×





ω0

(

1 + jα ω
ω0

)

jω



 = − 1

jω
ωM × H̃T .

This is identical to (4.121) with

ω0 → ω0

(

1 + jα
ω

ω0

)

.

Thus, we merely substitute this into (4.122) to find the susceptibility dyadic for a lossy
ferrite:

˜̄χm(ω) =
jωω̄M + ωMω0 (1 + jαω/ω0)− ωMω0 (1 + jαω/ω0) Ī

ω2(1 + α2)− ω2
0 − 2jαωω0

.

Making the same substitution into (4.124), we can write the dyadic permeability matrix
as

[˜̄µ(ω)] =





µ̃xx µ̃xy 0
µ̃yx µ̃yy 0
0 0 µ0



 (4.127)

where

µ̃xx = µ̃yy = µ0 − µ0ωM
ω0

[

ω2(1− α2)− ω2
0

]

+ jωα
[

ω2(1 + α2) + ω2
0

]

[ω2(1 + α2)− ω2
0 ]

2
+ 4α2ω2ω2

0

(4.128)

and

µ̃xy = −µ̃yx =
2µ0αω

2ω0ωM − jµ0ωωM
[

ω2(1 + α2)− ω2
0

]

[ω2(1 + α2)− ω2
0 ]

2
+ 4α2ω2ω2

0

. (4.129)

In the case of a lossy ferrite, the hermitian nature of the permeability dyadic is lost.
Ferrite loss may also be described by use of a magnetic field line width ∆H . To

implement loss, the static biasing field Hdc is replaced according to

Hdc → Hdc + j
∆H

2
.

With this replacement the gyromagnetic response frequency becomes

ω0 = 2π × 2.8× 106Hdc

(

1 + j
∆H

2Hdc

)

,

where Hdc is in Oe (see Example 4.10). Now, compare this to the gyromagnetic response
frequency in terms of the damping parameter α,

ω0 = 2π × 2.8× 106Hdc

(

1 + jα
ω

ω0

)

.

We see that

αω = ω0
∆H

2Hdc
.
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Substitution into (4.128) and (4.129) gives expressions for the elements of the permeabil-
ity dyadic in terms of the line width:

µ̃xx = µ̃yy = µ0 − µ0ωMω0

ω2 − ω2
0

[

1 +
(

∆H
2Hdc

)2
]

+ j ∆H
2Hdc

{

ω2 + ω2
0

[

1 +
(

∆H
2Hdc

)2
]}

{

ω2 − ω2
0

[

1−
(

∆H
2Hdc

)2
]}2

+ 4ω4
0

(

∆H
2Hdc

)2
,

(4.130)
and

µ̃xy = −µ̃yx = µ0ωωM

2ω2
0

∆H
2Hdc

− j

{

ω2 − ω2
0

[

1−
(

∆H
2Hdc

)2
]}

{

ω2 − ω2
0

[

1−
(

∆H
2Hdc

)2
]}2

+ 4ω4
0

(

∆H
2Hdc

)2
. (4.131)

◮ Example 4.11: Permeability of a lossy ferrite

Consider the ferrite material G-1010 described in Example 4.10. The line width of this ferrite
is approximately ∆H = 25 Oe. Plot the entries of the permeability dyadic and compare to
the case of a lossless ferrite.

Solution: From Example 4.10 we have f0 = 4.2 GHz and fM = 2.8 GHz. Substituting
these into (4.130) and (4.131), and using ∆H/(2Hdc) = 25/2000 = 0.0125, we obtain the
relative permeabilities shown in Figures 4.14 and 4.15. The resonance is clearly visible at
f0 = 4.2 GHz. For µ̃xx, the real part of the lossless permeability is unbounded at f0, and
the imaginary part is zero. The nonzero line width of the actual lossy ferrite produces a
sharp but smooth resonance, with the real part passing from positive to negative, and the
imaginary part large and peaking at f0. Similar behavior is observed for µ̃xy, with the roles
of the real and imaginary parts reversed.
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FIGURE 4.14
Relative permeability µ̃xx/µ0 for the ferrite G-1010.



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 333 — #357
✐

✐

✐

✐

✐

✐

Temporal and spatial frequency domain representation 333

-30

-20

-10

 0

 10

 20

 30

 40

 50

 3  3.5  4  4.5  5

Lossless

R
e

la
ti
v
e

 p
e

rm
e

a
b

ili
ty

Frequency (GHz)

Re{µ~xy}/µ0

Im{µ~xy}/µ0

FIGURE 4.15
Relative permeability µ̃xy/µ0 for the ferrite G-1010. ◭

We note that away from resonance the lossless and lossy formulas give nearly the same
result, and thus the simpler lossless formulas can be used with good accuracy. For instance,
at f = 0.8f0 = 3.36 GHz we find Re{µ̃xx} /µ0 = 2.849, which compares well with the value
of 2.852 found in Example 4.10. Similarly, we find Im{µ̃xy} /µ0 = 1.4786, vs. a value of
1.4815 for the lossless case. At this frequency we also find that Im{µ̃xx} /µ0 = −0.0702 and
Re{µ̃xy} /µ0 = 0.0685, which are quite small compared to values near resonance.

4.7 Monochromatic fields and the phasor domain

The Fourier transform is very efficient for representing the nearly sinusoidal signals pro-
duced by electronic systems such as oscillators. However, we should realize that the
elemental term ejωt by itself cannot represent any physical quantity; only a continuous
superposition of such terms can have physical meaning, because no physical process can
be truly monochromatic. All events must have transient periods during which they are
established. Even “monochromatic” light appears in bundles called quanta, interpreted
as containing finite numbers of oscillations.
Arguments about whether “monochromatic” or “sinusoidal steady-state” fields can

actually exist may sound purely academic. After all, a microwave oscillator can create
a wave train of 1010 oscillations within the first second after being turned on. Such a
waveform is surely as close to monochromatic as we would care to measure. But as with
all mathematical models of physical systems, we can get into trouble by making non-
physical assumptions, in this instance by assuming a physical system has always been
in the steady state. Sinusoidal steady-state solutions to Maxwell’s equations can lead to
troublesome infinities linked to the infinite energy content of each elemental component.
For example, an attempt to compute the energy stored within a lossless microwave cavity
under steady-state conditions gives an infinite result since the cavity has been building up
energy since t = −∞. We handle this by considering time-averaged quantities, but even
then must be careful when materials are dispersive (§ 4.5). Nevertheless, the steady-
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state concept is valuable because of its simplicity and finds widespread application in
electromagnetics.

Since the elemental term is complex, we may use its real part, its imaginary part, or
some combination of both to represent a monochromatic (or time-harmonic) field. We
choose the representation

ψ(r, t) = ψ0(r) cos[ω̌t+ ξ(r)], (4.132)

where ξ is the temporal phase angle of the sinusoidal function. The Fourier transform is

ψ̃(r, ω) =

∫ ∞

−∞
ψ0(r) cos[ω̌t+ ξ(r)]e−jωt dt. (4.133)

Here we run into an immediate problem: the transform in (4.133) does not exist in the
ordinary sense since cos(ω̌t + ξ) is not absolutely integrable on (−∞,∞). We should
not be surprised by this: the cosine function cannot describe an actual physical process
(it extends in time to ±∞), so it lacks a classical Fourier transform. One way out of
this predicament is to extend the meaning of the Fourier transform (§ A.2). Then the
monochromatic field (4.132) is viewed as having the generalized transform

ψ̃(r, ω) = ψ0(r)π[e
jξ(r)δ(ω − ω̌) + e−jξ(r)δ(ω + ω̌)]. (4.134)

We can compute the inverse Fourier transform by substituting (4.134) into (4.2):

ψ(r, t) =
1

2π

∫ ∞

−∞
ψ0(r)π[e

jξ(r)δ(ω − ω̌) + e−jξ(r)δ(ω + ω̌)]ejωt dω. (4.135)

By our interpretation of the Dirac delta, we see that the decomposition of the cosine
function has only two discrete components, located at ω = ±ω̌. So we have realized our
initial intention of having only a single elemental function present. The sifting property
gives

ψ(r, t) = ψ0(r)
ejω̌tejξ(r) + e−jω̌te−jξ(r)

2
= ψ0(r) cos[ω̌t+ ξ(r)]

as expected.

4.7.1 The time-harmonic EM fields and constitutive relations

The time-harmonic fields are described using the representation (4.132) for each field
component. The electric field is

E(r, t) =
3
∑

i=1

îi|Ei(r)| cos[ω̌t+ ξEi (r)],

for example. Here |Ei| is the complex magnitude of the ith vector component, and ξEi is
the phase angle (−π < ξEi ≤ π). Similar terminology is used for the remaining fields.

The frequency-domain constitutive relations (4.10)–(4.14) may be written for the time-
harmonic fields by employing (4.135). For instance, for an isotropic material where

D̃(r, ω) = ǫ̃(r, ω)Ẽ(r, ω), B̃(r, ω) = µ̃(r, ω)H̃(r, ω),

with
ǫ̃(r, ω) = |ǫ̃(r, ω)|eξǫ(r,ω), µ̃(r, ω) = |µ̃(r, ω)|eξµ(r,ω),
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we can write

D(r, t) =

3
∑

i=1

îi|Di(r)| cos[ω̌t+ ξDi (r)]

=
1

2π

∫ ∞

−∞

3
∑

i=1

îiǫ̃(r, ω)|Ei(r)|π
[

ejξ
E
i (r)δ(ω − ω̌) + e−jξ

E
i (r)δ(ω + ω̌)

]

ejωt dω

=
1

2

3
∑

i=1

îi|Ei(r)|
[

ǫ̃(r, ω̌)ej(ω̌t+jξ
E
i (r)) + ǫ̃(r,−ω̌)e−j(ω̌t+jξEi (r))

]

.

Since (4.24) shows that ǫ̃(r,−ω̌) = ǫ̃∗(r, ω̌), we have

D(r, t) =
1

2

3
∑

i=1

îi|Ei(r)||ǫ̃(r, ω̌)|
[

ej(ω̌t+jξ
E
i (r)+jξǫ(r,ω̌)) + e−j(ω̌t+jξ

E
i (r)+jξǫ(r,ω̌))

]

=
3
∑

i=1

îi|ǫ̃(r, ω̌)||Ei(r)| cos[ω̌t+ ξEi (r) + ξǫ(r, ω̌)]. (4.136)

Similarly

B(r, t) =

3
∑

i=1

îi|Bi(r)| cos[ω̌t+ ξBi (r)]

=

3
∑

i=1

îi|µ̃(r, ω̌)||Hi(r)| cos[ω̌t+ ξHi (r) + ξµ(r, ω̌)].

4.7.2 The phasor fields and Maxwell’s equations

Sinusoidal steady-state computations using the forward and inverse transform formulas
are unnecessarily cumbersome. Much more efficient is the phasor approach. If we define
the complex function

ψ̌(r) = ψ0(r)e
jξ(r)

as the phasor form of the monochromatic field ψ̃(r, ω), then the inverse Fourier transform
is easily computed by multiplying ψ̌(r) by ejω̌t and taking the real part. That is,

ψ(r, t) = Re{ψ̌(r)ejω̌t} = ψ0(r) cos[ω̌t+ ξ(r)]. (4.137)

Using the phasor representation of the fields, we can obtain a set of Maxwell equations
relating the phasor components. Let

Ě(r) =

3
∑

i=1

îiĚi(r) =

3
∑

i=1

îi|Ei(r)|ejξ
E
i (r)

represent the phasor monochromatic electric field, with similar formulas for the other
fields. Then

E(r, t) = Re{Ě(r)ejω̌t} =

3
∑

i=1

îi|Ei(r)| cos[ω̌t+ ξEi (r)].
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Substituting these expressions into Ampere’s law (2.2), we have

∇× Re{Ȟ(r)ejω̌t} =
∂

∂t
Re{Ď(r)ejω̌t}+Re{J̌(r)ejω̌t}.

Since the real part of a sum of complex variables equals the sum of the real parts, we
can write

Re

{

∇× Ȟ(r)ejω̌t − Ď(r)
∂

∂t
ejω̌t − J̌(r)ejω̌t

}

= 0. (4.138)

If we examine for an arbitrary complex function F = Fr + jFi the quantity

Re{(Fr + jFi)e
jω̌t} = Re{(Fr cos ω̌t− Fi sin ω̌t) + j(Fr sin ω̌t+ Fi cos ω̌t)},

we see that both Fr and Fi must be zero for the expression to vanish for all t. Thus
(4.138) requires that

∇× Ȟ(r) = jω̌Ď(r) + J̌(r), (4.139)

which is the phasor Ampere’s law. Similarly

∇× Ě(r) = −jω̌B̌(r), (4.140)

∇ · Ď(r) = ρ̌(r), (4.141)

∇ · B̌(r) = 0, (4.142)

∇ · J̌(r) = −jω̌ρ̌(r). (4.143)

The constitutive relations may be easily handled in the phasor approach. If we use

Ďi(r) = ǫ̃(r, ω̌)Ěi(r) = |ǫ̃(r, ω̌)|ejξǫ(r,ω̌)|Ei(r)|ejξ
E
i (r),

then forming Di(r, t) = Re{Ďi(r)e
jω̌t} we reproduce (4.136). Thus we may write

Ď(r) = ǫ̃(r, ω̌)Ě(r).

Note that we never write ǫ̌ or refer to a “phasor permittivity” since the permittivity does
not vary sinusoidally in the time domain.

An obvious benefit of the phasor method is that we can manipulate field quantities
without involving the sinusoidal time dependence. When our manipulations are complete,
we return to the time domain via (4.137).

The phasor Maxwell equations (4.139)–(4.142) are identical in form to the tempo-
ral frequency-domain Maxwell equations (4.6)–(4.9), except that ω = ω̌ in the phasor
equations. This is sensible, since the phasor fields represent a single component of the
complete frequency-domain spectrum of the arbitrary time-varying fields. Thus, if the
phasor fields are calculated for some ω̌, we can make the replacements

ω̌ → ω, Ě(r) → Ẽ(r, ω), Ȟ(r) → H̃(r, ω), . . . ,

and obtain the general time-domain expressions by performing the inversion (4.2). Simi-
larly, if we evaluate the frequency-domain field Ẽ(r, ω) at ω = ω̌, we produce the phasor
field Ě(r) = Ẽ(r, ω̌) for this frequency. That is

Re{Ẽ(r, ω̌)ejω̌t} =

3
∑

i=1

îi|Ẽi(r, ω̌)| cos
(

ω̌t+ ξE(r, ω̌)
)

.
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4.7.3 Boundary conditions on the phasor fields

The boundary conditions developed in § 4.3 for the frequency-domain fields may be
adapted for use with the phasor fields by selecting ω = ω̌. Let us include the effects of
fictitious magnetic sources and write

n̂12 × (Ȟ1 − Ȟ2) = J̌s,

n̂12 × (Ě1 − Ě2) = −J̌ms,

n̂12 · (Ď1 − Ď2) = ρ̌s,

n̂12 · (B̌1 − B̌2) = ρ̌ms,

and

n̂12 · (J̌1 − J̌2) = −∇s · J̌s − jω̌ρ̌s,

n̂12 · (J̌m1 − J̌m2) = −∇s · J̌ms − jω̌ρ̌ms,

where n̂12 points into region 1 from region 2.

4.8 Poynting’s theorem for time-harmonic fields

We can specialize Poynting’s theorem to time-harmonic form by substituting the time-
harmonic field representations. The result depends on whether we use the general form
(2.236), which is valid for dispersive materials, or (2.234). For nondispersive materials,
(2.234) allows us to interpret the volume integral term as the time rate of change of
stored energy. But if the operating frequency lies within the realm of material dispersion
and loss, then we can no longer identify an explicit stored energy term.

4.8.1 General form of Poynting’s theorem

We begin with (2.236). Substituting the time-harmonic representations, we obtain the
term

E(r, t) · ∂D(r, t)

∂t
=

[

3
∑

i=1

îi|Ei| cos[ω̌t+ ξEi ]

]

· ∂
∂t

[

3
∑

i=1

îi|Di| cos[ω̌t+ ξDi ]

]

= −ω̌
3
∑

i=1

|Ei||Di| cos[ω̌t+ ξEi ] sin[ω̌t+ ξDi ].

Since 2 sinA cosB ≡ sin(A+B) + sin(A−B), we have

E(r, t) · ∂
∂t

D(r, t) = −1

2

3
∑

i=1

ω̌|Ei||Di|SDEii (t),

where

SDEii (t) = sin(2ω̌t+ ξDi + ξEi ) + sin(ξDi − ξEi )
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describes the temporal dependence of the field product. Separating the current into an
impressed term Ji and a secondary term Jc (assumed to be the conduction current) as
J = Ji + Jc and repeating the above steps with the other terms, we obtain

− 1

2

∫

V

3
∑

i=1

|J ii ||Ei|CJ
iE

ii (t) dV =
1

2

∮

S

3
∑

i,j=1

|Ei||Hj |(̂ii × îj) · n̂CEHij (t) dS

+
1

2

∫

V

3
∑

i=1

{

−ω̌|Di||Ei|SDEii (t)− ω̌|Bi||Hi|SBHii (t) + |Jci ||Ei|CJ
cE

ii (t)
}

dV,

(4.144)

where

SBHii (t) = sin(2ω̌t+ ξBi + ξHi ) + sin(ξBi − ξHi ),

CEHij (t) = cos(2ω̌t+ ξEi + ξHj ) + cos(ξEi − ξHj ),

and so on.
We see that each power term has two temporal components: one oscillating at fre-

quency 2ω̌, one constant with time. The oscillating component describes power that
cycles through the various mechanisms of energy storage, dissipation, and transfer across
the boundary. Dissipation may be produced through conduction processes or through
polarization and magnetization phase lag, as described by the volume term on the right
side of (4.144). Power may also be delivered to the fields either from the sources, as
described by the volume term on the left, or from an active medium, as described by the
volume term on the right. The time-average balance of power supplied to the fields and
extracted from the fields throughout each cycle, including that transported across the
surface S, is given by the constant terms in (4.144):

− 1

2

∫

V

3
∑

i=1

|J ii ||Ei| cos(ξJ
i

i − ξEi ) dV =
1

2

∫

V

3
∑

i=1

{

ω̌|Ei||Di| sin(ξEi − ξDi )

+ ω̌|Bi||Hi| sin(ξHi − ξBi ) + |Jci ||Ei| cos(ξJ
c

i − ξEi )
}

dV

+
1

2

∮

S

3
∑

i,j=1

|Ei||Hj |(̂ii × îj) · n̂ cos(ξEi − ξHj ) dS. (4.145)

We associate one mechanism for time-average power loss with the phase lag between
applied field and resulting polarization or magnetization. We see this more clearly if
we use the alternative form of the Poynting theorem (2.237) written in terms of the
polarization and magnetization vectors. Writing

P(r, t) =

3
∑

i=1

|Pi(r)| cos[ω̌t+ ξPi (r)],

M(r, t) =
3
∑

i=1

|Mi(r)| cos[ω̌t+ ξMi (r)],
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and substituting the time-harmonic fields, we have

− 1

2

∫

V

3
∑

i=1

|Ji||Ei|CJEii (t) dV +
ω̌

2

∫

V

3
∑

i=1

[

|Pi||Ei|SPEii (t) + µ0|Mi||Hi|SMH
ii (t)

]

dV

= − ω̌
2

∫

V

3
∑

i=1

[

ǫ0|Ei|2SEEii (t) + µ0|Hi|2SHHii (t)
]

dV

+
1

2

∮

S

3
∑

i,j=1

|Ei||Hj |(̂ii × îj) · n̂CEHij (t) dS.

Selection of the constant part gives the balance of time-average power:

− 1

2

∫

V

3
∑

i=1

|Ji||Ei| cos(ξJi − ξEi ) dV

=
ω̌

2

∫

V

3
∑

i=1

[

|Ei||Pi| sin(ξEi − ξPi ) + µ0|Hi||Mi| sin(ξHi − ξMi )
]

dV

+
1

2

∮

S

3
∑

i,j=1

|Ei||Hj |(̂ii × îj) · n̂ cos(ξEi − ξHj ) dS.

Here the power loss associated with the lag in alignment of the electric and magnetic
dipoles is easily identified as the volume term on the right side, and is seen to arise
through the interaction of the fields with the equivalent sources as described through
the phase difference between E and P and between H and M. If these pairs are in
phase, then the time-average power balance reduces to that for a dispersionless material,
Equation (4.148).

4.8.2 Poynting’s theorem for nondispersive materials

For nondispersive materials, (2.234) is appropriate. We supply the details here so that
we may examine the power-balance implications of nondispersive media. We have, sub-
stituting the field expressions,

− 1

2

∫

V

3
∑

i=1

|J ii ||Ei|CJ
iE

ii (t) dV =
1

2

∫

V

3
∑

i=1

|Jci ||Ei|CJ
cE

ii (t) dV

+
∂

∂t

∫

V

3
∑

i=1

{

1
4 |Di||Ei|CDEii (t) + 1

4 |Bi||Hi|CBHii (t)
}

dV

+
1

2

∮

S

3
∑

i,j=1

|Ei||Hj |(̂ii × îj) · n̂CEHij (t) dS. (4.146)

Here we remember that the conductivity relating E to Jc must also be nondispersive.
Note that the electric and magnetic energy densities we(r, t) and wm(r, t) have the time-
average values 〈we(r, t)〉 and 〈wm(r, t)〉 given by

〈we(r, t)〉 =
1

T

∫ T/2

−T/2

1
2E(r, t) ·D(r, t) dt =

1

4

3
∑

i=1

|Ei||Di| cos(ξEi − ξDi )

= 1
4 Re

{

Ě(r) · Ď∗(r)
}

(4.147)
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and

〈wm(r, t)〉 = 1

T

∫ T/2

−T/2

1
2B(r, t) ·H(r, t) dt =

1

4

3
∑

i=1

|Bi||Hi| cos(ξHi − ξBi )

= 1
4 Re

{

Ȟ(r) · B̌∗(r)
}

,

where T = 2π/ω̌. We have already identified the energy stored in a nondispersive material
(§ 4.5.2). If (4.147) is to match with (4.62), the phases of Ě and Ď must match: ξEi = ξDi .
We must also have ξHi = ξBi . Since in a dispersionless material σ must be independent
of frequency, from J̌c = σĚ we also see that ξJ

c

i = ξEi .
Upon differentiation, the time-average stored energy terms in (4.146) disappear, giving

− 1

2

∫

V

3
∑

i=1

|J ii ||Ei|CJ
iE

ii (t) dV =
1

2

∫

V

3
∑

i=1

|Jci ||Ei|CEEii (t) dV

− 2ω̌

∫

V

3
∑

i=1

{

1
4 |Di||Ei|SEEii (t) + 1

4 |Bi||Hi|SBBii (t)
}

dV

+
1

2

∮

S

3
∑

i,j=1

|Ei||Hj |(̂ii × îj) · n̂CEHij (t) dS.

Equating the constant terms, we find the time-average power balance expression

− 1

2

∫

V

3
∑

i=1

|J ii ||Ei| cos(ξJ
i

i − ξEi ) dV =
1

2

∫

V

3
∑

i=1

|Jci ||Ei| dV

+
1

2

∮

S

3
∑

i,j=1

|Ei||Hj |(̂ii × îj) · n̂ cos(ξEi − ξHj ) dS. (4.148)

This can be written more compactly using phasor notation as
∫

V

pJ(r) dV =

∫

V

pσ(r) dV +

∮

S

Sav(r) · n̂ dS (4.149)

where
pJ(r) = − 1

2 Re{Ě(r) · J̌
i∗(r)}

is the time-average density of power delivered by the sources to the fields in V ,

pσ(r) =
1
2 Ě(r) · J̌c∗(r)

is the time-average density of power transferred to the conducting material as heat, and

Sav(r) · n̂ = 1
2 Re{Ě(r) × Ȟ∗(r)} · n̂

is the density of time-average power transferred across the boundary surface S. Here

Sc = Ě(r) × Ȟ∗(r)

is the complex Poynting vector and Sav is the time-average Poynting vector.
Comparison of (4.148) with (4.145) shows that nondispersive materials cannot manifest

the dissipative (or active) properties determined by the term

1

2

∫

V

3
∑

i=1

{

ω̌|Ei||Di| sin(ξEi − ξDi ) + ω̌|Bi||Hi| sin(ξHi − ξBi ) + |Jci ||Ei| cos(ξJ
c

i − ξEi )
}

dV.

This term can be used to classify materials as lossless, lossy, or active, as shown next.
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4.8.3 Lossless, lossy, and active media

In § 4.5.1 we classified materials based on whether they dissipate (or provide) energy
over the period of a transient event. We can provide the same classification based on
their steady-state behavior.
We classify a material as lossless if the time-average flow of power entering a homoge-

neous body is zero when there are sources external to the body, but no sources internal
to the body. This implies that the mechanisms within the body either do not dissipate
power that enters, or that there is a mechanism that creates energy to exactly balance the
dissipation. If the time-average power entering is positive, then the material dissipates
power and is termed lossy. If the time-average power entering is negative, power must
originate from within the body and the material is termed active. (Note that the power
associated with an active body is not described as arising from sources, but is rather
described through the constitutive relations.)
Since materials are generally inhomogeneous we may apply this concept to a vanish-

ingly small volume, thus invoking the point form of Poynting’s theorem. From (4.145)
we see that the time-average influx of power density is given by

−∇ · Sav(r) = pin(r) =
1

2

3
∑

i=1

{

ω̌|Ei||Di| sin(ξEi − ξDi ) + ω̌|Bi||Hi| sin(ξHi − ξBi )

+ |Jci ||Ei| cos(ξJ
c

i − ξEi )

}

.

Materials are then classified as follows:

pin(r) = 0, lossless,

pin(r) > 0, lossy,

pin(r) ≥ 0, passive,

pin(r) < 0, active.

We see that if ξEi = ξDi , ξHi = ξBi , and Jc = 0, then the material is lossless. This implies
that (D,E) and (B,H) are exactly in phase and there is no conduction current. If the
material is isotropic, we may substitute from the constitutive relations (4.20)–(4.22) to
obtain

pin(r) = − ω̌
2

3
∑

i=1

{

|Ei|2
[

|ǫ̃| sin(ξǫ)− |σ̃|
ω̌

cos(ξσ)

]

+ |µ̃||Hi|2 sin(ξµ)
}

. (4.150)

The first two terms can be regarded as resulting from a single complex permittivity
(4.26). Then (4.150) simplifies to

pin(r) = − ω̌
2

3
∑

i=1

{

|ǫ̃c||Ei|2 sin(ξǫ
c

) + |µ̃||Hi|2 sin(ξµ)
}

. (4.151)

Now we can see that a lossless medium, which requires (4.151) to vanish, has ξǫ
c

=
ξµ = 0 (or perhaps the unlikely condition that dissipative and active effects within the
electric and magnetic terms exactly cancel). To have ξµ = 0 we need B and H to be in
phase, hence we need µ̃(r, ω) to be real. To have ξǫ

c

= 0 we need ξǫ = 0 (ǫ̃(r, ω) real)
and σ̃(r, ω) = 0 (or perhaps the unlikely condition that the active and dissipative effects
of the permittivity and conductivity exactly cancel).
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A lossy medium requires (4.151) to be positive. This occurs when ξµ < 0 or ξǫ
c

< 0,
meaning that the imaginary part of the permeability or complex permittivity is negative.
The complex permittivity has a negative imaginary part if the imaginary part of ǫ̃ is
negative or if the real part of σ̃ is positive. Physically, ξǫ < 0 means that ξD < ξE and
thus the phase of the response field D lags that of the excitation field E. This results
from a delay in the polarization alignment of the atoms, and leads to dissipation of power
within the material.

An active medium requires (4.151) to be negative. This occurs when ξµ > 0 or ξǫ
c

> 0,
meaning that the imaginary part of the permeability or complex permittivity is positive.
The complex permittivity has a positive imaginary part if the imaginary part of ǫ̃ is
positive or if the real part of σ̃ is negative.

In summary, a passive isotropic medium is lossless when the permittivity and perme-
ability are real and when the conductivity is zero. A passive isotropic medium is lossy
when one or more of the following holds: the permittivity is complex with negative imag-
inary part, the permeability is complex with negative imaginary part, or the conductivity
has a positive real part. Finally, a complex permittivity or permeability with positive
imaginary part or a conductivity with negative real part indicates an active medium.

For anisotropic materials the interpretation of pin is not as simple. Here we find that
the permittivity or permeability dyadic may be complex, and yet the material may still
be lossless. To determine the condition for a lossless medium, let us recompute pin using
the constitutive relations (4.17)–(4.19). With these we have

E ·
[

∂D

∂t
+ Jc

]

+H · ∂B
∂t

= ω̌

3
∑

i,j=1

|Ei||Ej |
[

− |ǫ̃ij | sin(ω̌t+ ξEj + ξǫij) cos(ω̌t+ ξEi )

+
|σ̃ij |
ω̌

cos(ω̌t+ ξEj + ξσij) cos(ω̌t+ ξEi )

]

+ ω̌

3
∑

i,j=1

|Hi||Hj |
[

−|µ̃ij | sin(ω̌t+ ξHj + ξµij) cos(ω̌t+ ξHi )
]

.

Using the angle-sum formulas and discarding the time-varying quantities, we may obtain
the time-average input power density:

pin(r) = − ω̌
2

3
∑

i,j=1

|Ei||Ej |
[

|ǫ̃ij | sin(ξEj − ξEi + ξǫij)−
|σ̃ij |
ω̌

cos(ξEj − ξEi + ξσij)

]

− ω̌

2

3
∑

i,j=1

|Hi||Hj ||µ̃ij | sin(ξHj − ξHi + ξµij).

It is easily verified that the conditions under which this quantity vanishes, thus describing
a lossless material, are

|ǫ̃ij | = |ǫ̃ji|, ξǫij = −ξǫji, (4.152)

|σ̃ij | = |σ̃ji|, ξσij = −ξσji + π, (4.153)

|µ̃ij | = |µ̃ji|, ξµij = −ξµji. (4.154)

Note that this requires ξǫii = ξµii = ξσii = 0.
Condition (4.154) is easily written in the dyadic form

˜̄µ(r, ω̌)† = ˜̄µ(r, ω̌)
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where “†” stands for the conjugate-transpose operation. The dyadic permeability ˜̄µ is
hermitian. The set of conditions (4.152)–(4.153) can also be written quite simply using
the complex permittivity dyadic (4.23):

˜̄ǫc(r, ω̌)† = ˜̄ǫc(r, ω̌).

Thus, an anisotropic material is lossless when both the dyadic permeability and the
complex dyadic permittivity are hermitian. Since ω̌ is arbitrary, these results are exactly
those obtained in § 4.5.1.

4.9 The complex Poynting theorem

An equation having a striking resemblance to Poynting’s theorem can be obtained by
direct manipulation of the phasor-domain Maxwell equations. The result, although cer-
tainly satisfied by the phasor fields, does not replace Poynting’s theorem as the power-
balance equation for time-harmonic fields. We shall be careful to contrast the interpre-
tation of the phasor expression with the actual time-harmonic Poynting theorem.
We begin by dotting both sides of the phasor-domain Faraday’s law with Ȟ∗ to obtain

Ȟ∗ · (∇× Ě) = −jω̌Ȟ∗ · B̌.

Taking the complex conjugate of the phasor-domain Ampere’s law and dotting with Ě,
we have

Ě · (∇× Ȟ∗) = Ě · J̌∗ − jω̌Ě · Ď∗.

We subtract these expressions and use (B.50) to write

−Ě · J̌∗ = ∇ · (Ě× Ȟ∗)− jω̌[Ě · Ď∗ − B̌ · Ȟ∗].

Finally, integrating over the volume region V and dividing by two, we have

−1

2

∫

V

Ě · J̌∗ dV =
1

2

∮

S

(Ě× Ȟ∗) · dS− 2jω̌

∫

V

[

1
4 Ě · Ď∗ − 1

4 B̌ · Ȟ∗] dV. (4.155)

This is known as the complex Poynting theorem, and is an expression that must be obeyed
by the phasor fields.
As a power balance theorem, the complex Poynting theorem has meaning only for

dispersionless materials. If we let J = Ji+Jc and assume no dispersion, (4.155) becomes

−1

2

∫

V

Ě · J̌i∗ dV =
1

2

∫

V

Ě · J̌c∗ dV +
1

2

∮

S

(Ě× Ȟ∗) · dS

− 2jω̌

∫

V

[〈we〉 − 〈wm〉] dV (4.156)

where 〈we〉 and 〈wm〉 are the time-average stored electric and magnetic energy densities
as described in (4.62)–(4.63). Selection of the real part now gives

−1

2

∫

V

Re{Ě · J̌i∗} dV =
1

2

∫

V

Ě · J̌c∗ dV +
1

2

∮

S

Re{Ě× Ȟ∗} · dS, (4.157)
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which is identical to (4.149). Thus the real part of the complex Poynting theorem gives
the balance of time-average power for a dispersionless material.

Selection of the imaginary part of (4.156) gives the balance of imaginary, or reactive,
power:

−1

2

∫

V

Im{Ě · J̌i∗} dV =
1

2

∮

S

Im{Ě× Ȟ∗} · dS− 2ω̌

∫

V

[〈we〉 − 〈wm〉] dV.

In general, the reactive power balance does not have a simple physical interpretation (it
is not the balance of the oscillating terms in (4.144)). However, an interesting concept
can be gleaned from it. If the source current and electric field are in phase, and there is
no reactive power leaving S, then the time-average stored electric energy is equal to the
time-average stored magnetic energy:

∫

V

〈we〉 dV =

∫

V

〈wm〉 dV.

This is the condition for “resonance.” An example is a series RLC circuit with the source
current and voltage in phase. Here the stored energy in the capacitor is equal to the
stored energy in the inductor and the input impedance (ratio of voltage to current) is
real. Such a resonance occurs at only one value of frequency. In more complicated
electromagnetic systems, resonance may occur at many discrete eigenfrequencies.

4.9.1 Boundary condition for the time-average Poynting vector

In § 2.9.5 we developed a boundary condition for the normal component of the time-
domain Poynting vector. For time-harmonic fields we can derive a similar condition using
the time-average Poynting vector. Consider a surface S across which the electromagnetic
sources and constitutive parameters are discontinuous, as shown in Figure 2.6. Let n̂12

be the unit normal to the surface pointing into region 1 from region 2. If we apply the
large-scale form of the complex Poynting theorem (4.155) to the two separate surfaces
shown in Figure 2.6, we obtain

1

2

∫

V

[

Ě · J̌∗ − 2jω̌

(

1

4
Ě · Ď∗ − 1

4
B̌ · Ȟ∗

)]

dV +
1

2

∮

S

Sc · n̂ dS

=
1

2

∫

S10

n̂12 · (Sc1 − Sc2) dS (4.158)

where Sc = Ě× Ȟ∗ is the complex Poynting vector. If, on the other hand, we apply the
large-scale form of Poynting’s theorem to the entire volume region including the surface
of discontinuity, and include the surface current contribution, we have

1

2

∫

V

[

Ě · J̌∗ − 2jω̌

(

1

4
Ě · Ď∗ − 1

4
B̌ · Ȟ∗

)]

dV +
1

2

∮

S

Sc · n̂ dS

= −1

2

∫

S10

J̌∗
s · Ě dS. (4.159)

To have the integrals over V and S in (4.158) and (4.159) produce identical results, we
postulate the two conditions

n̂12 × (Ě1 − Ě2) = 0

and
n̂12 · (Sc1 − Sc2) = −J̌∗

s · Ě. (4.160)
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The first condition is merely the continuity of tangential electric field; it allows us to be
nonspecific as to which value of E we use in the second condition. If we take the real
part of the second condition, we have

n̂12 · (Sav,1 − Sav,2) = pJs ,

where Sav = 1
2 Re{Ě× Ȟ∗} is the time-average Poynting power flow density and pJs =

− 1
2 Re{J̌∗

s ·Ě} is the time-average density of power delivered by the surface sources. This
is the desired boundary condition on the time-average power flow density.

4.10 Fundamental theorems for time-harmonic fields

4.10.1 Uniqueness

If we think of a sinusoidal electromagnetic field as the steady-state culmination of a
transient event that has an identifiable starting time, then the conditions for uniqueness
established in § 2.2.1 apply. However, a true time-harmonic wave, which has existed
since t = −∞ and thus has infinite energy, must be interpreted differently.
Our approach is similar to that of § 2.2.1. Consider a simply connected region of

space V bounded by surface S, where both V and S contain only ordinary points. The
phasor-domain fields within V are associated with a phasor current distribution J̌, which
may be internal to V (entirely or in part). We seek conditions under which the phasor
electromagnetic fields are uniquely determined. Let the field set (Ě1, Ď1, B̌1, Ȟ1) satisfy
Maxwell’s equations (4.139) and (4.140) associated with the current J̌ (along with an
appropriate set of constitutive relations), and let (Ě2, Ď2, B̌2, Ȟ2) be a second solution.
To determine the conditions for uniqueness of the fields, we look for a situation that
results in Ě1 = Ě2, Ȟ1 = Ȟ2, and so on. The electromagnetic fields must obey

∇× Ȟ1 = jω̌Ď1 + J̌,

∇× Ě1 = −jω̌B̌1,

∇× Ȟ2 = jω̌Ď2 + J̌,

∇× Ě2 = −jω̌B̌2.

Subtracting these and defining the difference fields Ě0 = Ě1 − Ě2, Ȟ0 = Ȟ1 − Ȟ2, and
so on, we find that

∇× Ȟ0 = jω̌Ď0, (4.161)

∇× Ě0 = −jω̌B̌0. (4.162)

Establishing the conditions under which the difference fields vanish throughout V , we
shall determine the conditions for uniqueness.
Dotting (4.162) with Ȟ∗

0 and dotting the complex conjugate of (4.161) with Ě0, we
have

Ȟ∗
0 · (∇× Ě0) = −jω̌B̌0 · Ȟ∗

0,

Ě0 · (∇× Ȟ∗
0) = −jω̌Ď∗

0 · Ě0.
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Subtraction yields

Ȟ∗
0 · (∇× Ě0)− Ě0 · (∇× Ȟ∗

0) = −jω̌B̌0 · Ȟ∗
0 + jω̌Ď∗

0 · Ě0

which, by (B.50), can be written as

∇ · (Ě0 × Ȟ∗
0) = jω̌(Ě0 · Ď∗

0 − B̌0 · Ȟ∗
0).

Adding this expression to its complex conjugate, integrating over V , and using the di-
vergence theorem, we obtain

Re

∮

S

(Ě0 × Ȟ∗
0) · dS = −j ω̌

2

∫

V

[(Ě∗
0 · Ď0 − Ě0 · Ď∗

0) + (Ȟ∗
0 · B̌0 − Ȟ0 · B̌∗

0)] dV.

Breaking S into two arbitrary portions and using (B.6), we obtain

Re

∮

S1

Ȟ∗
0 · (n̂× Ě0) dS − Re

∮

S2

Ě0 · (n̂× Ȟ∗
0) dS =

−j ω̌
2

∫

V

[(Ě∗
0 · Ď0 − Ě0 · Ď∗

0) + (Ȟ∗
0 · B̌0 − Ȟ0 · B̌∗

0)] dV. (4.163)

Now if n̂× Ě0 = 0 or n̂× Ȟ0 = 0 over all of S, or some combination of these conditions
holds over all of S, then

∫

V

[(Ě∗
0 · Ď0 − Ě0 · Ď∗

0) + (Ȟ∗
0 · B̌0 − Ȟ0 · B̌∗

0)] dV = 0. (4.164)

This implies a relationship between Ě0, Ď0, B̌0, and Ȟ0. Since V is arbitrary, one
possible relationship is simply to have one of each pair (Ě0, Ď0) and (Ȟ0, B̌0) equal to
zero. Then, by (4.161) and (4.162), Ě0 = 0 implies B̌0 = 0, and Ď0 = 0 implies Ȟ0 = 0.
Thus Ě1 = Ě2, etc., and the solution is unique throughout V . However, we cannot in
general rule out more complicated relationships. The number of possibilities depends on
the additional constraints on the relationship between Ě0, Ď0, B̌0, and Ȟ0 that we must
supply to describe the material supporting the field — i.e., the constitutive relationships.
For a simple medium described by µ̃(ω) and ǫ̃c(ω), Equation (4.164) becomes

∫

V

(

|Ě0|2[ǫ̃c(ω̌)− ǫ̃c∗(ω̌)] + |Ȟ0|2[µ̃(ω̌)− µ̃∗(ω̌)]
)

dV = 0

or
∫

V

[

|Ě0|2 Im{ǫ̃c(ω̌)}+ |Ȟ0|2 Im{µ̃(ω̌)}
]

dV = 0.

For a lossy medium, Im ǫ̃c < 0 and Im µ̃ < 0 as shown in § 4.5.1. So both terms in the
integral must be negative. For the integral to be zero each term must vanish, requiring
Ě0 = Ȟ0 = 0, and uniqueness is guaranteed.

When establishing more complicated constitutive relations we must be careful to ensure
that they lead to a unique solution, and that the condition for uniqueness is understood.
In the case above, the assumption n̂×Ě0|S = 0 implies that the tangential components of
Ě1 and Ě2 are identical over S — that is, we must give specific values of these quantities
on S to ensure uniqueness. A similar statement holds for the condition n̂× Ȟ0|S = 0.

In summary, the uniqueness conditions for the fields within a region V containing lossy
isotropic materials are as follows:
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1. the sources within V must be specified;

2. the tangential component of the electric field must be specified over all or part of
the bounding surface S;

3. the tangential component of the magnetic field must be specified over the remainder
of S.

We may question the requirement of a lossy medium to demonstrate uniqueness of the
phasor fields. Does this mean that within a vacuum the specification of tangential fields
is insufficient? Experience shows that the fields in such a region are indeed properly
described by the surface fields, and it is just a case of the mathematical model being
slightly out of sync with the physics. As long as we recognize that the sinusoidal steady
state requires an initial transient period, we know that specification of the tangential
fields is sufficient. We must be careful, however, to understand the restrictions of the
mathematical model. Any attempt to describe the fields within a lossless cavity, for
instance, is fraught with difficulty if true time-harmonic fields are used to model the
actual physical fields. A helpful mathematical strategy is to think of free space as the
limit of a lossy medium as the loss recedes to zero. Of course, this does not represent
the physical state of “empty” space. Although even interstellar space may have a few
particles for every cubic meter to interact with the electromagnetic field, the density of
these particles invalidates our initial macroscopic assumptions.
Another important concern is whether we can extend the uniqueness argument to all

of space. If we let S recede to infinity, must we continue to specify the fields over S, or
is it sufficient to merely specify the sources within S? Since the boundary fields provide
information to the internal region about sources that exist outside S, it is sensible to
assume that as S → ∞ there are no sources external to S and thus no need for the
boundary fields. This is indeed the case. If all sources are localized, the fields they
produce behave in just the right manner for the surface integral in (4.163) to vanish, and
thus uniqueness is again guaranteed. Later we will find that the electric and magnetic
fields produced by a localized source at great distance have the form of a spherical wave:

Ě ∼ Ȟ ∼ e−jkr

r
.

If space is taken to be slightly lossy, then k is complex with negative imaginary part, and
thus the fields decrease exponentially with distance from the source. As we argued above,
it may not be physically meaningful to assume that space is lossy. Sommerfeld postulated
that even for lossless space the surface integral in (4.163) vanishes as S → ∞. This has
been verified experimentally, and provides the following restrictions on the free-space
fields known as the Sommerfeld radiation condition:

lim
r→∞

r
[

η0r̂× Ȟ(r) + Ě(r)
]

= 0, (4.165)

lim
r→∞

r
[

r̂× Ě(r)− η0Ȟ(r)
]

= 0, (4.166)

where η0 = (µ0/ǫ0)
1/2. Later we shall see how these expressions arise from the integral

solutions to Maxwell’s equations.

4.10.2 Reciprocity revisited

In § 2.9.3 we discussed the basic concept of reciprocity, but were unable to examine its
real potential since we had not yet developed the theory of time-harmonic fields. In this
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section we shall apply the reciprocity concept to time-harmonic sources and fields, and
investigate the properties a material must display to be reciprocal.

4.10.2.1 The general form of the reciprocity theorem

As in § 2.9.3, we consider a closed surface S enclosing a volume V . Sources of an
electromagnetic field are located either inside or outside S. Material media may lie
within S, and their properties are described in terms of the constitutive relations. To
obtain the time-harmonic (phasor) form of the reciprocity theorem we proceed as in
§ 2.9.3 but begin with the phasor forms of Maxwell’s equations. We find

∇ · (Ěa × Ȟb − Ěb × Ȟa) = jω̌[Ȟa · B̌b − Ȟb · B̌a]− jω̌[Ěa · Ďb − Ěb · Ďa]

+ [Ěb · J̌a − Ěa · J̌b − Ȟb · J̌ma + Ȟa · J̌mb], (4.167)

where (Ěa, Ďa, B̌a, Ȟa) are the fields produced by the phasor sources (J̌a, J̌ma), and
(Ěb, Ďb, B̌b, Ȟb) are the fields produced by an independent set of sources (J̌b, J̌mb).

As in § 2.9.3, we are interested in the case in which the first two terms on the right
side of (4.167) are zero. To see when this might occur, we substitute the constitutive
equations for a bianisotropic medium

Ď = ˜̄ξ · Ȟ+ ˜̄ǫ · Ě, B̌ = ˜̄µ · Ȟ+ ˜̄ζ · Ě,

into (4.167), where each of the constitutive parameters is evaluated at ω̌. Setting the
two terms to zero gives

jω̌
[

Ȟa ·
(

˜̄µ · Ȟb +
˜̄ζ · Ěb

)

− Ȟb ·
(

˜̄µ · Ȟa +
˜̄ζ · Ěa

)]

− jω̌
[

Ěa ·
(

ˇ̄ξ · Ȟb + ˜̄ǫ · Ěb
)

− Ěb ·
(

˜̄ξ · Ȟa + ˜̄ǫ · Ěa
)]

= 0,

which holds if

Ȟa · ˜̄µ · Ȟb − Ȟb · ˜̄µ · Ȟa = 0,

Ȟa · ˜̄ζ · Ěb + Ěb · ˜̄ξ · Ȟa = 0,

Ěa · ˜̄ξ · Ȟb + Ȟb · ˜̄ζ · Ěa = 0,

Ěa · ˜̄ǫ · Ěb − Ěb · ˜̄ǫ · Ěa = 0.

These in turn hold if

˜̄ǫ = ˜̄ǫT , ˜̄µ = ˜̄µT , ˜̄ξ = −˜̄ζT , ˜̄ζ = −˜̄ξT . (4.168)

These are the conditions for a reciprocal medium. For example, an anisotropic dielectric
is a reciprocal medium if its permittivity dyadic is symmetric. An isotropic medium de-
scribed by scalar quantities µ and ǫ is certainly reciprocal. In contrast, lossless gyrotropic
media are nonreciprocal since the constitutive parameters obey ˜̄ǫ = ˜̄ǫ† or ˜̄µ = ˜̄µ† rather
than ˜̄ǫ = ˜̄ǫT or ˜̄µ = ˜̄µT .

For a reciprocal medium, (4.167) reduces to

∇ · (Ěa × Ȟb − Ěb × Ȟa) = Ěb · J̌a − Ěa · J̌b − Ȟb · J̌ma + Ȟa · J̌mb. (4.169)

At points where the sources are zero, or are conduction currents described entirely by
Ohm’s law J̌ = σĚ, we have

∇ · (Ěa × Ȟb − Ěb × Ȟa) = 0,
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known as Lorentz’s lemma. If we integrate (4.169) over V and use the divergence theorem,
we obtain
∮

S

(Ěa × Ȟb − Ěb × Ȟa) · dS =

∫

V

(Ěb · J̌a − Ěa · J̌b − Ȟb · J̌ma + Ȟa · J̌mb) dV.

(4.170)

This is the general form of the Lorentz reciprocity theorem, and is valid when V contains
reciprocal media as defined in (4.168).
Note that by an identical set of steps we find that the frequency-domain fields obey

an identical Lorentz lemma and reciprocity theorem.

4.10.2.2 The condition for reciprocal systems

The quantity

〈f̌a, ǧb〉 =
∫

V

(Ěa · J̌b − Ȟa · J̌mb) dV

is called the reaction between the source fields ǧ of set b and the mediating fields f̌ of an
independent set a. Note that Ěa · J̌b is not quite a power density, since the current lacks
a complex conjugate. Using this reaction concept, first introduced by Rumsey [166], we
can write (4.170) as

〈f̌b, ǧa〉 − 〈f̌a, ǧb〉 =
∮

S

(Ěa × Ȟb − Ěb × Ȟa) · dS. (4.171)

If there are no sources within S, then

∮

S

(Ěa × Ȟb − Ěb × Ȟa) · dS = 0. (4.172)

Whenever (4.172) holds, we call the “system” within S reciprocal. For instance, a region
of empty space is a reciprocal system.
A system need not be source-free in order for (4.172) to hold. Suppose the relationship

between Ě and Ȟ on S is given by the impedance boundary condition

Ět = −Z(n̂× Ȟ), (4.173)

where Ět is the component of Ě tangential to S so that n̂×E = n̂×Et, and the complex
wall impedance Z may depend on position. By (4.173) we can write

(Ěa × Ȟb − Ěb × Ȟa) · n̂ = Ȟb · (n̂× Ěa)− Ȟa · (n̂× Ěb)

= −ZȞb · [n̂× (n̂× Ȟa)] + ZȞa · [n̂× (n̂× Ȟb)].

Since n̂× (n̂× Ȟ) = n̂(n̂ · Ȟ)− Ȟ, the right side vanishes. Hence (4.172) still holds even
though there are sources within S.

4.10.2.3 The reaction theorem

When sources lie within the surface S and the fields on S obey (4.173), we obtain an im-
portant corollary of the Lorentz reciprocity theorem. We have from (4.171) the additional
result

〈f̌a, ǧb〉 − 〈f̌b, ǧa〉 = 0.
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Hence a reciprocal system has
〈f̌a, ǧb〉 = 〈f̌b, ǧa〉

(which holds even if there are no sources within S, since then the reactions would be
identically zero). This condition for reciprocity is sometimes called the reaction theorem,
and has an important physical meaning, which we explore below in the form of the
Rayleigh–Carson reciprocity theorem. Note that in obtaining this relation we must
assume that the medium is reciprocal in order to eliminate the terms in (4.167). Thus,
in order for a system to be reciprocal, it must involve both a reciprocal medium and a
boundary over which (4.173) holds.

It is worth noting that the impedance boundary condition (4.173) is widely applicable.
If Z → 0, the boundary condition is that for a PEC: n̂ × Ě = 0. If Z → ∞, a PMC is
described: n̂× Ȟ = 0. Suppose S represents a sphere of infinite radius. We know from
(4.166) that if the sources and material media within S are spatially finite, the fields far
removed from these sources are described by the Sommerfeld radiation condition

r̂× Ě = η0Ȟ

where r̂ is the radial unit vector of spherical coordinates. This condition is of the type
(4.173) since r̂ = n̂ on S, hence the unbounded region that results from S receding to
infinity is also reciprocal.

4.10.2.4 Summary of reciprocity for reciprocal systems

We can summarize reciprocity as follows. Unbounded space containing sources and
materials of finite size is a reciprocal system if the media are reciprocal; a bounded
region of space is a reciprocal system only if the materials within are reciprocal and the
boundary fields obey (4.173), or if the region is source-free. In each of these cases

∮

S

(Ěa × Ȟb − Ěb × Ȟa) · dS = 0

and
〈f̌a, ǧb〉 − 〈f̌b, ǧa〉 = 0. (4.174)

4.10.2.5 Rayleigh–Carson reciprocity theorem

The physical meaning behind reciprocity can be made clear with a simple example.
Consider two electric Hertzian dipoles, each oscillating with frequency ω̌ and located
within an empty box consisting of PEC walls. These dipoles can be described in terms
of volume current density as

J̌a(r) = Ǐaδ(r− r′a), J̌b(r) = Ǐbδ(r− r′b).

Since the fields on the surface obey (4.173) (specifically, n̂ × Ě = 0), and the medium
within the box is empty space (a reciprocal medium), the fields produced by the sources
must obey (4.174). We have

∫

V

Ěb(r) · [Ǐaδ(r− r′a)] dV =

∫

V

Ěa(r) · [Ǐbδ(r− r′b)] dV,

hence
Ǐa · Ěb(r′a) = Ǐb · Ěa(r′b).
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This is the Rayleigh–Carson reciprocity theorem. It also holds for two Hertzian dipoles
in unbounded free space, as in that case the Sommerfeld radiation condition satisfies
(4.173).
As an important application of this principle, consider a closed PEC body located in

free space. Reciprocity holds in the region outside the body since we have n̂× Ě = 0 at
the boundary of the perfect conductor and the Sommerfeld radiation condition on the
boundary at infinity. Now let us place dipole a somewhere outside the body, and dipole
b adjacent and tangential to the perfectly conducting body. We regard a as the source
of an electromagnetic field and b as “sampling” that field. Since the tangential electric
field is zero at the conductor surface, the reaction between the dipoles is zero. Now let
us switch the roles of the dipoles so that b is regarded as the source and a as the sampler.
By reciprocity the reaction is again zero and thus there is no field produced by b at the
position of a. Because the position and orientation of a are arbitrary, we conclude that
an impressed electric source current placed tangentially to a perfectly conducting body
produces no field external to the body. This result is used in Chapter 6 to develop a field
equivalence principle useful in the study of antennas and scattering.

4.10.3 Duality

A duality principle analogous to that for time-domain fields (§ 2.9.2) may be established
for frequency-domain and time-harmonic fields. Consider a closed surface S enclos-
ing a region of space that includes a frequency-domain electric source current J̃ and a
frequency-domain magnetic source current J̃m. The fields (Ẽ1,D̃1,B̃1,H̃1) in the region
(which may also contain arbitrary media) are described by

∇× Ẽ1 = −J̃m − jωB̃1, (4.175)

∇× H̃1 = J̃+ jωD̃1, (4.176)

∇ · D̃1 = ρ̃, (4.177)

∇ · B̃1 = ρ̃m. (4.178)

Suppose we are given a mathematical description of the sources (J̃, J̃m) and know the
field vectors (Ẽ1, D̃1, B̃1, H̃1). Of course, we must also be supplied with a set of boundary
values and constitutive relations to make the solution unique. Replacing the formula for
J̃ with the formula for J̃m in (4.176) (and ρ̃ with ρ̃m in (4.177)) and replacing J̃m with
−J̃ in (4.175) (and ρ̃m with −ρ̃ in (4.178)), we get a new problem. But the symmetry of
the equations allows us to specify the solution immediately. The new set of curl equations
requires

∇× Ẽ2 = J̃− jωB̃2, (4.179)

∇× H̃2 = J̃m + jωD̃2. (4.180)

If we can resolve the question of how the constitutive parameters must be altered to
reflect these replacements, then we can conclude, by comparing (4.179) with (4.176) and
(4.180) with (4.175), that

Ẽ2 = H̃1, B̃2 = −D̃1, D̃2 = B̃1, H̃2 = −Ẽ1.

The discussion regarding units in § 2.9.2 carries over to the present case. Multiplying
Ampere’s law by η0 = (µ0/ǫ0)

1/2, we have

∇× Ẽ = −J̃m − jωB̃, ∇× (η0H̃) = (η0J̃) + jω(η0D̃).
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Thus if the original problem has solution (Ẽ1, η0D̃1, B̃1, η0H̃1), then the dual problem
with J̃ replaced by J̃m/η0 and J̃m replaced by −η0J̃ has solution

Ẽ2 = η0H̃1, (4.181)

B̃2 = −η0D̃1, (4.182)

η0D̃2 = B̃1, (4.183)

η0H̃2 = −Ẽ1. (4.184)

As with duality in the time domain, the constitutive parameters for the dual problem
must be altered from those of the original problem. For linear anisotropic media, we
have by (4.12) and (4.13) the constitutive relationships

D̃1 = ˜̄ǫ1 · Ẽ1, (4.185)

B̃1 = ˜̄µ1 · H̃1, (4.186)

for the original problem, and

D̃2 = ˜̄ǫ2 · Ẽ2, (4.187)

B̃2 = ˜̄µ2 · H̃2, (4.188)

for the dual problem. Substitution of (4.181)–(4.184) into (4.185) and (4.186) gives

D̃2 =

(

˜̄µ1

η20

)

· Ẽ2, (4.189)

B̃2 =
(

η20˜̄ǫ1
)

· H̃2. (4.190)

Comparing (4.189) with (4.187) and (4.190) with (4.188), we conclude that

˜̄µ2 = η20˜̄ǫ1, ˜̄ǫ2 = ˜̄µ1/η
2
0 . (4.191)

For a linear, isotropic medium specified by ǫ̃ and µ̃, the dual problem is obtained by
replacing ǫ̃r with µ̃r and µ̃r with ǫ̃r. The solution to the dual problem is then

Ẽ2 = η0H̃1, η0H̃2 = −Ẽ1,

as before. The medium in the dual problem must have electric properties numerically
equal to the magnetic properties of the medium in the original problem, and magnetic
properties numerically equal to the electric properties of the medium in the original
problem. Alternatively we may divide Ampere’s law by η = (µ̃/ǫ̃)1/2 instead of η0. Then
the dual problem has J̃ replaced by J̃m/η, and J̃m replaced by −ηJ̃, and the solution is

Ẽ2 = ηH̃1, ηH̃2 = −Ẽ1. (4.192)

There is no need to swap ǫ̃r and µ̃r since information about these parameters is incor-
porated into the replacement sources.

We may also apply duality to a problem where we have separated the impressed and
secondary sources. In a homogeneous, isotropic, conducting medium we may let J̃ =
J̃i + σ̃Ẽ. With this the curl equations become

∇× ηH̃ = ηJ̃i + jωηǫ̃cẼ,

∇× Ẽ = −J̃m − jωµ̃H̃.
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The solution to the dual problem is again given by (4.192), except that now η = (µ̃/ǫ̃c)1/2.
As in § 2.9.2, we can consider duality in a source-free region. We let S enclose a

source-free region of space and, for simplicity, assume the medium within S is linear,
isotropic, and homogeneous. The fields within S are described by

∇× Ẽ1 = −jωµ̃H̃1, ∇ · ǫ̃Ẽ1 = 0,

∇× ηH̃1 = jωǫ̃ηẼ1, ∇ · µ̃H̃1 = 0.

The symmetry of the equations is such that the mathematical form of the solution for Ẽ
is the same as that for ηH̃. Since the fields

Ẽ2 = ηH̃1, H̃2 = −Ẽ1/η,

also satisfy Maxwell’s equations, the dual problem merely involves replacing Ẽ by ηH̃
and H̃ by −Ẽ/η.

4.11 The wave nature of the time-harmonic EM field

Time-harmonic electromagnetic waves have been studied in great detail. Narrowband
waves are widely used for signal transmission, heating, power transfer, and radar. They
share many of the properties of more general transient waves, and the discussions of
§ 2.10.1 are applicable. Here we shall investigate some of the unique properties of time-
harmonic waves and introduce such fundamental quantities as wavelength, the phase and
group velocities, and polarization.

4.11.1 The frequency-domain wave equation

We begin by deriving the frequency-domain wave equation for dispersive bianisotropic
materials. A solution to this equation may be viewed as the transform of a general time-
dependent field. If one specific frequency is considered, the time-harmonic solution is
produced.
In § 2.10.2 we derived the time-domain wave equation for bianisotropic materials.

There it was necessary to consider only time-independent constitutive parameters. We
can overcome this requirement, and thus deal with dispersive materials, through a Fourier
transform approach. We solve a frequency-domain wave equation that includes the fre-
quency dependence of the constitutive parameters, then use an inverse transform to
return to the time domain.
The derivation of the equation parallels that of § 2.10.2. We substitute the frequency-

domain constitutive relationships

D̃ = ˜̄ǫ · Ẽ+ ˜̄ξ · H̃, B̃ = ˜̄ζ · Ẽ+ ˜̄µ · H̃,

into Maxwell’s curl equations (4.6) and (4.7) to get the coupled differential equations

∇× Ẽ = −jω[˜̄ζ · Ẽ+ ˜̄µ · H̃]− J̃m,

∇× H̃ = jω [̃̄ǫ · Ẽ+ ˜̄ξ · H̃] + J̃,
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for Ẽ and H̃. Here we have included magnetic sources J̃m in Faraday’s law. Using the
dyadic operator ∇̄ defined in (2.251) we can write these equations as

(∇̄+ jω˜̄ζ) · Ẽ = −jω ˜̄µ · H̃− J̃m, (4.193)

(∇̄ − jω˜̄ξ) · H̃ = jω˜̄ǫ · Ẽ+ J̃. (4.194)

We can obtain separate equations for Ẽ and H̃ by defining the inverse dyadics

˜̄ǫ · ˜̄ǫ−1 = Ī, ˜̄µ · ˜̄µ−1 = Ī.

Using ˜̄µ−1 we can write (4.193) as

−jωH̃ = ˜̄µ−1 · (∇̄+ jω˜̄ζ) · Ẽ+ ˜̄µ−1 · J̃m.

Substituting this into (4.194) we get

[

(∇̄ − jω˜̄ξ) · ˜̄µ−1 · (∇̄+ jω˜̄ζ)− ω2˜̄ǫ
]

· Ẽ = −(∇̄ − jω˜̄ξ) · ˜̄µ−1 · J̃m − jωJ̃. (4.195)

This is the general frequency-domain wave equation for Ẽ. Using ˜̄ǫ−1 we can write
(4.194) as

jωẼ = ˜̄ǫ−1 · (∇̄ − jω˜̄ξ) · H̃− ˜̄ǫ−1 · J̃.
Substituting this into (4.193) we get

[

(∇̄+ jω˜̄ζ) · ˜̄ǫ−1 · (∇̄ − jω˜̄ξ)− ω2 ˜̄µ
]

· H̃ = (∇̄+ jω˜̄ζ) · ˜̄ǫ−1 · J̃− jωJ̃m. (4.196)

This is the general frequency-domain wave equation for H̃.

4.11.1.1 Wave equation for a homogeneous, lossy, and isotropic medium

We may specialize (4.195) and (4.196) to the case of a homogeneous, lossy, isotropic

medium by setting ˜̄ζ = ˜̄ξ = 0, ˜̄µ = µ̃Ī, ˜̄ǫ = ǫ̃Ī, and J̃ = J̃i + J̃c:

∇× (∇× Ẽ)− ω2µ̃ǫ̃Ẽ = −∇× J̃m − jωµ̃(J̃i + J̃c), (4.197)

∇× (∇× H̃)− ω2µ̃ǫ̃H̃ = ∇× (J̃i + J̃c)− jωǫ̃J̃m. (4.198)

Using (B.53) with Ohm’s law J̃c = σ̃Ẽ describing the secondary current, we get from
(4.197)

∇(∇ · Ẽ)−∇2Ẽ− ω2µ̃ǫ̃Ẽ = −∇× J̃m − jωµ̃J̃i − jωµ̃σ̃Ẽ,

which, through the use of ∇ · Ẽ = ρ̃/ǫ̃, can be simplified to

(∇2 + k2)Ẽ = ∇× J̃m + jωµ̃J̃i +
1

ǫ̃
∇ρ̃.

This is the vector Helmholtz equation for Ẽ. Here k is the complex wavenumber defined
through

k2 = ω2µ̃ǫ̃− jωµ̃σ̃ = ω2µ̃

(

ǫ̃ +
σ̃

jω

)

= ω2µ̃ǫ̃c (4.199)

where ǫ̃c is the complex permittivity (4.26).
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By (4.198) we have

∇(∇ · H̃)−∇2H̃− ω2µ̃ǫ̃H̃ = ∇× J̃i +∇× J̃c − jωǫ̃J̃m.

Using

∇× J̃c = ∇× (σ̃Ẽ) = σ̃∇× Ẽ = σ̃(−jωB̃− J̃m)

and ∇ · H̃ = ρ̃m/µ̃, we get

(∇2 + k2)H̃ = −∇× J̃i + jωǫ̃cJ̃m +
1

µ̃
∇ρ̃m,

which is the vector Helmholtz equation for H̃.

4.11.2 Field relationships and the wave equation for two-dimensional
fields

Many important canonical problems are two-dimensional in nature, with the sources
and fields invariant along one direction. Two-dimensional fields have a simple structure
compared to three-dimensional fields, and this often permits decomposition into even
simpler field structures.
Consider a homogeneous region of space characterized by permittivity ǫ̃, permeability

µ̃, and conductivity σ̃. We assume that all sources and fields are z-invariant, and wish to
find the relationship between the various components of the frequency-domain fields in a
source-free region. It is useful to define the transverse vector component of an arbitrary
vector A as the component of A perpendicular to the axis of invariance:

At = A− ẑ(ẑ ·A).

For the position vector r, this component is the transverse position vector rt = ρ. For
instance, we have ρ = x̂x+ ŷy and ρ = ρ̂ρ in the rectangular and cylindrical coordinate
systems, respectively.
Because the region is source-free, Ẽ and H̃ obey the homogeneous Helmholtz equations

(∇2 + k2)

{

Ẽ

H̃

}

= 0.

Writing the fields in terms of rectangular components, we find that each component must
obey a homogeneous scalar Helmholtz equation. In particular, the axial components Ẽz
and H̃z satisfy

(∇2 + k2)

{

Ẽz
H̃z

}

= 0.

But since the fields are independent of z we may also write

(∇2
t + k2)

{

Ẽz
H̃z

}

= 0 (4.200)

where ∇2
t is the transverse Laplacian operator

∇2
t = ∇2 − ẑ

∂2

∂z2
. (4.201)
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In rectangular coordinates,

∇2
t =

∂2

∂x2
+

∂2

∂y2
,

while in circular cylindrical coordinates,

∇2
t =

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂φ2
. (4.202)

With our condition on z-independence we can relate the transverse fields Ẽt and H̃t

to Ẽz and H̃z . By Faraday’s law,

∇× Ẽ(ρ, ω) = −jωµ̃H̃(ρ, ω)

and thus

H̃t = − 1

jωµ̃

[

∇× Ẽ
]

t
.

The transverse portion of the curl is merely

[

∇× Ẽ
]

t
= x̂

(

∂Ẽz
∂y

− ∂Ẽy
∂z

)

+ ŷ

(

∂Ẽx
∂z

− ∂Ẽz
∂x

)

= −ẑ×
(

x̂
∂Ẽz
∂x

+ ŷ
∂Ẽz
∂y

)

since the derivatives with respect to z vanish. The rightmost term in brackets is the
transverse gradient of Ẽz, where the transverse gradient operator is

∇t = ∇− ẑ
∂

∂z
.

In circular cylindrical coordinates, this operator becomes

∇t = ρ̂
∂

∂ρ
+ φ̂

1

ρ

∂

∂φ
. (4.203)

Thus

H̃t(ρ, ω) =
1

jωµ̃
ẑ×∇tẼz(ρ, ω).

Similarly, the source-free Ampere’s law yields

Ẽt(ρ, ω) = − 1

jωǫ̃c
ẑ×∇tH̃z(ρ, ω).

These results suggest that we can solve a two-dimensional problem by superposition.
We first consider the case where Ẽz 6= 0 and H̃z = 0, called electric polarization. This
case is also called TM or transverse magnetic polarization because the magnetic field is
transverse to the z-direction (TMz). We have

(∇2
t + k2)Ẽz = 0, H̃t(ρ, ω) =

1

jωµ̃
ẑ×∇tẼz(ρ, ω). (4.204)

Once we have solved the Helmholtz equation for Ẽz , the remaining field components
follow by differentiation. We next consider the case where H̃z 6= 0 and Ẽz = 0. This
is the case of magnetic polarization, also called TE or transverse electric polarization
(TEz). Here

(∇2
t + k2)H̃z = 0, Ẽt(ρ, ω) = − 1

jωǫ̃c
ẑ×∇tH̃z(ρ, ω). (4.205)
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A problem involving both Ẽz and H̃z is solved by adding the results for the individual
TEz and TMz cases.
Note that we can obtain the TE field expressions from the TM field expressions, and

vice versa, using duality. For instance, knowing that the TM fields obey (4.204) we may
replace H̃t with Ẽt/η and Ẽz with −ηH̃z to obtain

Ẽt(ρ, ω)

η
=

1

jωµ̃
ẑ×∇t[−ηH̃z(ρ, ω)],

which reproduces (4.205).

4.11.3 Plane waves in a homogeneous, isotropic, lossy material

4.11.3.1 The plane-wave field

In later sections we will solve the frequency-domain wave equation with an arbitrary
source distribution. At this point we are more interested in the general behavior of EM
waves in the frequency domain, so we seek simple solutions to the homogeneous equation

(∇2 + k2)Ẽ(r, ω) = 0 (4.206)

governing the fields in source-free regions of space. Here [k(ω)]2 = ω2µ̃(ω)ǫ̃c(ω). Many
plane-wave properties are best understood by considering the behavior of a monochro-
matic field oscillating at a single frequency ω̌. In these cases we merely make the replace-
ments

ω → ω̌, Ẽ(r, ω) → Ě(r),

and apply the rules developed in § 4.7 for manipulating phasor fields.
For our first solutions we choose those that demonstrate rectangular symmetry. Plane

waves have planar spatial phase loci. That is, the spatial surfaces over which the phase
of the complex frequency-domain field is constant are planes. Solutions of this type may
be obtained by separating variables in rectangular coordinates. Writing

Ẽ(r, ω) = x̂Ẽx(r, ω) + ŷẼy(r, ω) + ẑẼz(r, ω)

we find that (4.206) reduces to three scalar equations of the form

(∇2 + k2)ψ̃(r, ω) = 0

where ψ̃ is representative of Ẽx, Ẽy , and Ẽz. This is the homogeneous scalar Helmholtz
equation. Product solutions to this equation are considered in § A.5.3. In rectangular
coordinates,

ψ̃(r, ω) = X(x, ω)Y (y, ω)Z(z, ω)

where X , Y , and Z are chosen from the list (A.104). Since the exponentials describe
propagating wave functions, we choose

ψ̃(r, ω) = A(ω)e±jkx(ω)xe±jky(ω)ye±jkz(ω)z

where A is the amplitude spectrum of the plane wave and k2x + k2y + k2z = k2. Using this

solution to represent each component of Ẽ, we have a propagating-wave solution to the
homogeneous vector Helmholtz equation:

Ẽ(r, ω) = Ẽ0(ω)e
±jkx(ω)xe±jky(ω)ye±jkz(ω)z, (4.207)
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where E0(ω) is the vector amplitude spectrum. Defining the wave vector

k(ω) = x̂kx(ω) + ŷky(ω) + ẑkz(ω),

we can write (4.207) as

Ẽ(r, ω) = Ẽ0(ω)e
−jk(ω)·r. (4.208)

Note that we adopt a negative sign in the exponential and allow the vector components
of k to be either positive or negative as required by the physical nature of a specific
problem. Also note that the magnitude of the wave vector is the wavenumber: |k| = k.

We may always write the wave vector as a sum of real and imaginary vector components

k = kr + jki, (4.209)

which must obey

k · k = k2 = k2r − k2i + 2jkr · ki. (4.210)

When the real and imaginary components are collinear, (4.208) describes a uniform plane
wave with

k = k̂(kr + jki).

When kr and ki have different directions, (4.208) describes a nonuniform plane wave.
We shall find (§ 4.13) that any frequency-domain electromagnetic field in free space may
be represented as a continuous superposition of elemental plane-wave components of the
type (4.208), but that both uniform and nonuniform terms are required.

4.11.3.2 The TEM nature of a uniform plane wave

Given the plane-wave solution to the wave equation for the electric field, it is straight-
forward to find the magnetic field. Substitution of (4.208) into Faraday’s law gives

∇×
[

Ẽ0(ω)e
−jk(ω)·r

]

= −jωB̃(r, ω).

Computation of the curl is straightforward and easily done in rectangular coordinates.
This and similar derivatives often appear when manipulating plane-wave solutions; see
the tabulation in Appendix B. By (B.84) we have

H̃ =
k× Ẽ

ωµ̃
. (4.211)

Taking the cross product of this expression with k, we also have

k× H̃ =
k× (k× Ẽ)

ωµ̃
=

k(k · Ẽ)− Ẽ(k · k)
ωµ̃

. (4.212)

We can show that k · Ẽ = 0 by examining Gauss’s law and employing (B.83):

∇ · Ẽ = −jk · Ẽe−jk·r = ρ̃/ǫ̃ = 0.

Using this and k · k = k2 = ω2µ̃ǫ̃c, we obtain from (4.212)

Ẽ = −k× H̃

ωǫ̃c
. (4.213)
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Now, for a uniform plane wave, k = k̂k, so we can also write (4.211) as

H̃ =
k̂× Ẽ

η
=

k̂× Ẽ0

η
e−jk·r (4.214)

and (4.213) as

Ẽ = −ηk̂× H̃.

Here
η = ωµ̃/k =

√

µ̃/ǫ̃c

is the complex intrinsic impedance of the medium.
Equations (4.211) and (4.213) show that the electric and magnetic fields and the wave

vector are mutually orthogonal; the wave is said to be transverse electromagnetic or TEM
to the direction of propagation.

4.11.3.3 The phase and attenuation constants of a uniform plane wave

For a uniform plane wave we may write

k = krk̂+ jkik̂ = kk̂ = (β − jα)k̂

where kr = β and ki = −α. Here α is the attenuation constant and β is the phase
constant . Since k is defined through (4.199), we have

k2 = (β − jα)2 = β2 − 2jαβ − α2 = ω2µ̃ǫ̃c = ω2(Re µ̃+ j Im µ̃)(Re ǫ̃c + j Im ǫ̃c).

Equating real and imaginary parts, we have

β2 − α2 =ω2[Re µ̃Re ǫ̃c − Im µ̃ Im ǫ̃c],

−2αβ =ω2[Im µ̃Re ǫ̃c +Re µ̃ Im ǫ̃c].

We assume the material is passive so that Im µ̃ ≤ 0 and Im ǫ̃c ≤ 0. Letting

A = β2 − α2 = ω2[Re µ̃Re ǫ̃c − Im µ̃ Im ǫ̃c],

B = 2αβ = ω2[| Im µ̃|Re ǫ̃c +Re µ̃| Im ǫ̃c|],

we may solve simultaneously to get

β2 = 1
2 [A+

√

A2 +B2], α2 = 1
2 [−A+

√

A2 +B2].

Since A2 +B2 = ω4(Re{ǫ̃c}2 + Im{ǫ̃c}2)(Re{µ̃}2 + Im{µ̃}2), we have

β =ω
√

Re µ̃Re ǫ̃c

√

1

2

[

√

(

1 + tan2 δc
) (

1 + tan2 δµ
)

+ (1− tan δc tan δµ)

]

, (4.215)

α =ω
√

Re µ̃Re ǫ̃c

√

1

2

[

√

(

1 + tan2 δc
) (

1 + tan2 δµ
)

− (1− tan δc tan δµ)

]

, (4.216)

where ǫ̃c and µ̃ are functions of ω. Here

tan δc = − Im ǫ̃c

Re ǫ̃c
, tan δµ = − Im µ̃

Re µ̃
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are the electric and magnetic loss tangents, respectively. If ǫ̃(ω) = ǫ, µ̃(ω) = µ, and
σ̃(ω) = σ are real and frequency independent, then

α = ω
√
µǫ

√

√

√

√

1

2

[
√

1 +
( σ

ωǫ

)2

− 1

]

,

β = ω
√
µǫ

√

√

√

√

1

2

[
√

1 +
( σ

ωǫ

)2

+ 1

]

. (4.217)

These values of α and β are valid for ω > 0. For negative frequencies we must be more
careful in evaluating the square root in k = ω(µ̃ǫ̃c)1/2. Writing

µ̃(ω) = |µ̃(ω)|ejξµ(ω), ǫ̃c(ω) = |ǫ̃c(ω)|ejξǫ(ω),

we have

k(ω) = β(ω)− jα(ω) = ω
√

µ̃(ω)ǫ̃c(ω) = ω
√

|µ̃(ω)||ǫ̃c(ω)|ej 1
2 [ξ

µ(ω)+ξǫ(ω)].

Now for passive materials we must have, by (4.48), Im µ̃ < 0 and Im ǫ̃c < 0 for ω > 0.
Since Re µ̃ > 0 and Re ǫ̃c > 0 for ω > 0, we find that −π/2 < ξµ < 0 and −π/2 < ξǫ < 0,
and thus −π/2 < (ξµ + ξǫ)/2 < 0. Thus we must have β > 0 and α > 0 for ω > 0. For
ω < 0 we have by (4.44) and (4.45) that Im µ̃ > 0, Im ǫ̃c > 0, Re µ̃ > 0, and Re ǫ̃c > 0.
Thus π/2 > (ξµ + ξǫ)/2 > 0, and so β < 0 and α > 0 for ω < 0. In summary, α(ω) is an
even function of frequency and β(ω) is an odd function of frequency:

β(ω) = −β(−ω), α(ω) = α(−ω), (4.218)

where β(ω) > 0, α(ω) > 0 when ω > 0. From this we find a condition on Ẽ0 in (4.208).
Since by (4.47) we must have Ẽ(ω) = Ẽ∗(−ω), the uniform plane-wave field obeys

Ẽ0(ω)e
[−jβ(ω)−α(ω)]k̂·r = Ẽ∗

0(−ω)e[+jβ(−ω)−α(−ω)]k̂·r

or
Ẽ0(ω) = Ẽ∗

0(−ω),
since β(−ω) = −β(ω) and α(−ω) = α(ω).

4.11.3.4 Propagation of a uniform plane wave: group and phase velocities

We have derived the plane-wave solution to the wave equation in the frequency domain,
but can discover the wave nature of the solution only by examining its behavior in
the time domain. Unfortunately, the explicit form of the time-domain field is highly
dependent on the frequency behavior of the constitutive parameters. Even the simplest
case in which ǫ, µ, and σ are frequency independent is quite complicated (§ 2.10.6).
To overcome this difficulty, it is helpful to examine the behavior of a narrowband (but
non-monochromatic) signal in a lossy medium with arbitrary constitutive parameters.
We will find that the time-domain wave field propagates as a disturbance through the
surrounding medium with a velocity determined by the constitutive parameters of the
medium. The temporal wave shape does not change as the wave propagates, but the
wave amplitude attenuates at a rate dependent on the constitutive parameters.

For simplicity we assume a linearly polarized plane wave (§ 4.11.4.3) with

Ẽ(r, ω) = êẼ0(ω)e
−jk(ω)·r. (4.219)
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Here Ẽ0(ω) is the spectrum of the temporal dependence of the wave. For the temporal
dependence we choose the narrowband signal

E0(t) = E0f(t) cosω0t

where f(t) has a narrowband spectrum centered on ω = 0 (and is therefore called a
baseband signal). An appropriate choice for f(t) is the Gaussian function used in (4.52):

f(t) = e−a
2t2 ↔ F̃ (ω) =

√

π

a2
e−

ω2

4a2 ,

producing

E0(t) = E0e
−a2t2 cosω0t. (4.220)

We regard f(t) as modulating the single-frequency cosine carrier wave, thus providing
the envelope. A large value of a yields a narrowband signal having spectrum centered
at ±ω0. Later we shall let a → 0, driving the width of f(t) to infinity and producing a
monochromatic waveform.
By (4.1) we have

Ẽ0(ω) =
1
2E0

[

F̃ (ω − ω0) + F̃ (ω + ω0)
]

where f(t) ↔ F̃ (ω). Figure 4.2 shows a plot of this spectrum. We see that the narrow-

band signal is centered at ω = ±ω0. Substituting into (4.219) and using k = (β − jα)k̂
for a uniform plane wave, we have the frequency-domain field

Ẽ(r, ω) = ê 1
2E0

[

F̃ (ω − ω0)e
−j[β(ω)−jα(ω)]k̂·r + F̃ (ω + ω0)e

−j[β(ω)−jα(ω)]k̂·r
]

.

The field at time t and position r can now be found by inversion:

êE(r, t) =
1

2π

∫ ∞

−∞
ê 1

2E0

[

F̃ (ω − ω0)e
−j[β(ω)−jα(ω)]k̂·r

+ F̃ (ω + ω0)e
−j[β(ω)−jα(ω)]k̂·r

]

ejωt dω. (4.221)

Assuming β(ω) and α(ω) vary slowly within the band occupied by Ẽ0(ω), we can
expand β and α near ω = ω0 as

β(ω) = β(ω0) + β′(ω0)(ω − ω0) +
1
2β

′′(ω0)(ω − ω0)
2 + · · · ,

α(ω) = α(ω0) + α′(ω0)(ω − ω0) +
1
2α

′′(ω0)(ω − ω0)
2 + · · · ,

where β′(ω) = dβ(ω)/dω, β′′(ω) = d2β(ω)/dω2, and so on. We can also expand β and α
near ω = −ω0:

β(ω) = β(−ω0) + β′(−ω0)(ω + ω0) +
1
2β

′′(−ω0)(ω + ω0)
2 + · · · ,

α(ω) = α(−ω0) + α′(−ω0)(ω + ω0) +
1
2α

′′(−ω0)(ω + ω0)
2 + · · · .

Since we are most interested in the propagation velocity, we need not approximate α with
great accuracy, hence use α(ω) ≈ α(±ω0) within the narrow band. We must consider β
to greater accuracy to uncover the propagating nature of the wave, and thus use

β(ω) ≈ β(ω0) + β′(ω0)(ω − ω0) (ω ≈ ω0), (4.222)

β(ω) ≈ β(−ω0) + β′(−ω0)(ω + ω0) (ω ≈ −ω0).
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Substitution into (4.221) gives

êE(r, t) =
1

2π

∫ ∞

−∞
ê 1

2E0

[

F̃ (ω − ω0)e
−j[β(ω0)+β

′(ω0)(ω−ω0)]k̂·re−[α(ω0)]k̂·r

+ F̃ (ω + ω0)e
−j[β(−ω0)+β

′(−ω0)(ω+ω0)]k̂·re−[α(−ω0)]k̂·r
]

ejωt dω. (4.223)

By (4.218) we know that α is even in ω and β is odd in ω. Since the derivative of an
odd function is an even function, we also know that β′ is even in ω. We therefore write
(4.223) as

êE(r, t) = êE0e
−α(ω0)k̂·r 1

2π

∫ ∞

−∞

1

2

[

F̃ (ω − ω0)e
−jβ(ω0)k̂·re−jβ

′(ω0)(ω−ω0)k̂·r

+ F̃ (ω + ω0)e
jβ(ω0)k̂·re−jβ

′(ω0)(ω+ω0)k̂·r
]

ejωt dω.

Multiplying and dividing by ejω0t and rearranging, we have

êE(r, t) = êE0e
−α(ω0)k̂·r 1

2π

∫ ∞

−∞

1

2

[

F̃ (ω − ω0)e
jφej(ω−ω0)[t−τ ]

+ F̃ (ω + ω0)e
−jφej(ω+ω0)[t−τ ]

]

dω

where
φ = ω0t− β(ω0)k̂ · r, τ = β′(ω0)k̂ · r.

Setting u = ω − ω0 in the first term and u = ω + ω0 in the second term, we have

êE(r, t) = êE0e
−α(ω0)k̂·r cosφ

1

2π

∫ ∞

−∞
F̃ (u)eju(t−τ) du.

Finally, the time-shifting theorem (A.3) gives us the time-domain wave field

êE(r, t) = êE0e
−α(ω0)k̂·r cos

(

ω0

[

t− k̂ · r/vp(ω0)
])

f
(

t− k̂ · r/vg(ω0)
)

(4.224)

where
vg(ω) = dω/dβ = [dβ/dω]−1 (4.225)

is the group velocity, and
vp(ω) = ω/β

is the phase velocity.
To interpret (4.224), we note that at any given time t the field is constant over the

surface described by
k̂ · r = C (4.226)

where C is some constant. This surface is a plane (Figure 4.16) with normal k̂. It is

easily verified that any point r on this plane satisfies (4.226). Let r0 = r0k̂ describe the

point on the plane with position vector in the direction of k̂, and let d be a displacement
from this point to any other point on the plane. Since k̂ ·r = k̂ · (r0+d) = r0(k̂ · k̂)+ k̂ ·d
and k̂ · d = 0, we have

k̂ · r = r0,

which is a fixed distance, so (4.226) holds.
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FIGURE 4.16

Surface of constant k̂ · r.

Let us identify the plane over which the envelope f takes a certain value, and follow
its motion as time progresses. The value of r0 associated with this plane must increase
with increasing time in such a way that the argument of f remains constant:

t− r0/vg(ω0) = C.

Differentiation gives
dr0/dt = vg = dω/dβ.

So the envelope propagates along k̂ at the group velocity vg. Associated with this prop-

agation is an attenuation described by the factor e−α(ω0)k̂·r. This accounts for energy
transfer into the lossy medium through Joule heating.
Similarly, we can identify a plane over which the phase of the carrier is constant; this

will be parallel to the plane of constant envelope described above. We now set

ω0[t− k̂ · r/vp(ω0)] = C

and differentiate to get
dr0/dt = vp = ω/β. (4.227)

Surfaces of constant carrier phase propagate along k̂ at velocity vp.
Caution is required to interpret the velocities vg and vp; in particular, we must be

careful not to associate propagation speeds of energy or information with vp. Since
envelope propagation represents the actual progression of the disturbance, vg has the
recognizable physical meaning of energy velocity. Kraus and Fleisch [111] suggest we
imagine a strolling caterpillar: the speed (vp) of the undulations along the caterpillar’s
back (representing the carrier wave) may be much faster than the speed (vg) of the
caterpillar’s body (representing the envelope of the disturbance).
In fact, vg is the speed of energy propagation even for a monochromatic wave (§ 4.11.4).

However, for purely monochromatic waves, vg cannot be identified from the time-domain
field, whereas vp can. This leads to some unfortunate misconceptions, especially when
vp exceeds the speed of light. Since vp is not the velocity of propagation of a physical
quantity, but is rather the rate of change of a phase reference point, Einstein’s postulate
of c as the limiting velocity is not violated.
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FIGURE 4.17

An ω–β diagram for a fictitious material.

We can obtain interesting relationships between vp and vg by manipulating (4.225)
and (4.227). For instance, computing

dvp
dω

=
d

dω

(

ω

β

)

=
β − ω dβdω

β2

we find that
vp
vg

= 1− β
dvp
dω

. (4.228)

Hence in frequency ranges where vp decreases with increasing frequency, we have vg < vp.
These are known as regions of normal dispersion. In ranges where vp increases with
frequency, we have vg > vp. These are regions of anomalous dispersion. As mentioned
in § 4.6.3, the word “anomalous” does not imply that this type of dispersion is unusual.

The propagation of a uniform plane wave through a lossless medium provides a par-
ticularly simple example. With

β(ω) = ω
√
µǫ, α(ω) = 0,

relation (4.222) yields β(ω) = ω0
√
µǫ+

√
µǫ(ω − ω0) = ω

√
µǫ and (4.224) becomes

êE(r, t) = êE0 cos
(

ω0

[

t− k̂ · r/vp(ω0)
])

f
(

t− k̂ · r/vg(ω0)
)

.

Since the linear approximation to the phase constant β is in this case exact, the wave
packet truly propagates without distortion, with a group velocity identical to the phase
velocity:

vg =

[

d

dω
ω
√
µǫ

]−1

=
1√
µǫ

=
ω

β
= vp.
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4.11.3.5 The ω–β diagram

A plot of ω vs. β(ω) can advantageously display the dispersive properties of a material.
Figure 4.17 shows such an ω–β plot, or dispersion diagram, for a fictitious material. The
slope of the line from the origin (β, ω) is the phase velocity, while the slope of the line
tangent to the curve at that point is the group velocity. This plot shows many char-
acteristics of electromagnetic waves (but not necessarily of plane waves). For instance,
there may be a minimum frequency ωc called the cutoff frequency at which β = 0 and
below which the wave cannot propagate. This behavior is characteristic of a plane wave
propagating in a plasma (as shown below) or of a wave in a hollow pipe waveguide (§ 5.6).
Over most values of β we have vg < vp, so the material demonstrates normal dispersion.
However, over a small region we do have anomalous dispersion. In another range the
slope of the curve is actually negative and thus vg < 0; here the directions of energy and
phase-front propagation are opposite. Such backward waves are encountered in certain
guided-wave structures used in microwave oscillators. The ω–β plot also includes the
light line as a reference curve. For all points on this line, vg = vp; it is generally used to
represent propagation within the material under special circumstances, such as when the
loss is zero or the material occupies unbounded space. It may also be used to represent
propagation within a vacuum.

4.11.3.6 Examples of plane-wave propagation in dispersive media

We consider two examples based on the material properties studied in § 4.6. By examining
the properties of plane waves propagating through water and through a nonmagnetized
plasma, we gain considerable insight into the behavior of waves in dispersive isotropic
media.

◮ Example 4.12: Plane-wave propagation in fresh water

Consider a plane wave propagating in fresh water with no dc conductivity. Assuming the
Debye parameters for water are ǫ∞ = 5ǫ0, ǫs = 78.3ǫ0, and τ = 9.6× 10−12 s [45], construct
the ω–β plot. Plot the attenuation and both the phase and group velocities as functions of
frequency.

Solution: By the Debye formula (4.115) we have

ǫ̃(ω) = ǫ∞ +
ǫs − ǫ∞
1 + jωτ

.

Using the specified Debye parameters, we obtain the relaxation spectrum shown in Figure
4.11. Assuming µ = µ0, we may compute β and α as a function of ω from

k = ω
√

µ0ǫ̃ = β − jα.

The ω–β plot is shown in Figure 4.18. Since Re ǫ̃ varies with frequency, we show both the
light line for zero frequency found using ǫs = 78.3ǫ0 , and the light line for infinite frequency
found using ǫ∞ = 5ǫ0. Over low frequencies the dispersion curve follows the low-frequency
light line very closely, and thus vp ≈ vg ≈ c/

√
78.3. As frequency increases, the dispersion

curve rises and eventually becomes asymptotic with the high-frequency light line. Plots
of vp and vg shown in Figure 4.19 verify that the velocities start at c/

√
78.3 = 0.113c for

low frequencies, and approach c/
√
5 = 0.447c for high frequencies. Because vg > vp at all

frequencies, this model of water demonstrates anomalous dispersion.
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FIGURE 4.18
Dispersion plot for water computed using the Debye relaxation formula.
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FIGURE 4.19
Phase and group velocities for water computed using the Debye relaxation formula.

The attenuation constant appears in Figure 4.20 as a function of frequency. We see that
fresh water has a fairly high attenuation constant for frequencies above several hundred
MHz. However, the attenuation constant is far smaller than that for sea water, which has a
typical dc conductivity of 4 S/m.
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FIGURE 4.20
Attenuation constant for water computed using the Debye relaxation formula. ◭

◮ Example 4.13: Plane-wave propagation in a nonmagnetized plasma

Consider a plane wave propagating in a nonmagnetized plasma. Derive expressions for α
and β when there are no collisions and when the collision frequency is small. In particular,
consider a plane wave propagating in the earth’s ionosphere. Construct the ω–β diagram
and plot the phase and group velocities.

Solution: For a collisionless plasma, we may set ν = 0 in (4.76) to find

k =







ω
c

√

1− ω2
p

ω2 , ω > ωp,

−j ω
c

√

ω2
p

ω2 − 1, ω < ωp.

Thus, when ω > ωp we have Ẽ(r, ω) = Ẽ0(ω)e
−jβ(ω)k̂·r and so

β =
ω

c

√

1− ω2
p

ω2
, α = 0.

In this case a plane wave propagates through the plasma without attenuation. However,

when ω < ωp we have Ẽ(r, ω) = Ẽ0(ω)e
−α(ω)k̂·r with

α =
ω

c

√

ω2
p

ω2
− 1, β = 0,

and a plane wave does not propagate, but only attenuates. Such a wave is said to be
evanescent. We say that for frequencies below ωp the wave is cut off, and call ωp the cutoff

frequency.
A formula for the phase velocity of a plane wave in a lossless plasma is easily derived:

vp =
ω

β
=

c
√

1− ω2
p

ω2

> c.
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Similarly,

vg =

(

dβ

dω

)−1

=





1

c

√

1− ω2
p

ω2
+

1

c

ω2
p/ω

2

√

1− ω2
p

ω2





−1

= c

√

1− ω2
p

ω2
< c.

Interestingly, we find that in this case of an unmagnetized collisionless plasma,

vpvg = c2.

Since vp > vg, this model of a plasma demonstrates normal dispersion at all frequencies
above cutoff.

For the case of a plasma with collisions we retain ν in (4.76) and find that

k =
ω

c

√

(

1− ω2
p

ω2 + ν2

)

− jν
ω2
p

ω(ω2 + ν2)
.

When ν 6= 0, a true cutoff effect is absent and the wave may propagate at all frequencies.
However, when ν ≪ ωp the attenuation for propagating waves of frequency ω < ωp is quite
severe, and for practical purposes the wave is cut off. For waves of frequency ω > ωp there
is attenuation. Assuming that ν ≪ ωp and that ν ≪ ω, we may approximate the square
root with the leading terms of a binomial expansion and find that to first order

β =
ω

c

√

1− ω2
p

ω2
,

α =
1

2

ν

c

ω2
p/ω

2

√

1− ω2
p

ω2

.

Hence the phase and group velocities above cutoff are essentially those of a lossless plasma,
while the attenuation constant is directly proportional to ν.

As a specific example, consider a plane wave propagating in the earth’s ionosphere. Both
the electron density and the collision frequency depend on such factors as altitude, time of
day, and latitude. However, except at the very lowest altitudes, the collision frequency is
low enough that the ionosphere may be considered lossless. For instance, at a height of 200
km (the F1 layer of the ionosphere), as measured for a mid-latitude region, we find that
during the day the electron density is approximately Ne = 2× 1011 m-3, while the collision
frequency is only ν = 100 s-1 [20]. The attenuation is so small in this case that the ionosphere
may be considered essentially lossless above the cutoff frequency. Figure 4.21 shows the ω–β
diagram for the ionosphere assuming ν = 0, along with the light line vp = c. Above the
cutoff frequency of

fp =
ωp
2π

= 4.0 MHz,

the wave propagates, and vg < c while vp > c. Below the cutoff frequency the wave does
not propagate and the field decays rapidly because α is large.
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FIGURE 4.21
Dispersion plot for the ionosphere computed using Ne = 2 × 1011 m−3, ν = 0. Light line
computed using ǫ = ǫ0, µ = µ0.

Figure 4.22 shows a plot of the phase and group velocities. As the cutoff frequency is
approached from above, the group velocity tends to zero while the phase velocity increases
without bound. Cutoff behavior also occurs in waveguides (§ 5.6).
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FIGURE 4.22
Phase and group velocities for the ionosphere computed using Ne = 2× 1011 m−3, ν = 0. ◭
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4.11.4 Monochromatic plane waves in a lossy medium

Many properties of monochromatic plane waves are particularly simple. In fact, cer-
tain properties, such as wavelength, only have meaning for monochromatic fields. And
since monochromatic or nearly monochromatic waves are employed extensively in radar,
communications, and energy transport, it is worthwhile to examine the results of the
preceding section for the special case in which the spectrum of the plane-wave signal
consists of a single frequency component. In addition, plane waves of more general time
dependence can be viewed as superpositions of individual single-frequency components
(through the inverse Fourier transform), and thus we may regard monochromatic waves
as building blocks for more complicated plane waves.

We can view the monochromatic field as a specialization of (4.220) for a → 0. This
results in F̃ (ω) → δ(ω), so the linearly polarized plane wave expression (4.221) reduces
to

êE(r, t) = êE0e
−α(ω0)[k̂·r] cos(ω0t− jβ(ω0)[k̂ · r]). (4.229)

It is convenient to represent monochromatic fields with frequency ω = ω̌ in phasor form.
The phasor form of (4.229) is

Ě(r) = êE0e
−jβ(k̂·r)e−α(k̂·r) (4.230)

where β = β(ω̌) and α = α(ω̌). We can identify a surface of constant phase as a locus of
points obeying

ω̌t− β(k̂ · r) = CP (4.231)

for some constant CP . This surface is a plane (Figure 4.16) with normal along k̂. It is

easily checked that any point r on this plane satisfies (4.231). Let r0 = r0k̂ describe the

point on the plane with position vector in the k̂ direction, and let d be a displacement
from this point to any other point on the plane. Then k̂ ·r = k̂ · (r0+d) = r0(k̂ · k̂)+ k̂ ·d
where k̂ · d = 0, so

k̂ · r = r0, (4.232)

which is a spatial constant, hence (4.231) holds for any t. The planar surfaces described
by (4.231) are wavefronts.

Note that surfaces of constant amplitude are determined by α(k̂ · r) = CA for constant

CA. As with the phase term, this requires that k̂ · r = constant, so surfaces of constant
phase and surfaces of constant amplitude are coplanar. This is a property of uniform
plane waves. We show later that nonuniform plane waves have planar surfaces that are
not parallel.

The cosine term in (4.229) represents a traveling wave. As t increases, the argument

of the cosine remains unchanged as long as k̂ · r increases correspondingly. Thus the
planar wavefronts propagate along k̂. Simultaneously, the wave is attenuated because of

the factor e−α(k̂·r); this accounts for energy transferred from the propagating wave to
the surrounding medium via Joule heating.

4.11.4.1 Phase velocity of a uniform plane wave

The propagation velocity of the progressing wavefront is found by differentiating (4.231):

ω̌ − βk̂ · dr
dt

= 0.

By (4.232) we have
vp = dr0/dt = ω̌/β,
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where the phase velocity vp represents the propagation speed of the constant-phase sur-
faces. For a lossy medium with frequency-independent constitutive parameters, (4.217)
shows that

vp ≤ 1/
√
µǫ,

hence the phase velocity in a conducting medium does not exceed that in a lossless
medium with the same parameters µ and ǫ. We cannot draw this conclusion for a
medium with frequency-dependent µ̃ and ǫ̃c, since by (4.215) the value of ω̌/β might be
greater or less than 1/

√
Re µ̃Re ǫ̃c, depending on the ratios Im µ̃/Re µ̃ and Im ǫ̃c/Re ǫ̃c.

4.11.4.2 Wavelength of a uniform plane wave

Another important property of a uniform plane wave is the distance between adjacent
wavefronts that produce the same value of the cosine function in (4.229). Note that the
field amplitude may not be the same on these two surfaces because of possible attenuation
of the wave. With r1 and r2 as two points on adjacent wavefronts, we require β(k̂ · r1) =
β(k̂ · r2)− 2π, or

λ = k̂ · (r2 − r1) = r02 − r01 = 2π/β.

We call λ the wavelength.

4.11.4.3 Polarization of a uniform plane wave

Plane wave polarization describes the temporal evolution of the vector direction of the
electric field, which depends on the manner in which the wave is generated. Completely
polarized waves are produced by antennas or other equipment; these have a deterministic
polarization state described completely by three parameters as discussed below. Ran-
domly polarized waves are emitted by some natural sources. Partially polarized waves,
such as those produced by cosmic radio sources, contain both completely polarized and
randomly polarized components. We shall concentrate on the description of completely
polarized waves.

The polarization ellipse. The polarization state of a completely polarized monochro-
matic plane wave propagating in a homogeneous, isotropic region may be described by
superposing two simpler plane waves that propagate along the same direction, but with
different phases and spatially orthogonal electric fields. Without loss of generality we
may study propagation along the z-axis and align the orthogonal field directions with x̂
and ŷ. So we are interested in the behavior of a wave with electric field

Ě(r) = x̂Ex0e
jφxe−jkz + ŷEy0e

jφye−jkz . (4.233)

The time evolution of the direction of E is examined in the time domain where

E(r, t) = Re
{

Ěejω̌t
}

= x̂Ex0 cos(ω̌t− kz + φx) + ŷEy0 cos(ω̌t− kz + φy)

and thus, by the identity cos(x+ y) ≡ cosx cos y − sinx sin y,

Ex = Ex0 [cos(ω̌t− kz) cosφx − sin(ω̌t− kz) sinφx] ,

Ey = Ey0 [cos(ω̌t− kz) cosφy − sin(ω̌t− kz) sinφy] .

The tip of the vector E moves cyclically in the xy-plane with temporal period T = ω̌/2π.
Its locus may be found by eliminating the parameter t to obtain a relationship between
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FIGURE 4.23

Polarization ellipse for a monochromatic plane wave.

Ex0 and Ey0. Letting δ = φy − φx we note that

Ex
Ex0

sinφy −
Ey
Ey0

sinφx = cos(ω̌t− kz) sin δ,

Ex
Ex0

cosφy −
Ey
Ey0

cosφx = sin(ω̌t− kz) sin δ;

squaring these terms we find that

(

Ex
Ex0

)2

+

(

Ey
Ey0

)2

− 2
Ex
Ex0

Ey
Ey0

cos δ = sin2 δ,

which is the equation for the ellipse of Figure 4.23. By (4.214) the magnetic field of the
plane wave is

Ȟ =
ẑ× Ě

η
,

hence its tip also traces an ellipse in the xy-plane.
The tip of the electric vector cycles around the polarization ellipse in the xy-plane every

T seconds. The sense of rotation is determined by the sign of δ, and is described by the
terms clockwise/counterclockwise or right-hand/left-hand. There is some disagreement
about how to do this. We shall adopt the IEEE definitions (IEEE Standard 145-1983
[185]) and associate with δ < 0 rotation in the right-hand sense: if the right thumb
points in the direction of wave propagation then the fingers curl in the direction of field
rotation for increasing time. This is right-hand polarization (RHP). We associate δ > 0
with left-hand polarization (LHP).

The polarization ellipse lies within a rectangle of sides 2Ex0 and 2Ey0, and has its
major axis rotated from the x-axis by the tilt angle ψ with 0 ≤ ψ ≤ π. The ratio of Ey0
to Ex0 determines an angle α such that 0 ≤ α ≤ π/2:

Ey0/Ex0 = tanα.
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The shape of the ellipse is determined by the three parameters Ex0, Ey0, and δ, while the
sense of polarization is described by the sign of δ. These may not, however, be the most
convenient parameters for describing wave polarization. We can also inscribe the ellipse
within a box measuring 2a by 2b, where a and b are the lengths of the semimajor and
semiminor axes. Then b/a determines an angle χ, −π/4 ≤ χ ≤ π/4, that is analogous to
α:

±b/a = tanχ.

Here the algebraic sign of χ is used to indicate the sense of polarization: χ > 0 for LHP,
χ < 0 for RHP.
The quantities a, b, ψ can also be used to describe the polarization ellipse. A procedure

outlined in Born and Wolf [22] to relate the quantities (a, b, ψ) to (Ex0, Ey0, δ) yields

a2 + b2 = E2
x0 + E2

y0,

tan 2ψ = (tan 2α) cos δ =
2Ex0Ey0
E2
x0 − E2

y0

cos δ,

sin 2χ = (sin 2α) sin δ =
2Ex0Ey0
E2
x0 + E2

y0

sin δ.

Alternatively, we can describe the polarization ellipse by the angles ψ and χ and one of
the amplitudes Ex0 or Ey0.

Stokes parameters. Each of the polarization ellipse parameter sets is somewhat in-
convenient, since in each case the units differ among the parameters. In 1852 G. Stokes
introduced a system of three independent quantities with identical dimension that can
be used to describe plane-wave polarization. Various normalizations of these Stokes pa-
rameters are employed; when the parameters are chosen to have the dimension of power
density we may write them as

s0 =
1

2η

[

E2
x0 + E2

y0

]

, (4.234)

s1 =
1

2η

[

E2
x0 − E2

y0

]

= s0 cos(2χ) cos(2ψ), (4.235)

s2 =
1

η
Ex0Ey0 cos δ = s0 cos(2χ) sin(2ψ), (4.236)

s3 =
1

η
Ex0Ey0 sin δ = s0 sin(2χ). (4.237)

Only three of these four parameters are independent, since s20 = s21 + s22 + s23. Often the
Stokes parameters are designated (I,Q, U, V ) rather than (s0, s1, s2, s3).
Figure 4.24 summarizes various polarization states as a function of the angles ψ and

χ. Interesting cases occur when χ = 0 and χ = ±π/4. The value χ = 0 corresponds to
b = 0 and thus δ = 0. In this case the electric vector traces out a straight line and we
call the polarization linear. Here

E = (x̂Ex0 + ŷEy0) cos(ω̌t− kz + φx).

When ψ = 0 we have Ey0 = 0 and call this horizontal linear polarization (HLP); when
ψ = π/2 we have Ex0 = 0 and vertical linear polarization (VLP).
The case χ = ±π/4 corresponds to b = a and δ = ±π/2. Thus Ex0 = Ey0, and E

traces out a circle regardless of the value of ψ. If χ = −π/4 we have right-hand rotation
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FIGURE 4.24

Polarization states as a function of tilt angle ψ and ellipse aspect ratio angle χ. Left-hand
polarization for χ > 0, right-hand for χ < 0.

of E and thus refer to right-hand circular polarization (RHCP). If χ = π/4 we have
left-hand circular polarization (LHCP). For these cases,

E = Ex0 [x̂ cos(ω̌t− kz)∓ ŷ sin(ω̌t− kz)] ,

where the upper and lower signs correspond to LHCP and RHCP, respectively. All other
values of χ result in the general cases of left-hand or right-hand elliptical polarization.

The Poincaré sphere. The French mathematician H. Poincaré realized that the
Stokes parameters (s1, s2, s3) describe a point on a sphere of radius s0, and that this
Poincaré sphere is useful for visualizing the various polarization states. Each state cor-
responds uniquely to one point on the sphere, and by (4.235)–(4.237) the angles 2χ and
2ψ are the spherical angular coordinates of the point as shown in Figure 4.25. We may
therefore map the polarization states shown in Figure 4.24 directly onto the sphere: left-
and right-hand polarizations appear in the upper and lower hemispheres, respectively;
circular polarization appears at the poles (2χ = ±π/2); linear polarization appears on
the equator (2χ = 0), with HLP at 2ψ = 0 and VLP at 2ψ = π. The angles α and δ
also have geometrical interpretations on the Poincaré sphere. The spherical angle of the
great-circle route between the point of HLP and a point on the sphere is 2α, while the
angle between the great-circle path and the equator is δ.

4.11.4.4 Uniform plane waves in a good dielectric

We may base some useful plane-wave approximations on whether the real or imaginary
part of ǫ̃c dominates at the frequency of operation. We assume that µ̃(ω) = µ is in-
dependent of frequency and use the notation ǫc = ǫ̃c(ω̌), σ = σ̃(ω̌), etc. Remember
that

ǫc = (Re ǫ+ j Im ǫ) +
σ

jω̌
= Re ǫ+ j

(

Im ǫ− σ

ω̌

)

= Re ǫc + j Im ǫc.

By definition, a “good dielectric” obeys

tan δc = − Im ǫc

Re ǫc
=

σ

ω̌Re ǫ
− Im ǫ

Re ǫ
≪ 1. (4.238)
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FIGURE 4.25

Graphical representation of the polarization of a monochromatic plane wave using the
Poincaré sphere.

Here tan δc is the loss tangent of the material, as described in (4.116) for a material
without conductivity. For a good dielectric, we have

k = β − jα = ω̌
√
µǫc = ω̌

√

µ(Re ǫ+ j Im ǫc) = ω̌
√

µRe ǫ
√

1− j tan δc, (4.239)

hence,

k ≈ ω̌
√

µRe ǫ
(

1− j 12 tan δc
)

by the binomial approximation for the square root. Therefore

β ≈ ω̌
√

µRe ǫ

and

α ≈ β

2
tan δc =

σ

2

√

µ

Re ǫ

(

1− ω̌ Im ǫ

σ

)

.

We conclude that α≪ β. Using this and the binomial approximation, we establish

η =
ω̌µ

k
=
ω̌µ

β

1

1− jα/β
≈ ω̌µ

β

(

1 + j
α

β

)

.

Finally,

vp =
ω̌

β
≈ 1√

µRe ǫ
and vg =

[

dβ

dω

]−1

≈ 1√
µRe ǫ

.

To first order, the phase constant, phase velocity, and group velocity are those of a lossless
medium.
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4.11.4.5 Uniform plane waves in a good conductor

We classify a material as a “good conductor” if

tan δc ≈
σ

ω̌ǫ
≫ 1.

In a good conductor the conduction current σĚ is much greater than the displacement
current jω̌Re ǫ Ě, and Im ǫ is usually ignored. Now we may approximate

k = β − jα = ω̌
√

µRe ǫ
√

1− j tan δc ≈ ω̌
√

µRe ǫ
√

−j tan δc.

Since
√−j = (1 − j)/

√
2, we find that

β = α ≈
√

πfµσ.

Hence,

vp =
ω̌

β
≈
√

2ω̌

µσ
=

1√
µRe ǫ

√

2

tan δc
.

To find vg we must replace ω̌ by ω and differentiate, obtaining

vg =

[

dβ

dω

]−1 ∣
∣

∣

∣

ω=ω̌

≈
[

1

2

√

µσ

2ω̌

]−1

= 2

√

2ω̌

µσ
= 2vp.

In a good conductor the group velocity is approximately twice the phase velocity. We
could have found this relation from the phase velocity using (4.228). Indeed, noting that

dvp
dω

=
d

dω

√

2ω

µσ
=

1

2

√

2

ωµσ
and β

dvp
dω

=

√

ωµσ

2

1

2

√

2

ωµσ
=

1

2
,

we see that
vp
vg

= 1− 1

2
=

1

2
.

Note that the phase and group velocities may be only small fractions of the free-space
light velocity. For example, in copper (σ = 5.8× 107 S/m, µ = µ0, ǫ = ǫ0) at 1 MHz, we
have vp = 415 m/s.

A factor often used to judge the quality of a conductor is the distance required for a
propagating uniform plane wave to decrease in amplitude by the factor 1/e. By (4.230)
this distance is given by

δ =
1

α
=

1√
πfµσ

.

We call δ the skin depth. A good conductor is characterized by a small skin depth. For
example, copper at 1 MHz has δ = 0.066 mm. See § 3.6.2.3 for a detailed discussion of
the importance of skin depth in quasistatics.

4.11.4.6 Power carried by a uniform plane wave

Since a plane wavefront is infinite in extent, we usually speak of the power density
carried by the wave. This is identical to the time-average Poynting flux. Substitution
from (4.214) and (4.230) gives

Sav =
1
2 Re[Ě× Ȟ∗] = 1

2 Re

[

Ě×
(

k̂× Ě

η

)∗]

.
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Expanding and remembering that k · Ě = 0, we get

Sav = 1
2 k̂Re

( |Ě|2
η∗

)

= k̂Re

(

E2
0

2η∗

)

e−2αk̂·r.

Hence a uniform plane wave propagating in an isotropic medium carries power in the
direction of wavefront propagation.

4.11.4.7 Velocity of energy transport

The group velocity (4.225) has an additional interpretation as the velocity of energy
transport. If the time-average volume density of energy is given by

〈wem〉 = 〈we〉+ 〈wm〉

and the time-average volume density of energy flow is given by the Poynting flux density

Sav = 1
2 Re[Ě(r) × Ȟ∗(r)] = 1

4 [Ě(r)× Ȟ∗(r) + Ě∗(r) × Ȟ(r)], (4.240)

then the velocity of energy flow, ve, is defined by

Sav = 〈wem〉ve. (4.241)

Let us calculate ve for a plane wave propagating in a lossless, source-free medium where
k = k̂ω

√
µǫ. By (4.208) and (4.214), we have

Ẽ(r, ω) = Ẽ0(ω)e
−jβk̂·r, (4.242)

H̃(r, ω) =

(

k̂× Ẽ0(ω)

η

)

e−jβk̂·r = H̃0(ω)e
−jβk̂·r. (4.243)

We compute the time-average stored energy density using the energy theorem (4.68). In
point form,

−∇ ·
(

Ẽ∗ × ∂H̃

∂ω
+
∂Ẽ

∂ω
× H̃∗

)

∣

∣

∣

∣

ω=ω̌

= 4j〈wem〉. (4.244)

Upon substitution of (4.242) and (4.243) we find that we must compute the frequency
derivatives of Ẽ and H̃. Using

∂

∂ω
e−jβk̂·r =

(

∂

∂β
e−jβk̂·r

)

dβ

dω
= −jk̂ · rdβ

dω
e−jβk̂·r

and remembering that k = k̂β, we have

∂Ẽ(r, ω)

∂ω
=
dẼ0(ω)

dω
e−jk·r + Ẽ0(ω)

(

−jr · dk
dω

)

e−jk·r,

∂H̃(r, ω)

∂ω
=
dH̃0(ω)

dω
e−jk·r + H̃0(ω)

(

−jr · dk
dω

)

e−jk·r.

Equation (4.244) becomes

−∇ ·
{

Ẽ∗
0(ω)×

dH̃0(ω)

dω
+
dẼ0(ω)

dω
× H̃∗

0(ω)

− jr · dk
dω

[Ẽ∗
0(ω)× H̃0(ω) + Ẽ0(ω)× H̃∗

0(ω)]

} ∣

∣

∣

∣

ω=ω̌

= 4j〈wem〉.
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The first two terms on the left side have zero divergence, since these terms do not depend
on r. By the product rule (B.48) we have

[Ẽ∗
0(ω̌)× H̃0(ω̌) + Ẽ0(ω̌)× H̃∗

0(ω̌)] · ∇
(

r · dk
dω

) ∣

∣

∣

∣

ω=ω̌

= 4〈wem〉.

The gradient term is merely

∇
(

r · dk
dω

) ∣

∣

∣

∣

ω=ω̌

= ∇
(

x
dkx
dω

+ y
dky
dω

+ z
dkz
dω

) ∣

∣

∣

∣

ω=ω̌

=
dk

dω

∣

∣

∣

∣

ω=ω̌

,

hence

[Ẽ∗
0(ω̌)× H̃0(ω̌) + Ẽ0(ω̌)× H̃∗

0(ω̌)] ·
dk

dω

∣

∣

∣

∣

ω=ω̌

= 4〈wem〉. (4.245)

Finally, the left side of this expression can be written in terms of the time-average
Poynting vector. By (4.240) we have

Sav = 1
2 Re[Ě× Ȟ∗] = 1

4 [Ẽ0(ω̌)× H̃∗
0(ω̌) + Ẽ∗

0(ω̌)× H̃0(ω̌)]

and thus we can write (4.245) as

Sav ·
dk

dω

∣

∣

∣

∣

ω=ω̌

= 〈wem〉.

Since for a uniform plane wave in an isotropic medium k and Sav are in the same direction,
we have

Sav = k̂
dω

dβ

∣

∣

∣

∣

ω=ω̌

〈wem〉

and the velocity of energy transport for a plane wave of frequency ω̌ is then

ve = k̂
dω

dβ

∣

∣

∣

∣

ω=ω̌

.

Thus, for a uniform plane wave in a lossless medium, the velocity of energy transport is
identical to the group velocity.

4.11.4.8 Nonuniform plane waves

A nonuniform plane wave has the same form (4.208) as a uniform plane wave, but the
vectors kr and ki described in (4.209) are not aligned. Thus, under linear polarization

Ě(r) = êE0e
−jkr·reki·r.

In the time domain this becomes

E(r, t) = êE0e
ki·r cos[ω̌t− kr(k̂r · r)]

where kr = k̂rkr. The surfaces of constant phase are planes perpendicular to kr and
propagating in the direction of k̂r. The phase velocity is now

vp = ω̌/kr

and the wavelength is
λ = 2π/kr.
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In contrast, surfaces of constant amplitude must obey ki · r = C and hence are planes
normal to ki.
In a nonuniform plane wave the TEM nature of the fields is lost. This is easily seen

by calculating Ȟ from (4.211):

Ȟ(r) =
k× Ě(r)

ω̌µ
=

kr × Ě(r)

ω̌µ
+ j

ki × Ě(r)

ω̌µ
.

Thus, Ȟ is no longer perpendicular to the direction of propagation of the phase front. The
power carried by the wave also differs from that of the uniform case. The time-average
Poynting vector

Sav =
1
2 Re

[

Ě×
(

k× Ě

ω̌µ

)∗]

can be expanded using (B.7):

Sav = 1
2 Re

{

1

ω̌µ∗ [k
∗(Ě · Ě∗)− Ě∗(k∗ · Ě)]

}

.

Since we still have k · Ě = 0, we may write

Sav =
1

2
Re

{

E2
0

ω̌µ∗k
∗
}

=
E2

0

2ω̌
Re

{

(kr Reµ− ki Imµ)− j(kr Imµ+ ki Reµ)

|µ|2
}

=
E2

0

2ω̌

{

kr Reµ− ki Imµ

|µ|2
}

. (4.246)

Thus the vector direction of Sav is not generally in the direction of propagation of the
plane wavefronts.
Let us examine the special case of nonuniform plane waves propagating in a lossless

material. It is intriguing that k may be complex when k is real, and the implication is
important for the plane-wave expansion of complicated fields in free space. By (4.210),
real k requires that if ki 6= 0 then kr · ki = 0. Thus, for a nonuniform plane wave in a
lossless material the surfaces of constant phase and the surfaces of constant amplitude
are orthogonal. To specialize the time-average power to the lossless case we note that µ
is purely real and (4.246) becomes

Sav =
E2

0

2ω̌µ
kr .

We see that in a lossless medium, the direction of energy propagation for a linearly po-
larized plane wave is perpendicular to surfaces of constant phase and parallel to surfaces
of constant amplitude.
We shall encounter nonuniform plane waves when studying the reflection and refraction

of a plane wave from a planar interface in the next section. We shall also find (§ 4.13)
that nonuniform plane waves are a necessary constituent of the angular spectrum repre-
sentation of an arbitrary wave field.
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4.11.5 Plane waves in layered media

A useful canonical problem in wave propagation involves the reflection of plane waves by
planar interfaces between differing material regions. This has many direct applications,
from the design of optical coatings and microwave absorbers to the probing of under-
ground oil-bearing rock layers. We begin by studying the reflection of a plane wave at a
single interface and then extend the results to arbitrarily many material layers.

4.11.5.1 Reflection of a uniform plane wave at a planar material interface

Consider two lossy media separated by the z = 0 plane as shown in Figure 4.26. The
media are assumed to be isotropic and homogeneous with permeability µ̃(ω) and complex
permittivity ǫ̃c(ω). Both µ̃ and ǫ̃c may be complex numbers describing magnetic and
dielectric loss, respectively. We assume that a linearly polarized plane-wave field of the
form (4.208) is created within region 1 by a process not considered here. We take this
field as the known “incident wave” produced by an impressed source, and seek the total
fields in regions 1 and 2. Here we assume that the incident field is that of a uniform
plane wave, and subsequently extend the analysis to certain types of nonuniform plane
waves.

Since the incident field is uniform, we may write the wave vector associated with this
field as

ki = k̂iki = k̂i(kir + jkii) where [ki(ω)]2 = ω2µ̃1(ω)ǫ̃
c
1(ω).

We can assume without loss of generality that k̂i lies in the xz-plane and makes an angle
θi with the interface normal as in Figure 4.26. We refer to θi as the incidence angle of
the incident field, and note that it is the angle between the direction of propagation of
the planar phase fronts and the interface normal. With this we have

ki = x̂k1 sin θi + ẑk1 cos θi = x̂kix + ẑkiz.

Using k1 = β1 − jα1 we also have

kix = (β1 − jα1) sin θi.

The term kiz is written in a somewhat different form in order to make the result easily
applicable to reflections from multiple interfaces. We write

kiz = (β1 − jα1) cos θi = τ ie−jγ
i

= τ i cos γi − jτ i sin γi.

Thus,

τ i =
√

β2
1 + α2

1 cos θi, γi = tan−1(α1/β1).

We solve for the fields in each region of space directly in the frequency domain. The
incident electric field has the form of (4.208),

Ẽi(r, ω) = Ẽi0(ω)e
−jki(ω)·r, (4.247)

while the magnetic field is by (4.211)

H̃i =
ki × Ẽi

ωµ̃1
. (4.248)

The incident field may be decomposed into two orthogonal components, one parallel
to the plane of incidence (the plane containing k̂ and the interface normal ẑ) and one
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FIGURE 4.26

Uniform plane wave incident on planar interface between two lossy regions of space. (a)
TM polarization, (b) TE polarization.

perpendicular to this plane. We seek unique solutions for the fields in both regions, first
for the case in which the incident electric field has only a parallel component, and then for
the case in which it has only a perpendicular component. The total field is determined
by superposing the individual solutions. For perpendicular polarization we have from
(4.247) and (4.248)

Ẽi⊥ = ŷẼi⊥e
−j(kixx+kizz),

H̃i
⊥ =

−x̂kiz + ẑkix
k1

Ẽi⊥
η1
e−j(k

i
xx+k

i
zz),

as shown graphically in Figure 4.26. Here η1 = (µ̃1/ǫ̃
c
1)

1/2 is the intrinsic impedance of
medium 1. For parallel polarization, the direction of Ẽ is found by remembering that the
wave must be TEM. Thus Ẽ‖ is perpendicular to ki. Since Ẽ‖ must also be perpendicular

to Ẽ⊥, we have two possible directions for Ẽ‖. By convention we choose the one for which

H̃ lies in the same direction as did Ẽ for perpendicular polarization. Thus for parallel
polarization,

H̃i
‖ = ŷ

Ẽi‖
η1
e−j(k

i
xx+k

i
zz),

Ẽi‖ =
x̂kiz − ẑkix

k1
Ẽi‖e

−j(kixx+kizz),

as shown in Figure 4.26. Because Ẽ lies transverse (normal) to the plane of incidence
under perpendicular polarization, the field set is often described as transverse electric or
TE. Because H̃ lies transverse to the plane of incidence under parallel polarization, the
fields in that case are transverse magnetic or TM.
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Uniqueness requires that the total field obey the boundary conditions at the planar
interface. We hypothesize that the total field within region 1 consists of the incident
field superposed with a “reflected” plane-wave field having wave vector kr, while the
field in region 2 consists of a single “transmitted” plane-wave field having wave vector
kt. We cannot at the outset make any assumption regarding whether either of these
fields are uniform plane waves. However, we do note that the reflected and transmitted
fields cannot have vector components that are not present in the incident field; extra
components would prevent satisfaction of the boundary conditions. Letting Ẽr be the
amplitude of the reflected plane-wave field, we may write

Ẽr⊥ = ŷẼr⊥e
−j(krxx+krzz), H̃r

⊥ =
−x̂krz + ẑkrx

k1

Ẽr⊥
η1
e−j(k

r
xx+k

r
zz),

H̃r
‖ = ŷ

Ẽr‖
η1
e−j(k

r
xx+k

r
zz), Ẽr‖ =

x̂krz − ẑkrx
k1

Ẽr‖e
−j(krxx+krzz),

where (krx)
2+(krz)

2 = k21 . Similarly, letting Ẽt be the amplitude of the transmitted field,
we have

Ẽt⊥ = ŷẼt⊥e
−j(ktxx+ktzz), H̃t

⊥ =
−x̂ktz + ẑktx

k2

Ẽt⊥
η2
e−j(k

t
xx+k

t
zz),

H̃t
‖ = ŷ

Ẽt‖
η2
e−j(k

t
xx+k

t
zz), Ẽt‖ =

x̂ktz − ẑktx
k2

Ẽt‖e
−j(ktxx+ktzz),

where (ktx)
2 + (ktz)

2 = k22 .
The relationships between the field amplitudes Ẽi, Ẽr, Ẽt, and between the compo-

nents of the reflected and transmitted wave vectors kr and kt, can be found by applying
the boundary conditions. The tangential electric and magnetic fields are continuous
across the interface at z = 0:

ẑ× (Ẽi + Ẽr)|z=0 = ẑ× Ẽt|z=0,

ẑ× (H̃i + H̃r)|z=0 = ẑ× H̃t|z=0.

Substituting the field expressions we find that for perpendicular polarization, the two
boundary conditions require

Ẽi⊥e
−jkixx + Ẽr⊥e

−jkrxx = Ẽt⊥e
−jktxx, (4.249)

kiz
k1

Ẽi⊥
η1
e−jk

i
xx +

krz
k1

Ẽr⊥
η1
e−jk

r
xx =

ktz
k2

Ẽt⊥
η2
e−jk

t
xx, (4.250)

while for parallel polarization, they require

kiz
k1
Ẽi‖e

−jkixx +
krz
k1
Ẽr‖e

−jkrxx =
ktz
k2
Ẽt‖e

−jktxx, (4.251)

Ẽi‖
η1
e−jk

i
xx +

Ẽr‖
η1
e−jk

r
xx =

Ẽt‖
η2
e−jk

t
xx. (4.252)

For the above to hold for all x the exponential terms must match. This requires

kix = krx = ktx,
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and also establishes a relation between kiz , k
r
z , and ktz. Since (kix)

2 + (kiz)
2 = (krx)

2 +
(krz)

2 = k21 , we require krz = ±kiz. In order to make the reflected wavefronts propagate
away from the interface, we select krz = −kiz. Letting kix = krx = ktx = k1x and kiz =
−krz = k1z, we may write the wave vectors in region 1 as

ki = x̂k1x + ẑk1z, kr = x̂k1x − ẑk1z .

Since (ktx)
2 + (ktz)

2 = k22 , letting k2 = β2 − jα2 we have

ktz =
√

k22 − k21x =

√

(β2 − jα2)2 − (β1 − jα1)2 sin
2 θi = τ te−jγ

t

.

Squaring the above relation, we have

A− jB = (τ t)2 cos 2γt − j(τ t)2 sin 2γt

where

A = β2
2 − α2

2 − (β2
1 − α2

1) sin
2 θi, B = 2(β2α2 − β1α1 sin

2 θi). (4.253)

Thus
τ t = (A2 +B2)1/4, γt = 1

2 tan
−1B/A. (4.254)

Renaming ktz as k2z , we may write the transmitted wave vector as

kt = x̂k1x + ẑk2z = k2r + jk2i

where
k2r = x̂β1 sin θi + ẑτ t cos γt, k2i = −x̂α1 sin θi − ẑτ t sin γt.

Since the direction of propagation of the transmitted field phase fronts is perpendicular
to k2r , a unit vector in the direction of propagation is

k̂2r =
x̂β1 sin θi + ẑτ t cos γt

√

β2
1 sin

2 θi + (τ t)2 cos2 θi

. (4.255)

Similarly, a unit vector perpendicular to planar surfaces of constant amplitude is

k̂2i =
x̂α1 sin θi + ẑτ t sin γt

√

α2
1 sin

2 θi + (τ t)2 sin2 γt
. (4.256)

In general, k̂r is not aligned with k̂i and the transmitted field is a nonuniform plane
wave.
With these definitions of k1x, k1z, k2z , Equations (4.249) and (4.250) can be solved

simultaneously, and we have

Ẽr⊥ = Γ̃⊥Ẽ
i
⊥, Ẽt⊥ = T̃⊥Ẽ

i
⊥,

where

Γ̃⊥ =
Z2⊥ − Z1⊥
Z2⊥ + Z1⊥

, T̃⊥ = 1 + Γ̃⊥ =
2Z2⊥

Z2⊥ + Z1⊥
, (4.257)

with

Z1⊥ =
k1η1
k1z

, Z2⊥ =
k2η2
k2z

. (4.258)
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Here Γ̃ is a frequency-dependent reflection coefficient relating the tangential components
of the incident and reflected electric fields, and T̃ is a frequency-dependent transmission
coefficient relating the tangential components of the incident and transmitted electric
fields. These coefficients are also called the Fresnel coefficients.

For the case of parallel polarization, we solve (4.251) and (4.252) to find

Ẽr‖,x

Ẽi‖,x
=
krz
kiz

Ẽr‖

Ẽi‖
= −

Ẽr‖

Ẽi‖
= Γ̃‖,

Ẽt‖,x

Ẽi‖,x
=

(ktz/k2)Ẽ
t
‖

(kiz/k1)Ẽ
i
‖
= T̃‖.

Here

Γ̃‖ =
Z2‖ − Z1‖
Z2‖ + Z1‖

, T̃‖ = 1 + Γ̃‖ =
2Z2‖

Z2‖ + Z1‖
, (4.259)

with

Z1‖ =
k1zη1
k1

, Z2‖ =
k2zη2
k2

. (4.260)

Note that we may also write

Ẽr‖ = −Γ̃‖Ẽ
i
‖, Ẽt‖ = T̃‖Ẽ

i
‖

(

kiz
k1

k2
ktz

)

.

Let us summarize the fields in each region. For perpendicular polarization, we have

Ẽi⊥ = ŷẼi⊥e
−jki·r,

Ẽr⊥ = ŷΓ̃⊥Ẽ
i
⊥e

−jkr ·r, (4.261)

Ẽt⊥ = ŷT̃⊥Ẽ
i
⊥e

−jkt·r,

and

H̃i
⊥ =

ki × Ẽi⊥
k1η1

, H̃r
⊥ =

kr × Ẽr⊥
k1η1

, H̃t
⊥ =

kt × Ẽt⊥
k2η2

.

For parallel polarization, we have

Ẽi‖ = −η1
ki × H̃i

‖
k1

e−jk
i·r,

Ẽr‖ = −η1
kr × H̃r

‖
k1

e−jk
r·r,

Ẽt‖ = −η2
kt × H̃t

‖
k2

e−jk
t·r,

and

H̃i
‖ = ŷ

Ẽi‖
η1
e−jk

i·r,

H̃r
‖ = −ŷ

Γ̃‖Ẽ
i
‖

η1
e−jk

r ·r,

H̃t
‖ = ŷ

T̃‖Ẽ
i
‖

η2

(

kiz
k1

k2
ktz

)

e−jk
t·r.
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The wave vectors are given by

ki = (x̂β1 sin θi + ẑτ i cos γi)− j(x̂α1 sin θi + ẑτ i sin γi), (4.262)

kr = (x̂β1 sin θi − ẑτ i cos γi)− j(x̂α1 sin θi − ẑτ i sin γi), (4.263)

kt = (x̂β1 sin θi + ẑτ t cos γt)− j(x̂α1 sin θi + ẑτ t sin γt). (4.264)

We see that the reflected wave must, like the incident wave, be a uniform plane wave.
We define the unsigned reflection angle θr as the angle between the surface normal and
the direction of propagation of the reflected wavefronts (Figure 4.26). Since

ki · ẑ = k1 cos θi = −kr · ẑ = k1 cos θr,

ki · x̂ = k1 sin θi = kr · x̂ = k1 sin θr,

we must have θi = θr. This is Snell’s law of reflection. We can similarly define the
transmission angle as the angle between the direction of propagation of the transmitted
wavefronts and the interface normal. Noting that k̂2r · ẑ = cos θt and k̂2r · x̂ = sin θt, we
have from (4.255) and (4.256)

cos θt =
τ t cos γt

√

β2
1 sin

2 θi + (τ t)2 cos2 γt
,

sin θt =
β1 sin θi

√

β2
1 sin

2 θi + (τ t)2 cos2 γt
, (4.265)

and thus

θt = tan−1

(

β1
τ t

sin θi
cos γt

)

.

Depending on the properties of the media, at a certain incidence angle θc, called the
critical angle, the angle of transmission becomes π/2. Under this condition k̂2r has only
an x-component. Thus, surfaces of constant phase propagate parallel to the interface.
Later we shall see that for low-loss (or lossless) media, this implies that no time-average
power is carried by a monochromatic transmitted wave into the second medium.
We also see that although the transmitted field may be a nonuniform plane wave, its

mathematical form is that of the incident plane wave. This allows us to easily generalize
the single-interface reflection problem to one involving many layers.

4.11.5.2 Uniform plane-wave reflection for lossless media

We can specialize the preceding results to the case in which both regions are lossless,
with µ̃ = µ and ǫ̃c = ǫ real and frequency-independent. By (4.215) we have

β = ω
√
µǫ,

while (4.216) gives α = 0. We can easily show that the transmitted wave must be uniform
unless the incidence angle exceeds the critical angle. By (4.253) we have

A = β2
2 − β2

1 sin
2 θi, B = 0, (4.266)

while (4.254) gives

τ = (A2)1/4 =

√

|β2
2 − β2

1 sin
2 θi| and γt = 1

2 tan
−1 0.
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There are several possible choices for γt. To choose properly we note that γt represents
the negative of the phase of the quantity ktz =

√
A. If A > 0 the phase of the square root

is 0. If A < 0 the phase of the square root is −π/2 and thus γt = +π/2. Here we choose
the plus sign on γt to ensure that the transmitted field decays as z increases. We note
that if A = 0 then τ t = 0 and (4.265) gives θt = π/2. This defines the critical angle,
which from (4.266) is

θc = sin−1
√

β2
2/β

2
1 = sin−1

√

µ2ǫ2
µ1ǫ1

.

Therefore

γt =

{

0, θi < θc,

π/2, θi > θc.

Using these we can write down the transmitted wave vector from (4.264):

kt = ktr + jkti =

{

x̂β1 sin θi + ẑ
√

|A|, θi < θc,

x̂β1 sin θi − jẑ
√

|A|, θi > θc.
(4.267)

By (4.265) we have

sin θt =
β1 sin θi

√

β2
1 sin

2 θi + β2
2 − β2

1 sin
2 θi

=
β1 sin θi
β2

or
β2 sin θt = β1 sin θi. (4.268)

This is Snell’s law of refraction. With this we can write for θi < θc

A = β2
2 − β2

1 sin
2 θi = β2

2 cos
2 θt.

Using this and substituting β2 sin θt for β1 sin θi, we may rewrite (4.267) for θi < θc as

kt = ktr + jkti = x̂β2 sin θt + ẑβ2 cos θt. (4.269)

So the transmitted plane wave is uniform with kti = 0. When θi > θc we have from
(4.267)

ktr = x̂β1 sin θi, kti = −ẑ

√

β2
1 sin

2 θi − β2
2 .

Since ktr and kti are not collinear, the plane wave is nonuniform. Let us examine the
cases θi < θc and θi > θc in greater detail.

Case 1: θi < θc. By (4.262)–(4.263) and (4.269) the wave vectors are

ki = x̂β1 sin θi+ẑβ1 cos θi, kr = x̂β1 sin θi−ẑβ1 cos θi, kt = x̂β2 sin θt+ẑβ2 cos θt,

and the wave impedances are

Z1⊥ =
η1

cos θi
, Z2⊥ =

η2
cos θt

, Z1‖ = η1 cos θi, Z2‖ = η2 cos θt.

The reflection coefficients are

Γ̃⊥ =
η2 cos θi − η1 cos θt
η2 cos θi + η1 cos θt

, Γ̃‖ =
η2 cos θt − η1 cos θi
η2 cos θt + η1 cos θi

.
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So the reflection coefficients are purely real, with signs dependent on the constitutive
parameters of the media. We can write

Γ̃⊥ = ρ⊥e
jφ⊥ , Γ̃‖ = ρ‖e

jφ‖ ,

where ρ and φ are real, and where φ = 0 or π.
Under certain conditions the reflection coefficients vanish. For a given set of constitu-

tive parameters we may achieve Γ̃ = 0 at an incidence angle θB, known as the Brewster
or polarizing angle. A wave with an arbitrary combination of perpendicular and paral-
lel polarized components incident at this angle produces a reflected field with a single
component. A wave incident with only the appropriate single component produces no
reflected field, regardless of its amplitude.
For perpendicular polarization we set Γ̃⊥ = 0, requiring

η2 cos θi − η1 cos θt = 0

or equivalently
µ2

ǫ2
(1− sin2 θi) =

µ1

ǫ1
(1− sin2 θt).

By (4.268) we may put

sin2 θt =
µ1ǫ1
µ2ǫ2

sin2 θi,

resulting in

sin2 θi =
µ2

ǫ1

ǫ2µ1 − ǫ1µ2

µ2
1 − µ2

2

.

The value of θi that satisfies this equation must be the Brewster angle, and thus

θB⊥ = sin−1

√

µ2

ǫ1

ǫ2µ1 − ǫ1µ2

µ2
1 − µ2

2

.

When µ1 = µ2 there is no solution to this equation, hence the reflection coefficient cannot
vanish. When ǫ1 = ǫ2 we have

θB⊥ = sin−1

√

µ2

µ1 + µ2
= tan−1

√

µ2

µ1
.

For parallel polarization, we set Γ̃‖ = 0 and have

η2 cos θt = η1 cos θi.

Proceeding as above, we find that

θB‖ = sin−1

√

ǫ2
µ1

ǫ1µ2 − ǫ2µ1

ǫ21 − ǫ22
.

This expression has no solution when ǫ1 = ǫ2, and thus the reflection coefficient cannot
vanish under this condition. When µ1 = µ2 we have

θB‖ = sin−1

√

ǫ2
ǫ1 + ǫ2

= tan−1

√

ǫ2
ǫ1
.
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We find that when θi < θc the total field in region 1 behaves as a traveling wave
along x, but has characteristics of both a standing wave and a traveling wave along z
(Problem 4.7). The traveling-wave component is associated with a Poynting power flux,
while the standing-wave component is not. This flux is carried across the boundary
into region 2 where the transmitted field consists only of a traveling wave. By (4.160)
the normal component of time-average Poynting flux is continuous across the boundary,
demonstrating that the time-average power carried by the wave into the interface from
region 1 passes out through the interface into region 2 (Problem 4.8).

Case 2: θi > θc. The wave vectors are, from (4.262)–(4.263) and (4.267),

ki = x̂β1 sin θi + ẑβ1 cos θi, kr = x̂β1 sin θi − ẑβ1 cos θi, kt = x̂β1 sin θi − jẑαc,

where

αc =

√

β2
1 sin

2 θi − β2
2

is the critical angle attenuation constant. The wave impedances are

Z1⊥ =
η1

cos θi
, Z2⊥ = j

β2η2
αc

, Z1‖ = η1 cos θi, Z2‖ = −j αcη2
β2

.

Substituting these into (4.257) and (4.259), we find that the reflection coefficients are
the complex quantities

Γ̃⊥ =
β2η2 cos θi + jη1αc
β2η2 cos θi − jη1αc

= ejφ⊥ , Γ̃‖ = −β2η1 cos θi + jη2αc
β2η1 cos θi − jη2αc

= ejφ‖ ,

where

φ⊥ = 2 tan−1

(

η1αc
β2η2 cos θi

)

, φ‖ = π + 2 tan−1

(

η2αc
β2η1 cos θi

)

.

We note with interest that ρ⊥ = ρ‖ = 1. So the amplitudes of the reflected waves
are identical to those of the incident waves, and we call this the case of total internal
reflection. The phase of the reflected wave at the interface is changed from that of the
incident wave by an amount φ⊥ or φ‖. The phase shift incurred by the reflected wave
upon total internal reflection is called the Goos–Hänchen shift.

In the case of total internal reflection, the field in region 1 is a pure standing wave while
the field in region 2 decays exponentially in the z-direction and is evanescent (Problem
4.9). Since a standing wave transports no power, there is no Poynting flux into region 2.
We find that the evanescent wave also carries no power and thus the boundary condition
on power flux at the interface is satisfied (Problem 4.10). We note that for any incident
angle except θi = 0 (normal incidence) the wave in region 1 does transport power in the
x-direction.

4.11.5.3 Reflection of time-domain uniform plane waves

Solution for the fields reflected and transmitted at an interface shows us the properties
of the fields for a certain single excitation frequency and allows us to obtain time-domain
fields by Fourier inversion. Under certain conditions it is possible to do the inversion
analytically, providing physical insight into the temporal behavior of the fields.

As a simple example, consider a perpendicularly polarized, uniform plane wave incident
from free space at an angle θi on the planar surface of a conducting material (Figure
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4.26). The material is assumed to have frequency-independent constitutive parameters
µ̃ = µ0, ǫ̃ = ǫ, and σ̃ = σ. By (4.261) we have the reflected field

Ẽr⊥(r, ω) = ŷΓ̃⊥(ω)Ẽ
i
⊥(ω)e

−jkr(ω)·r = ŷẼr(ω)e−jω
k̂
r·r
c

where Ẽr = Γ̃⊥Ẽi⊥. We can use the time-shifting theorem (A.3) to invert the transform
and obtain

Er⊥(r, t) = F−1{Ẽr⊥(r, ω)} = ŷEr

(

t− k̂r · r
c

)

(4.270)

where by the convolution theorem (A.4)

Er(t) = F−1{Ẽr(ω)} = Γ⊥(t) ∗ E⊥(t).

Here E⊥(t) = F−1{Ẽi⊥(ω)} is the time waveform of the incident plane wave, while

Γ⊥(t) = F−1{Γ̃⊥(ω)} is the time-domain reflection coefficient.

By (4.270) the reflected time-domain field propagates along the direction k̂r at the
speed of light. The time waveform of the field is the convolution of the waveform of
the incident field with the time-domain reflection coefficient Γ⊥(t). In the lossless case
(σ = 0), Γ⊥(t) is a δ-function, so the waveforms of the reflected and incident fields are
identical. With losses present, Γ⊥(t) broadens and the reflected field waveform becomes
a convolution-broadened version of the incident field waveform. To understand the wave-
form of the reflected field we must compute Γ⊥(t). Note that by choosing the permittivity
of region 2 larger than that of region 1 we prevent total internal reflection.
We specialize the frequency-domain reflection coefficient (4.257) for our problem by

noting that

k1z = β1 cos θi, k2z =
√

k22 − k21x = ω
√
µ0

√

ǫ+
σ

jω
− ǫ0 sin

2 θi,

and thus
Z1⊥ =

η0
cos θi

, Z2⊥ =
η0

√

ǫr +
σ

jωǫ0
− sin2 θi

,

where ǫr = ǫ/ǫ0 and η0 =
√

µ0/ǫ0. So

Γ̃⊥ =

√
s−

√
Ds+B√

s+
√
Ds+B

(4.271)

where s = jω and

D =
ǫr − sin2 θi
cos2 θi

, B =
σ

ǫ0 cos2 θi
.

We can put (4.271) into a better form for inversion. We begin by subtracting Γ⊥∞, the
high-frequency limit of Γ̃⊥. Noting that

lim
ω→∞

Γ̃⊥(ω) = Γ⊥∞ =
1−

√
D

1 +
√
D
,

we can form

Γ̃0
⊥(ω) = Γ̃⊥(ω)− Γ⊥∞ =

√
s−

√
Ds+ B√

s+
√
Ds+ B

− 1−
√
D

1 +
√
D

= 2

√
D

1 +
√
D

[ √
s−

√

s+B/D
√
s+

√
D
√

s+D/B

]

.
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With a bit of algebra this becomes

Γ̃0
⊥(ω) = − 2

√
D

D − 1

(

s

s+ B
D−1

)



1−

√

s+ B
D

s



− 2B
(

1 +
√
D
)

(D − 1)

(

1

s+ B
D−1

)

.

Now we can apply (C.12), (C.18), and (C.19) to obtain

Γ0
⊥(t) = F−1{Γ̃0

⊥(ω)} = f1(t) + f2(t) + f3(t)

where

f1(t) = − 2B

(1 +
√
D)(D − 1)

e−
Bt
D−1U(t),

f2(t) = − B2

√
D(D − 1)2

U(t)

∫ t

0

e−
B(t−x)
D−1 I

(

Bx

2D

)

dx,

f3(t) =
B√

D(D − 1)
I

(

Bt

2D

)

U(t).

Here

I(x) = e−x [I0(x) + I1(x)]

where I0(x) and I1(x) are modified Bessel functions of the first kind. Setting u = Bx/2D
we can also write

f2(t) = − 2B
√
D

(D − 1)2
U(t)

∫ Bt
2D

0

e−
Bt−2Du
D−1 I(u) du.

Polynomial approximations for I(x) found in [1] and exponential approximations found
in [165], make the computation of Γ0

⊥(t) straightforward.
The complete time-domain reflection coefficient is

Γ⊥(t) =
1−

√
D

1 +
√
D
δ(t) + Γ0

⊥(t).

If σ = 0 then Γ0
⊥(t) = 0 and the reflection coefficient reduces to a single δ-function. Since

convolution with this term does not alter wave shape, the reflected field has the same
waveform as the incident field.

◮ Example 4.14: Transient plane wave reflected from water

Consider a perpendicularly polarized, uniform plane wave normally incident from free space
on the planar surface of dry water ice (ǫr = 3, σ = 0.01 S/m). Plot the time-domain
reflection coefficient for 0 ≤ t ≤ 15 ns. Repeat for a wave incident on sea water (ǫr = 80,
σ = 4 S/m).

Solution: Figure 4.27 shows a plot of Γ0
⊥(t) for normal incidence (θi = 00). Note that a

pulse waveform experiences more temporal spreading upon reflection from ice than from sea
water, but that the amplitude of the dispersive component is less than that for sea water.
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FIGURE 4.27
Time-domain reflection coefficients. ◭

4.11.5.4 Reflection of a nonuniform plane wave from a planar interface

Describing the interaction of a general nonuniform plane wave with a planar interface
is problematic because of the non-TEM behavior of the incident wave. We cannot de-
compose the fields into two mutually orthogonal cases as we did with uniform waves.
However, we found in the last section that when a uniform wave is incident on a planar
interface, the transmitted wave, even if nonuniform in nature, takes the same mathe-
matical form and may be decomposed in the same manner as the incident wave. Thus,
we may study the case in which this refracted wave is incident on a successive interface
using exactly the same analysis as with a uniform incident wave. This is helpful in the
case of multi-layered media, examined next.

4.11.5.5 Interaction of a plane wave with multi-layered, planar materials

Consider N + 1 regions of space separated by N planar interfaces as shown in Figure
4.28, and suppose a uniform plane wave is incident on the first interface at angle θi.
Assume each region is isotropic and homogeneous with a frequency-dependent complex
permittivity and permeability. We can easily generalize the previous analysis regarding
reflection from a single interface by realizing that in order to satisfy the boundary con-
ditions, each region, except region N , contains incident- and reflected-type waves of the
forms

Ẽi(r, ω) = Ẽi0e
−jki·r, Ẽr(r, ω) = Ẽr0e

−jkr ·r.

In region n we may write the wave vectors describing these waves as

kin = x̂kx,n + ẑkz,n, krn = x̂kx,n − ẑkz,n,

where
k2x,n + k2z,n = k2n, k2n = ω2µ̃nǫ̃

c
n = (βn − jαn)

2.

We note at the outset that, as with the single interface case, the boundary conditions
are only satisfied when Snell’s law of reflection holds, and thus

kx,n = kx,0 = k0 sin θi
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FIGURE 4.28

Interaction of a uniform plane wave with a multi-layered material.

where k0 = ω(µ̃0ǫ̃
c
0)

1/2 is the wavenumber of the 0th region (not necessarily free space).
From this condition we have

kz,n =
√

k2n − k2x,0 = τne
−jγn

where

τn = (A2
n +B2

n)
1/4, γn = 1

2 tan
−1(Bn/An),

and

An = β2
n − α2

n − (β2
0 − α2

0) sin
2 θi, Bn = 2(βnαn − β0α0 sin

2 θi).

Provided the incident wave is uniform, we can decompose the fields in every region into
cases of perpendicular and parallel polarization. This is true even when the waves in
certain layers are nonuniform. For the case of perpendicular polarization we can write
the electric field in region n, 0 ≤ n ≤ N − 1, as Ẽ⊥n = Ẽi⊥n + Ẽr⊥n where

Ẽi⊥n = ŷan+1e
−jkx,nxe−jkz,n(z−zn+1),

Ẽr⊥n = ŷbn+1e
−jkx,nxe+jkz,n(z−zn+1),

and the magnetic field as H̃⊥n = H̃i
⊥n +Hr

⊥n where

H̃i
⊥n =

−x̂kz,n + ẑkx,n
knηn

an+1e
−jkx,nxe−jkz,n(z−zn+1),

H̃r
⊥n =

+x̂kz,n + ẑkx,n
knηn

bn+1e
−jkx,nxe+jkz,n(z−zn+1).

When n = N there is no reflected wave; in this region we write

Ẽ⊥N = ŷaN+1e
−jkx,Nxe−jkz,N (z−zN ),

H̃⊥N =
−x̂kz,N + ẑkx,N

kNηN
aN+1e

−jkx,Nxe−jkz,N (z−zN ).
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Since a1 is the known amplitude of the incident wave, there are 2N unknown wave
amplitudes. We obtain the needed 2N simultaneous equations by applying the boundary
conditions at each of the interfaces. At interface n located at z = zn (1 ≤ n ≤ N − 1),
we have by continuity of the tangential electric field,

an + bn = an+1e
−jkz,n(zn−zn+1) + bn+1e

+jkz,n(zn−zn+1)

while by continuity of the magnetic field,

−an
kz,n−1

kn−1ηn−1
+bn

kz,n−1

kn−1ηn−1
= −an+1

kz,n
knηn

e−jkz,n(zn−zn+1)+bn+1
kz,n
knηn

e+jkz,n(zn−zn+1).

Noting that the wave impedance of region n is Z⊥n = knηn/kz,n and defining the region
n propagation factor as

P̃n = e−jkz,n∆n (4.272)

where ∆n = zn+1 − zn, we can write

anP̃n + bnP̃n = an+1 + bn+1P̃
2
n , (4.273)

− anP̃n + bnP̃n = −an+1
Z⊥n−1

Z⊥n
+ bn+1

Z⊥n−1

Z⊥n
P̃ 2
n . (4.274)

We must still apply the boundary conditions at z = zN . Proceeding as above, we find
that (4.273) and (4.274) hold for n = N if we set bN+1 = 0 and P̃N = 1.
Equations (4.273) and (4.274) may be put into a somewhat more convenient form

through addition and subtraction, giving

2an = an+1P̃
−1
n

(

1 +
Z⊥n−1

Z⊥n

)

+ bn+1P̃n

(

1− Z⊥n−1

Z⊥n

)

, (4.275)

2bn = an+1P̃
−1
n

(

1− Z⊥n−1

Z⊥n

)

+ bn+1P̃n

(

1 +
Z⊥n−1

Z⊥n

)

. (4.276)

These form a system of 2N simultaneous equations solvable by standard matrix meth-
ods. However, two alternative approaches may prove advantageous, depending on the
application. We consider these next.

4.11.5.6 Analysis of multi-layered planar materials using a recursive
approach

A recursive approach to (4.275)–(4.276) offers a nice physical picture of the multiple
reflections in the layered medium. We begin by defining

Γ̃n =
Z⊥n − Z⊥n−1

Z⊥n + Z⊥n−1
(4.277)

as the interfacial reflection coefficient for interface n (i.e., the reflection coefficient as-
suming a single interface as in (4.257)), and

T̃n =
2Z⊥n

Z⊥n + Z⊥n−1
= 1 + Γ̃n

as the interfacial transmission coefficient for interface n. Then (4.275) becomes

an+1 = anT̃nP̃n + bn+1P̃n(−Γ̃n)P̃n.
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FIGURE 4.29

Wave flow diagram showing interaction of incident and reflected waves for region n.

Next, defining the global reflection coefficient Rn for region n as the ratio of the ampli-
tudes of the reflected and incident waves,

R̃n = bn/an,

we can write

an+1 = anT̃nP̃n + an+1R̃n+1P̃n(−Γ̃n)P̃n. (4.278)

For n = N we note that R̃N+1 = 0, and P̃N = 1 since aN and aN+1 are assigned to
opposite sides of the same interface. This gives

aN+1 = aN T̃N . (4.279)

If we choose to eliminate an+1 from (4.273) and (4.274) we find that

bn = anΓ̃n + R̃n+1P̃n(1− Γ̃n)an+1. (4.280)

For n = N this reduces to

bN = aN Γ̃N . (4.281)

Equations (4.278) and (4.280) have nice physical interpretations. Consider Figure 4.29,
which shows the wave amplitudes for region n. We may think of the wave incident on
interface n + 1 with amplitude an+1 as consisting of two terms. The first term is the
wave transmitted through interface n (at z = zn). This wave must propagate through a
distance ∆n to reach interface n+1 and thus has an amplitude anT̃nP̃n. The second term
is the reflection at interface n of the wave traveling in the −z direction within region n.
The amplitude of the wave before reflection is merely bn+1P̃n, where the term P̃n results
from the propagation of the negatively traveling wave from interface n + 1 to interface
n. Now, since the interfacial reflection coefficient at interface n for a wave incident from
region n is the negative of that for a wave incident from region n − 1 (since the wave
is traveling in the reverse direction), and since the reflected wave must travel through a
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distance ∆n from interface n back to interface n+ 1, the amplitude of the second term
is bn+1P̃n(−Γn)P̃n. Finally, remembering that bn+1 = R̃n+1an+1, we can write

an+1 = anT̃nP̃n + an+1R̃n+1P̃n(−Γ̃n)P̃n.

This equation replicates (4.278), which was found using the boundary conditions. By
similar reasoning, we may say that the wave traveling in the −z direction in region
n − 1 consists of a term reflected from the interface and a term transmitted through
the interface. The amplitude of the reflected term is merely anΓ̃n. The amplitude of
the transmitted term is found by considering bn+1 = R̃n+1an+1 propagated through a
distance ∆n and then transmitted backwards through interface n. Since the transmission
coefficient for a wave going from region n to region n− 1 is 1 + (−Γ̃n), the amplitude of
the transmitted term is R̃n+1P̃n(1 − Γ̃n)an+1. Thus

bn = Γ̃nan + R̃n+1P̃n(1 − Γ̃n)an+1,

which replicates (4.280).
We are left with determining the various field amplitudes. This can be done using a

simple recursive technique. Using T̃n = 1 + Γ̃n we find from (4.278) that

an+1 = τ̃nan, (4.282)

where

τ̃n =
(1 + Γ̃n)P̃n

1 + Γ̃nR̃n+1P̃ 2
n

. (4.283)

Substituting this into (4.280), we find

bn = [Γ̃n + P̃n(1− Γ̃n)R̃n+1τ̃n]an.

Using this expression we find a recursive relationship for the global reflection coefficient:

R̃n = bn/an = Γ̃n + P̃n(1− Γ̃n)R̃n+1τ̃n. (4.284)

The procedure is now as follows. Start with (4.279) to find

τ̃N = T̃N . (4.285)

Then find the global reflection coefficient for interface N , which by (4.281) is

R̃N = bN/aN = Γ̃N . (4.286)

This is also obtained from (4.284) with R̃N+1 = 0. Next, compute τ̃N−1 from (4.283):

τ̃N−1 =
(1 + Γ̃N−1)P̃N−1

1 + Γ̃N−1R̃N P̃ 2
N−1

.

Lastly use (4.284) to find R̃N−1:

R̃N−1 = Γ̃N−1 + P̃N−1(1− Γ̃N−1)R̃N τ̃N−1.

This process is repeated until reaching R̃1, whereupon all the values of R̃n and τ̃n are
known. We then find the amplitudes beginning with a1, which is the known incident
field amplitude. From (4.284) we find

b1 = a1R̃1,
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and from (4.282) we find
a2 = τ̃1a1.

This process is repeated until all field amplitudes are known.
Often we wish to know the transmission and reflection coefficients for the entire struc-

ture. In this case we write the structure reflection coefficient as

R̃ = b1/a1 = R̃1,

and the structure transmission coefficient as

T̃ = aN+1/a1 = τ̃1τ̃2 · · · τ̃N .
To find the reflection coefficient for the opposite side of the structure, or for transmission
in the opposite direction, we merely reverse the structure.

We note that the process outlined above holds for parallel polarization, provided we
use the parallel wave impedances

Z‖n = kz,nηn/kn

when computing the interfacial reflection coefficients.

◮ Example 4.15: Single-layer reflection and transmission using recursion

Consider a slab of material of thickness ∆, sandwiched between two lossless dielectrics. A
uniform plane wave of frequency ω impinges on interface 1. Compute the structure reflection
and transmission coefficients.

Solution: Here N = 2 (two interfaces and three regions). By (4.285) we have τ̃2 = T̃2 and
by (4.286) we have R̃2 = Γ̃2. Then (4.283) gives

τ̃1 =
(1 + Γ̃1)P̃1

1 + Γ̃1R̃2P̃ 2
1

=
(1 + Γ̃1)P̃1

1 + Γ̃1Γ̃2P̃ 2
1

,

while (4.284) gives

R̃1 = Γ̃1 + P̃1(1− Γ̃1)R̃2τ̃1 = Γ̃1 +
(1− Γ̃2

1)P̃
2
1 Γ̃2

1 + Γ̃1Γ̃2P̃ 2
1

=
Γ̃1 + Γ̃2P̃

2
1

1 + Γ̃1Γ̃2P̃ 2
1

.

The structure reflection coefficient is

R̃ = R̃1 =
Γ̃1 + Γ̃2P̃

2
1

1 + Γ̃1Γ̃2P̃ 2
1

(4.287)

and the structure transmission coefficient is

T̃ = τ̃1τ̃2 =
(1 + Γ̃1)(1 + Γ̃2)P̃1

1 + Γ̃1Γ̃2P̃ 2
1

. ◭ (4.288)

◮ Example 4.16: Quarter-wave transformer

Consider a lossless slab of material of thickness ∆ sandwiched between two lossless dielectrics.
A time-harmonic uniform plane wave of frequency ω = ω̌ is normally incident onto interface
1. Determine the conditions under which the reflected wave vanishes.

Solution: Let R = R̃(ω̌), etc. From (4.287) we see that R = 0 and thus the wave reflected
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by a material slab vanishes when
Γ1 + Γ2P

2
1 = 0.

Since the field in region 0 is normally incident, we have

kz,n = kn = βn = ω̌
√
µnǫn.

If we choose P 2
1 = −1, then Γ1 = Γ2 results in no reflected wave. This requires

Z1 − Z0

Z1 + Z0
=
Z2 − Z1

Z2 + Z1
.

Clearing the denominator, we find that 2Z2
1 = 2Z0Z2, or

Z1 =
√
Z0Z2.

This condition makes the reflected field vanish if we can ensure that P 2
1 = −1. To do this

we need e−jβ12∆ = −1. The minimum thickness that satisfies this condition is β12∆ = π.
Since β1 = 2π/λ1, this is equivalent to ∆ = λ1/4.

A layer of this type is called a quarter-wave transformer. Since no wave is reflected from
the initial interface, and since all the regions are assumed lossless, all of the power carried by
the incident wave in the first region is transferred into the third region. Thus, two regions of
differing materials may be “matched” by inserting an appropriate slab between them. This
technique finds use in optical coatings for lenses and for reducing the radar reflectivity of
objects. ◭

◮ Example 4.17: Reflection from a conductor-backed dielectric layer

A lossless dielectric slab with ǫ̃ = ǫ1 = ǫ1rǫ0 and µ̃ = µ0 is backed by a perfect conductor
and immersed in free space, as shown in Figure 4.30. A perpendicularly polarized uniform
plane wave is incident on the slab from free space. If the incident electric field is given by
Ẽi(ω) = ŷẼi⊥(ω), determine the frequency-domain reflected field.

FIGURE 4.30
Interaction of a uniform plane wave with a conductor-backed dielectric slab.

Solution: Since ǫ0 < ǫ1, total internal reflection cannot occur. Thus the wave vectors in
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region 1 have real components and can be written as

k
i
1 = kx,1x̂+ kz,1ẑ, k

r
1 = kx,1x̂− kz,1ẑ.

By Snell’s law, kx,1 = k0 sin θi = k1 sin θt, and so

kz,1 =
√

k21 − k2x,1 =
ω

c

√

ǫ1r − sin2 θi = k1 cos θt

where θt is the transmission angle in region 1. Since region 2 is a perfect conductor, we have
R̃2 = −1. By (4.283) we have

τ̃1(ω) =
(1 + Γ̃1)P̃1(ω)

1− Γ̃1P̃ 2
1 (ω)

,

where from (4.277),

Γ̃1 =
Z1 − Z0

Z1 + Z0

is not a function of frequency. Using this in (4.284) gives the structure reflection coefficient

R̃(ω) = R̃1(ω) = Γ̃1 −
(1− Γ̃2

1)P̃
2
1 (ω)

1− Γ̃1P̃ 2
1 (ω)

=
Γ̃1 − P̃ 2

1 (ω)

1− Γ̃1P̃ 2
1 (ω)

. (4.289)

From this we have the frequency-domain reflected field

Ẽ
r
⊥(r, ω) = ŷR̃(ω)Ẽi⊥(ω)e

−jkr1(ω)·r. ◭ (4.290)

In many layered-media problems it is possible to obtain the time-domain fields from the
frequency-domain fields through the inverse Fourier transform. Calculation of the trans-
form is facilitated by a clever expansion of the structure reflection coefficient or structure
transmission coefficient, which allows an interpretation in terms of multiple reflections
within the layers. The following example applies this approach to the conductor-backed
dielectric layer considered above.

◮ Example 4.18: Time-domain reflection from a conductor-backed dielectric layer

Compute the time-domain electric field reflected from a conductor-backed dielectric layer
by inverse transforming the frequency-domain field (4.290). Interpret the result in terms of
multiple reflections within the dielectric layer.

Solution: By the approach used to obtain (4.270), we write

E
r
⊥(r, t) = ŷEr

(

t− k̂r1 · r
c

)

,

where by the convolution theorem,

Er(t) = R(t) ∗ Ei⊥(t). (4.291)

Here Ei⊥(t) = F−1{Ẽi⊥(ω)} is the time waveform of the incident plane wave and R(t) =

F−1{R̃(ω)} is the time-domain reflection coefficient of the structure. To invert R̃(ω) we
apply the binomial expansion

(1− x)−1 = 1 + x+ x2 + x3 + · · ·
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to the denominator of (4.289):

R̃(ω) = [Γ1 − P̃ 2
1 (ω)]

{

1 + [Γ1P̃
2
1 (ω)] + [Γ1P̃

2
1 (ω)]

2 + [Γ1P̃
2
1 (ω)]

3 + . . .
}

= Γ1 − [1− Γ2
1]P̃

2
1 (ω)− [1− Γ2

1]Γ1P̃
4
1 (ω)

− [1− Γ2
1]Γ

2
1P̃

6
1 (ω)− · · · . (4.292)

Thus we need the inverse transform of

P̃ 2n
1 (ω) = e−j2nkz,1∆1

= e−j2nk1∆1 cos θt .

Writing k1 = ω/v1, where v1 = 1/(µ0ǫ1)
1/2 is the phase velocity of the wave in region 1,

and using 1 ↔ δ(t) along with the time-shifting theorem (A.3), we have

P̃ 2n
1 (ω) = e−jω2nT ↔ δ(t− 2nT )

where T = ∆1 cos θt/v1. With this the inverse transform of R̃ in (4.292) is

R(t) = Γ1δ(t)− (1 + Γ1)(1− Γ1)δ(t− 2T )− (1 + Γ1)(1− Γ1)Γ1δ(t− 4T )− · · ·

and thus from (4.291)

Er(t) = Γ1E
i
⊥(t)− (1 + Γ1)(1− Γ1)E

i
⊥(t− 2T )

− (1 + Γ1)(1− Γ1)Γ1E
i
⊥(t− 4T )− · · · .

FIGURE 4.31
Timing diagram for multiple reflections from a conductor-backed dielectric slab.

The reflected field consists of time-shifted and amplitude-scaled versions of the incident
field waveform. These terms can be interpreted as multiple reflections of the incident wave.
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Consider Figure 4.31. The first term is the direct reflection from interface 1 and thus has its
amplitude multiplied by Γ1. The next term represents a wave that penetrates the interface
(and thus has its amplitude multiplied by the transmission coefficient 1 + Γ1), propagates
to and reflects from the conductor (and thus has its amplitude multiplied by −1), and then
propagates back to the interface and passes through in the opposite direction (and thus has
its amplitude multiplied by the transmission coefficient for passage from region 1 to region
0, 1−Γ1). The time delay between this wave and the initially reflected wave is given by 2T ,
as discussed in detail below. The third term represents a wave that penetrates the interface,
reflects from the conductor, returns to and reflects from the interface a second time, again
reflects from the conductor, and then passes through the interface in the opposite direction.
Its amplitude has an additional multiplicative factor of −Γ1 to account for reflection from
the interface and an additional factor of −1 to account for the second reflection from the
conductor, and is time-delayed by an additional 2T . Subsequent terms account for additional
reflections; the nth reflected wave amplitude is multiplied by an additional (−1)n and (−Γ1)

n

and is time-delayed by an additional 2nT .
It is important to understand that the time delay 2T is not just the propagation time for

the wave to travel through the slab. To properly describe the timing between the initially
reflected wave and the waves that reflect from the conductor, we must consider the field over
identical observation planes as shown in Figure 4.31. For example, consider the observation
plane designated P-P, intersecting the first “exit point” on interface 1. To arrive at this
plane the initially reflected wave takes the path labeled B, arriving at a time

D sin θi
v0

after the time of initial reflection, where v0 = c is the velocity in region 0. To arrive at this
same plane the wave that penetrates the surface takes the path labeled A, arriving at a time

2∆1

v1 cos θt

where v1 is the wave velocity in region 1 and θt is the transmission angle. Noting that
D = 2∆1 tan θt, the time delay between the arrival of the two waves at the plane P-P is

T =
2∆1

v1 cos θt
− D sin θi

v0

=
2∆1

v1 cos θt

(

1− sin θt sin θi
v0/v1

)

.

By Snell’s law of refraction (4.268) we can write

v0
v1

=
sin θi
sin θt

,

which, upon substitution, gives

T = 2
∆1 cos θt

v1
.

This is exactly the time delay 2T . ◭

4.11.5.7 Analysis of multi-layered planar materials using cascaded matrices

Equations (4.275) and (4.276) can be recast in the matrix form

[

T
(n)
11 T

(n)
12

T
(n)
21 T

(n)
22

]

[

an+1

bn+1

]

=

[

an
bn

]
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where

T
(n)
11 =

1

2

Zn + Zn−1

Zn
P̃−1
n =

1

T̃nP̃n
, (4.293)

T
(n)
12 =

1

2

Zn − Zn−1

Zn
P̃n =

Γ̃nP̃n

T̃n
, (4.294)

T
(n)
21 =

1

2

Zn − Zn−1

Zn
P̃−1
n =

Γ̃n

T̃nP̃n
, (4.295)

T
(n)
22 =

1

2

Zn + Zn−1

Zn
P̃n =

P̃n

T̃n
. (4.296)

Here Zn represents Zn⊥ for perpendicular polarization and Zn‖ for parallel polarization.
The matrix entries, often called transmission parameters, are similar to the parameters
used to describe microwave networks except that in network theory the wave amplitudes
are often normalized using the wave impedances.
We may use the transmission parameters to describe the cascaded system of any num-

ber of layers by simply multiplying transmission matrices. For example, a single layer of
material may be described using the two transmission matrices

[

T
(1)
11 T

(1)
12

T
(1)
21 T

(1)
22

]

[

a2
b2

]

=

[

a1
b1

]

(4.297)

and
[

T
(2)
11 T

(2)
12

T
(2)
21 T

(2)
22

]

[

a3
b3

]

=

[

a2
b2

]

. (4.298)

Substituting (4.298) into (4.297), we get

[

T
(1)
11 T

(1)
12

T
(1)
21 T

(1)
22

][

T
(2)
11 T

(2)
12

T
(2)
21 T

(2)
22

]

[

a3
b3

]

=

[

a1
b1

]

.

Here we also use P̃2 = 1. Extending this to the system of N +1 regions shown in Figure
4.28, we have

[

T11 T12
T21 T22

] [

aN+1

bN+1

]

=

[

a1
b1

]

where
[

T11 T12
T21 T22

]

=

[

T
(1)
11 T

(1)
12

T
(1)
21 T

(1)
22

] [

T
(2)
11 T

(2)
12

T
(2)
21 T

(2)
22

]

· · ·
[

T
(N)
11 T

(N)
12

T
(2)
21 T

(2)
22

]

,

with P̃N = 1. To find the reflection and transmission coefficients for the entire structure,
set bN+1 = 0:

[

T11 T12
T21 T22

] [

aN+1

0

]

=

[

a1
b1

]

.

Then a1 = T11aN+1 and
T̃ = aN+1/a1 = 1/T11. (4.299)

Also, b1 = T21aN+1, which along with (4.299) gives R̃ = b1/a1 = T21/T11.
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◮ Example 4.19: Single layer reflection and transmission using transmission matrices

Repeat Example 4.15 using transmission matrices.

Solution: Since N = 2, the transmission matrix for the structure is

[

T11 T12

T21 T22

]

=





1

T̃1P̃1

Γ̃1P̃1

T̃1

Γ̃1

T̃1P̃1

P̃1

T̃1









1

T̃2

Γ̃2

T̃2

Γ̃2

T̃2

1

T̃2





=







1+Γ̃1Γ̃2P̃
2
1

T̃1T̃2P̃1

Γ̃2+Γ̃1P̃
2
1

T̃1T̃2P̃1

Γ̃1+Γ̃2P̃
2
1

T̃1T̃2P̃1

Γ̃1Γ̃2+P̃
2
1

T̃1T̃2P̃1






. (4.300)

Here we have used P̃2 = 1. The structure reflection coefficient is

R̃ =
T21

T11

=
Γ̃1 + Γ̃2P̃

2
1

1 + Γ̃1Γ̃2P̃ 2
1

(4.301)

as in (4.287). The structure transmission coefficient expression,

T̃ =
1

T11
=

T̃1T̃2P̃1

1 + Γ̃1Γ̃2P̃ 2
1

=
(1 + Γ̃1)(1 + Γ̃2)P̃1

1 + Γ̃1Γ̃2P̃ 2
1

,

is the same as (4.288). ◭

◮ Example 4.20: Reflection from a conductor-backed material layer using transmission matrices

A material slab is backed by a perfect conductor. Determine the structure reflection coeffi-
cient using transmission matrices.

Solution: Since N = 2, the transmission matrix is (4.300). The presence of the conductor
backing requires Γ̃2 = −1. Substitution into (4.301) gives

R̃ =
Γ̃1 − P̃ 2

1

1− Γ̃1P̃ 2
1

.

Compare with (4.289) of Example 4.17. ◭

◮ Example 4.21: Reflection from a double material layer using transmission matrices

Consider the two material layers of Figure 4.32. This configuration is used for the charac-
terization of material properties (cf., § 4.15). Determine the structure reflection coefficient
using transmission matrices. Consider the cases when the second layer is backed by (1) air
and (2) a conductor.
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FIGURE 4.32
Reflection from two material layers.

Solution: With N = 3, the cascaded system is described by a product of three transmission
matrices:

[

T11 T12

T21 T22

]

=





1
T̃1P̃1

Γ̃1P̃1

T̃1

Γ̃1

T̃1P̃1

P̃1

T̃1









1
T̃2P̃2

Γ̃2P̃2

T̃2

Γ̃2

T̃2P̃2

P̃2

T̃2









1
T̃3

Γ̃3

T̃3

Γ̃3

T̃3

1

T̃3





=





1+Γ̃2Γ̃3P̃
2
2 +Γ̃1Γ̃2P̃

2
1 +Γ̃1Γ̃3P̃

2
1 P̃

2
2

T̃1T̃2T̃3P̃1P̃2

Γ̃3+Γ̃2P̃
2
2 +Γ̃1Γ̃2Γ̃3P̃

2
1 +Γ̃1P̃

2
1 P̃

2
2

T̃1T̃2T̃3P̃1P̃2

Γ̃1+Γ̃1Γ̃2Γ̃3P̃
2
2 +Γ̃2P̃

2
1 +Γ̃3P̃

2
1 P̃

2
2

T̃1T̃2T̃3P̃1P̃2

Γ̃1Γ̃3+Γ̃1Γ̃2P̃
2
2 +Γ̃2Γ̃3P̃

2
1 +P̃2

1 P̃
2
2

T̃1T̃2T̃3P̃1P̃2



 .

Here we have used P̃3 = 1. The structure reflection coefficient is given by R̃ = T21/T11.
When the second layer is backed by air (free space) we have

R̃ =
Γ̃1 + Γ̃1Γ̃2Γ̃3P̃

2
2 + Γ̃2P̃

2
1 + Γ̃3P̃

2
1 P̃

2
2

1 + Γ̃2Γ̃3P̃ 2
2 + Γ̃1Γ̃2P̃ 2

1 + Γ̃1Γ̃3P̃ 2
1 P̃

2
2

where Γ̃3 =
Z0 − Z2

Z0 + Z2
. (4.302)

When the final layer is a conductor, Γ̃3 = −1 and

R̃ =
Γ̃1 − Γ̃1Γ̃2P̃

2
2 + Γ̃2P̃

2
1 − P̃ 2

1 P̃
2
2

1− Γ̃2P̃ 2
2 + Γ̃1Γ̃2P̃ 2

1 − Γ̃1P̃ 2
1 P̃

2
2

. (4.303)

We can check this by specializing it to the single layer case considered in Example 4.20.
Setting P̃2 = 1 and Γ̃2 = −1 in (4.303), we get

R̃ =
Γ̃1 + Γ̃1 − P̃ 2

1 − P̃ 2
1

1 + 1− Γ̃1P̃ 2
1 − Γ̃1P̃ 2

1

=
Γ̃1 − P̃ 2

1

1− Γ̃1P̃ 2
1

,

which agrees with (4.289). ◭

4.11.6 Electromagnetic shielding

The concept of electromagnetic shielding was introduced in § 3.7, where we defined
shielding effectiveness and examined several canonical problems for static and quasistatic
fields. Canonical problems enable us to estimate shielding effectiveness for practical
situations and also promote insight into the dependence of shielding effectiveness on a
wide variety of parameters. As this approach is substantially more difficult for general
electromagnetic fields, however, engineers often resort to numerical tools for complicated
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practical problems. For instance, we will explore the penetration of fields through a
narrow rectangular slot in a conducting ground plane in § 7.7; this will help us understand
how apertures can reduce the effectiveness of a shield. But the integral equation approach
is not easily extended to more complicated situations.

There is, however, one canonical problem that finds widespread use: the planar con-
ducting layer. Estimation of fields penetrating a planar shield relies on simple formulas;
even simpler formulas are available through suitable approximations.

Consider a planar shield of thickness ∆, immersed in free space and illuminated by a
plane wave at incidence angle θi (Figure 4.33). Although the shielding effectiveness can
be due to both electric and magnetic losses in the shield, we will restrict ourselves to
metallic shields, where the loss is due to conductivity. Thus we assume that the shield
has permeability µ = µ0µr and complex permittivity ǫ̃c, where by (4.26)

ǫ̃c = ǫ0ǫr +
σ

jω
,

with σ the conductivity of the shield. For most metals σ may be assumed constant over
frequency bands where shielding is desired. We can find the transmission coefficient of
the shield by specializing (4.288) to Γ̃1 = −Γ̃2 = Γ̃, giving

T̃ =
(1− Γ̃2)P̃

1− Γ̃2P̃ 2
, (4.304)

where the interfacial reflection coefficient is

Γ̃ =
Z − Z0

Z + Z0

and the propagation term is P̃ = e−jkz∆. Here

Z = Z‖ =
kzη

k
, Z0 = Z0‖ = η0 cos θi

for parallel polarization, and

Z = Z⊥ =
kη

kz
, Z0 = Z0⊥ =

η0
cos θi

for perpendicular polarization. In both cases kz =
√

k2 − k20 sin
2 θi, η =

√

µ/ǫ̃c, and

k = ω
√
µǫ̃c. For the case of normal incidence, kz = k and the interfacial reflection

coefficient reduces to

Γ̃ =
η − η0
η + η0

.

For either polarization, the shielding effectiveness is given by

SE = 20 log10 |1/T̃|, (4.305)

which is dependent on the incidence angle θi. Substituting the transmission coefficient
(4.304) into (4.305), we find that the shielding effectiveness can be written as the sum

SE = R+A+M. (4.306)
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FIGURE 4.33

Planar shield obliquely illuminated by a plane wave.

Here

R = −20 log10 |1− Γ̃2|, (4.307)

A = −20 log10 |P̃ |, (4.308)

M = 20 log10 |1− Γ̃2P̃ 2|. (4.309)

Each term has an important physical interpretation. The term A is independent of Γ̃
and represents the shielding effectiveness provided by attenuation of the wave as it passes
through the shield. The term R is independent of P̃ and represents the shielding provided
by the reflection of the incident wave from the initial air-shield interface. Note that since
1−Γ̃2 = (1+Γ̃)(1−Γ̃) the term R is the product of the interfacial transmission coefficient
for passage into the shield with the interfacial transmission coefficient for passage out of
the shield. When the shield is thick, |P̃ | ≪ 1, and M ≈ 0. In this case the shielding
effectiveness is completely determined by initial reflection and attenuation, i.e., by R
and A. When the shield is thin, a significant contribution to shielding is provided by the
termM , which represents the contribution due to reflections from the second (shield-air)
interface, and any subsequent multiple reflections that lead to additional attenuation and
transmission back into the region of the incident wave. While R is independent of the
shield thickness, A and M are highly dependent on the thickness. Often the thick shield
assumption is invoked and the term M is ignored.
Because the shield is assumed to be a good conductor, it is possible to provide useful

approximations to the terms in (4.306). Note that

k = ω
√

µǫ̃c = ω

√

µǫ0ǫr

(

1− j
σ

ωǫ0ǫr

)

.
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We define a good conductor as one for which

σ

ωǫ0ǫr
≫ 1

and thus

k ≈ ω
√

−jµσω =
1− j

δ
,

where

δ =
1√
πfµσ

(4.310)

is the skin depth. Note that

k

k0
=

√
µrǫr

√

1− j
σ

ωǫ0ǫr
,

and thus |k| ≫ k0. Then

kz =

√

k2 − k20 sin
2 θi ≈ k.

Hence, in the shield, k = x̂k0 sin θi + ẑkz ≈ ẑkz, meaning that the wave travels in the
shield primarily normal to the interface regardless of the incidence angle. Therefore

P̃ = e−(1−j)∆
δ (4.311)

and

A = −20 log10 |e−
∆
δ | = 8.686

∆

δ
dB. (4.312)

Because kz ≈ k when the shield is a good conductor, we also have

Z⊥ ≈ Z‖ ≈ η and Γ̃ ≈ η − Z0

η + Z0
.

Note that
η

η0
=

√

µr
ǫr + j σ

ωǫ0

(4.313)

so that |η| ≪ η0. Thus, at all incidence angles except θi ≈ 90◦,

Γ̃ ≈ −Z0 − η

Z0 + η
= −

1− η
Z0

1 + η
Z0

≈ −
(

1− η

Z0

)(

1− η

Z0

)

≈ −1 + 2
η

Z0
, (4.314)

and so

1− Γ̃2 ≈ 1−
(

1− 4
η

Z0

)

= 4
η

Z0
.

This gives

R ≈ 20 log10

∣

∣

∣

∣

Z0

4η

∣

∣

∣

∣

dB.

Finally, use of

η =

√

µ

ǫ0ǫr + j σω
≈
√

µ

j σω
=

1 + j

σδ

gives

R ≈ 20 log10

[

σδη0

4
√
2
(cos θi)

±1

]

dB, (4.315)
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where the upper sign corresponds to parallel polarization and the lower sign to perpen-
dicular polarization.
The term M can be approximated as well. Use of (4.314) gives

1− Γ̃2P̃ 2 ≈ 1−
(

1− 4
η

Z0

)

P̃ 2 ≈ 1− P̃ 2

since |η/Z0| ≪ 1. Use of (4.311) then gives

M ≈ 10 log10

[

1− 2e−2∆
δ cos 2

∆

δ
+ e−4∆

δ

]

dB. (4.316)

Assembling the approximations for R, A, and M , we have a final approximation for
the shielding effectiveness of a planar conducting screen:

SE ≈ 20 log10

[

σδη0

4
√
2
(cos θi)

±1

]

+ 8.686
∆

δ

+ 10 log10

[

1− 2e−2∆
δ cos 2

∆

δ
+ e−4∆

δ

]

dB. (4.317)

Note that to the order of this approximation, only the R term depends on the incidence
angle.

◮ Example 4.22: Low-frequency shielding effectiveness

It turns out that at low frequency, the shielding effectiveness is dominated by a constant-
frequency term. Derive a simple approximation for this term by assuming that the thickness
is much smaller than a skin depth (∆/δ ≪ 1).

Solution: We first approximate M . Use of

cos x ≈ 1− 1
2
x2, ex ≈ 1 + x+ 1

2
x2,

in (4.316) gives

1− 2e−2∆
δ cos 2

∆

δ
+ e−4∆

δ ≈ 1− 2

(

1− 2
∆

δ
+ 2

∆2

δ2

)(

1− 2
∆2

δ2

)

+ 1− 4
∆

δ
+ 8

∆2

δ2

≈ 8
∆2

δ2
.

Thus, for ∆
δ
≪ 1,

M ≈ 20 log10

[

2
√
2
∆

δ

]

.

Adding this to R from (4.315), we find

M +R ≈ 20 log10

[

σδη0

4
√
2
(cos θi)

±1

]

+ 20 log10

[

2
√
2
∆

δ

]

= 20 log10

[

σ∆η0
2

(cos θi)
±1

]

.

The propagation term is |P̃ | = |e−jkz∆| ≈ e−∆/δ ≈ 1−∆/δ. Thus, to lowest order we may
set |P | ≈ 1 and conclude that A ≈ 0 dB. This gives a simple approximation for the shielding
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effectiveness at low frequencies:

SE ≈ 20 log10

[(

η0
Rs

)

(cos θi)
±1

2

]

, (4.318)

where

Rs =
1

σ∆
is the surface resistance.

At low frequency, the expression determining M is proportional to skin depth, whereas
the expression determining R is inversely proportional to skin depth. This dependence
cancels, leaving a constant value as the dominant contribution to shielding effectiveness at
low frequency. ◭

◮ Example 4.23: Skin depth of silver paint

Silver paint is often applied to the plastic cabinets of electronic devices to provide RF
shielding. A typical silver paint has µr = 1, ǫr = 1, and σ ≈ 6000 S/cm. Plot the skin depth
of the paint and the ratio |η/η0| for the frequency range 1 MHz to 10 GHz.

Solution: From (4.313) we have

η

η0
=

√

1

1 + j σ
ωǫ0

.

Substituting σ = 6 × 105 S/m and plotting vs. frequency gives the result shown in Figure
4.34. Also shown is the skin depth, computed using (4.310), which is quite small as expected
for a good conductor at these frequencies. The intrinsic impedance of the shield is also small
next to that of free space, suggesting that the approximate formulas used to find R and M
should be quite accurate.

0.00001

0.00010

0.00100

 0.001  0.01  0.1  1  10

skin depth (m)

|η/η0|

frequency (GHz)

FIGURE 4.34
Skin depth and normalized intrinsic impedance for a shield made from silver paint. ◭
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◮ Example 4.24: Shielding with silver paint

Consider the silver paint shield described in Example 4.23. A typical application has a
thickness of 0.025 mm. For the frequency range 1 MHz to 10 GHz, compute the terms in
the shielding effectiveness (A, R, and M) using the exact formulas and add them to find
the shielding effectiveness (SE). Compare with the result from (4.317). Assume incidence
angle θi = 60◦ and perpendicular polarization.

Solution: Based on Example 4.22 we expect that the shielding effectiveness will not be
significantly dependent on frequency at lower frequencies, and should be given approximately
by (4.318). We first compute the surface resistance

Rs =
1

σ∆
=

1

15
Ω/square.

With this, we have from (4.318) a low-frequency shielding effectiveness

SE = 20 log10(15η0) = 75.04 dB.

Figure 4.35 shows R, M , A and the total shielding effectiveness SE as functions of fre-
quency, computed from the exact formulas (4.307)–(4.309). As expected, A is very small
for low frequency. Below about 100 MHz, M increases and R decreases in such a way that
the total shielding effectiveness is nearly frequency independent. In fact, SE matches the
low-frequency value of 75.04 dB to four digits until about 100 MHz. Above that SE begins
to increase along with A. When the approximate formulas are used — (4.315) for R, (4.316)
for M , and (4.312) for A — agreement to four significant figures is observed across the band
of interest.

-20
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FIGURE 4.35
Components of shielding effectiveness for a 0.025 mm thick shield made from silver paint.
θi = 60◦. ◭

4.11.7 Plane-wave propagation in an anisotropic ferrite medium

Several interesting properties of plane waves, such as Faraday rotation and the existence
of stopbands, appear only when the waves propagate through anisotropic media. We shall
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study waves propagating in a magnetized ferrite medium, noting that their behavior is
shared by waves propagating in a magnetized plasma because of the similarity in the
dyadic constitutive parameters of the two media.

Consider a uniform ferrite material having scalar permittivity ǫ̃ = ǫ and dyadic per-
meability ˜̄µ. We assume the ferrite is lossless and magnetized along the z-direction. By
(4.124)–(4.126) the permeability of the medium is

[˜̄µ(ω)] =





µ1 jµ2 0
−jµ2 µ1 0
0 0 µ0





where

µ1 = µ0

(

1 +
ωMω0

ω2
0 − ω2

)

, µ2 = µ0
ωωM
ω2
0 − ω2

.

The source-free frequency-domain wave equation can be found using (4.195) with ˜̄ζ =
˜̄ξ = 0 and ˜̄ǫ = ǫĪ:

[

∇̄ ·
(

Ī
1

ǫ

)

· ∇̄ − ω2 ˜̄µ

]

· H̃ = 0

or, since ∇̄ ·A = ∇×A,

1

ǫ
∇× (∇× H̃)− ω2 ˜̄µ · H̃ = 0. (4.319)

The simplest solutions to the wave equation for this anisotropic medium are TEM
plane waves propagating along the applied dc magnetic field. So we seek solutions of the
form

H̃(r, ω) = H̃0(ω)e
−jk·r (4.320)

where k = ẑβ and ẑ · H̃0 = 0. We can find β by enforcing (4.319). From (B.84) we find
that

∇× H̃ = −jβẑ× H̃0e
−jβz.

By Ampere’s law

Ẽ =
∇× H̃

jωǫ
= −ZTEM ẑ× H̃, (4.321)

where ZTEM = β/ωǫ is the wave impedance. Note that the wave is indeed TEM. The
second curl is found to be

∇× (∇× H̃) = −jβ∇× [ẑ× H̃0e
−jβz].

After an application of (B.49) this becomes

∇× (∇× H̃) = −jβ[e−jβz∇× (ẑ× H̃0)− (ẑ × H̃0)×∇e−jβz ].

The first term on the right side is zero, so by (B.82) we have

∇× (∇× H̃) = [−jβe−jβz ẑ× (ẑ × H̃0)](−jβ)

or, using (B.7),
∇× (∇× H̃) = β2e−jβzH̃0

since ẑ · H̃0 = 0. With this (4.319) becomes

β2H̃0 = ω2ǫ˜̄µ · H̃0. (4.322)
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We can solve (4.322) for β by writing the vector equation in component form:

β2H0x = ω2ǫ(µ1H0x + jµ2H0y),

β2H0y = ω2ǫ(−jµ2H0x + µ1H0y).

In matrix form these are
[

β2 − ω2ǫµ1 −jω2ǫµ2

jω2ǫµ2 β2 − ω2ǫµ1

] [

H0x

H0y

]

=

[

0
0

]

, (4.323)

and nontrivial solutions occur only if
∣

∣

∣

∣

β2 − ω2ǫµ1 −jω2ǫµ2

jω2ǫµ2 β2 − ω2ǫµ1

∣

∣

∣

∣

= 0.

Expansion yields the two solutions

β± = ω
√
ǫµ± (4.324)

where

µ± = µ1 ± µ2 = µ0

(

1 +
ωM

ω0 ∓ ω

)

. (4.325)

So the propagation properties of the plane wave are the same as those in a medium with
an equivalent scalar permeability given by µ±.
Associated with each of these solutions is a relationship between H0x and H0y that

can be found from (4.323). Substituting β+ into the first equation, we have

ω2ǫµ2H0x − jω2ǫµ2H0y = 0

or H0x = jH0y. Similarly, substitution of β− produces H0x = −jH0y. Thus, by (4.320)
the magnetic field may be expressed as

H̃(r, ω) = H0y(±jx̂+ ŷ)e−jβ±z .

By (4.321) we also have the electric field

Ẽ(r, ω) = ZTEMH0y(x̂+ e∓j
π
2 ŷ)e−jβ±z.

This has the form of (4.233). For β+ we have φy−φx = −π/2 and thus the wave exhibits
RHCP. For β− we have φy − φx = π/2 and LHCP.
The dispersion diagram for each polarization is shown in Figure 4.36, where we have

arbitrarily chosen ωM = 2ω0. Here we have combined (4.324) and (4.325) to produce the
normalized expression

β±
ω0/vc

=
ω

ω0

√

1 +
ωM/ω0

1∓ ω/ω0

where vc = 1/(µ0ǫ)
1/2. Except at low frequencies, an LHCP plane wave passes through

the ferrite as if the permeability is close to that of free space. Over all frequencies we
have vp < vc and vg < vc. In contrast, an RHCP wave excites the electrons in the ferrite
and a resonance occurs at ω = ω0. For all frequencies below ω0, we have vp < vc and
vg < vc, and both vp and vg reduce to zero as ω → ω0. Because the ferrite is lossless,
frequencies between ω = ω0 and ω = ω0 + ωM result in β being purely imaginary and
thus the wave being evanescent. We thus call the frequency range ω0 < ω < ω0 + ωM
a stopband ; within this band the plane wave cannot transport energy. For frequencies
above ω0+ωM the RHCP wave propagates as if it is in a medium with permeability less
than that of free space. Here we have vp > vc and vg < vc, with vp → vc and vg → vc as
ω → ∞.
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FIGURE 4.36

Dispersion plot for unmagnetized ferrite with ωM = 2ω0. Light line shows ω/β = vc =
1/(µ0ǫ)

1/2.

4.11.7.1 Faraday rotation

The solutions to the wave equation found above do not allow the existence of linearly
polarized plane waves. However, by superposing LHCP and RHCP waves we can obtain
a wave with the appearance of linear polarization. That is, over any z-plane the electric
field vector may be written as Ẽ = K(Ex0x̂+Ey0ŷ) where Ex0 and Ey0 are real (although
K may be complex). To see this let us examine

Ẽ = Ẽ+ + Ẽ− = 1
2E0(x̂− jŷ)e−jβ+z + 1

2E0(x̂+ jŷ)e−jβ−z

= 1
2E0

[

x̂
(

e−jβ+z + e−jβ−z
)

+ jŷ
(

−e−jβ+z + e−jβ−z
)]

= E0e
−j 1

2 (β++β−)z
[

x̂ cos 1
2 (β+ − β−)z + ŷ sin 1

2 (β+ − β−)z
]

or
Ẽ = E0e

−j 1
2 (β++β−)z [x̂ cos θ(z) + ŷ sin θ(z)]

where θ(z) = (β+ − β−)z/2. Because β+ 6= β−, the velocities of the two circularly
polarized waves differ and the waves superpose to form a linearly polarized wave with a
polarization that depends on the observation plane z-value. We may think of the wave
as undergoing a phase shift of (β++β−)z/2 radians as it propagates, while the direction
of Ẽ rotates to an angle θ(z) = (β+ − β−)z/2 as the wave propagates. Faraday rotation
can only occur at frequencies where both the LHCP and RHCP waves propagate, and
therefore not within the stopband ω0 < ω < ω0 + ωM .

Faraday rotation is nonreciprocal. That is, if a wave that has undergone a rotation of
θ0 radians by propagating through a distance z0 is made to propagate an equal distance
back in the direction from whence it came, the polarization does not return to its initial
state but rather incurs an additional rotation of θ0. Thus, the polarization angle of the
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wave when it returns to the starting point is not zero, but 2θ0. This effect is employed
in a number of microwave devices including gyrators, isolators, and circulators. The
interested reader should see Collin [39], Elliott [58], or Liao [118] for details. We note
that for ω ≫ ωM we can approximate the rotation angle as

θ(z) = (β+ − β−)z/2 = 1
2ωz

√
ǫµ0

[√

1 +
ωM

ω0 − ω
−
√

1 +
ωM

ω0 + ω

]

≈ − 1
2zωM

√
ǫµ0,

which is independent of frequency. So it is possible to construct Faraday rotation-based
ferrite devices that maintain their properties over wide bandwidths.
It is straightforward to extend the above analysis to the case of a lossy ferrite. We

find that for typical ferrites the attenuation constant associated with µ− is small for all
frequencies, but the attenuation constant associated with µ+ is large near the resonant
frequency (ω ≈ ω0) [39]. See Problem 4.14.

4.11.8 Propagation of cylindrical waves

By studying plane waves we have gained insight into the basic behavior of frequency-
domain and time-harmonic waves. However, these solutions do not display the funda-
mental property that waves in space must diverge from their sources. To understand this
behavior we shall treat waves having cylindrical and spherical symmetries.

4.11.8.1 Uniform cylindrical waves

In § 2.10.7 we studied the temporal behavior of cylindrical waves in a homogeneous,
lossless medium, and found that they diverge from a line source located along the z-
axis. Here we shall extend the analysis to lossy media and investigate the waves in the
frequency domain.
Consider a homogeneous region of space described by permittivity ǫ̃(ω), permeability

µ̃(ω), and conductivity σ̃(ω). We seek solutions that are invariant over a cylindrical
surface: Ẽ(r, ω) = Ẽ(ρ, ω), H̃(r, ω) = H̃(ρ, ω). Such waves are called uniform cylindrical
waves. Since the fields are z-independent we may decompose them into TE and TM sets
(§ 4.11.2). For TM polarization we may insert (4.203) into (4.204) to find

H̃φ(ρ, ω) =
1

jωµ̃(ω)

∂Ẽz(ρ, ω)

∂ρ
. (4.326)

For TE polarization we have from (4.205)

Ẽφ(ρ, ω) = − 1

jωǫ̃c(ω)

∂H̃z(ρ, ω)

∂ρ
, (4.327)

where ǫ̃c = ǫ̃ + σ̃/jω is the complex permittivity of § 4.4.1. Since Ẽ = φ̂Ẽφ + ẑẼz and

H̃ = φ̂H̃φ+ ẑH̃z, we can always decompose a cylindrical electromagnetic wave into cases

of electric and magnetic polarization. In each case the resulting field is TEMρ since Ẽ,

H̃, and ρ̂ are mutually orthogonal.
Wave equations for Ẽz in the electric polarization case and for H̃z in the magnetic

polarization case can be derived by substituting (4.202) into (4.200):

(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+ k2

){

Ẽz
H̃z

}

= 0.
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Thus the electric field must satisfy Bessel’s equation (A.126)

d2Ẽz
dρ2

+
1

ρ

dẼz
dρ

+ k2Ẽz = 0. (4.328)

This is a second-order equation with two independent solutions chosen from the list

J0(kρ), Y0(kρ), H
(1)
0 (kρ), H

(2)
0 (kρ).

We find that J0(kρ) and Y0(kρ) are useful for describing standing waves between bound-

aries, while H
(1)
0 (kρ) and H

(2)
0 (kρ) are useful for describing waves propagating in the

ρ-direction. Of these, H
(1)
0 (kρ) represents waves traveling inward while H

(2)
0 (kρ) repre-

sents waves traveling outward. At this point we are interested in studying the behavior
of outward propagating waves, and so we choose

Ẽz(ρ, ω) = − j
4
Ẽz0(ω)H

(2)
0 (kρ). (4.329)

As explained in § 2.10.7, Ẽz0(ω) is the amplitude spectrum of the wave, while the factor
−j/4 is included to make the conversion to the time domain more convenient. By (4.326)
we have

H̃φ =
1

jωµ̃

∂Ẽz
∂ρ

=
1

jωµ̃

∂

∂ρ

[

− j
4
Ẽz0H

(2)
0 (kρ)

]

. (4.330)

Using dH
(2)
0 (x)/dx = −H(2)

1 (x) we find that

H̃φ =
1

ZTM

Ẽz0
4
H

(2)
1 (kρ) (4.331)

where ZTM = ωµ̃/k is the TM wave impedance.
For the case of magnetic polarization, the field H̃z must satisfy Bessel’s equation

(4.328). Thus we choose

H̃z(ρ, ω) = − j
4
H̃z0(ω)H

(2)
0 (kρ). (4.332)

From (4.327) we find the electric field associated with the wave:

Ẽφ = −ZTE
H̃z0

4
H

(2)
1 (kρ), (4.333)

where ZTE = k/(ωǫ̃c) is the TE wave impedance.

It is not readily apparent that the terms H
(2)
0 (kρ) or H

(2)
1 (kρ) describe outward prop-

agating waves. We shall see later that the cylindrical wave may be written as a su-
perposition of plane waves, both uniform and evanescent, propagating in all possible
directions. Each of these components does have the expected wave behavior, but it is
still not obvious that the sum of such waves is outward propagating.

We saw in § 2.10.7 that when examined in the time domain, a cylindrical wave of the

form H
(2)
0 (kρ) does indeed propagate outward, and that for lossless media the velocity of

propagation of its wavefronts is v = 1/(µǫ)1/2. For time-harmonic fields, the cylindrical
wave takes on a familiar behavior when the observation point is sufficiently removed from
the source. We may specialize (4.329) to the time-harmonic case by setting ω = ω̌ and
using phasors, giving

Ěz(ρ) = − j
4
Ěz0H

(2)
0 (kρ).
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If |kρ| ≫ 1 we can use the asymptotic representation (E.64)

H(2)
ν (z) ∼

√

2

πz
e−j(z−π/4−νπ/2) (|z| ≫ 1, −2π < arg z < π)

to obtain

Ěz(ρ) ∼ Ěz0
e−jkρ√
8jπkρ

(4.334)

and

Ȟφ(ρ) ∼ −Ěz0
1

ZTM

e−jkρ√
8jπkρ

(4.335)

for |kρ| ≫ 1. Except for the
√
ρ term in the denominator, the wave has very much the

same form as the plane waves encountered earlier. For the case of magnetic polarization,
we can approximate (4.332) and (4.333) to obtain

Ȟz(ρ) ∼ Ȟz0
e−jkρ√
8jπkρ

(4.336)

and

Ěφ(ρ) ∼ ZTEȞz0
e−jkρ√
8jπkρ

(4.337)

for |kρ| ≫ 1.
To interpret the wave nature of the field (4.334), let us substitute k = β − jα into

the exponential function, where β is the phase constant (4.215) and α is the attenuation
constant (4.216). Then

Ěz(ρ) ∼ Ěz0
1√

8jπkρ
e−αρe−jβρ.

Assuming Ěz0 = |Ez0|ejξ
E

, the time-domain representation is found from (4.137):

Ez(ρ, t) =
|Ez0|√
8πkρ

e−αρ cos[ω̌t− βρ− π/4 + ξE ]. (4.338)

We can identify a surface of constant phase as a locus of points obeying

ω̌t− βρ− π/4 + ξE = CP (4.339)

where CP is some constant. These surfaces are cylinders coaxial with the z-axis, and are
called cylindrical wavefronts. Note that surfaces of constant amplitude, as determined
by e−αρ/

√
ρ = CA for constant CA, are also cylinders.

The cosine term in (4.338) represents a traveling wave. As t is increased the argument
of the cosine function remains fixed as long as ρ is increased correspondingly. Hence the
cylindrical wavefronts propagate outward as time progresses. As the wavefront travels
outward, the field is attenuated because of the factor e−αρ. The velocity of propagation
of the phase fronts may be computed by a now-familiar technique. Differentiating (4.339)
with respect to t we find that

ω̌ − β
dρ

dt
= 0,

and thus have the phase velocity vp of the outward expanding phase fronts:

vp =
dρ

dt
=
ω̌

β
.
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Calculation of wavelength also proceeds as before. Examining the two adjacent wave-
fronts that produce the same value of the cosine function in (4.338), we find βρ1 =
βρ2 − 2π, or

λ = ρ2 − ρ1 = 2π/β.

Computation of the power carried by a cylindrical wave is straightforward. Since a
cylindrical wavefront is infinite in extent, we usually speak of the power per unit length
carried by the wave. This is found by integrating the time-average Poynting flux (4.157).
For electric polarization we find the time-average power flux density using (4.329) and
(4.330):

Sav =
1
2 Re{Ězẑ× Ȟ∗

φφ̂} = 1
2 Re

{

ρ̂
j

16Z∗
TM

|Ěz0|2H(2)
0 (kρ)H

(2)∗
1 (kρ)

}

. (4.340)

For magnetic polarization we use (4.332) and (4.333):

Sav = 1
2 Re{Ěφφ̂× Ȟ∗

z ẑ} = 1
2 Re

{

−ρ̂
jZTE
16

|Ȟz0|2H(2)∗
0 (kρ)H

(2)
1 (kρ)

}

.

For a lossless medium these expressions can be greatly simplified. By (E.5)

jH
(2)
0 (kρ)H

(2)∗
1 (kρ) = j[J0(kρ)− jN0(kρ)][J1(kρ) + jN1(kρ)],

hence

jH
(2)
0 (kρ)H

(2)∗
1 (kρ) = [N0(kρ)J1(kρ)−J0(kρ)N1(kρ)]+j[J0(kρ)J1(kρ)+N0(kρ)N1(kρ)].

Substituting this into (4.340) and remembering that ZTM = η = (µ/ǫ)1/2 is real for
lossless media, we have

Sav = ρ̂
1

32η
|Ěz0|2[N0(kρ)J1(kρ)− J0(kρ)N1(kρ)] = ρ̂

|Ěz0|2
16πkρη

by the Wronskian relation (E.90).
The power density is inversely proportional to ρ. When we compute the total time-

average power per unit length passing through a cylinder of radius ρ, this factor cancels
with the ρ-dependence of the surface area to give a result independent of radius:

Pav/l =

∫ 2π

0

Sav · ρ̂ρ dφ =
|Ěz0|2
8kη

. (4.341)

For a lossless medium there is no mechanism to dissipate the power and so the wave prop-
agates unabated. A similar calculation for the case of magnetic polarization (Problem
4.15) gives

Sav = ρ̂
η|Ȟz0|2
16πkρ

and Pav/l =
η|Ȟz0|2

8k
.

For a lossy medium the expressions are more difficult to evaluate. In this case we expect
the total power passing through a cylinder to depend on the radius of the cylinder, since
the fields decay exponentially with distance and thus give up power as they propagate.
Assuming the observation point is far from the z-axis with |kρ| ≫ 1, we can use (4.334)
and (4.335) for the electric polarization case to obtain

Sav = 1
2 Re{Ězẑ× Ȟ∗

φφ̂} = 1
2 Re

{

ρ̂
e−2αρ

8πρ|k|Z∗
TM

|Ěz0|2
}

.
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So

Pav/l =

∫ 2π

0

Sav · ρ̂ρ dφ = Re

{

1

Z∗
TM

}

|Ěz0|2
e−2αρ

8|k| .

For a lossless material, ZTM = η and α = 0, and the expression reduces to (4.341) as
expected. Thus for lossy materials the power depends on the radius of the cylinder. In
the case of magnetic polarization, we use (4.336) and (4.337) to get

Sav = 1
2 Re{Ěφφ̂× Ȟ∗

z ẑ} = 1
2 Re

{

ρ̂Z∗
TE

e−2αρ

8πρ|k| |Ȟz0|2
}

and

Pav/l = Re {Z∗
TE} |Ȟz0|2

e−2αρ

8|k| .

4.11.8.2 Fields of a line source

The simplest example of a uniform cylindrical wave is that produced by an electric or
magnetic line source. Consider first an infinite electric line current of amplitude Ĩ(ω)
on the z-axis, immersed within a medium of permittivity ǫ̃(ω), permeability µ̃(ω), and
conductivity σ̃(ω). We assume the current does not vary in the z-direction, so the
problem is two-dimensional. We can decompose the field produced by the line source
into TE and TM cases according to § 4.11.2. It turns out that an electric line source
only excites TM fields, as we shall show in § 5.4, and thus we need only Ẽz to completely
describe the fields.
By symmetry the fields are φ-independent and thus the wave produced by the line

source is a uniform cylindrical wave. Since the wave propagates outward from the line
source we have the electric field from (4.329),

Ẽz(ρ, ω) = − j
4
Ẽz0(ω)H

(2)
0 (kρ),

and the magnetic field from (4.331),

H̃φ(ρ, ω) =
k

ωµ̃

Ẽz0(ω)

4
H

(2)
1 (kρ).

We can find Ẽz0 by using Ampere’s law:

∮

Γ

H̃ · dl =
∫

S

J̃ · dS+ jω

∫

S

D̃ · dS.

Since J̃ is the sum of the impressed current Ĩ and the secondary conduction current σ̃Ẽ,
we can also write

∮

Γ

H̃ · dl = Ĩ +

∫

S

(σ̃ + jωǫ̃)Ẽ · dS = Ĩ + jωǫ̃c
∫

S

Ẽ · dS.

Choosing our path of integration as a circle of radius a in the z = 0 plane and substituting
for Ẽz and H̃φ, we find that

k

ωµ̃

Ẽz0
4
H

(2)
1 (ka)2πa = Ĩ + jωǫ̃c2π

−jẼz0
4

lim
δ→0

∫ a

δ

H
(2)
0 (kρ)ρ dρ. (4.342)
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The limit operation is required because H
(2)
0 (kρ) diverges as ρ → 0. By (E.106) the

integral is

lim
δ→0

∫ a

δ

H
(2)
0 (kρ)ρ dρ =

a

k
H

(2)
1 (ka)− 1

k
lim
δ→0

δH
(2)
1 (kδ).

The limit may be found by using H
(2)
1 (x) = J1(x) − jN1(x) and the small argument

approximations (E.50) and (E.53):

lim
δ→0

δH
(2)
1 (δ) = lim

δ→0
δ

[

kδ

2
− j

(

− 1

π

2

kδ

)]

= j
2

πk
.

Substituting these expressions into (4.342), we obtain

k

ωµ̃

Ẽz0
4
H

(2)
1 (ka)2πa = Ĩ + jωǫ̃c2π

−jẼz0
4

[

a

k
H

(2)
1 (ka)− j

2

πk2

]

.

Using k2 = ω2µ̃ǫ̃c we find that the two Hankel function terms cancel. Solving for Ẽz0 we
have Ẽz0 = −jωµ̃Ĩ and therefore

Ẽz(ρ, ω) = −ωµ̃
4
Ĩ(ω)H

(2)
0 (kρ) = −jωµ̃Ĩ(ω)G̃(x, y|0, 0;ω). (4.343)

Here G̃ is the two-dimensional Green’s function

G̃(x, y|x′, y′;ω) = 1

4j
H

(2)
0

(

k
√

(x− x′)2 + (y − y′)2
)

. (4.344)

Green’s functions are examined in greater detail in Chapter 5.
It is also possible to determine the field amplitude by evaluating

lim
a→0

∮

C

H̃ · dl.

This produces an identical result and is a bit simpler since it can be argued that the
surface integral of Ẽz vanishes as a → 0 without having to perform the calculation
directly [82, 12].

For a magnetic line source Ĩm(ω) aligned along the z-axis, we proceed as above, but
note that the source only produces TE fields. By (4.332) and (4.333) we have

H̃z(ρ, ω) = − j
4
H̃z0(ω)H

(2)
0 (kρ), Ẽφ = − k

ωǫ̃c
H̃0z

4
H

(2)
1 (kρ).

We can find H̃z0 by applying Faraday’s law
∮

C

Ẽ · dl = −
∫

S

J̃m · dS− jω

∫

S

B̃ · dS

about a circle of radius a in the z = 0 plane. We have

− k

ωǫ̃c
H̃z0

4
H

(2)
1 (ka)2πa = −Ĩm − jωµ̃

[

− j
4

]

H̃z02π lim
δ→0

∫ a

δ

H
(2)
0 (kρ)ρ dρ.

Proceeding as above we find that H̃z0 = jωǫ̃cĨm and

H̃z(ρ, ω) = −ωǫ̃
c

4
Ĩm(ω)H

(2)
0 (kρ) = −jωǫ̃cĨm(ω)G̃(x, y|0, 0;ω). (4.345)
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We can find the magnetic field of a magnetic line current via the field of an electric
line current and the duality principle. Letting the magnetic current equal −η times the
electric current and using (4.192), we have

H̃z0 =

(

−1

η

Ĩm(ω)

Ĩ(ω)

)

(

−1

η

[

−ωµ̃
4
Ĩ(ω)H

(2)
0 (kρ)

])

= −Ĩm(ω)
ωǫ̃c

4
H

(2)
0 (kρ)

as in (4.345).

4.11.8.3 Nonuniform cylindrical waves

When we solve two-dimensional boundary value problems we encounter cylindrical waves
that are z-independent but φ-dependent. Although such waves propagate outward, they
have a more complicated structure than those considered above.
For the case of TM polarization, we have, by (4.204),

H̃ρ =
j

ZTMk

1

ρ

∂Ẽz
∂φ

, (4.346)

H̃φ = − j

ZTMk

∂Ẽz
∂ρ

, (4.347)

where ZTM = ωµ̃/k. For the TE case we have, by (4.205),

Ẽρ = − jZTE
k

1

ρ

∂H̃z

∂φ
, (4.348)

Ẽφ =
jZTE
k

∂H̃z

∂ρ
,

where ZTE = k/ωǫ̃c. By (4.200) the wave equations are

(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂φ2
+ k2

){

Ẽz
H̃z

}

= 0.

Because this has the form of (A.119) with ∂/∂z → 0, we have

{

Ẽz(ρ, φ, ω)

H̃z(ρ, φ, ω)

}

= P (ρ, ω)Φ(φ, ω) (4.349)

where

Φ(φ, ω) = Aφ(ω) sin kφφ+Bφ(ω) cos kφφ,

P (ρ) = Aρ(ω)B
(1)
kφ

(kρ) +Bρ(ω)B
(2)
kφ

(kρ), (4.350)

and where B
(1)
ν (z) and B

(2)
ν (z) are any two independent Bessel functions chosen from

the set
Jν(z), Nν(z), H(1)

ν (z), H(2)
ν (z).

In bounded regions we generally use the oscillatory functions Jν(z) andNν(z) to represent

standing waves. In unbounded regions we generally use H
(2)
ν (z) and H

(1)
ν (z) to represent

outward and inward propagating waves, respectively.



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 420 — #444
✐

✐

✐

✐

✐

✐

420 Electromagnetics

◮ Example 4.25: Expansion of a plane wave in term of cylindrical waves

Consider a TM plane wave in free space propagating along the x-axis with the electric field

Ẽ(r) = ẑẼ0e
−jk0x.

Find a representation for Ẽ in terms of a superposition of cylindrical waves.

Solution: Since the plane-wave field is z-independent and obeys the homogeneous Helmholtz
equation, we may represent it in terms of nonuniform cylindrical waves:

Ẽz = Ẽ0e
−jk0ρ cosφ =

∞
∑

n=0

[En sinnφ+ Fn cosnφ] Jn(k0ρ).

Here we have chosen the Bessel function Jn(k0ρ) since the origin is included and the functions

Nν(z), H
(1)
ν (z), and H

(2)
ν (z) are all singular at z = 0. We also note that ν = n must be an

integer since the plane-wave field is periodic in φ. Applying orthogonality, we see immediately
that En = 0 and that

2π

ǫm
FmJm(k0ρ) = Ẽ0

∫ π

−π

cosmφe−jk0ρ cosφ dφ = Ẽ02πj
−mJm(k0ρ),

where ǫn is Neumann’s number (A.133) and where we have used (E.85) and (E.39) to evaluate
the integral. Thus, Fn = Ẽ0ǫnj

−n and

Ẽz =
∞
∑

n=0

Ẽ0ǫnj
−nJn(k0ρ) cosnφ. ◭ (4.351)

4.11.8.4 Scattering by a material cylinder

A variety of boundary value problems can be solved using nonuniform cylindrical waves.
We shall examine two interesting cases in which an external field is impressed on a
two-dimensional object. The impressed field creates secondary sources within or on the
object, and these in turn create a secondary field. Our goal is to determine the latter by
applying appropriate boundary conditions.

As a first example, consider a material cylinder of radius a, complex permittivity ǫ̃c,
and permeability µ̃, aligned along the z-axis in free space (Figure 4.37). An incident
plane wave propagating in the x-direction is impressed on the cylinder, inducing sec-
ondary polarization and conduction currents within the cylinder. These in turn produce
secondary or scattered fields, which are standing waves within the cylinder and outward
traveling waves outside the cylinder. Although we have not yet learned how to write
the secondary fields in terms of the impressed sources, we can solve for the fields as a
boundary value problem. The total field must obey the boundary conditions on tangen-
tial components at the interface between the cylinder and surrounding free space. We
need not worry about the effect of the secondary sources on the source of the primary
field, since by definition impressed sources cannot be influenced by secondary fields.

The scattered field can be found using superposition. When excited by a TM impressed
field, the secondary field is also TM. The situation for TE excitation is similar. By
decomposing the impressed field into TE and TM components, we may solve for the
scattered field in each case and then superpose the results to determine the complete
solution.
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FIGURE 4.37

TM plane-wave field incident on a material cylinder.

We first consider the TM case. The impressed electric field may be written as

Ẽi(r, ω) = ẑẼ0(ω)e
−jk0x = ẑẼ0(ω)e

−jk0ρ cosφ (4.352)

while the magnetic field is, by (4.214),

H̃i(r, ω) = −ŷ
Ẽ0(ω)

η0
e−jk0x = −(ρ̂ sinφ+ φ̂ cosφ)

Ẽ0(ω)

η0
e−jk0ρ cosφ.

Here k0 = ω(µ0ǫ0)
1/2 and η0 = (µ0/ǫ0)

1/2. The scattered electric field takes the form
of a nonuniform cylindrical wave (4.349). Periodicity in φ implies that kφ is an integer,

say kφ = n. Within the cylinder we cannot use any of the functions Nn(kρ), H
(2)
n (kρ),

or H
(1)
n (kρ) to represent the radial dependence of the field, since each is singular at the

origin. So we choose B
(1)
n (kρ) = Jn(kρ) and Bρ(ω) = 0 in (4.350). Physically, Jn(kρ)

represents the standing wave created by the interaction of outward and inward propagat-

ing waves. External to the cylinder we use H
(2)
n (kρ) to represent the radial dependence

of the secondary field components: we avoid Nn(kρ) and Jn(kρ) since these represent

standing waves, and avoid H
(1)
n (kρ) since there are no external secondary sources to

create an inward traveling wave.
Any attempt to satisfy the boundary conditions by using a single nonuniform wave

fails. This is because the sinusoidal dependence on φ of each individual nonuniform wave
cannot match the more complicated dependence of the impressed field (4.352). Since the
sinusoids are complete, an infinite series of the functions (4.349) can be used to represent
the scattered field. So we have inside the cylinder the total field

Ẽz(r, ω) =

∞
∑

n=0

[An(ω) sinnφ+Bn(ω) cosnφ] Jn(kρ)

where k = ω(µ̃ǫ̃c)1/2. Outside the cylinder we have free space and thus have the scattered
field

Ẽsz(r, ω) =

∞
∑

n=0

[Cn(ω) sinnφ+Dn(ω) cosnφ]H
(2)
n (k0ρ). (4.353)
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Equations (4.346) and (4.347) yield the total magnetic field inside the cylinder:

H̃ρ =

∞
∑

n=0

jn

ZTMk

1

ρ
[An(ω) cosnφ−Bn(ω) sinnφ] Jn(kρ),

H̃φ = −
∞
∑

n=0

j

ZTM
[An(ω) sinnφ+Bn(ω) cosnφ] J

′
n(kρ),

where ZTM = ωµ̃/k. Outside the cylinder

H̃s
ρ =

∞
∑

n=0

jn

η0k0

1

ρ
[Cn(ω) cosnφ−Dn(ω) sinnφ]H

(2)
n (k0ρ),

H̃s
φ = −

∞
∑

n=0

j

η0
[Cn(ω) sinnφ+Dn(ω) cosnφ]H

(2)′
n (k0ρ).

Here J ′
n(z) = dJn(z)/dz and H

(2)′
n (z) = dH

(2)
n (z)/dz.

We have two sets of unknown spectral amplitudes, (An, Bn) and (Cn, Dn). These can
be determined by applying the boundary conditions at the interface. Since the total field
outside the cylinder is the sum of the impressed and scattered terms, an application of
continuity of the tangential electric field at ρ = a gives us

∞
∑

n=0

[An sinnφ+Bn cosnφ] Jn(ka)

=

∞
∑

n=0

[Cn sinnφ+Dn cosnφ]H
(2)
n (k0a) + Ẽ0e

−jk0a cosφ,

which must hold for all −π ≤ φ ≤ π. To remove the coefficients from the sum, we apply
orthogonality. Multiplying both sides by sinmφ, integrating over [−π, π], and using the
orthogonality conditions (A.130)–(A.132), we obtain

πAmJm(ka)− πCmH
(2)
m (k0a) = Ẽ0

∫ π

−π
sinmφe−jk0a cosφ dφ = 0. (4.354)

Multiplying by cosmφ and integrating, we find that

2πBmJm(ka)− 2πDmH
(2)
m (k0a) = Ẽ0ǫm

∫ π

−π
cosmφe−jk0a cosφ dφ

= 2πẼ0ǫmj
−mJm(k0a) (4.355)

where ǫn is Neumann’s number (A.133) and where we have used (E.85) and (E.39) to
evaluate the integral.

We must also have continuity of the tangential magnetic field H̃φ at ρ = a. Thus

−
∞
∑

n=0

j

ZTM
[An sinnφ+Bn cosnφ] J

′
n(ka) =

−
∞
∑

n=0

j

η0
[Cn sinnφ+Dn cosnφ]H

(2)′
n (k0a)− cosφ

Ẽ0

η0
e−jk0a cosφ
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must hold for all −π ≤ φ ≤ π. By orthogonality,

π
j

ZTM
AmJ

′
m(ka)−π j

η0
CmH

(2)′
m (k0a) =

Ẽ0

η0

∫ π

−π
sinmφ cosφe−jk0a cosφ dφ = 0 (4.356)

and

2π
j

ZTM
BmJ

′
m(ka)− 2π

j

η0
DmH

(2)′
m (k0a) = ǫm

Ẽ0

η0

∫ π

−π
cosmφ cosφe−jk0a cosφ dφ.

The integral may be computed as

∫ π

−π
cosmφ cosφe−jk0a cosφ dφ = j

d

d(k0a)

∫ π

−π
cosmφe−jk0a cosφ dφ = j2πj−mJ ′

m(k0a)

and thus

1

ZTM
BmJ

′
m(ka)− 1

η0
DmH

(2)′
m (k0a) =

Ẽ0

η0
ǫmj

−mJ ′
m(k0a). (4.357)

We now have four equations for the coefficients An, Bn, Cn, Dn. We may write (4.354)
and (4.356) as

[

Jm(ka) −H(2)
m (k0a)

η0
ZTM

J ′
m(ka) −H(2)′

m (k0a)

]

[

Am

Cm

]

= 0, (4.358)

and (4.355) and (4.357) as

[

Jm(ka) −H(2)
m (k0a)

η0
ZTM

J ′
m(ka) −H(2)′

m (k0a)

]

[

Bm

Dm

]

=

[

Ẽ0ǫmj
−mJm(k0a)

Ẽ0ǫmj
−mJ ′

m(k0a)

]

. (4.359)

Matrix equations (4.358) and (4.359) cannot hold simultaneously unless Am = Cm = 0.
Then the solution to (4.359) is

Bm = Ẽ0ǫmj
−m
[

H
(2)
m (k0a)J

′
m(k0a)− Jm(k0a)H

(2)′
m (k0a)

η0
ZTM

J ′
m(ka)H

(2)
m (k0a)−H

(2)′
m (k0a)Jm(ka)

]

,

Dm = −Ẽ0ǫmj
−m
[

η0
ZTM

J ′
m(ka)Jm(k0a)− J ′

m(k0a)Jm(ka)

η0
ZTM

J ′
m(ka)H

(2)
m (k0a)−H

(2)′
m (k0a)Jm(ka)

]

.

With these coefficients we can calculate the field inside the cylinder (ρ ≤ a) from

Ẽz(r, ω) =

∞
∑

n=0

Bn(ω)Jn(kρ) cosnφ, (4.360)

H̃ρ(r, ω) = −
∞
∑

n=0

jn

ZTMk

1

ρ
Bn(ω)Jn(kρ) sinnφ,

H̃φ(r, ω) = −
∞
∑

n=0

j

ZTM
Bn(ω)J

′
n(kρ) cosnφ,
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and the field outside the cylinder (ρ > a) from

Ẽz(r, ω) = Ẽ0(ω)e
−jk0ρ cosφ +

∞
∑

n=0

Dn(ω)H
(2)
n (k0ρ) cosnφ, (4.361)

H̃ρ(r, ω) = − sinφ
Ẽ0(ω)

η0
e−jk0ρ cosφ −

∞
∑

n=0

jn

η0k0

1

ρ
Dn(ω)H

(2)
n (k0ρ) sinnφ,

H̃φ(r, ω) = − cosφ
Ẽ0(ω)

η0
e−jk0ρ cosφ −

∞
∑

n=0

j

η0
Dn(ω)H

(2)′
n (k0ρ) cosnφ.

◮ Example 4.26: Total field for plane-wave scattering by a dielectric cylinder

Consider a TM plane wave incident along the x-axis onto a dielectric cylinder immersed in
free space. The cylinder has dielectric constant ǫr = 3 and radius a = 2λ0 where λ0 is the
free-space wavelength. Use the series solution to compute and plot the magnitude of the
total field |Ẽz/Ẽ0| within a square of side 4a centered on the cylinder.

Solution: The total axial electric field may be computed by evaluating the series (4.360)
inside the cylinder and the series (4.361) outside the cylinder. We normalize distance to the
cylinder radius such that

k0ρ = 2π
ρ

a

a

λ0
, kρ = 2π

√
ǫr
ρ

a

a

λ0
,

with a/λ0 = 2 and k0a = 2π(a/λ0), and plot the total field for values of (ρ/a, φ). The field
magnitude is shown in Figure 4.38, where the series has been terminated at n = 150.
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FIGURE 4.38
Total axial electric field |Ẽz/Ẽ0| for a dielectric cylinder of radius 2λ0 and permittivity 3ǫ0
found using the series solution.
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A standing wave pattern appears outside the cylinder along the incidence direction, the
incident and scattered fields combining to create regions of constructive and destructive
interference with a period of a half wavelength (a/4). A standing wave pattern also appears
inside the cylinder, where internal reflections cause constructive and destructive interference.
The internal interference pattern has a smaller period of a/4

√
3 corresponding to the shorter

wavelength in the dielectric. Note that the cylinder produces a lens effect, with the wave
inside converging to a point at the far side of the cylinder where the field is about 3.1 times
the strength of the incident field. ◭

We can specialize these results for a perfectly conducting cylinder by allowing σ̃ → ∞:

η0
ZTM

=

√

µ0ǫ̃c

µ̃ǫ0
→ ∞, Bn → 0, Dn → −Ẽ0ǫnj

−n Jn(k0a)

H
(2)
n (k0a)

.

In this case it is convenient to combine the formulas for the impressed and scattered
fields when forming the total fields. Expanding the impressed field as in (4.351) gives

Ẽiz =

∞
∑

n=0

Ẽ0ǫnj
−nJn(k0ρ) cosnφ.

Adding this field to the scattered field, we have the total field outside the cylinder,

Ẽz = Ẽ0

∞
∑

n=0

ǫnj
−n

H
(2)
n (k0a)

[

Jn(k0ρ)H
(2)
n (k0a)− Jn(k0a)H

(2)
n (k0ρ)

]

cosnφ, (4.362)

while the field within the cylinder vanishes. Then, by (4.347),

H̃φ = − j

η0
Ẽ0

∞
∑

n=0

ǫnj
−n

H
(2)
n (k0a)

[

J ′
n(k0ρ)H

(2)
n (k0a)− Jn(k0a)H

(2)′
n (k0ρ)

]

cosnφ.

This in turn gives us the surface current induced on the cylinder. From the boundary
condition J̃s = n̂ × H̃|ρ=a = ρ̂ × [ρ̂H̃ρ + φ̂H̃φ]|ρ=a = ẑH̃φ|ρ=a and an application of
(E.95) we have

Js(φ, ω) = ẑ
2Ẽ0

η0k0πa

∞
∑

n=0

ǫnj
−n

H
(2)
n (k0a)

cosnφ. (4.363)

Plots of the surface current may be found in Chapter 7, where results from this section
are compared to results obtained by solving an integral equation.

◮ Example 4.27: Total field for plane-wave scattering by a conducting cylinder

Consider a TM plane wave incident along the x-axis onto a perfectly conducting cylinder of
radius 2λ0 in free space. Compute and plot the magnitude of the total field |Ẽz/Ẽ0| within
a square of side 4a centered on the cylinder using the series solution.

Solution: The total axial electric field may be computed by evaluating the series (4.362).
We normalize distance to the cylinder radius and compute

Ẽz

Ẽ0

=
∞
∑

n=0

ǫnj
−n cosnφ

H
(2)
n

(

2π a
λ0

)

[

Jn

(

2π
a

λ0

ρ

a

)

H(2)
n

(

2π
a

λ0

)

− Jn

(

2π
a

λ0

)

H(2)
n

(

2π
a

λ0

ρ

a

)]

with a/λ0 = 2, for values of (ρ/a, φ) surrounding the cylinder. The field magnitude is
shown in Figure 4.39 for n = 150 terms. First note that the field vanishes at the surface of
the cylinder (and has been set to zero within), as expected from the boundary condition.
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Second, a standing wave pattern is seen along the incidence direction, where the incident and
scattered fields combine to create regions of constructive and destructive interference with
a period of a half wavelength (a/4). The maximum amplitude at the points of constructive
interference is twice the incident field amplitude, as expected. Finally, a shadow region
appears on the side opposite the incidence direction (the direction of forward scattering).
The field is not identically zero within this region, because of diffraction produced by creeping
waves of current that travel around the cylinder and radiate as they travel.
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FIGURE 4.39
Total axial electric field |Ẽz/Ẽ0| around a PEC cylinder of radius 2λ0, found using the series
solution. ◭

◮ Example 4.28: Total field for plane-wave scattering by a conducting cylinder using physical
optics

Consider a TM plane wave incident along the x-axis onto a perfectly conducting cylinder of
radius 2λ0 in free space. Compute and plot the magnitude of the total field |Ẽz/Ẽ0| within
a square of side 4a centered on the cylinder using the physical optics approximation.

Solution: The physical optics (PO) current is given by J̃s ≈ 2n̂ × H̃i in regions of illumi-
nation and by J̃s = 0 in regions of shadow. Use of

H̃
i = −ŷ

Ẽ0

η0
ejk0x

gives

J̃sz(φ) = −2
Ẽ0

η0
cos φe−jk0a cos φ (4.364)

on the surface at ρ = a. Figure 7.51 compares the PO current with that found using the
series solution. The currents match closely over much of the illuminated region, although
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the series solution reveals a small but significant current in the shadow region. Hence we
might expect the scattered field produced using the PO approximation to work well in the
illuminated region, but not necessarily in the shadow region.

The scattered field for the PO approximation may be computed using the two-dimensional
Green’s function:

Ẽsz(x, y, ω) = −jωµ0

∫

Jsz(x
′, y′, ω)G̃(x, y|x′, y′;ω) dl′.

The Green’s function is given by (4.344), where x = ρ cos φ, y = ρ sinφ, x′ = a cosφ, and
y′ = a sinφ′. Noting that

(x− x′)2 + (y − y′)2 = ρ2 + a2 − 2aρ cos(φ− φ′),

substituting the PO current from (4.364), and writing in terms of normalized distances, we
obtain

Ẽsz(ρ, φ) = πẼ0
a

λ0

∫ 3π/2

π/2

cosφ′e
−j2π a

λ0
cosφ′

·

·H(2)
0

(

2π
a

λ0

√

1 +
(ρ

a

)2

− 2
ρ

a
cos(φ− φ′)

)

dφ′.

Figure 4.40 shows the magnitude of the normalized total electric field around the cylinder
found with a/λ0 = 2 using PO. The field on the illuminated side matches well with the
series solution shown in Figure 4.39, revealing a clear standing wave pattern. The field on
the opposite side does not match as well, with a much less distinct shadow region than is
seen using the series solution. Thus, ignoring the surface current in the shadow region leads
to an error most pronounced in the shadow region.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

y
/a

x/a

"cyl_PO.txt" using 1:2:3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

FIGURE 4.40
Total axial electric field |Ẽz/Ẽ0| around a PEC cylinder of radius 2λ0 found using PO. ◭
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FIGURE 4.41

Geometry of a perfectly conducting wedge illuminated by a line source.

Computation of the scattered field for a magnetically polarized impressed field proceeds
similarly. The impressed electric and magnetic fields are assumed to be

Ẽi(r, ω) = ŷẼ0(ω)e
−jk0x = (ρ̂ sinφ+ φ̂ cosφ)Ẽ0(ω)e

−jk0ρ cosφ,

H̃i(r, ω) = ẑ
Ẽ0(ω)

η0
e−jk0x = ẑ

Ẽ0(ω)

η0
e−jk0ρ cosφ.

For a perfectly conducting cylinder, the total magnetic field is

H̃z =
Ẽ0

η0

∞
∑

n=0

ǫnj
−n

H
(2)′
n (k0a)

[

Jn(k0ρ)H
(2)′
n (k0a)− J ′

n(k0a)H
(2)
n (k0ρ)

]

cosnφ. (4.365)

The details are left as an exercise.

4.11.8.5 Scattering by a perfectly conducting wedge

As a second example, consider a perfectly conducting wedge immersed in free space and
illuminated by a line source (Figure 4.41) carrying current Ĩ(ω) and located at (ρ0, φ0).
The current, assumed z-invariant, induces a secondary current on the surface of the
wedge, which in turn produces a secondary (scattered) field. This scattered field, also
z-invariant, can be found by solving a boundary value problem. We do this by separating
space into the two regions ρ < ρ0 and ρ > ρ0, 0 < φ < ψ. Each of these is source-free, so
we can represent the total field using nonuniform cylindrical waves of the type (4.349).
The line source is brought into the problem by applying the boundary condition on the
tangential magnetic field across the cylindrical surface ρ = ρ0.

As the impressed electric field has only a z-component, so do the scattered and total
electric fields. We wish to represent the total field Ẽz in terms of nonuniform cylindrical
waves of the type (4.349). Since the field is not periodic in φ, the separation constant
kφ need not be an integer; instead, its value is determined by the positions of the wedge
boundaries. For the region ρ < ρ0 we represent the radial dependence of the field using
the functions Jν since the field must be finite at the origin. For ρ > ρ0 we use the
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outward-propagating wave functions H
(2)
δ . Thus

Ẽz(ρ, φ, ω) =

{

∑

ν [Aν sin νφ+Bν cos νφ] Jν(k0ρ), ρ < ρ0,
∑

δ [Cδ sin δφ+Dδ cos δφ]H
(2)
δ (k0ρ), ρ > ρ0.

(4.366)

The coefficients Aν , Bν , Cδ, Dδ and separation constants ν, δ may be found by applying
the boundary conditions on the fields at the surface of the wedge and across the surface
ρ = ρ0. On the wedge face at φ = 0 we must have Ẽz = 0, hence Bν = Dδ = 0. On the
wedge face at φ = ψ we must also have Ẽz = 0, requiring sin νψ = sin δψ = 0 and hence
ν = δ = νn = nπ/ψ for n = 1, 2, . . .. So

Ẽz =

{

∑∞
n=0An sin νnφJνn(k0ρ), ρ < ρ0,

∑∞
n=0 Cn sin νnφH

(2)
νn (k0ρ), ρ > ρ0.

(4.367)

The magnetic field can be found from (4.346)–(4.347):

H̃ρ =

{

∑∞
n=0An

j
η0k0

νn
ρ cos νnφJνn(k0ρ), ρ < ρ0,

∑∞
n=0 Cn

j
η0k0

νn
ρ cos νnφH

(2)
νn (k0ρ), ρ > ρ0,

(4.368)

H̃φ =

{

−∑∞
n=0An

j
η0

sin νnφJ
′
νn(k0ρ), ρ < ρ0,

−∑∞
n=0 Cn

j
η0

sin νnφH
(2)′
νn (k0ρ), ρ > ρ0.

(4.369)

The coefficients An and Cn are found by applying the boundary conditions at ρ = ρ0.
By continuity of the tangential electric field,

∞
∑

n=0

An sin νnφJνn(k0ρ0) =

∞
∑

n=0

Cn sin νnφH
(2)
νn (k0ρ0).

We now apply orthogonality over the interval [0, ψ]. Multiplying by sin νmφ and inte-
grating, we have

∞
∑

n=0

AnJνn(k0ρ0)

∫ ψ

0

sin νnφ sin νmφdφ =

∞
∑

n=0

CnH
(2)
νn (k0ρ0)

∫ ψ

0

sin νnφ sin νmφdφ.

Setting u = φπ/ψ, we have

∫ ψ

0

sin νnφ sin νmφdφ =
ψ

π

∫ π

0

sinnu sinmudu =
ψ

2
δmn,

thus
AmJνm(k0ρ0) = CmH

(2)
νm (k0ρ0).

The boundary condition n̂12 × (H̃1 − H̃2) = J̃s requires the surface current at ρ = ρ0.
We can write the line current in terms of a surface current density using the δ-function:

J̃s = ẑĨ
δ(φ− φ0)

ρ0
.

This is easily verified as the correct expression since the integral of this density along
the circular arc at ρ = ρ0 returns the correct value Ĩ for the total current. Thus the
boundary condition requires

H̃φ(ρ
+
0 , φ, ω)− H̃φ(ρ

−
0 , φ, ω) = Ĩ

δ(φ− φ0)

ρ0
.
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By (4.369) we have

−
∞
∑

n=0

Cn
j

η0
sin νnφH

(2)′
νn (k0ρ0) +

∞
∑

n=0

An
j

η0
sin νnφJ

′
νn(k0ρ0) = Ĩ

δ(φ− φ0)

ρ0

and orthogonality yields

−Cm
ψ

2

j

η0
H(2)′
νm (k0ρ0) +Am

ψ

2

j

η0
J ′
νm(k0ρ0) = Ĩ

sin νmφ0
ρ0

.

The coefficients Am and Cm thus obey the matrix equation
[

Jνm(k0ρ0) −H(2)
νm (k0ρ0)

J ′
νm(k0ρ0) −H

(2)′
νm (k0ρ0)

]

[

Am

Cm

]

=

[

0

−j2Ĩ η0ψ
sin νmφ0

ρ0

]

and are

Am =
j2Ĩ η0ψ

sin νmφ0

ρ0
H

(2)
νm (k0ρ0)

H
(2)′
νm (k0ρ0)Jνm(k0ρ0)− J ′

νm(k0ρ0)H
(2)
νm (k0ρ0)

,

Cm =
j2Ĩ η0ψ

sin νmφ0

ρ0
Jνm(k0ρ0)

H
(2)′
νm (k0ρ0)Jνm(k0ρ0)− J ′

νm(k0ρ0)H
(2)
νm (k0ρ0)

.

Using the Wronskian relation (E.95), we replace the denominators in these expressions
by 2/(jπk0ρ0):

Am = −Ĩ η0
ψ
πk0 sin νmφ0H

(2)
νm (k0ρ0),

Cm = −Ĩ η0
ψ
πk0 sin νmφ0Jνm(k0ρ0).

Hence (4.367) gives

Ẽz(ρ, φ, ω) =

{

−∑∞
n=0 Ĩ

η0
2ψπk0ǫnJνn(k0ρ)H

(2)
νn (k0ρ0) sin νnφ sin νnφ0, ρ < ρ0,

−∑∞
n=0 Ĩ

η0
2ψπk0ǫnH

(2)
νn (k0ρ)Jνn(k0ρ0) sin νnφ sin νnφ0, ρ > ρ0,

(4.370)
where ǫn is Neumann’s number (A.133). The magnetic fields can also be found by
substituting the coefficients into (4.368) and (4.369).

The fields produced by an impressed plane wave may now be obtained by letting the
line source recede to infinity. For large ρ0 we use the asymptotic form (E.64) and find
that

Ẽz(ρ, φ, ω) = −
∞
∑

n=0

Ĩ
η0
2ψ

πk0ǫnJνn(k0ρ)

[
√

2j

πk0ρ0
jνne−jk0ρ0

]

sin νnφ sin νnφ0 (ρ < ρ0).

(4.371)

Since the field of a line source decays as ρ
−1/2
0 , the amplitude of the impressed field

approaches zero as ρ0 → ∞. We must compensate for the reduction in the impressed
field by scaling the amplitude of the current source. To obtain the proper scale factor,
we note that the electric field produced at a point ρ by a line source located at ρ0 may
be found from (4.343):

Ẽz = −Ĩ k0η0
4

H
(2)
0 (k0|ρ− ρ0|) ≈ −Ĩ k0η0

4

√

2j

πk0ρ0
e−jk0ρ0ejkρ cos(φ−φ0) (k0ρ0 ≫ 1).
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But if we write this as Ẽz ≈ Ẽ0e
jk·ρ, then the field resembles that of a plane wave with

amplitude Ẽ0 traveling along the wave vector k = −k0x̂ cosφ0 − k0ŷ sinφ0. Solving for
Ĩ in terms of Ẽ0 and substituting into (4.371), we get the total electric field scattered
from a wedge with an impressed TM plane-wave field:

Ẽz(ρ, φ, ω) =
2π

ψ
Ẽ0

∞
∑

n=0

ǫnj
νnJνn(k0ρ) sin νnφ sin νnφ0. (4.372)

Here we interpret the angle φ0 as the incidence angle of the plane wave.

◮ Example 4.29: Total field for plane-wave scattering by a conducting wedge

A TM plane wave is incident at angle φ0 on the perfectly conducting wedge shown in Figure
4.41. The wedge is defined by a right angle (ψ = 3π/2). Compute and plot the magnitude
of the total field |Ẽz| within a square of side 8λ0 centered on the edge, treating the cases
φ0 = 45◦ and φ0 = 135◦.

Solution: The total axial electric field may be computed by evaluating (4.372). We normal-
ize the distance from the edge so that kρ = 2πρ/λ0. The magnitude of Ẽz/Ẽ0 is shown in
Figure 4.42 for φ0 = 45◦. Here we have truncated the series at 200 terms for computational
expediency.

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

y
/λ

x/λ

"wedge_45.txt" using 1:2:3

 0

 0.5

 1

 1.5

 2

 2.5

FIGURE 4.42
Total axial electric field |Ẽz/Ẽ0| for a TM plane wave incident at angle φ0 = 45◦ on a
perfectly conducting right-angle wedge.

Several interesting characteristics can be seen. First, the field vanishes at both surfaces
of the wedge, as expected from the boundary condition. Second, a standing wave pattern
exists above the wedge, where the incident field and the field reflected from the top surface
combine to create regions of constructive and destructive interference with a period of a
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half wavelength. The reflection boundary at φ = 180◦ − φ0 = 135◦ separates the region
illuminated by both the incident and reflected waves from the region illuminated only by
the incident wave, according to the laws of geometrical optics. Finally, a shadow is seen to
the left of the wedge. The shadow boundary at φ = 180◦ + φ0 = 225◦ separates the region
illuminated by the incident wave from the shadow zone, which the incident wave cannot
reach according to the laws of geometrical optics. Geometrical optics predicts that the fields
should be discontinuous across the reflection and shadow boundaries, but the presence of a
diffracted field provides for the expected continuity. Because of diffraction, a remnant of the
standing wave pattern can be seen outside the reflection zone, and a nonzero (but small)
field in the shadow region.

The magnitude of Ẽz/Ẽ0 is shown in Figure 4.43 for φ0 = 135◦. In this case the incident
field illuminates both surfaces of the wedge, and a standing wave can be seen parallel to
each surface. The reflection boundary for the top of the wedge is along φ = 45◦, while
the reflection boundary for the side of the wedge is along φ = 225◦. Because both surfaces
are illuminated, there are no shadow regions. Note that diffraction produces a very strong
standing wave pattern outside the two reflection zones, and that the standing waves due to
reflection from the surfaces merge into a symmetric and continuous pattern, as is expected
from the symmetry of illumination.
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FIGURE 4.43
Total axial electric field |Ẽz/Ẽ0| for a TM plane wave incident at angle φ0 = 135◦ on a
perfectly conducting right-angle wedge. ◭

To determine the field produced by an impressed TE plane-wave field, we use a mag-
netic line source Ĩm located at ρ0, φ0 and proceed as above. By analogy with (4.366) we
write

H̃z(ρ, φ, ω) =

{

∑

ν [Aν sin νφ+Bν cos νφ] Jν(k0ρ), ρ < ρ0,
∑

δ [Cδ sin δφ+Dδ cos δφ]H
(2)
δ (k0ρ), ρ > ρ0.



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 433 — #457
✐

✐

✐

✐

✐

✐

Temporal and spatial frequency domain representation 433

By (4.348) the tangential electric field is

Ẽρ(ρ, φ, ω) =

{

−∑ν [Aν cos νφ−Bν sin νφ] j
ZTE
k

1
ρνJν(k0ρ), ρ < ρ0,

−
∑

δ [Cδ cos δφ−Dδ sin δφ] j
ZTE
k

1
ρδH

(2)
δ (k0ρ), ρ > ρ0.

Application of the boundary conditions on the tangential electric field at φ = 0, ψ results
in Aν = Cδ = 0 and ν = δ = νn = nπ/ψ, and thus H̃z becomes

H̃z(ρ, φ, ω) =

{

∑∞
n=0Bn cos νnφJνn(k0ρ), ρ < ρ0,

∑∞
n=0Dn cos νnφH

(2)
νn (k0ρ), ρ > ρ0.

(4.373)

Application of the boundary conditions on tangential electric and magnetic fields across
the magnetic line source then leads directly to

H̃z(ρ, φ, ω) =

{

−∑∞
n=0 Ĩm

η0
2ψπk0ǫnJνn(k0ρ)H

(2)
νn (k0ρ0) cos νnφ cos νnφ0, ρ < ρ0,

−∑∞
n=0 Ĩm

η0
2ψπk0ǫnH

(2)
νn (k0ρ)Jνn(k0ρ0) cos νnφ cos νnφ0, ρ > ρ0.

For a plane-wave impressed field this reduces to

H̃z(ρ, φ, ω) =
2π

ψ

Ẽ0

η0

∞
∑

n=0

ǫnj
νnJνn(k0ρ) cos νnφ cos νnφ0.

4.11.8.6 Behavior of current near a sharp edge

In § 3.3.10 we studied the behavior of static charge near a sharp conducting edge by
modeling the latter as a wedge. We can follow the same procedure for frequency-domain
fields. Assume the perfectly conducting wedge shown in Figure 4.41 is immersed in a
finite, z-independent impressed field of a sort that will not concern us. A current is
induced on the surface of the wedge and we wish to study its behavior as we approach
the edge.
Because the field is z-independent, we may consider the superposition of TM and TE

fields as was done above to solve for the field scattered by a wedge. For TM polarization,
if the source is not located near the edge we may write the total field (impressed plus
scattered) in terms of nonuniform cylindrical waves. The form of the field that obeys the
boundary conditions at φ = 0 and φ = ψ is given by (4.367):

Ẽz =

∞
∑

n=0

An sin νnφJνn(k0ρ),

where νn = nπ/ψ. Although the An depend on the impressed source, the general behavior
of the current near the edge is determined by the properties of the Bessel functions. The
current on the wedge face at φ = 0 has density given by

J̃s(ρ, ω) = φ̂× [φ̂H̃φ + ρ̂H̃ρ]|φ=0 = −ẑH̃ρ(ρ, 0, ω).

By (4.346) we have the surface current density

J̃s(ρ, ω) = −ẑ
1

ZTMk0

∞
∑

n=0

An
νn
ρ
Jνn(k0ρ).
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For ρ→ 0 the small-argument approximation (E.51) yields

J̃s(ρ, ω) ≈ −ẑ
1

ZTMk0

∞
∑

n=0

Anνn
1

Γ(νn + 1)

(

k0
2

)νn

ρνn−1.

The sum is dominated by the smallest power of ρ. Since the n = 0 term vanishes we
have

J̃s(ρ, ω) ∼ ρ
π
ψ−1 (ρ → 0).

For ψ < π the current density, which runs parallel to the edge, is unbounded as ρ→ 0. A
right-angle wedge (ψ = 3π/2) carries J̃s(ρ, ω) ∼ ρ−1/3. Another important case is that
of a half-plane (ψ = 2π) where

J̃s(ρ, ω) ∼ 1/
√
ρ. (4.374)

This square-root edge singularity dominates the behavior of the current flowing parallel
to any flat edge, either straight or with curvature large compared to a wavelength, and
is useful for modeling currents on complicated structures.

◮ Example 4.30: Current induced on the surface of a conducting wedge by a plane wave

A TM plane wave is incident at angle φ0 on a perfectly conducting wedge (Figure 4.41).
Derive a formula for the density of the surface current induced on each face, and approximate
the current density near the edge. Assuming the wedge is defined by a right angle (ψ = 3π/2)
and illumination occurs along φ0 = 45◦, compute and plot the magnitude of the current
density on each face. Use the exact and approximate formulas.

Solution: The surface current density on the face located at φ = φw is

J̃s(ρ, ω) = φ̂× [φ̂H̃φ + ρ̂H̃ρ]|φ=φw = −ẑH̃ρ(ρ, φw, ω),

where φw = 0 for the top face and φw = ψ for the bottom face. Substituting (4.372) into
(4.346) we get the surface current density

J̃s(ρ, ω) = −ẑ
2π

ψ
Ẽ0

j

ZTMk0ρ

∞
∑

n=0

ǫnj
νnJνn(k0ρ)νn cos νnφw sin νnφ0,

or
J̃sz

Ẽ0/η0
= −2π

ψ

j

k0ρ

∞
∑

n=0

ǫnj
νnνnJνn(k0ρ) cos νnφw sin νnφ0.

When k0ρ≪ 1 we have

Jνn(k0ρ) ≈
1

Γ(νn + 1)

(

k0ρ

2

)νn

.

Since the series is dominated by the first nonzero term, retention of the n = 1 term gives a
simple approximation for the surface current density near the edge:

J̃sz

Ẽ0/η0
= −

(

2π

ψ

)2

2−π/ψ (k0ρ)
π/ψ−1 jπ/ψ+1

Γ (π/ψ + 1)
cos π

φw
ψ

sin π
φ0

ψ
. (4.375)

Under this approximation the currents on the faces φ = 0 and φ = ψ differ only in sign.
According to the physical optics (PO) approximation, we have J̃s ≈ 2n̂ × H̃i in regions

of illumination and J̃s = 0 in regions of shadow. Use of

H̃
i = (−x̂ sinφ0 + ŷ cosφ0)

Ẽ0

η0
ejk0(x cos φ0+y sinφ0)
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gives
J̃sz

Ẽ0/η0
≈ 2 sinφ0e

jk0x cosφ0 .

As a specific example, take ψ = 3π/2 and φ0 = 45◦. We normalize the distance from the
edge so that kρ = 2πρ/λ. Figure 4.44 shows the normalized current densities on both faces
of the wedge, plotted using a logarithmic scale. Approaching the edge, both currents vary
as J̃sz ∼ ρπ/ψ−1 ∼ ρ−1/3, and (4.375) yields good results. On the top face, as the distance
from the edge tends to a wavelength, the PO approximation

∣

∣

∣

∣

J̃sz

Ẽ0/η0

∣

∣

∣

∣

≈ 2 sinφ0 =
√
2

matches the exact result very well. On the side face, in the shadow of the incident wave,
the current decays rapidly away from the edge. Ten wavelengths away, the current on the
side face is less than 0.2% of the PO value on the top face.
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FIGURE 4.44
Normalized surface current density |J̃sz/(Ẽ0/η0)| for a plane wave incident at angle φ0 = 45◦

on a perfectly conducting right-angle wedge. ◭

In the case of TE polarization, the magnetic field near the edge is, by (4.373),

H̃z(ρ, φ, ω) =

∞
∑

n=0

Bn cos νnφJνn(k0ρ) (ρ < ρ0).

The current density at φ = 0 is

J̃s(ρ, ω) = φ̂× ẑH̃z|φ=0 = ρ̂H̃z(ρ, 0, ω)

= ρ̂

∞
∑

n=0

BnJνn(k0ρ).

For ρ→ 0 we use (E.51) to write

J̃s(ρ, ω) = ρ̂

∞
∑

n=0

Bn
1

Γ(νn + 1)

(

k0
2

)νn

ρνn .
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The n = 0 term gives a constant contribution, so we keep the first two terms to see how
the current behaves near ρ = 0:

J̃s ∼ b0 + b1ρ
π
ψ .

Here b0 and b1 depend on the form of the impressed field. For a thin plate where ψ = 2π
this becomes J̃s ∼ b0 + b1

√
ρ. This is the companion square-root behavior to (4.374).

When perpendicular to a sharp edge, the current grows away from the edge as ρ1/2. In
most cases b0 = 0 since there is no mechanism to store charge along a sharp edge.

◮ Example 4.31: Total field for plane-wave scattering by a conducting wedge using physical
optics

A TM plane wave is incident at angle φ0 on the perfectly conducting wedge shown in Figure
4.41. The wedge is defined by a right angle (ψ = 3π/2). Compute and plot the magnitude
of the total field |Ẽz| within a square of side 8λ0 centered on the edge. Treat the cases
φ0 = 45◦ and φ0 = 135◦. Assume the current on the wedge surface is well described by
physical optics.

Solution: Figure 4.44 shows that the current on the top surface of a wedge illuminated by a
plane wave from above is very close to the PO current, except for points near the edge (where
there is a singularity for TM-polarization). So the PO current should lead to a reasonable
approximation for the total field around the wedge if used to compute the scattered field in
place of the series solution.

The physical optics current density is given by

J̃s ≈ 2n̂ × H̃
i

in regions of illumination, and J̃s = 0 in regions of shadow. Use of

H̃
i = (−x̂ sinφ0 + ŷ cosφ0)

Ẽ0

η0
ejk0(x cos φ0+y sinφ0)

gives

J̃sz(x) =
Ẽ0

η0
2 sinφ0e

jk0x cosφ0

on the surface at y = 0. The surface at x = 0 will carry no current if it is in shadow
(φ0 < 90◦) and

J̃sz(y) = − Ẽ0

η0
2 cosφ0e

jky sinφ0

if it is illuminated.
The scattered field may be computed from

Ẽsz(x, y, ω) = −jωµ0

∫

Jsz(x
′, y′, ω)G̃(x, y|x′, y′;ω) dl′.

For this purpose we truncate the size of the wedge at a large value W . Substitution from
(4.344) gives

Ẽsz =− Ẽ0

2η0
ωµ0 sinφ0

∫ W

0

ejk0x
′cosφ0H

(2)
0

(

k0
√

(x− x′)2 + y2
)

dx′

+
Ẽ0

2η0
ωµ0 cos φ0

∫ 0

−W

ejk0y
′ sinφ0H

(2)
0

(

k0
√

x2 + (y − y′)2
)

dy′,
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where the second integral is included only when the surface at x = 0 is illuminated. Using
the change of variables u = k0x

′ in the first integral and u = −k0y′ in the second integral,
we obtain the field in terms of normalized distance:

Ẽsz = − Ẽ0

2
sinφ0

∫ 2πW
λ0

0

eju cosφ0H
(2)
0





√

(

2π
x

λ0
− u

)2

+

(

2π
y

λ0

)2


 du

+
Ẽ0

2
cosφ0

∫ 2πW
λ0

0

e−ju sinφ0H
(2)
0





√

(

2π
x

λ0

)2

+

(

2π
y

λ0
+ u

)2


 du. (4.376)

Figure 4.45 shows the total field Ẽz/Ẽ0 (incident plus scattered) for incidence angle φ0 =
45◦. Here the wedge has been truncated at W = 100λ0, and only the first integral in
(4.376) has been used since only the top surface is illuminated. The PO current gives a
result very similar to the exact result of Figure 4.42, including the standing wave pattern
above the wedge. Because the PO current is approximate, the boundary condition at the
wedge surface is not satisfied exactly, especially near the edge since the PO current lacks
the expected singularity. Moreover, the shadow region is not as pronounced, and there is a
small field within the wedge region due to truncation and inaccuracy of the current.
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FIGURE 4.45
Total axial electric field |Ẽz/Ẽ0| for a plane wave incident at angle φ0 = 45◦ on a perfectly
conducting right-angle wedge, computed using the physical optics current.

Figure 4.46 shows the total field Ẽz/Ẽ0 (incident plus scattered) for an incidence angle
of φ0 = 135◦. Here the wedge has been truncated at W = 100λ0, and both of the integrals
in (4.376) have been used since both wedge surfaces are illuminated. Once again the PO
current gives a result very similar to the exact result; compare to Figure 4.43. Standing
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wave patterns are clearly seen both above and to the side of the wedge, just as in the exact
solution. Again, because the PO current is approximate, the boundary condition at the
surface of the wedge is not satisfied exactly and there is a small field within the wedge
region due to truncation and inaccuracy of the current.
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FIGURE 4.46
Total axial electric field |Ẽz/Ẽ0| for a plane wave incident at angle φ0 = 135◦ on a perfectly
conducting right-angle wedge, computed using the physical optics current. ◭

4.11.9 Propagation of spherical waves in a conducting medium

We cannot obtain uniform spherical wave solutions to Maxwell’s equations. Any field
dependent only on r produces the null field external to the source region (§ 4.11.10).
Nonuniform spherical waves are in general complicated and most easily handled using
potentials. We consider here only the simple problem of fields dependent on r and θ.
These waves display the fundamental properties of all spherical waves: they diverge from
a localized source and expand with finite velocity.

Consider a homogeneous, source-free region characterized by ǫ̃(ω), µ̃(ω), and σ̃(ω).
We seek wave solutions that are TEMr in spherical coordinates (H̃r = Ẽr = 0) and
φ-independent. Thus we write

Ẽ(r, ω) = θ̂Ẽθ(r, θ, ω) + φ̂Ẽφ(r, θ, ω),

H̃(r, ω) = θ̂H̃θ(r, θ, ω) + φ̂H̃φ(r, θ, ω).

To determine the behavior of these fields, we first examine Faraday’s law. Expanding
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the curl in spherical coordinates, we have

∇× Ẽ(r, θ, ω) = r̂
1

r sin θ

∂

∂θ
[sin θẼφ(r, θ, ω)]− θ̂

1

r

∂

∂r
[rẼφ(r, θ, ω)] + φ̂

1

r

∂

∂r
[rẼθ(r, θ, ω)]

= −jωµ̃H̃(r, θ, ω). (4.377)

Since we require H̃r = 0 we must have

∂

∂θ
[sin θẼφ(r, θ, ω)] = 0.

This implies that either Ẽφ ∼ 1/ sin θ or Ẽφ = 0. We choose Ẽφ = 0 and investigate
whether the resulting fields satisfy the remaining Maxwell equations.
In a source-free, homogeneous region of space we have ∇ · D̃ = 0 and hence ∇ · Ẽ = 0.

Since we have only a θ-component of the electric field, this requires

1

r

∂

∂θ
Ẽθ(r, θ, ω) +

cot θ

r
Ẽθ(r, θ, ω) = 0.

So when Ẽφ = 0, the field Ẽθ must obey

Ẽθ(r, θ, ω) =
f̃E(r, ω)

sin θ
.

By (4.377) there is only a φ-component of magnetic field, which obeys

H̃φ(r, θ, ω) =
f̃H(r, ω)

sin θ

where

−jωµ̃f̃H(r, ω) =
1

r

∂

∂r
[rf̃E(r, ω)]. (4.378)

So the spherical wave is TEM to the r-direction.
We can obtain a wave equation for f̃E by taking the curl of (4.377) and substituting

from Ampere’s law:

∇× (∇× Ẽ) = −θ̂
1

r

∂2

∂r2
(rẼθ) = ∇× (−jωµ̃H̃) = −jωµ̃(σ̃Ẽ+ jωǫ̃Ẽ),

hence
d2

dr2
[rf̃E(r, ω)] + k2[rf̃E(r, ω)] = 0. (4.379)

Here k = ω(µ̃ǫ̃c)1/2 is the complex wavenumber and ǫ̃c = ǫ̃ + σ̃/jω is the complex
permittivity. The equation for f̃H is identical.
The wave equation (4.379) is merely the second-order harmonic differential equation,

with two independent solutions chosen from the list

sin kr, cos kr, e−jkr , ejkr .

We find sin kr and cos kr useful for describing standing waves between boundaries, and
ejkr and e−jkr useful for describing waves propagating in the r-direction. Of these, ejkr

represents waves traveling inward while e−jkr represents waves traveling outward. At
this point we choose rf̃E = e−jkr and thus

Ẽ(r, θ, ω) = θ̂Ẽ0(ω)
e−jkr

r sin θ
. (4.380)
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By (4.378) we have

H̃(r, θ, ω) = φ̂
Ẽ0(ω)

ZTEM

e−jkr

r sin θ
(4.381)

where ZTEM = (µ̃/ǫ̃c)1/2 is the complex wave impedance. Since we can also write

H̃(r, θ, ω) =
r̂× Ẽ(r, θ, ω)

ZTEM
,

the field is TEM to the r-direction, which is the direction of wave propagation as shown
below.

The wave nature of the field is easily identified by considering the fields in the phasor
domain. Letting ω → ω̌ and setting k = β− jα in the exponential function, we find that

Ě(r, θ) = θ̂Ě0e
−αr e

−jβr

r sin θ

where Ě0 = E0e
jξE . The time-domain representation may be found using (4.137):

E(r, θ, t) = θ̂E0
e−αr

r sin θ
cos(ω̌t− βr + ξE). (4.382)

We can identify a surface of constant phase as a locus of points satisfying

ω̌t− βr + ξE = CP

where CP is some constant. These surfaces, which are spheres centered on the origin,
are called spherical wavefronts. Note that surfaces of constant amplitude, determined by
e−αr/r = CA for constant CA, are also spheres.

The cosine term in (4.382) represents a traveling wave with spherical wavefronts that
propagate outward as time progresses. Attenuation is caused by the factor e−αr. By
differentiation we find that the phase velocity is

vp = ω̌/β.

The wavelength is given by λ = 2π/β.
Our solution is not appropriate for unbounded space since the fields have a singularity

at θ = 0. To exclude the z-axis we add conducting cones as mentioned on page 119. This
results in a biconical structure that can be used as a transmission line or antenna.

To compute the power carried by a spherical wave, we use (4.380) and (4.381) to obtain
the time-average Poynting flux

Sav =
1
2 Re{Ěθθ̂ × Ȟ∗

φφ̂} = 1
2 r̂Re

{

1

Z∗
TEM

}

E2
0

r2 sin2 θ
e−2αr.

The power flux is radial and has density inversely proportional to r2. The time-average
power carried by the wave through a spherical surface at r sandwiched between the cones
at θ1 and θ2 is

Pav(r) =
1
2 Re

{

1

Z∗
TEM

}

E2
0e

−2αr

∫ 2π

0

dφ

∫ θ2

θ1

dθ

sin θ
= πF Re

{

1

Z∗
TEM

}

E2
0e

−2αr

where

F = ln

[

tan(θ2/2)

tan(θ1/2)

]

. (4.383)
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This is independent of r when α = 0. For lossy media the power decays exponentially
because of Joule heating.
We can write the phasor electric field in terms of the transverse gradient of a scalar

potential function Φ̌:

Ě(r, θ) = θ̂Ě0
e−jkr

r sin θ
= −∇tΦ̌(θ) where Φ̌(θ) = −Ě0e

−jkr ln

(

tan
θ

2

)

.

By ∇t we mean the gradient with the r-component excluded. It is easily verified that

Ě(r, θ) = −∇tΦ̌(θ) = −θ̂Ě0
1

r

∂Φ̌(θ)

∂θ
= θ̂Ě0

e−jkr

r sin θ
.

Because Ě and Φ̌ are related by the gradient, we can define a unique potential difference
between the two cones at any radial position r:

V̌ (r) = −
∫ θ2

θ1

Ě · dl = Φ̌(θ2)− Φ̌(θ1) = Ě0Fe
−jkr,

where F is given in (4.383). The existence of a unique voltage difference is a property of
all transmission line structures operated in the TEM mode. We can similarly compute
the current flowing outward on the cone surfaces. The surface current on the cone at
θ = θ1 is J̌s = n̂× Ȟ = θ̂ × φ̂Ȟφ = r̂Ȟφ, hence

Ǐ(r) =

∫ 2π

0

J̌s · r̂r sin θdφ = 2π
Ě0

ZTEM
e−jkr.

The ratio of voltage to current at any radius r is the characteristic impedance of the
biconical transmission line (or, equivalently, the input impedance of the bicone antenna):

Z =
V̌ (r)

Ǐ(r)
=
ZTEM
2π

F.

If the material between the cones is lossless (so µ̃ = µ and ǫ̃c = ǫ are real), this becomes

Z =
η

2π
F

where η = (µ/ǫ)1/2. The frequency independence of this quantity makes biconical an-
tennas (or their approximate representations) useful in broadband applications.
Finally, the time-average power carried by the wave may be found from

Pav(r) =
1
2 Re

{

V̌ (r)Ǐ∗(r)
}

= πF Re

{

1

Z∗
TEM

}

E2
0e

−2αr.

The complex power relationship P = V I∗ is also a property of TEM guided-wave struc-
tures. We consider the biconical transmission line again in § 5.6.5.2 in the context of
transmission line theory, using a TE-TM decomposition of the fields in spherical coordi-
nates.

4.11.10 Nonradiating sources

We showed in § 2.10.10 that not all time-varying sources produce electromagnetic waves.
In fact, a subset of localized sources known as nonradiating sources produce no field
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external to the source region. Devaney and Wolf [48] have shown that all nonradiating
time-harmonic sources in an unbounded homogeneous medium can be represented in the
form

J̌nr(r) = −∇× [∇× f̌(r)] + k2f̌ (r) (4.384)

where f̌ is any vector field that is continuous, has partial derivatives up to third order,
and vanishes outside some localized region Vs. In fact, Ě(r) = jω̌µf̌(r) is precisely the
phasor electric field produced by J̌nr(r). The reasoning is straightforward. Consider the
Helmholtz equation (4.197):

∇× (∇× Ě)− k2Ě = −jω̌µJ̌.

By (4.384) we have
(∇×∇×−k2)[Ě− jω̌µf̌ ] = 0.

Since f̌ is zero outside the source region, it must vanish at infinity. Ě also vanishes at
infinity by the radiation condition, and thus the quantity Ě− jω̌µf̌ obeys the radiation
condition and is a unique solution to the Helmholtz equation throughout all space. Since
the Helmholtz equation is homogeneous, we have

Ě− jω̌µf̌ = 0

everywhere; since f̌ is zero outside the source region, so is Ě (and so is Ȟ).
An interesting special case of nonradiating sources is

f̌ =
∇Φ̌

k2

so that

J̌nr = −(∇×∇×−k2)∇Φ̌

k2
= ∇Φ̌.

Using Φ̌(r) = Φ̌(r), we see that this source describes the current produced by an oscillat-
ing spherical balloon of charge (cf., § 2.10.10). Radially directed, spherically symmetric
sources cannot produce uniform spherical waves, since these sources are of the nonradi-
ating type.

4.12 Interpretation of the spatial transform

Now that we understand the meaning of a Fourier transform on the time variable, let us
consider a single transform involving one of the spatial variables. For a transform over z
we shall use the notation

ψz(x, y, kz , t) ↔ ψ(x, y, z, t).

Here the spatial frequency transform variable kz has units of m-1. The forward and
inverse transform expressions are

ψz(x, y, kz , t) =

∫ ∞

−∞
ψ(x, y, z, t)e−jkzz dz,

ψ(x, y, z, t) =
1

2π

∫ ∞

−∞
ψz(x, y, kz, t)e

jkzz dkz, (4.385)
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by (A.1) and (A.2).
We interpret (4.385) much as we interpreted the temporal inverse transform (4.2).

Any vector component of the electromagnetic field can be decomposed into a continuous
superposition of elemental spatial terms ejkzz with weighting factors ψz(x, y, kz , t). In
this case ψz is the spatial frequency spectrum of ψ. The elemental terms are spatial
sinusoids along z with rapidity of variation described by kz .
As with the temporal transform, ψz cannot be arbitrary since ψ must obey a scalar

wave equation such as (2.269). For instance, in a source-free region of free space we must
have

(

∇2 − 1

c2
∂

∂t2

)

1

2π

∫ ∞

−∞
ψz(x, y, kz , t)e

jkzz dkz = 0.

Decomposing the Laplacian operator as ∇2 = ∇2
t + ∂2/∂z2 and taking the derivatives

into the integrand, we have

1

2π

∫ ∞

−∞

[(

∇2
t − k2z −

1

c2
∂2

∂t2

)

ψz(x, y, kz, t)

]

ejkzz dkz = 0.

Hence
(

∇2
t − k2z −

1

c2
∂2

∂t2

)

ψz(x, y, kz , t) = 0

by the Fourier integral theorem.
The elemental component ejkzz is spatially sinusoidal and occupies all of space. Be-

cause such an element could only be created by a source that spans all of space, it is
nonphysical when taken by itself. Nonetheless it is often used to represent more com-
plicated fields. If the elemental spatial term is to be used alone, it is best interpreted
physically when combined with a temporal decomposition. That is, we consider a two-
dimensional transform, with transforms over both time and space. Then the time-domain
representation of the elemental component is

φ(z, t) =
1

2π

∫ ∞

−∞
ejkzzejωt dω. (4.386)

Before attempting to compute this transform, we should note that if the elemental term
is to describe an EM field ψ in a source-free region, it must obey the homogeneous scalar
wave equation. Substituting (4.386) into the latter, we have

(

∇2 − 1

c2
∂2

∂t2

)

1

2π

∫ ∞

−∞
ejkzzejωt dω = 0.

Differentiation under the integral sign gives

1

2π

∫ ∞

−∞

[(

−k2z +
ω2

c2

)

ejkzz
]

ejωt dω = 0

and thus

k2z =
ω2

c2
= k2.

Substitution of kz = k into (4.386) gives the time-domain representation of the elemental
component

φ(z, t) =
1

2π

∫ ∞

−∞
ejω(t+z/c) dω.
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Finally, by the shifting theorem (A.3) and (A.5) we have

φ(z, t) = δ
(

t+
z

c

)

, (4.387)

which is a uniform plane wave propagating in the−z-direction with velocity c. There is no
variation transverse to the direction of propagation and the surface describing a constant
argument of the δ-function at any time t is a plane perpendicular to that direction.

We can also consider the elemental spatial component in tandem with a single sinu-
soidal steady-state elemental component. The phasor representation of the elemental
spatial component is

φ̌(z) = ejkzz = ejkz .

This elemental term is a time-harmonic plane wave propagating in the −z-direction.
Indeed, multiplying by ejω̌t and taking the real part, we get

φ(z, t) = cos(ω̌t+ kz),

which is the sinusoidal steady-state analogue of (4.387).
Many authors define the temporal and spatial transforms using differing sign conven-

tions. The temporal transform is defined as in (4.1) and (4.2), but the spatial transform
is defined through

ψz(x, y, kz , t) =

∫ ∞

−∞
ψ(x, y, z, t)ejkzz dz, (4.388)

ψ(x, y, z, t) =
1

2π

∫ ∞

−∞
ψz(x, y, kz, t)e

−jkzz dkz.

This employs a wave traveling in the positive z-direction as the elemental spatial com-
ponent, which is quite useful for physical interpretation. We shall adopt this notation in
§ 4.13. The drawback is that we must alter the formulas from standard Fourier transform
tables (replacing k by −k) accordingly.

In the following sections we show how a spatial Fourier decomposition can be used to
find the electromagnetic fields in a source-free region of space. By employing the spatial
transform we eliminate one or more spatial variables from Maxwell’s equations, making
the wave equation easier to solve. In the end we must perform an inversion to return
to the space domain. This may be difficult or impossible to do analytically, requiring a
numerical Fourier inversion.

4.13 Spatial Fourier decomposition of two-dimensional fields

Consider a homogeneous, source-free region characterized by ǫ̃(ω), µ̃(ω), and σ̃(ω). We
seek z-independent solutions to the frequency-domain Maxwell’s equations, using the
Fourier transform to represent the spatial dependence. By § 4.11.2 a general two-
dimensional field may be decomposed into fields TE and TM to the z-direction. In
the TM case, H̃z = 0, and Ẽz obeys the homogeneous scalar Helmholtz equation (4.200).
In the TE case, Ẽz = 0, and H̃z obeys the homogeneous scalar Helmholtz equation.
Since each field component obeys the same equation, we let ψ̃(x, y, ω) represent either
Ẽz(x, y, ω) or H̃z(x, y, ω). Then ψ̃ obeys

(∇2
t + k2)ψ̃(x, y, ω) = 0 (4.389)
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where ∇2
t is the transverse Laplacian (4.201) and k = ω(µ̃ǫ̃c)1/2 with ǫ̃c the complex

permittivity.
We may represent ψ̃(x, y, ω) using Fourier transforms over one or both spatial variables.

For problems in which boundary values or boundary conditions are specified at a constant
value of a single variable (e.g., over a plane), one transform suffices. For instance, we
may know the values of the field in the y = 0 plane (as we will, for example, with the
boundary value problems of § 4.13.1). Then we may transform over x and leave the y
variable intact so that we may substitute the boundary values.
We adopt (4.388) since the result is more readily interpreted in terms of propagating

plane waves. Choosing to transform over x, we have

ψ̃x(kx, y, ω) =

∫ ∞

−∞
ψ̃(x, y, ω)ejkxx dx,

ψ̃(x, y, ω) =
1

2π

∫ ∞

−∞
ψx(kx, y, ω)e

−jkxx dkx.

For convenience in computation or interpretation of the inverse transform, we often
regard kx as a complex variable and perturb the inversion contour into the complex kx =
kxr+ jkxi plane. The integral is not altered if the contour is not moved past singularities
such as poles or branch points. If the function being transformed has exponential (wave)
behavior, then a pole exists in the complex plane; if we move the inversion contour across
this pole, the inverse transform does not return the original function. We generally
indicate the desire to interpret kx as complex by indicating that the inversion contour is
parallel to the real axis but located in the complex plane at kxi = ∆:

ψ̃(x, y, ω) =
1

2π

∞+j∆
∫

−∞+j∆

ψ̃x(kx, y, ω)e
−jkxx dkx. (4.390)

Additional perturbations of the contour are allowed, provided that the contour is not
moved through singularities.
As an example, consider the function

u(x) =

{

0, x < 0,

e−jkx, x > 0,
(4.391)

where k = kr + jki represents a wavenumber. This function has the form of a plane
wave propagating in the x-direction and is thus relevant to our studies. If the material
through which the wave is propagating is lossy, then ki < 0. The Fourier transform of
the function is

ux(kx) =

∫ ∞

0

e−jkxejkxx dx =
1

j(kx − k)

[

ej(kxr−kr)xe−(kxi−ki)x
]

∣

∣

∣

∣

∞

0

.

The integral converges if kxi > ki, and the transform is

ux(kx) = − 1

j(kx − k)
.

Since u(x) is an exponential function, ux(kx) has a pole at kx = k as anticipated.
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FIGURE 4.47

Inversion contour for evaluating the spectral integral for a plane wave.

To compute the inverse transform, we use (4.390):

u(x) =
1

2π

∞+j∆
∫

−∞+j∆

[

− 1

j(kx − k)

]

e−jkxx dkx. (4.392)

We must be careful to choose ∆ in such a way that all values of kx along the inversion
contour lead to a convergent forward Fourier transform. Since we must have kxi > ki,
choosing ∆ > ki ensures proper convergence. This gives the inversion contour shown in
Figure 4.47, a special case of which is the real axis. We compute the inversion integral
using contour integration (§ A.2). We close the contour in the complex plane and use
Cauchy’s residue theorem (A.15). For x > 0 we take 0 > ∆ > ki and close the contour
in the lower half-plane using a semicircular contour CR of radius R. Then the closed
contour integral is equal to −2πj times the residue at the pole kx = k. As R → ∞ we
find that kxi → −∞ at all points on the contour CR. Thus the integrand, which varies as
ekxix, vanishes on CR and there is no contribution to the integral. The inversion integral
(4.392) is found from the residue at the pole:

u(x) = (−2πj)
1

2π
Reskx=k

[

− 1

j(kx − k)
e−jkxx

]

.

Since the residue is merely je−jkx we have u(x) = e−jkx. When x < 0 we choose ∆ > 0
and close the contour along a semicircle CR of radius R in the upper half-plane. Again
we find that on CR the integrand vanishes as R → ∞, and thus the inversion integral
(4.392) is given by 2πj times the residues of the integrand at any poles within the closed
contour. This time, however, there are no poles enclosed and thus u(x) = 0. We have
recovered the original function (4.391) for both x > 0 and x < 0. Note that if we had
erroneously chosen ∆ < ki we would not have properly enclosed the pole and would have
obtained an incorrect inverse transform.

Now that we know how to represent the Fourier transform pair, let us apply the
transform to solve (4.389). Our hope is that by representing ψ̃ in terms of a spatial
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FIGURE 4.48

Propagation behavior of the angular spectrum for (a) k2x ≤ k2, (b) k2x > k2.

Fourier integral we will make the equation easier to solve. We have

(∇2
t + k2)

1

2π

∞+j∆
∫

−∞+j∆

ψ̃x(kx, y, ω)e
−jkxx dkx = 0.

Differentiation under the integral sign with subsequent application of the Fourier integral
theorem implies that ψ̃ must obey the second-order harmonic differential equation

[

d2

dy2
+ k2y

]

ψ̃x(kx, y, ω) = 0

where we have defined the dependent parameter ky = kyr + jkyi through k
2
x + k2y = k2.

Two independent solutions to the differential equation are e∓jkyy and thus

ψ̃(kx, y, ω) = A(kx, ω)e
∓jkyy.

Substituting this into the inversion integral, we have the solution to the Helmholtz equa-
tion:

ψ̃(x, y, ω) =
1

2π

∞+j∆
∫

−∞+j∆

A(kx, ω)e
−jkxxe∓jkyy dkx. (4.393)

Defining the wave vector k = x̂kx ± ŷky, we can also write the solution in the form

ψ̃(x, y, ω) =
1

2π

∞+j∆
∫

−∞+j∆

A(kx, ω)e
−jk·ρ dkx (4.394)

where ρ = x̂x+ ŷy is the two-dimensional position vector.
The solution (4.394) has an important physical interpretation. The exponential term

looks exactly like a plane wave with its wave vector lying in the xy-plane. For lossy media
the plane wave is nonuniform, and the surfaces of constant phase may not be aligned
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with the surfaces of constant amplitude (see § 4.11.4). For the special case of a lossless
medium we have ki → 0 and can let ∆ → 0 as long as ∆ > ki. As we perform the inverse
transform integral over kx from −∞ to ∞ we will encounter both the condition k2x > k2

and k2x ≤ k2. For k2x ≤ k2 we have

e−jkxxe∓jkyy = e−jkxxe∓j
√
k2−k2xy

where the choice of upper sign for y > 0 and lower sign for y < 0 ensures waves propa-
gating in the ±y-directions, respectively. Thus, in this regime the exponential represents
a propagating wave that travels into the half-plane y > 0 along a direction that depends
on kx, making an angle ξ with the x-axis as shown in Figure 4.48. For kx in [−k, k],
all possible wave directions are covered, and we may think of the inversion integral as
constructing the solution to the two-dimensional Helmholtz equation from a continuous
superposition of plane waves. The amplitude of each plane wave component is given by
A(kx, ω), which is often called the angular spectrum of the plane waves and is determined
by the values of the field over the boundaries of the solution region. But this is not the
whole picture. The inverse transform integral also requires values of kx in the intervals
[−∞, k] and [k,∞]. Here we have k2x > k2 and thus

e−jkxxe−jkyy = e−jkxxe∓
√
k2x−k2y,

where we choose the upper sign for y > 0 and the lower sign for y < 0 to obtain a field
decaying along the y-direction. In these regimes we have an evanescent wave, propagating
along x but decaying along y, with surfaces of constant phase and amplitude mutually
perpendicular (Figure 4.48). As kx ranges out to ∞, evanescent waves of all possible
decay constants also contribute to the plane-wave superposition.

We may summarize the plane-wave contributions by letting k = x̂kx+ ŷky = kr + jki
where

kr =

{

x̂kx ± ŷ
√

k2 − k2x, k2x < k2,

x̂kx, k2x > k2,
ki =

{

0, k2x < k2,

∓ŷ
√

k2x − k2, k2x > k2.

The upper sign applies for y > 0 and the lower sign for y < 0.
In many applications, including the half-plane example considered later, it is useful to

write the inversion integral in polar coordinates. Letting kx = k cos ξ and ky = ±k sin ξ
where ξ = ξr + jξi is a new complex variable, we have k · ρ = kx cos ξ ± ky sin ξ and
dkx = −k sin ξ dξ. With this change of variables (4.394) becomes

ψ̃(x, y, ω) =
k

2π

∫

C

A(k cos ξ, ω)e−jkx cos ξe±jky sin ξ sin ξ dξ. (4.395)

Since A(kx, ω) is a function to be determined, we may introduce a new function

f(ξ, ω) =
k

2π
A(kx, ω) sin ξ

so that (4.395) becomes

ψ̃(x, y, ω) =

∫

C

f(ξ, ω)e−jkρ cos(φ±ξ) dξ (4.396)

where x = ρ cosφ, y = ρ sinφ, and where the upper sign corresponds to 0 < φ < π
(y > 0) and the lower sign to π < φ < 2π (y < 0). In these expressions C is a contour in
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FIGURE 4.49

Inversion contour for the polar coordinate representation of the inverse Fourier transform.

the complex ξ-plane to be determined. Values along this contour must produce identical
values of the integrand as did the values of kx over [−∞,∞] in the original inversion
integral. By the identities

cos z = cos(u+ jv) = cosu cosh v − j sinu sinh v,

sin z = sin(u+ jv) = sinu coshv + j cosu sinh v,

we find that the contour shown in Figure 4.49 provides identical values of the integrand
(Problem 4.20). The portions of the contour [0 + j∞,0] and [−π,−π − j∞] together
correspond to the regime of evanescent waves (k < kx < ∞ and −∞ < kx < k), while
the segment [0,−π] along the real axis corresponds to −k < kx < k and thus describes
contributions from propagating plane waves. In this case ξ represents the propagation
angle of the waves.

4.13.1 Boundary value problems using the spatial Fourier transform
representation

4.13.1.1 The field of a line source

As a first example we calculate the Fourier representation of the field of an electric line
source. Assume a uniform line current Ĩ(ω) along the z-axis in a medium characterized
by complex permittivity ǫ̃c(ω) and permeability µ̃(ω). We separate space into two source-
free portions, y > 0 and y < 0, and write the field in each region in terms of an inverse
spatial Fourier transform. Then, by applying the boundary conditions in the y = 0 plane,
we determine the angular spectrum of the line source.
Since this is a two-dimensional problem, we may decompose the fields into TE and TM

sets. For an electric line source we need only the TM set, and write Ẽz as a superposition
of plane waves using (4.393). For y ≷ 0 we represent the field in terms of plane waves
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traveling in the ±y-direction. Thus

Ẽz(x, y, ω) =
1

2π

∞+j∆
∫

−∞+j∆

A+(kx, ω)e
−jkxxe−jkyy dkx (y > 0),

Ẽz(x, y, ω) =
1

2π

∞+j∆
∫

−∞+j∆

A−(kx, ω)e
−jkxxe+jkyy dkx (y < 0).

The transverse magnetic field may be found from the axial electric field using (4.204):

H̃x = − 1

jωµ̃

∂Ẽz
∂y

, (4.397)

thus

H̃x(x, y, ω) =
1

2π

∞+j∆
∫

−∞+j∆

A+(kx, ω)

[

ky
ωµ̃

]

e−jkxxe−jkyy dkx (y > 0),

H̃x(x, y, ω) =
1

2π

∞+j∆
∫

−∞+j∆

A−(kx, ω)

[

− ky
ωµ̃

]

e−jkxxe+jkyy dkx (y < 0).

To find the spectra A±(kx, ω) we apply the boundary conditions at y = 0. Since tangen-
tial Ẽ is continuous, we have, after combining the integrals,

1

2π

∞+j∆
∫

−∞+j∆

[A+(kx, ω)−A−(kx, ω)]e
−jkxx dkx = 0,

and, hence, by the Fourier integral theorem

A+(kx, ω)−A−(kx, ω) = 0. (4.398)

We must also apply n̂12 × (H̃1− H̃2) = J̃s. The line current may be written as a surface
current density using the δ-function, giving

−[H̃x(x, 0
+, ω)− H̃x(x, 0

−, ω)] = Ĩ(ω)δ(x).

By (A.5)

δ(x) =
1

2π

∫ ∞

−∞
e−jkxx dkx.

Then, substituting for the fields and combining the integrands, we have

1

2π

∞+j∆
∫

−∞+j∆

[

A+(kx, ω) +A−(kx, ω) +
ωµ̃

ky
Ĩ(ω)

]

e−jkxx dkx = 0,

hence,

A+(kx, ω) +A−(kx, ω) = −ωµ̃
ky
Ĩ(ω). (4.399)
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Solution of (4.398) and (4.399) gives the angular spectra

A+(kx, ω) = A−(kx, ω) = − ωµ̃

2ky
Ĩ(ω).

Substituting this into the field expressions and combining the cases for y > 0 and y < 0,
we find

Ẽz(x, y, ω) = −ωµ̃Ĩ(ω)
2π

∞+j∆
∫

−∞+j∆

e−jky|y|

2ky
e−jkxx dkx = −jωµ̃Ĩ(ω)G̃(x, y|0, 0;ω). (4.400)

Here G̃ is the spectral representation of the two-dimensional Green’s function first found
in § 4.11.8, and is given by

G̃(x, y|x′, y′;ω) = 1

2πj

∞+j∆
∫

−∞+j∆

e−jky|y−y
′|

2ky
e−jkx(x−x

′) dkx. (4.401)

By duality,

H̃z(x, y, ω) = −ωǫ̃
cĨm(ω)

2π

∞+j∆
∫

−∞+j∆

e−jky |y|

2ky
e−jkxx dkx = −jωǫ̃cĨm(ω)G(x, y|0, 0;ω)

(4.402)
for a magnetic line current Ĩm(ω) on the z-axis.
Since (4.344) and (4.401) must be equivalent, we have the well-known identity [35]

1

π

∞+j∆
∫

−∞+j∆

e−jky |y|

ky
e−jkxx dkx = H

(2)
0 (kρ).

We have not yet specified the contour appropriate for calculating the inverse transform
(4.400). Caution is required, as the denominator of (4.400) has branch points at ky =
√

k2 − k2x = 0, or equivalently, kx = ±k = ±(kr + jki). For lossy materials, ki < 0 and
kr > 0, so the branch points appear as in Figure 4.50. We may take the branch cuts
outward from these points, with an inversion contour lying between the branch points
so that the latter are not traversed. This requires ki < ∆ < −ki. It is natural to choose
∆ = 0 and use the real axis as the inversion contour. But care is needed to extend these
arguments to the lossless case. Taking the lossless case as the limit of the lossy case
as ki → 0, we find that the branch points migrate to the real axis and thus lie on the
inversion contour. We can eliminate this problem by realizing that the inversion contour
may be perturbed without affecting the value of the integral, provided the contour does
not cross the branch cuts. If we perturb the contour as shown in Figure 4.50, then as
ki → 0 the branch points do not fall on the contour.
Many interesting techniques may be used to compute the inversion integral appearing

in (4.400) and in the other expressions obtained in this section. These include direct real-
axis integration and closed contour methods using Cauchy’s residue theorem to capture
poles of the integrand (which often describe the properties of waves guided by surfaces).
Often it is necessary to integrate around branch cuts to satisfy the hypotheses of the
residue theorem. When the observation point is far from the source, we may use the
method of steepest descents to obtain asymptotic forms for the fields. The interested
reader should consult Chew [35], Kong [108], or Sommerfeld [179].
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FIGURE 4.50

Inversion contour in complex kx-plane for a line source. Dotted arrow shows migration
of branch points to real axis as loss goes to zero.

4.13.1.2 Field of a line source above an interface

Consider a z-directed electric line current located at y = h within a medium having
parameters µ̃1(ω) and ǫ̃

c
1(ω). The y = 0 plane separates this region from a region having

parameters µ̃2(ω) and ǫ̃
c
2(ω). See Figure 4.51. The impressed line current source creates

an electromagnetic field that induces secondary polarization and conduction currents in
both regions. This current in turn produces a secondary field that adds to the primary
field of the line source to satisfy the boundary conditions at the interface. We would like
to obtain the secondary field and give its sources an image interpretation.

Since the fields are z-independent we may decompose the fields into sets TE and TM to
z. For a z-directed impressed source there is a z-component of Ẽ but no z-component of
H̃, so the fields are entirely specified by the TM set. The impressed source is unaffected
by the secondary field, and we may represent the impressed electric field using (4.400):

Ẽiz(x, y, ω) = −ωµ̃1Ĩ(ω)

2π

∞+j∆
∫

−∞+j∆

e−jky1|y−h|

2ky1
e−jkxx dkx (y ≥ 0) (4.403)

where ky1 =
√

k21 − k2x and k1 = ω(µ̃1ǫ̃
c
1)

1/2. From (4.397) we find that

H̃i
x = − 1

jωµ̃1

∂Ẽiz
∂y

=
Ĩ(ω)

2π

∞+j∆
∫

−∞+j∆

ejky1(y−h)

2
e−jkxx dkx (0 ≤ y < h).

The scattered field obeys the homogeneous Helmholtz equation for all y > 0, and thus
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FIGURE 4.51

Geometry of a z-directed line source above an interface between two material regions.

may be written using (4.393) as a superposition of upward-traveling waves:

Ẽsz1(x, y, ω) =
1

2π

∞+j∆
∫

−∞+j∆

A1(kx, ω)e
−jky1ye−jkxx dkx,

H̃s
x1(x, y, ω) =

1

2π

∞+j∆
∫

−∞+j∆

ky1
ωµ̃1

A1(kx, ω)e
−jky1ye−jkxx dkx.

Similarly, in region 2 the scattered field may be written as a superposition of downward-
traveling waves:

Ẽsz2(x, y, ω) =
1

2π

∞+j∆
∫

−∞+j∆

A2(kx, ω)e
jky2ye−jkxx dkx,

H̃s
x2(x, y, ω) = − 1

2π

∞+j∆
∫

−∞+j∆

ky2
ωµ̃2

A2(kx, ω)e
jky2ye−jkxx dkx,

where ky2 =
√

k22 − k2x and k2 = ω(µ̃2ǫ̃
c
2)

1/2.
We can determine the angular spectra A1 and A2 by applying the boundary conditions

at the interface between the two media. Continuity of the total tangential electric field
implies

1

2π

∞+j∆
∫

−∞+j∆

[

−ωµ̃1Ĩ(ω)

2ky1
e−jky1h +A1(kx, ω)−A2(kx, ω)

]

e−jkxx dkx = 0,

hence, by the Fourier integral theorem,

A1(kx, ω)−A2(kx, ω) =
ωµ̃1Ĩ(ω)

2ky1
e−jky1h.
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Continuity of H̃x yields

− Ĩ(ω)
2

e−jky1h =
ky1
ωµ̃1

A1(kx, ω) +
ky2
ωµ̃2

A2(kx, ω)

and we obtain

A1(kx, ω) =
ωµ̃1Ĩ(ω)

2ky1
RTM (kx, ω)e

−jky1h,

A2(kx, ω) = −ωµ̃2Ĩ(ω)

2ky2
TTM (kx, ω)e

−jky1h,

where RTM and TTM = 1 +RTM are the reflection and transmission coefficients

RTM (kx, ω) =
µ̃1ky2 − µ̃2ky1
µ̃1ky2 + µ̃2ky1

, TTM (kx, ω) =
2µ̃1ky2

µ̃1ky2 + µ̃2ky1
.

These describe the reflection and transmission of each component of the plane-wave
spectrum of the impressed field, and thus depend on the parameter kx. The scattered
fields are

Ẽsz1(x, y, ω) =
ωµ̃1Ĩ(ω)

2π

∞+j∆
∫

−∞+j∆

e−jky1(y+h)

2ky1
RTM (kx, ω)e

−jkxx dkx, (4.404)

Ẽsz2(x, y, ω) = −ωµ̃2Ĩ(ω)

2π

∞+j∆
∫

−∞+j∆

ejky2(y−hky1/ky2)

2ky2
TTM (kx, ω)e

−jkxx dkx. (4.405)

We may now obtain the field produced by an electric line source above a perfect
conductor. As σ̃2 → ∞ we get ky2 =

√

k22 − k2x → ∞ so that RTM → 1 and TTM → 2.
The scattered fields (4.404) and (4.405) become

Ẽsz1(x, y, ω) =
ωµ̃1Ĩ(ω)

2π

∞+j∆
∫

−∞+j∆

e−jky1(y+h)

2ky1
e−jkxx dkx, (4.406)

Ẽsz2(x, y, ω) = 0.

Comparing (4.406) to (4.403) we see that the scattered field is the same as that produced
by a line source of amplitude −Ĩ(ω) located at y = −h. We call this line source the
image of the impressed source, and say that the problem of two line sources located
symmetrically on the y-axis is equivalent for y > 0 to the problem of the line source
above a ground plane. The total field is the sum of the impressed and scattered fields:

Ẽz(x, y, ω) = −ωµ̃1Ĩ(ω)

2π

∞+j∆
∫

−∞+j∆

e−jky1|y−h| − e−jky1(y+h)

2ky1
e−jkxx dkx (y ≥ 0).

We can write this in another form using the Hankel-function representation of the line
source (4.343):

Ẽz(x, y, ω) = −ωµ̃
4
Ĩ(ω)H

(2)
0 (k|ρ− ŷh|) + ωµ̃

4
Ĩ(ω)H

(2)
0 (k|ρ+ ŷh|)
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FIGURE 4.52

Geometry for scattering of a TM plane wave by a conducting half-plane.

where |ρ± ŷh| = |ρρ̂± ŷh| =
√

x2 + (y ± h)2.
Interpreting the general case in terms of images is more difficult. Comparing (4.404)

and (4.405) with (4.403), we see that each spectral component of the field in region 1 has
the form of an image line source located at y = −h in region 2, but that the amplitude
of the line source, RTM Ĩ, depends on kx. Similarly, the field in region 2 is composed of
spectral components that seem to originate from line sources with amplitudes −TTM Ĩ
located at y = hky1/ky2 in region 1. In this case the amplitude and position of the image
line source producing a spectral component are both dependent on kx.

4.13.1.3 The field scattered by a half-plane

Consider a thin planar conductor that occupies the half-plane y = 0, x > 0. We assume
the half-plane lies within a slightly lossy medium having parameters µ̃(ω) and ǫ̃c(ω), and
may consider the case of free space as a lossless limit. The half-plane is illuminated by an
impressed uniform plane wave with a z-directed electric field (Figure 4.52). The primary
field induces a secondary current on the conductor and this in turn produces a secondary
field. The total field must obey the boundary conditions at y = 0.
Because the z-directed incident field induces a z-directed secondary current, the fields

may be described entirely in terms of a TM set. The impressed plane wave may be
written as

Ẽi(r, ω) = ẑẼ0(ω)e
jk(x cosφ0+y sinφ0)

where φ0 is the angle between the incident wave vector and the x-axis. By (4.214) we
also have

H̃i(r, ω) =
Ẽ0(ω)

η
(ŷ cosφ0 − x̂ sinφ0)e

jk(x cosφ0+y sin φ0).

The scattered fields may be written in terms of the Fourier transform solution to the
Helmholtz equation. It is convenient to use the polar coordinate representation (4.396)
to develop the necessary equations. Thus, for the scattered electric field we can write

Ẽsz(x, y, ω) =

∫

C

f(ξ, ω)e−jkρ cos(φ±ξ) dξ. (4.407)
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By (4.397) the x-component of the magnetic field is

H̃s
x(x, y, ω) = − 1

jωµ̃

∂Ẽsz
∂y

= − 1

jωµ̃

∫

C

f(ξ, ω)
∂

∂y

(

e−jkx cos ξe±jky sin ξ
)

dξ

= − 1

jωµ̃
(±jk)

∫

C

f(ξ, ω) sin ξe−jkρ cos(φ±ξ) dξ.

To find the angular spectrum f(ξ, ω) and ensure uniqueness of solution, we must apply
the boundary conditions over the entire y = 0 plane. For x > 0 where the conductor
resides, the total tangential electric field must vanish. Setting the sum of the incident
and scattered fields to zero at φ = 0, we have

∫

C

f(ξ, ω)e−jkx cos ξ dξ = −Ẽ0e
jkx cosφ0 (x > 0). (4.408)

To find the boundary condition for x < 0, we note that by symmetry, Ẽsz is even about
y = 0, while H̃s

x, as the y-derivative of Ẽsz , is odd. Since no current can be induced in
the y = 0 plane for x < 0, the x-directed scattered magnetic field must be continuous
and thus equal to zero there. Hence our second condition is

∫

C

f(ξ, ω) sin ξe−jkx cos ξ dξ = 0 (x < 0). (4.409)

Now that we have developed the two equations that describe f(ξ, ω), it is convenient
to return to a rectangular-coordinate-based spectral integral to analyze them. Writing
ξ = cos−1(kx/k), we have

d

dξ
(k cos ξ) = −k sin ξ = dkx

dξ

and

dξ = − dkx
k sin ξ

= − dkx

k
√

1− cos2 ξ
= − dkx

√

k2 − k2x
.

Upon substitution of these relations, the inversion contour returns to the real kx axis
(which may then be perturbed by j∆). Thus, (4.408) and (4.409) may be written as

∞+j∆
∫

−∞+j∆

f
(

cos−1 kx
k

)

√

k2 − k2x
e−jkxx dkx = −Ẽ0e

jkx0x (x > 0), (4.410)

∞+j∆
∫

−∞+j∆

f

(

cos−1 kx
k

)

e−jkxx dkx = 0 (x < 0), (4.411)

where kx0 = k cosφ0. Equations (4.410) and (4.411) form a set of dual integral equations
for f . They may be treated by the Wiener–Hopf technique.

We begin by considering (4.411). If we close the integration contour in the upper half-
plane using a semicircle CR of radius R where R → ∞, we find that the contribution
from the semicircle is

lim
R→∞

∫

CR

f

(

cos−1 kx
k

)

e−|x|kxiej|x|kxr dkx = 0
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FIGURE 4.53

Integration contour used to evaluate the function F (x).

since x < 0. This assumes f does not grow exponentially with R. Thus

∮

C

f

(

cos−1 kx
k

)

e−jkxx dkx = 0

where C now encloses the portion of the upper half-plane kxi > ∆. By Morera’s theorem
[116], the above relation holds if f is regular (contains no singularities or branch points)
in this portion of the upper half-plane. We shall assume this and investigate the other
properties of f implied by (4.410).
In (4.410) we have an integral equated to an exponential function. To understand the

implications of this it is helpful to write the exponential function as an integral as well.
Consider the integral

F (x) =
1

2jπ

∞+j∆
∫

−∞+j∆

h(kx)

h(−kx0)
1

kx + kx0
e−jkxx dkx.

Here h(kx) is some function regular in the region kxi < ∆, with h(kx) → 0 as kx → ∞.
If we choose ∆ so that −kxi > ∆ > −kxi cos θ0 and close the contour with a semicircle
in the lower half-plane (Figure 4.53), then the contribution from the semicircle vanishes
for large radius and thus, by Cauchy’s residue theorem, F (x) = −ejkx0x. Hence we can
rewrite (4.410) as

∞+j∆
∫

−∞+j∆

[

f
(

cos−1 kx
k

)

√

k2 − k2x
− Ẽ0

2jπ

h(kx)

h(−kx0)
1

kx + kx0

]

e−jkxx dkx = 0.

Setting the integrand to zero and using
√

k2 − k2x =
√
k − kx

√
k + kx, we have

f
(

cos−1 kx
k

)

√
k − kx

(kx + kx0) =
Ẽ0

2jπ

√

k + kx
h(kx)

h(−kx0)
. (4.412)
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The left member has a branch point at kx = k while the right member has a branch point
at kx = −k. If we choose the branch cuts as in Figure 4.50, then since f is regular in the
region kxi > ∆, the left side of (4.412) is regular there. Also, since h(kx) is regular in
the region kxi < ∆, the right side is regular there. We assert that since the two sides are
equal, both sides must be regular in the entire complex plane. By Liouville’s theorem
[36], if a function is entire (regular in the entire plane) and bounded, it is constant. So

f
(

cos−1 kx
k

)

√
k − kx

(kx + kx0) =
Ẽ0

2jπ

√

k + kx
h(kx)

h(−kx0)
= constant.

We may evaluate the constant by inserting any value of kx. Using kx = −kx0 on the
right, we find that

f
(

cos−1 kx
k

)

√
k − kx

(kx + kx0) =
Ẽ0

2jπ

√

k − kx0.

Substituting kx = k cos ξ and kx0 = k cosφ0, we have

f(ξ) =
Ẽ0

2jπ

√
1− cosφ0

√
1− cos ξ

cos ξ + cosφ0
.

Since sin(x/2) =
√

(1− cosx)/2, we may also write

f(ξ) =
Ẽ0

jπ

sin φ0

2 sin ξ
2

cos ξ + cosφ0
.

Finally, substituting this into (4.407), we have the spectral representation for the field
scattered by a half-plane:

Ẽsz(ρ, φ, ω) =
Ẽ0(ω)

jπ

∫

C

sin φ0

2 sin ξ
2

cos ξ + cosφ0
e−jkρ cos(φ±ξ) dξ. (4.413)

The scattered field inversion integral in (4.413) may be rewritten in such a way as to
separate geometrical optics (plane-wave) terms from diffraction terms. First, a change
of variables ξ′ = ξ + φ is used, resulting in a shift of the inversion contour and a pole of
the integrand at ξ′ = φ + φ0 − π. The inversion contour is then shifted to the contour
defined by cos ξ′r cosh ξ

′
i = 1 where ξr and ξi are the real and imaginary parts of ξ,

respectively. The contour passes through the origin and remains in the region defined by
sin ξ′r sinh ξ

′
i ≥ 0. Note that moving the contour may require adding a contribution to

the integral because the pole on the real axis may lie within the closed contour created
by appending the shifted and original contours. Whether the pole is implicated depends
on the observation angle φ. Finally, a change of variables

ν =
√
2e−j

π
4 sin

ξ′

2

allows the contour integral to be written in terms of standard functions. Addition of the
the incident field gives the total field:

Ẽz(ρ, φ, ω) = U(ǫi)Ẽ0e
jkρ cos(φ−φ0) − U(ǫr)Ẽ0e

jkρ cos(φ+φ0)

− Ẽ0ǫ
iK−

(

|ai|
√

kρ
)

e−jkρ + Ẽ0ǫ
rK−

(

|ar|
√

kρ
)

e−jkρ (0 ≤ φ < 2π).

(4.414)
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Here U(x) is the unit step function (A.6), and ǫi,r are the functions (not to be confused
with permittivity)

ǫi = sgn(ai), ǫr = sgn(ar),

where
ai =

√
2 cos 1

2 (φ− φ0), ar =
√
2 cos 1

2 (φ+ φ0),

and sgn(x) is the signum function (A.7). In addition, K−(x) is the modified Fresnel
integral defined by

K−(x) =
1√
π
ej(x

2+π
4 )
∫ ∞

x

e−jt
2

dt.

The Fresnel integral is a standard handbook function available in many numerical li-
braries. See James [94] for details of the derivation.
The result (4.414) has an important interpretation in terms of geometrical optics and

diffraction. The first term represents the incident plane-wave field. It is nonzero only
when 0 ≤ φ ≤ π + φ0. This is the region directly illuminated by the incident plane
wave according to geometrical optics. It is not present in the shadow zone where the
geometrical optics rays are blocked by the conductor. The second term is a plane wave
representing reflection from the half-plane, with angle of reflection equal to angle of
incidence. It is nonzero only when 0 ≤ φ ≤ π − φ0, which is the region illuminated by
rays reflected from the half-plane. The third and fourth terms represent the diffracted
field, with one term associated with the incident field and the other associated with
the reflected field. The factor exp(−jkρ) in each term suggests that the diffracted field
may behave similar to a cylindrical wave emanating from the edge of the half-plane;
this is true for angles sufficiently removed from the geometrical optics boundaries. The
multiplicative factor of the Fresnel integral determines the dependence on angle and
represents a pattern factor of diffraction, much as with the pattern of antennas; it is
called a diffraction coefficient . Diffraction coefficients form an important part of the
geometrical theory of diffraction in which the principles of geometrical optics are used to
interpret the nature of diffracted fields and model their interactions with nearby objects.

◮ Example 4.32: Total field for plane-wave scattering by a half-plane

A TM plane wave is incident at angle φ0 = 45◦ on a perfectly conducting half-plane located
in free space, as shown in Figure 4.52. Investigate the magnitude of the total field |Ẽz|
within a square of side 8λ0 centered on the edge of the half-plane.

Solution: The total axial electric field may be computed using (4.414). We normalize the
distance from the edge of the half plane so that k0ρ = 2πρ/λ0. The magnitude of Ẽz/Ẽ0

is shown in Figure 4.54. Several interesting characteristics can be seen, similar to those
observed for the case of the conducting wedge considered in Example 4.29. First, the field
vanishes at the half-plane surface, as expected from the boundary condition. Second, a
standing wave pattern exists above the half-plane, where the incident and scattered fields
combine to create regions of constructive and destructive interference with a period of a
half wavelength. The reflection boundary at φ = 180◦ − φ0 = 135◦ separates the region
illuminated by both the incident and reflected waves from the region illuminated only by the
incident wave, according to the laws of geometrical optics. A clear shadow is seen below the
half-plane. The shadow boundary at φ = 180◦ + φ0 = 225◦ separates the region illuminated
by the incident wave from the shadow zone, where the incident wave cannot reach according
to the laws of geometrical optics. Geometrical optics predicts fields discontinuous across the
reflection and shadow boundaries, but the diffraction terms in (4.414) provide for the smooth
transition that is observed in practice. Thus, a remnant of the standing wave pattern can
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be seen outside the reflection zone, and a nonzero (but small) field is present in the shadow
region.
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FIGURE 4.54
Total axial electric field |Ẽz/Ẽ0| for a plane wave incident at angle φ0 = 45◦ on a perfectly
conducting half-plane. ◭

4.14 Periodic fields and Floquet’s theorem

In several practical situations, EM waves interact with, or are radiated by, structures
spatially periodic along one or more directions. Periodic symmetry simplifies field com-
putation, since boundary conditions need only be applied within one period, or cell, of
the structure. Examples of situations that lead to periodic fields include the guiding of
waves in slow-wave structures such as helices and meander lines, the scattering of plane
waves from gratings, and the radiation of waves by antenna arrays. In this section we
will study the representation of fields with infinite periodicity as spatial Fourier series.

4.14.1 Floquet’s theorem

Consider an environment having spatial periodicity along the z-direction. In this envi-
ronment the frequency-domain field may be represented in terms of a periodic function
ψ̃p that obeys

ψ̃p(x, y, z ±mL,ω) = ψ̃p(x, y, z, ω)
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where m is an integer and L is the spatial period. According to Floquet’s theorem, if ψ̃
represents some vector component of the field, then the field obeys

ψ̃(x, y, z, ω) = e−jκzψ̃p(x, y, z, ω). (4.415)

Here κ = β − jα is a complex wavenumber describing the phase shift and attenuation of
the field between the various cells of the environment. The phase shift and attenuation
may arise from a wave propagating through a lossy periodic medium (see example below)
or may be impressed by a plane wave as it scatters from a periodic surface, or may be
produced by the excitation of an antenna array by a distributed terminal voltage. It is
also possible to have κ = 0 as when, for example, a periodic antenna array is driven with
all elements in phase.
Because ψ̃p is periodic, we may expand it in a Fourier series

ψ̃p(x, y, z, ω) =
∞
∑

n=−∞
ψ̃n(x, y, ω)e

−j2πnz/L

where the ψ̃n are found by orthogonality:

ψ̃n(x, y, ω) =
1

L

∫ L/2

−L/2
ψ̃p(x, y, z, ω)e

j2πnz/L dz.

Substituting this into (4.415), we have a representation for the field as a Fourier series:

ψ̃(x, y, z, ω) =
∞
∑

n=−∞
ψ̃n(x, y, ω)e

−jκnz

where
κn = β + 2πn/L+ jα = βn − jα.

We see that within each cell the field consists of a number of constituents called space
harmonics or Hartree harmonics, each with the property of a propagating or evanescent
wave. Each has phase velocity

vpn =
ω

βn
=

ω

β + 2πn/L
.

A number of the space harmonics have phase velocities in the +z-direction while the re-
mainder have phase velocities in the −z-direction, depending on the value of β. However,
all of the space harmonics have the same group velocity

vgn =
dω

dβ
=

(

dβn
dω

)−1

=

(

dβ

dω

)−1

= vg.

Those space harmonics having group and phase velocities oppositely directed are called
backward waves, and form the basis of operation of microwave tubes known as “backward
wave oscillators.”

4.14.2 Examples of periodic systems

4.14.2.1 Plane-wave propagation within a periodically stratified medium

As an example of wave propagation in a periodic structure, let us consider a plane
wave propagating within a layered medium consisting of two material layers repeated
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FIGURE 4.55

Geometry of a periodic stratified medium with each cell consisting of two material layers.

periodically, as shown in Figure 4.55. Each section of two layers is a cell within the
periodic medium, and we seek an expression for the propagation constant within the
cells, κ.

Recall (§ 4.11.5.7) that the wave amplitudes in any region in terms of the amplitudes
in the region immediately preceding it may be written in terms of a transmission matrix
as

[

T
(n)
11 T

(n)
12

T
(n)
21 T

(n)
22

]

[

an+1

bn+1

]

=

[

an
bn

]

where T
(n)
11 , etc., are defined in (4.293)–(4.296). We may use these parameters to describe

the cascaded system of two layers:
[

T
(n)
11 T

(n)
12

T
(n)
21 T

(n)
22

] [

T
(n+1)
11 T

(n+1)
12

T
(n+1)
21 T

(n+1)
22

]

[

an+2

bn+2

]

=

[

an
bn

]

.

Since for a periodic layered medium the wave amplitudes should obey (4.415), we have
[

T11 T12
T21 T22

] [

an+2

bn+2

]

=

[

an
bn

]

= ejκL
[

an+2

bn+2

]

(4.416)

where L = ∆n +∆n+1 is the period of the structure, and

[

T11 T12
T21 T22

]

=

[

T
(n)
11 T

(n)
12

T
(n)
21 T

(n)
22

] [

T
(n+1)
11 T

(n+1)
12

T
(n+1)
21 T

(n+1)
22

]

.

Equation (4.416) is an eigenvalue equation for κ and can be rewritten as
[

T11 − ejκL T12
T21 T22 − ejκL

] [

an+2

bn+2

]

=

[

0
0

]

.

This equation has nontrivial solutions only when the determinant of the matrix vanishes.
Expansion of the determinant gives

T11T22 − T12T21 − ejκL(T11 + T22) + ej2κL = 0. (4.417)
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The first two terms are merely

T11T22 − T12T21 =

∣

∣

∣

∣

T11 T12
T21 T22

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

T
(n)
11 T

(n)
12

T
(n)
21 T

(n)
22

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T
(n+1)
11 T

(n+1)
12

T
(n+1)
21 T

(n+1)
22

∣

∣

∣

∣

∣

.

Since we can show that
∣

∣

∣

∣

∣

T
(n)
11 T

(n)
12

T
(n)
21 T

(n)
22

∣

∣

∣

∣

∣

=
Zn−1

Zn
,

we have

T11T22 − T12T21 =
Zn−1

Zn

Zn
Zn+1

= 1

where we have used Zn−1 = Zn+1 because of the periodicity of the medium. With this,
(4.417) becomes

cosκL =
T11 + T22

2
.

Finally, computing the matrix product and simplifying to find T11 + T22, we have

cosκL = cos(kz,n∆n) cos(kk,n−1∆n−1)

− 1

2

(

Zn−1

Zn
+

Zn
Zn−1

)

sin(kz,n∆n) sin(kz,n−1∆n−1) (4.418)

or equivalently

cosκL =
1

4

(Zn−1 + Zn)
2

ZnZn−1
cos(kz,n∆n + kz,n−1∆n−1)

− 1

4

(Zn−1 − Zn)
2

ZnZn−1
cos(kz,n∆n − kz,n−1∆n−1). (4.419)

Note that both ±κ satisfy this equation, allowing waves with phase-front propagation in
both the ±z-directions.
We see in (4.418) that even for lossless materials, certain values of ω result in cosκL >

1, causing κL to be imaginary and producing evanescent waves. We refer to the frequency
ranges over which cosκL > 1 as stopbands, and those over which cosκL < 1 as passbands.
This terminology is used in filter analysis and, indeed, waves propagating in periodic
media experience effects similar to those experienced by signals passing through filters.

4.14.2.2 Field produced by an infinite array of line sources

As a second example, consider an infinite number of z-directed line sources within a
homogeneous medium of complex permittivity ǫ̃c(ω) and permeability µ̃(ω), aligned along
the x-axis with separation L such that

J̃(r, ω) =
∞
∑

n=−∞
ẑĨnδ(y)δ(x− nL).

The current on each element is allowed to show a progressive phase shift and attenua-
tion. (Such progression may result from a particular method of driving primary currents
on successive elements, or, if the currents are secondary, from their excitation by an
impressed field such as a plane wave.) Thus we write

Ĩn = Ĩ0e
−jκnL (4.420)
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where κ is a complex constant.
We may represent the field produced by the source array as a superposition of the fields

of individual line sources found earlier. In particular we may use the Hankel function
representation (4.343) or the Fourier transform representation (4.400). Using the latter,
we have

Ẽz(x, y, ω) =
∞
∑

n=−∞
e−jκnL



−ωµ̃Ĩ0(ω)
2π

∞+j∆
∫

−∞+j∆

e−jky |y|

2ky
e−jkx(x−nL) dkx



 .

Interchanging the order of summation and integration, we have

Ẽz(x, y, ω) = −ωµ̃Ĩ0(ω)
2π

∞+j∆
∫

−∞+j∆

e−jky|y|

2ky

[ ∞
∑

n=−∞
ejn(kx−κ)L

]

e−jkxx dkx. (4.421)

We can rewrite the sum in this expression using Poisson’s sum formula [144],

∞
∑

n=−∞
f(x− nD) =

1

D

∞
∑

n=−∞
F (nk0)e

jnk0x,

where k0 = 2π/D. Letting f(x) = δ(x− x0) in that expression, we have

∞
∑

n=−∞
δ

(

x− x0 − n
2π

L

)

=
L

2π

∞
∑

n=−∞
ejnL(x−x0).

Substituting this into (4.421), we have

Ẽz(x, y, ω) = −ωµ̃Ĩ0(ω)
2π

∞+j∆
∫

−∞+j∆

e−jky |y|

2ky

[ ∞
∑

n=−∞

2π

L
δ

(

kx − κ− n
2π

L

)

]

e−jkxx dkx.

Carrying out the integral, we replace kx with κn = κ+ 2nπ/L, giving

Ẽz(x, y, ω) = −ωµ̃Ĩ0(ω)
∞
∑

n=−∞

e−jky,n|y|e−jκnx

2Lky,n

= −jωµ̃Ĩ0(ω)G̃∞(x, y | 0, 0, ω)

where ky,n =
√

k2 − κ2n, and where

G̃∞(x, y |x′, y′, ω) =
∞
∑

n=−∞

e−jky,n|y−y
′|e−jκn(x−x

′)

2jLky,n
(4.422)

is called the periodic Green’s function.
We may also find the field produced by an infinite array of line sources in terms of

the Hankel function representation of a single line source (4.343). Using the current
representation (4.420) and summing over the sources, we obtain

Ẽz(ρ, ω) = −ωµ̃
4

∞
∑

n=−∞
Ĩ0(ω)e

−jκnLH(2)
0 (k|ρ− ρn|) = −jωµ̃Ĩ0(ω)G̃∞(x, y | 0, 0, ω)
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where
|ρ− ρn| = |ŷy + x̂(x − nL)| =

√

y2 + (x − nL)2

and where G̃∞ is an alternative form of the periodic Green’s function

G̃∞(x, y |x′, y′, ω) = 1

4j

∞
∑

n=−∞
e−jκnLH

(2)
0

(

k
√

(y − y′)2 + (x− nL− x′)2
)

. (4.423)

The periodic Green’s functions (4.422) and (4.423) produce identical results, but are
each appropriate for certain applications. For example, (4.422) is useful for situations
in which boundary conditions at constant values of y are to be applied. Both forms are
difficult to compute under certain circumstances, and variants of these forms have been
introduced in the literature [205].

◮ Example 4.33: Computing the periodic Green’s function

Assume that κ = 0, x′ = y′ = 0, x = 0, y = L, and kL = π. Specialize each of the two forms
of the periodic Green’s function, (4.422) and (4.423). Investigate the convergence rates of
these series.

Solution: First examine (4.422). Note that

κn = 2n
π

L
.

For n = 0, ky,n = k. For n 6= 0,

ky,n = −j
√

(

2n
π

L

)2

− k2.

Substitution gives

G̃∞,1(0, L | 0, 0, ω) =
∞
∑

n=−∞

e−jky,nL

2jky,nL

= −j 1

2π
e−jπ + 2

∞
∑

n=1

e−L
√

(2n πL )
2
−( πL )

2

2L
√

(

2n π
L

)2 −
(

π
L

)2

= j
1

2π
+

1

π

∞
∑

n=1

e−π
√

4n2−1

√
4n2 − 1

. (4.424)

Next, examine (4.423). Substituting the values of the parameters gives

G̃∞,2(0, L | 0, 0, ω) = 1

4j

∞
∑

n=−∞

H
(2)
0

( π

L

√

L2 + n2L2
)

=
1

4j
H

(2)
0 (π) +

1

2j

∞
∑

n=1

H
(2)
0

(

π
√

n2 + 1
)

. (4.425)

The table below shows values of the periodic Green’s function computed from (4.424) and
(4.425), found by summing the series to an upper limit of N using 15-digit precision. It is
clear that for this combination of parameters, computing (4.424) is far more efficient than
computing (4.425). With (4.424), the imaginary part is computed exactly in the first term
and the real part has been computed to 10 significant digits by the fifth term. With (4.425),
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even after a billion terms the real part is only accurate to two digits and the imaginary part
to 5 digits!

N Re{G̃∞,1} Re{G̃∞,2} Im{G̃∞,1} Im{G̃∞,2}
1 0.0007963799811 0.006455135089 0.1591549431 0.2427066943
2 0.0007968071480 0.01567773939 0.1591549431 0.09265520444
3 0.0007968076041 -0.02026337805 0.1591549431 0.2139340659
4 0.0007968076047 0.02372911342 0.1591549431 0.1122355519
5 0.0007968076047 -0.02474289964 0.1591549431 0.2005293266
10 0.02148396207 0.1313924649
102 0.008612629308 0.1510973026
103 0.003308785678 0.1566352654
104 0.001592440590 0.1583590665
105 0.001048449180 0.1589032938
106 0.0008763849212 0.1590753655
107 0.0008219721912 0.1591297785
108 0.0008047653455 0.1591469853
109 0.0007993240799 0.1591524266

◭

4.15 Application: electromagnetic characterization of materials

Material characterization uses measurements of the interaction of electromagnetic fields
with material samples to determine the intrinsic electromagnetic properties of the mate-
rials. For isotropic materials, this entails finding complex permittivity and permeability.
While the properties of some materials with simple chemical composition may be pre-
dictable theoretically, many complicated materials, especially engineered materials such
as chiral materials [26], nanotube composites [60], and metamaterials [178] can be char-
acterized only through measurements. Material characterization can be done accurately,
but care is required since material characterization is in essence an inversion process and
can be fraught with measurement sensitivity issues.

An astonishing number of characterization methods have been devised. Simple tech-
niques using measurements of capacitance or inductance are useful at lower frequencies
where field fringing may be easily compensated. More sophisticated methods are re-
quired in the microwave, millimeter-wave, and THz frequency bands, and these are often
categorized by the width of the frequency band over which they are applied. Wideband
techniques include: (1) free space methods, in which a planar layered sample is illumi-
nated by a focused beam with planar phase fronts [70]; (2) probe methods, in which
the open-ended aperture of a guided wave structure is placed against a material sample
[10]; (3) guided wave techniques where an open applicator, such as a microstrip line, is
placed against a sample [84]; and (4) closed-boundary guided wave systems in which a
sample is placed into the waveguiding system [212]. Narrowband techniques often in-
volve placing a sample in a cavity [15] or constructing a resonator out of the sample
itself [76]. Although resonator methods are narrowband, they are often the most reli-
able for characterizing low loss materials that produce little attenuation of propagating
waves. Characterization methods may also be categorized as destructive, where a sam-
ple must be excised or fabricated to a certain shape to fit into a field applicator, and
non-destructive, in which fields are applied to a sample without altering its physical con-
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struction. Probes and open guided-wave applicators provide a means for non-destructive
characterization, while cavity methods and closed guided-wave systems require specially
prepared samples. Finally, guided-wave and free-space techniques may be categorized as
reflection/transmission methods, which use both the field reflected by the sample and
the field transmitted through the sample, and reflection-only methods that do not utilize
the transmitted field [62]. A useful overview is provided in [30].
We will describe a subset of techniques that use measured reflection and transmission

data for waves incident on samples with planar surfaces. This includes free space systems,
where we model both the incident field and the sample as being infinite in extent. (This
model works well for a finite-sized sample illuminated by a focused beam if the sample
is larger than the spot size of the beam, and both the phase and amplitude of the
incident field are predominantly uniform across the spot.) Also included are guided
wave techniques where a sample is placed into the waveguiding structure. Both TEM
systems (such as coaxial lines and striplines) and dominant-mode waveguide systems
(such as rectangular guides operating in the TE10 mode) are appropriate provided the
sample fills the guide cross-section and the surfaces of the sample are planar and aligned
perpendicular to the direction of propagation.
Some techniques have been specifically developed to characterize dielectric materials,

where it is known a priori that µ̃ = µ0. In this case measurement of either the reflected
or transmitted signal suffices. We assume both µ̃ and ǫ̃c are desired. This requires
two independent measurements, which could be the reflected and transmitted signals,
or the reflected signal under two conditions that make the measurements independent.
Remarkably, many techniques share the common approach of determining the interfacial
reflection coefficient and the propagation term for the material sample. From these
quantities both ǫ̃c and µ̃ may be found, as described next.
The propagation of plane waves in layered media is considered in § 4.11.5. Many

concepts from that chapter can be extended to layered media in waveguiding systems,
including rectangular waveguides, coaxial guides, and striplines. We use the terminology
for plane waves in the following sections, providing relationships to waveguide terminol-
ogy when needed.

4.15.1 Γ̃-P̃ methods

Two independent measurements are required to determine both ǫ̃c and µ̃. Knowing
both the product µ̃ǫ̃c and the quotient µ̃/ǫ̃c, we can find ǫ̃c and µ̃ via multiplication
and division. The product appears in the wavenumber k, which appears in kz, which
appears in P̃ . Thus, finding P̃ allows to find µ̃ǫ̃c. The quotient appears in the intrinsic
impedance η, which appears in the wave impedance Z̃ (along with kz), which appears
in the interfacial reflection coefficient Γ̃. Thus, if kz has been found, the quotient may
be found from Γ̃. We refer to techniques that provide means to find Γ̃ and P̃ as Γ̃-P̃
methods.
A variety of approaches give rise to measurements of Γ̃ and P̃ , and several of these are

described below. In each case, the same procedure may be used to find ǫ̃c and µ̃ after
finding Γ̃ and P̃ . Although methods exist where the sample is sandwiched among known
materials, we assume here that the excitation field originates from a free-space region
and is incident on a sample of thickness ∆. Thus, the first interface is between free space
and the sample material. Recall from (4.272) that P̃ = e−jkz∆. If P̃ is determined from
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measurements, kz may be found using the logarithm:

kz =
ln P̃ + j2nπ

−j∆ (n = 0,±1,±2, . . .). (4.426)

But the multivalued nature of the logarithm leaves us with having to choose n. If we can
choose the sample thickness to be less than a half-wavelength, the phase cannot progress
more than −180◦ as the wave passes through the sample, and thus n = 0. However,
without a good estimate of the material properties we may not be able to estimate the
proper sample thickness to satisfy this requirement. In other scenarios we may be given
a sample whose thickness is predetermined, or we may need to measure across a wide
band such that the electrical thickness of the sample is wide ranging. Several authors
have suggested techniques for choosing the value of n; see [7].

The interfacial reflection coefficient may be written as

Γ̃ =
Z − Z0

Z + Z0
,

where Z is the wave impedance of the sample and Z0 is the impedance of the free-space
region immediately before the sample. From this we find

Z = Z0
1 + Γ̃

1− Γ̃
.

The formulas for kz, Z and Z0 depend on the form of the excitation, and hence so do
the final expressions for µ̃ and ǫ̃c. Three situations are considered here.

Incident plane wave. Suppose a plane wave is incident at an angle θ0 on an infinite
planar interface. First we have k2z = k2 − k20 sin

2 θ0 where k2 = ω2µ̃ǫ̃c. Thus,

k =

√

k2z + k20 sin
2 θ0,

which is known, since kz is known from (4.426). For perpendicular polarization we also
have from (4.258),

Z =
kη

kz
, Z0 =

η0
cos θ0

,

and thus

η = Z
kz
k

=
η0

cos θ0

1 + Γ̃

1− Γ̃

kz
k
.

With η and k known, we find

µ̃ =
ηk

ω
, ǫ̃c =

k

ωη
.

For parallel polarization, we have from (4.260),

Z =
kzη

k
, Z0 = η0 cos θ0,

and thus

η = Z
k

kz
= η0 cos θ0

1 + Γ̃

1− Γ̃

k

kz
.

With η and k known, we again find

µ̃ =
ηk

ω
, ǫ̃c =

k

ωη
.
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TEM waveguiding system. In this case the sample is placed into a TEM waveguiding
system such as a coaxial cable or a stripline. We then have simply k = kz, Z = η, and
Z0 = η0. Thus

η = η0
1 + Γ̃

1− Γ̃
.

With η and k known, we find

µ̃ =
ηkz
ω
, ǫ̃c =

kz
ωη
.

Note that this result is identical to the case of a plane-wave normally incident on a planar
sample (θ0 = 0).

Rectangular waveguide with TE10 mode incident. Here the sample is placed in
the cross-section of a rectangular waveguide. We have (§ 5.6)

k2z = k2 −
(π

a

)2

where a is the width of the guide. Thus

k =

√

k2z +
(π

a

)2

.

We also have from (5.201)

Z =
ωµ̃

kz
, Z0 =

ωµ0

kz0

where

kz0 =

√

k20 −
(π

a

)2

.

Thus

µ̃ = Z
kz
ω

= µ0
1 + Γ̃

1− Γ̃

kz
kz0

and ǫ̃c =
k2

ω2µ̃
.

4.15.1.1 Reflection-transmission (Nicolson–Ross–Weir) method

Probably the most widely applied material characterization technique is the reflection-
transmission technique proposed by Nicolson and Ross [140] and byWeir [212] (commonly
called the Nicolson–Ross–Weir method , or simply NRW). Here we make measurements
of the reflection from, and transmission through, a sample with a matched termination
(or equivalently, with a region behind the sample that is infinite in extent). The measured
reflection coefficient is described by (4.287) from Example 4.15. However, since free space
exists on both sides of the sample, we have Γ̃1 = Γ̃ = −Γ̃2. With this, the reflection
coefficient becomes

R̃ =
(1− P̃ 2)Γ̃

1− Γ̃2P̃ 2
,

where P̃ is the propagation term for the sample. Similarly, the measured transmission
coefficient is described by (4.288) from Example 4.15, again with Γ̃1 = Γ̃ = −Γ̃2:

T̃ =
(1− Γ̃2)P̃

1− Γ̃2P̃ 2
.
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We must solve these two equations simultaneously to determine Γ̃ and P̃ .
The procedure outlined by Nicolson and Ross and by Weir is as follows. Define the

intermediate quantities

V1 = T̃+ R̃ =
P̃ − Γ̃2P̃ + Γ̃− P̃ 2Γ̃

1− Γ̃2P̃ 2
=

P̃ + Γ̃

1 + Γ̃P̃
, (4.427)

V2 = T̃− R̃ =
P̃ − Γ̃2P̃ − Γ̃ + P̃ 2Γ̃

1− Γ̃2P̃ 2
=

P̃ − Γ̃

1− Γ̃P̃
. (4.428)

We solve for P̃ using (4.427),

P̃ =
V1 − Γ̃

1− V1Γ̃
, (4.429)

and using (4.428),

P̃ =
V2 + Γ̃

1 + V2Γ̃
. (4.430)

Equating, we find (V1 − Γ̃)(1 + V2Γ̃) = (V2 + Γ̃)(1− V1Γ̃), which can be rearranged as

(V1 − V2)Γ̃
2 − 2(1− V1V2)Γ̃ + (V1 − V2) = 0.

This is a quadratic equation of the form Γ̃2 − 2XΓ̃ + 1 = 0, with solution

Γ̃ = X ±
√

X2 − 1 where X =
1− V1V2
V1 − V2

=
1− T̃

2 + R̃
2

2R̃
.

The sign ambiguity is resolved by recognizing that only one choice results in |Γ̃| ≤ 1,
which must hold for passive materials. Finally, with Γ̃ determined, P̃ is found from either
(4.429) or (4.430).

There is an obvious alternative approach to finding Γ̃ and P̃ . We solve for Γ̃ from
(4.427) as

Γ̃ =
V1 − P̃

1− V1P̃
. (4.431)

Similarly, we solve for Γ̃ from (4.428) as

Γ̃ =
P̃ − V2

1− V2P̃
. (4.432)

Equating, we obtain (V1 − P̃ )(1− V2P̃ ) = (P̃ − V2)(1− V1P̃ ) or

(V1 + V2)P̃
2 − 2(1 + V1V2)P̃ + (V1 + V2) = 0.

This is a quadratic equation of the form P̃ 2 − 2Y P̃ + 1 = 0 with solution

P̃ = Y ±
√

Y 2 − 1 where Y =
1 + V1V2
V1 + V2

=
1 + T̃

2 − R̃
2

2T̃
.

With P̃ determined, Γ̃ is found from either (4.431) or (4.432). The sign ambiguity is
again resolved by recognizing that only one choice results in |Γ̃| ≤ 1. It is interesting
that X and Y satisfy R̃X + T̃Y = 1.
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4.15.1.2 Two-thickness method

The two-thickness method [9] is one of several that rely on reflection-only measurements.
It is often more convenient to measure reflection than transmission, since no receiver is
required on the opposite side of the sample. In some cases, a transmission measurement
may not be possible, as when the sample is glued to a conductor backing that cannot be
removed [62].
The two-thickness method relies on either having two samples of the material with

two different thicknesses, or having one sample that can be cut into two pieces. In the
former situation, a reflection measurement is made with each of the two samples. In the
latter, the reflection from the sample is measured, then the sample is split, and a second
reflection measurement is made using one of the pieces.

With conductor backing. If the sample is backed by a conductor, the measured
reflection coefficients are given by (4.287) with Γ̃2 = −1. Let the thickness of the sample
for the first measurement be ∆, and for the second measurement be κ∆, where κ > 1.
See Figure 4.56. The reflection coefficient for the first measurement is

R̃A =
Γ̃− P̃ 2

A

1− Γ̃P̃ 2
A

=
Γ̃− Q̃

1− Γ̃Q̃
(4.433)

where P̃ 2
A = e−2jkz∆ = Q̃. Similarly, the reflection coefficient for the second measurement

is

R̃B =
Γ̃− P 2

B

1− Γ̃P 2
B

=
Γ̃−Qκ

1− Γ̃Qκ
(4.434)

where P 2
B = e−2jkz(κ∆) = Q̃κ. Simultaneous solution of (4.433) and (4.434) will yield Γ̃

and Q̃. We rearrange (4.433) to get

Γ̃ =
R̃A + Q̃

1 + R̃AQ̃
(4.435)

and (4.434) to get

Γ̃ =
R̃B + Q̃κ

1 + R̃BQ̃κ
. (4.436)

Equating, we find (R̃A + Q̃)(1 + R̃BQ̃
κ)− (R̃B + Q̃κ)(1 + R̃AQ̃) = 0 or

Q̃κ+1 −AQ̃κ +AQ̃ − 1 = 0 where A =
R̃AR̃B − 1

R̃A − R̃B

. (4.437)

Equation (4.437) may be solved for Q̃, which in turn determines P̃ . Once P̃ is found, Γ̃
may be found from either (4.435) or (4.436).

If κ is irrational, (4.437) has infinitely many solutions. If κ is rational, there may be
many solutions. Neither possibility is desirable. For κ = 2, however (which corresponds
to the thickness of the second sample being exactly twice that of the first sample), (4.437)
becomes Q̃3 −AQ̃2 +AQ̃− 1 = 0, which may be factored as

(Q̃− 1)[Q̃2 − (A− 1)Q̃+ 1] = 0.
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FIGURE 4.56

Measurements used in the two-thickness method (with conductor backing).

This has solutions Q̃ = 1 and

Q̃ =
A− 1

2
±

√

(

A− 1

2

)2

− 1.

The solution Q̃ = 1 would only be permissible for a lossless sample exactly a half wave-
length thick. The remaining sign choice is made by requiring |Γ̃| ≤ 1, where Γ̃ is found
using either (4.435) or (4.436).

As with the reflection-transmissionmethod, an alternative solution approach is possible
in which Γ̃ is first found. Consider the case with κ = 2. Rearrangement of (4.433) gives

Q̃ =
R̃A − Γ̃

R̃AΓ̃− 1
, (4.438)

while (4.434) gives

Q̃2 =
R̃B − Γ̃

R̃B Γ̃− 1
. (4.439)

Squaring (4.438) and equating with (4.439), we have

(R̃A − Γ̃)2(R̃BΓ̃− 1)− (R̃AΓ̃− 1)2(R̃B − Γ̃) = 0

or

Γ̃3 −BΓ̃2 +BΓ̃− 1 = 0 where B =
1 + R̃

2
AR̃B + 2R̃AR̃B + 2R̃A

R̃2
A + R̃B

. (4.440)

We may factor (4.440) as

(Γ̃− 1)[Γ̃2 − (B − 1)Γ̃ + 1] = 0.

This has solutions Γ̃ = 1 and

Γ̃ =
B − 1

2
±

√

(

B − 1

2

)2

− 1.

The solution Γ̃ = 1 would correspond to the unlikely case of total interfacial reflection.
The remaining sign choice is made by requiring |Γ̃| ≤ 1. Once Γ̃ is determined, Q̃, and
thus P̃ , may be found from either (4.438) or (4.439).
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With air backing. If the sample is backed by air, then the measured reflection coef-
ficients are given by (4.287) with Γ̃1 = Γ̃ = −Γ̃2. This is a more complicated expression
than for the case of a conductor-backed sample considered above. Thus, we will restrict
ourselves to the case in which one sample is exactly twice the thickness of the other
sample.
Let the thickness of the sample for the first measurement be ∆, and for the second

measurement be 2∆. Then the reflection coefficient for the first measurement is

R̃A =
Γ̃(1 − P̃ 2)

1− Γ̃2P̃ 2
=

Γ̃(1− Q̃)

1− Γ̃2Q̃
(4.441)

where P̃ 2 = e−2jkz∆ = Q̃. Similarly, the reflection coefficient for the second measurement
is

R̃B =
Γ̃(1 − P̃ 4)

1− Γ̃2P̃ 4
=

Γ̃(1− Q̃2)

1− Γ̃2Q̃2
(4.442)

where P 4 = e−2jkz(2∆) = Q̃2. Simultaneous solution of (4.441) and (4.442) yields Γ̃ and
Q̃. Rearrangement of (4.441) gives

Q̃ =
Γ̃− R̃A

Γ̃(1− R̃AΓ̃)
(4.443)

while (4.442) gives

Q̃2 =
Γ̃− R̃B

Γ̃(1− R̃BΓ̃)
. (4.444)

Squaring (4.443) and equating with (4.444), we get

(Γ̃− R̃A)
2Γ̃(1 − R̃BΓ̃)− Γ̃2(1 − R̃AΓ̃)

2(Γ̃− R̃B) = 0,

or

Γ̃4 − CΓ̃3 + CΓ̃− 1 = 0 where C =
R̃

2
AR̃B + 2R̃A − R̃B

R̃
2
A

. (4.445)

We may factor (4.445) as

(Γ̃− 1)(Γ̃ + 1)(Γ̃2 − CΓ̃ + 1) = 0.

This has solutions Γ̃ = 1, Γ̃ = −1, and

Γ̃ =
C

2
±

√

(

C

2

)2

− 1.

The first two solutions, Γ̃ = ±1, represent the unlikely cases of total interfacial reflection.
The remaining sign choice is made by requiring |Γ̃| ≤ 1. Once Γ̃ is determined, P̃ may
be found from either (4.443) or (4.444).
The two-thickness method depends on changing the structure of the sample. Several

other methods depend on changing the structure of the region immediately behind the
sample. These include the conductor-backed/air-backed method, the layer-shift method,
and the two-backing method. These are considered next. It is important to note that
changing the structure of the region in front of the sample does not provide any new
information about the sample, and thus cannot be used to provide an independent second
measurement. For instance, measuring the reflection from a layer of known material
placed immediately in front of the sample provides no more information than reflection
from the sample itself. This is discussed in some detail in [62].
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4.15.1.3 Conductor-backed/air-backed method

This method uses measurements of the reflection from the sample backed first by a
conductor, then backed by air [30]. See Figure 4.57. From (4.433) we have the conductor-
backed reflection coefficient

R̃A =
Γ̃− P̃ 2

1− Γ̃P̃ 2
, (4.446)

while from (4.441) we have the air-backed reflection coefficient

R̃B =
Γ̃(1− P̃ 2)

1− Γ̃2P̃ 2
. (4.447)

We must solve (4.446) and (4.447) simultaneously to find Γ̃ and P̃ . Rearrangement of
(4.446) gives

P̃ 2 =
Γ̃− R̃A

1− R̃AΓ̃
, (4.448)

while (4.447) gives

P̃ 2 =
Γ̃− R̃B

Γ̃(1− R̃BΓ̃)
. (4.449)

Equating, we have (Γ̃− R̃A)Γ̃(1 − R̃BΓ̃)− (1 − R̃AΓ̃)(Γ̃− R̃B) = 0, or

Γ̃3 −AΓ̃2 +AΓ̃− 1 = 0 where A =
1 + R̃AR̃B + R̃A

R̃B

. (4.450)

We may factor (4.450) as

(Γ̃− 1)[Γ̃2 − (A− 1)Γ̃ + 1] = 0.

This has solutions Γ̃ = 1 and

Γ̃ =
A− 1

2
±

√

(

A− 1

2

)2

− 1.

The first solution, Γ̃ = 1, corresponds to the unlikely case of total interfacial reflection.
The remaining sign choice is made by requiring |Γ̃| ≤ 1. Once Γ̃ is determined, Q̃, and
thus P̃ , may be found from either (4.448) or (4.449).

Alternatively, we may solve for P̃ and then Γ̃. Rearranging (4.446) gives

Γ̃ =
R̃A + Q̃

1 + R̃AQ̃
, (4.451)

where Q̃ = P̃ 2. Substituting this into (4.447) then gives

(1 + R̃AQ̃)
2
R̃B − R̃BQ̃(R̃A + Q̃)2 − (R̃A + Q̃)(1 − Q̃)(1 + R̃AQ̃) = 0,

or
Q̃3 −BQ̃2 +BQ̃− 1 = 0, (4.452)

where

B =
(R̃AR̃B − 1)(1− R̃A) + R̃A(R̃B − R̃A)

R̃A − R̃B

.
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FIGURE 4.57

Measurements used in the conductor-backed/air-backed method.

We may factor (4.452) as

(Q̃− 1)[Q̃2 − (B − 1)Q̃+ 1] = 0.

This has solutions Q̃ = 1 and

Q̃ =
B − 1

2
±

√

(

B − 1

2

)2

− 1.

The first solution, Q̃ = 1, is only possible if the sample is lossless and exactly a half
wavelength thick, which is unlikely. The remaining sign choice is made by requiring
|Γ̃| ≤ 1 where Γ̃ is found using (4.451).

4.15.1.4 Layer-shift method

In the layer-shift method a measurement is first taken of the reflection from the sample
backed by a conductor, then with the conductor removed a distance d from the sample.
In the second measurement, air is assumed to occupy the region between the sample
and the conductor. See Figure 4.58. A variant of this method uses measurements with
the conductor placed in two different positions behind the sample [100, 62]; see Problem
4.37.

From (4.433) we have the conductor-backed reflection coefficient

R̃A =
Γ̃− P̃ 2

1− Γ̃P̃ 2
. (4.453)

The case of an offset conductor was considered in Example 4.21. Using (4.303) with
Γ̃2 = −Γ̃1, we get

R̃B =
Γ̃ + Γ̃2P̃ 2

B − Γ̃P̃ 2 − P̃ 2P̃ 2
B

1 + Γ̃P̃ 2
B − Γ̃2P̃ 2 − Γ̃P̃ 2P̃ 2

B

. (4.454)

Here P̃B = e−jkz0d is known. Simultaneous solution of (4.446) and (4.447) yields Γ̃ and
P̃ . Rearranging (4.453), we have

P̃ 2 =
Γ̃− R̃A

1− Γ̃R̃A
, (4.455)
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FIGURE 4.58

Measurements used in the layer-shift method.

and substitution into (4.454) gives

R̃B − Γ̃2
R̃B

Γ̃− R̃A

1− Γ̃R̃A
− R̃BΓ̃P̃

2
B

Γ̃− R̃A

1− Γ̃R̃A
+ Γ̃R̃BP̃

2
B

= Γ̃− Γ̃
Γ̃− R̃A

1− Γ̃R̃A
− P̃ 2

B

Γ̃− R̃A

1− Γ̃R̃A
+ Γ̃2P̃ 2

B

or
Γ̃3 −AΓ̃2 +AΓ̃− 1 = 0 (4.456)

where

A =
(R̃AR̃B + 1)(1− P̃ 2

B) + R̃A − R̃BP̃
2
B

R̃B − R̃AP̃ 2
B

.

We may factor (4.456) as

(Γ̃− 1)[Γ̃2 − (A− 1)Γ̃ + 1] = 0.

This has solutions Γ̃ = 1 and

Γ̃ =
A− 1

2
±

√

(

A− 1

2

)2

− 1.

The solution Γ̃ = 1 corresponds to the unlikely case of total interfacial reflection. The
remaining sign choice is made by requiring |Γ̃| ≤ 1. Once Γ̃ is determined, P̃ may be
found from (4.455).

4.15.1.5 Two-backing method

In the two-backing method a measurement is first taken of the reflection from the sample
backed by air (free space), then with a known layer of material placed behind the sample
and backed by air [62]. See Figure 4.59. Let the propagation term for the known backing
region be P̃B , and the impedance be ZB.

From (4.287) we have the reflection coefficient for an air-backed sample,

R̃A =
Γ̃(1− P̃ 2)

1− Γ̃2P̃ 2
, (4.457)
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FIGURE 4.59

Measurements used in the two-backing method.

where we have used Γ̃1 = −Γ̃2 = Γ̃ and P̃1 = P̃ .
The structure reflection coefficient for the sample backed by a known layer is given by

(4.302). Letting Γ̃1 = Γ̃, Γ̃2 = Γ̃x, Γ̃3 = Γ̃B, P̃1 = P̃ , and P̃2 = P̃B, we have

R̃B =
Γ̃ + Γ̃Γ̃xΓ̃BP̃

2
B + Γ̃xP̃

2 + Γ̃BP̃
2P̃ 2

B

1 + Γ̃xΓ̃BP̃ 2
B + Γ̃Γ̃xP̃ 2 + Γ̃Γ̃BP̃ 2P̃ 2

B

. (4.458)

Simultaneous solution of (4.457) and (4.458) yields Γ̃ and P̃ .
Note that the interfacial reflection coefficient Γ̃x can be written in terms of Γ̃ and Γ̃B.

Since

Γ̃ =
Z − Z0

Z + Z0
,

we have

Z = Z0
1 + Γ̃

1− Γ̃
.

Substituting this into

Γ̃x =
ZB − Z

ZB + Z

and rearranging, we find that

Γ̃x =
Γ̃ + Z0−ZB

Z0+ZB

−Γ̃Z0−ZB
Z0+ZB

− 1
= − Γ̃ + Γ̃B

Γ̃Γ̃B + 1
. (4.459)

We can rearrange (4.457) to obtain P̃ 2 as

P̃ 2 =
R̃A − Γ̃

Γ̃2R̃A − Γ̃
. (4.460)

Substituting this and Γ̃x from (4.459) into (4.458) then gives, after some tedious algebra,

Γ̃4 − CΓ̃3 + CΓ̃− 1 = 0, (4.461)

where

C =
Γ̃B(P̃

2
B − 1)(R̃AR̃B − R̃A + 1) + (Γ̃2

BP̃
2
B − 1)(R̃B − R̃A)

R̃AΓ̃B(P̃ 2
B − 1)

.
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We may factor (4.461) as

(Γ̃− 1)(Γ̃ + 1)(Γ̃2 − CΓ̃ + 1) = 0.

This has solutions Γ̃ = 1, Γ̃ = −1, and

Γ̃ =
C

2
±

√

(

C

2

)2

− 1.

The solutions Γ̃ = ±1 correspond to the unlikely case of total interfacial reflection. The
remaining sign choice is made by requiring |Γ̃| ≤ 1. Once Γ̃ is determined, P̃ may be
found most easily from (4.460).

4.15.2 Other Γ̃-P̃ methods

There are other ways to obtain two independent measurements and thereby determine
Γ̃ and P̃ . For instance, one may make measurements of the transmission coefficients for
two different sample thicknesses, rather than two reflection measurements (see Problem
4.38). Interestingly, all reflection-only methods that generate two independent measure-
ments by altering the structure behind the sample (such as the conductor/air-backed
method, the layer-shift method, and the two-backing method) may be handled using one
unified technique. This approach, described in [62], uses an impedance transformation to
give closed-form answers for ǫ̃c and µ̃ without the need to find the roots of a polynomial
equation (although the need to find the proper value of n, and a square root ambigu-
ity, remain). It is a bit less transparent than the Γ̃-P̃ approach, but those interested
in applying reflection-only techniques might find it worth pursuing. But the reader is
warned again that altering the region in front of the sample may not provide independent
reflection measurements [62].

4.15.3 Non Γ̃-P̃ methods

The Γ̃-P̃ methods described above meet the requirement for two independent measure-
ments either by using both transmission and reflection, or by altering the sample envi-
ronment. Alternative methods use two measurements made with different excitations.
For example, the free space method may use two reflection measurements made at differ-
ent incidence angles. A method that is appealing on the surface is the two-polarization
method, which uses a free space system with reflection-only measurements made using
orthogonal (perpendicular and parallel) polarizations of the incident plane wave. Closed
form expressions for ǫ̃c and µ̃ may be found without any ambiguities regarding branches
of logarithms. Unfortunately, for materials with high values of ǫ̃c or µ̃, the technique
is extremely sensitive to uncertainty in the value of the incidence angle. This makes
the technique problematic for high-loss or high-permittivity materials. However, it may
find application for materials in which the product of relative permittivity and relative
permeability is not too large.

4.15.3.1 Two-polarization method

The two-polarization method is a reflection-only free-space method that uses the mea-
sured structure reflection coefficient under both parallel and perpendicular polarizations.
It is convenient to use only if the sample is backed by a conductor.
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Consider a conductor-backed sample of thickness ∆ illuminated by a plane wave at
an angle θ0 under either parallel or perpendicular polarization. Recall that for either
polarization, the structure reflection coefficient is

R̃ =
Γ̃− P̃ 2

1− Γ̃P̃ 2
where Γ̃ =

Z − Z0

Z + Z0
=
z − 1

z + 1

with z = Z/Z0. Substitution gives

R̃ =
z − 1− P̃ 2z − P̃ 2

z + 1− P̃ 2z + P̃ 2
.

Rearranging and solving for z, we have

z =

(

1 + R̃

1− R̃

)(

1 + P̃ 2

1− P̃ 2

)

= −j
(

1 + R̃

1− R̃

)

cot(kz∆).

Now assume two measurements are made: one with perpendicular polarization and
one with parallel polarization, both at the same incidence angle θ0. Then

z⊥ = −j
(

1 + R̃⊥

1− R̃⊥

)

cot(kz∆), z‖ = −j
(

1 + R̃‖

1− R̃‖

)

cot(kz∆).

By (4.258) and (4.260),

z⊥ =
kη/kz

η0/ cos θ0
, z‖ =

kzη/k

η0 cos θ0
.

Taking the ratio z‖/z⊥ we find that

k2z
k2 cos2 θ0

= Y,

which only depends on the product µ̃ǫ̃c, and not the ratio µ̃/ǫ̃c. Here

Y =

(

1− R̃⊥

1 + R̃⊥

)(

1 + R̃‖

1− R̃‖

)

.

Using k2z = k2 − k20 sin
2 θ0 we then have k2 − k20 sin

2 θ0 = Y k2 cos2 θ0 so that

k2

k20
=

µ̃

µ0

ǫ̃c

ǫ0
= k2r =

sin2 θ0
1− Y cos2 θ0

, (4.462)

where kr is the relative wavenumber (complex refractive index) of the sample. Formation
of the product z‖z⊥ gives

η2

η20
= η2r =

µ̃

µ0

ǫ0
ǫ̃c

= X cot2(kz∆),

where ηr is the complex relative intrinsic impedance of the sample, and

X = −
(

1 + R̃⊥

1− R̃⊥

)(

1 + R̃‖

1− R̃‖

)

.
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Since µ̃ǫ̃c is known from (4.462), we can compute kz and thus ηr. From kr and ηr we
find µ̃ and ǫ̃c by multiplication and division:

µ̃

µ0
= krηr = ±

√

sin2 θ0
1− Y cos2 θ0

X cot2(kz∆), (4.463)

ǫ̃c

ǫ0
=
kr
ηr

= ±

√

sin2 θ0
1− Y cos2 θ0

tan2(kz∆)

X
. (4.464)

These can be written more compactly by noting that

kz = k0

√

k2r − sin2 θ0 = k0 sin θ0

√

Y cos2 θ0
1− Y cos2 θ0

so
sin2 θ0

1− Y cos2 θ0
=

k2z
Y k20 cos

2 θ0
.

With this, (4.463)–(4.464) become

µ̃

µ0
= ±j 1 + R̃⊥

1− R̃⊥

kz
k0

cot(kz∆)

cos θ0
,

ǫ̃c

ǫ0
= ∓j 1− R̃‖

1 + R̃‖

kz
k0

tan(kz∆)

cos θ0
.

The sign ambiguity is resolved by requiring Im{ǫ̃c} < 0 and Im{µ̃} < 0 for passive
materials.

The benefit of the two-polarization method over Γ̃-P̃ methods is that kz is found
without the logarithm and its branch ambiguity. However, the expression (4.462) for
the product µ̃ǫ̃c suggests that this method can be sensitive to uncertainty in angle. If
k2r is large, the denominator of the expression on the right-hand side must be small so
that Y cos2 θ0 is near unity. Thus, an inaccurate specification of θ0 will not allow proper
cancellation and produce error in the expression. This will then propagate to the ratio
µ̃/ǫ̃c through kz. This is examined in more detail next.

4.15.4 Uncertainty analysis in material characterization

Uncertainty analysis is essential to any experimental undertaking. The uncertainties in-
herent both in the measurement equipment and in the process are quantified, and the
resulting error in the material parameters ǫ̃c and µ̃ are predicted. Sources of error arise
from uncertainty in the parameters specified in the extraction equations, such as the
sample thickness, the incidence angle, and the measured structure reflection coefficients.
Because these parameters appear directly in the equations, we can explore how uncer-
tainty in their values propagates through to become errors in the extracted values of ǫ̃c

and µ̃. Many other factors, however, are omitted as parameters from our simple model
used to produce the reflection and transmission coefficients. The sample may have sur-
face roughness, for instance, or nonuniform thickness. It may be bowed or tilted, or if
placed in a waveguide there may be gaps between the sample and the waveguide walls.
In the free-space method the incident field may not have a planar wavefront. Since we
did not account for these situations in our model, we can’t examine how these effects
create errors in the extracted values of ǫ̃c and µ̃. So we are confined to examinations of
uncertainty in thickness and incidence angle.
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Assume that the sample thickness is measured many times using some appropriate
process, and that the mean value is ∆̄ and the standard deviation is σ∆. Then ∆̄ is the
estimate of the thickness that we use in the extraction equations, and σ∆ characterizes
the uncertainty of the thickness. Similarly, assume that the incidence angle is measured
many times, and its mean and standard deviation are θ̄0 and σθ0 , respectively. Then the
propagation of the uncertainties in the values of ∆ and θ0 into errors in the extracted
values of ǫ̃c and µ̃ is described using the propagation of errors formulas [192],

σ2
Re ǫ̃c =

(

∂Re ǫ̃c

∂∆

)2

σ2
∆ +

(

∂Re ǫ̃c

∂θ0

)2

σ2
θ0 ,

σ2
Im ǫ̃c =

(

∂ Im ǫ̃c

∂∆

)2

σ2
∆ +

(

∂ Im ǫ̃c

∂θ0

)2

σ2
θ0 ,

σ2
Re µ̃ =

(

∂Re µ̃

∂∆

)2

σ2
∆ +

(

∂ Re µ̃

∂θ0

)2

σ2
θ0 ,

σ2
Im µ̃ =

(

∂ Im µ̃

∂∆

)2

σ2
∆ +

(

∂ Im µ̃

∂θ0

)2

σ2
θ0 ,

where it is assumed that there is no correlation between uncertainties (i.e., a change in the
knowledge of ∆ does not affect the known value of θ0, and vice versa). Here σ2

Re ǫ̃c is the
predicted variance in the extracted value of Re ǫ̃c, etc. The partial derivative quantities,
∂Re ǫ̃c/∂∆, etc., are sometimes called the sensitivity coefficients or amplification factors
because they describe how extensively the uncertainties in the measured quantities are
transferred to errors in the extracted parameters. These coefficients provide the crucial
link between uncertainty and error. When they are small, uncertainties in thickness
and angle may introduce little error into the calculation of µ̃ and ǫ̃c. When they are
large, small uncertainties may be amplified into large errors. In any case, note that these
formulas are only accurate when the uncertainties are small compared to the sensitivity
coefficients.
We illustrate with some examples.

◮ Example 4.34: Thickness sensitivity coefficients for free space Γ-P methods

Assume that some free-space method has been used to obtain the interfacial reflection co-
efficient and propagation factor of a material sample of thickness ∆. This method could
be, for instance, the reflection/transmission method of Nicolson, Ross, and Weir, or one of
the reflection-only methods. Determine the sensitivity coefficients for uncertainty in sample
thickness.

Solution: From § 4.15.1 we have, for perpendicular polarization,

µ̃ =
η0

cos θ0

1 + Γ̃

1− Γ̃

kz
ω
,

ǫ̃c =
cos θ0
η0

1− Γ̃

1 + Γ̃

k2

ωkz
,

where k2 = k2z + k20 sin
2 θ0 and

kz =
lnP + j2nπ

−j∆ .
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Computing the derivative of µ̃, we find

∂µ̃

∂∆
=

η0
cos θ0

1 + Γ̃

1− Γ̃

1

ω

∂kz
∂∆

.

But
∂kz
∂∆

= −kz
∆
,

so we have the simple expression
∂µ̃

∂∆
= − µ̃

∆
.

This yields the sensitivity coefficients

∂ Re µ̃

∂∆
= −Re µ̃

∆
,

∂ Im µ̃

∂∆
= − Im µ̃

∆
.

The derivative of ǫ̃c is a bit more complicated. Write

ǫ̃c =
cos θ0
η0

1− Γ̃

1 + Γ̃

k2z + k20 sin
2 θ0

ωkz
.

Then
∂ǫ̃c

∂∆
=

cos θ0
η0

1− Γ̃

1 + Γ̃

k2z − k20 sin
2 θ0

ωk2z

∂kz
∂∆

= − ǫ̃
c

∆

(

k2z − k20 sin
2 θ0

k2z + k20 sin
2 θ0

)

,

which at normal incidence (θ0 = 0) reduces to

∂ǫ̃c

∂∆
= − ǫ̃

c

∆
.

Thus, we have the sensitivity coefficients

∂ Re ǫ̃c

∂∆
= −Re

{

ǫ̃c

∆

(

k2z − k20 sin
2 θ0

k2z + k20 sin
2 θ0

)}

,

∂ Im ǫ̃c

∂∆
= − Im

{

ǫ̃c

∆

(

k2z − k20 sin
2 θ0

k2z + k20 sin
2 θ0

)}

.

Note that the sensitivity coefficient for µ̃ is independent of incidence angle, while the sen-
sitivity coefficient for ǫ̃c is dependent on incidence angle, although this dependence may be
modest.

For parallel polarization we have

µ̃ = η0 cos θ0
1 + Γ̃

1− Γ̃

k2

ωkz
,

ǫ̃c =
1

η0 cos θ0

1− Γ̃

1 + Γ̃

kz
ω
.

Comparing to the case of perpendicular polarization, we quickly see that

∂ Re ǫ̃c

∂∆
= −Re ǫ̃c

∆
,

∂ Im ǫ̃c

∂∆
= − Im ǫ̃c

∆
,

and

∂ Re µ̃r
∂∆

= −Re

{

µ̃r
∆

(

k2z − k20 sin
2 θ0

k2z + k20 sin
2 θ0

)}

,

∂ Im µ̃r
∂∆

= − Im

{

µ̃r
∆

(

k2z − k20 sin
2 θ0

k2z + k20 sin
2 θ0

)}

.
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These results show that as the thickness of the sample decreases, the sensitivity to un-
certainty in thickness increases in inverse proportion. Thus, if the experimenter’s ability to
measure thickness is independent of the thickness, then thin samples should be avoided to
minimize errors in ǫ̃c and µ̃. That is, the ratio of the thickness uncertainty to the thickness
should be kept as small as possible. ◭

◮ Example 4.35: Angle sensitivity coefficients for free space Γ-P methods

Assume that some free-space method has been used to obtain the interfacial reflection coef-
ficient and propagation factor of a material sample of thickness ∆. This method could be,
for instance, the reflection/transmission method of Nicolson, Ross, and Weir, or one of the
reflection-only methods. Determine the sensitivity coefficients for uncertainty in measure-
ment angle.

Solution: From § 4.15.1 we have, for perpendicular polarization,

µ̃ =
η0

cos θ0

1 + Γ̃

1− Γ̃

kz
ω
, ǫ̃ =

cos θ0
η0

1− Γ̃

1 + Γ̃

k2

ωkz
,

where k2 = k2z + k20 sin
2 θ0 and

kz =
lnP + j2nπ

−j∆ .

Computing the derivative of µ̃, we find

∂µ̃

∂θ0
= η0

1 + Γ̃

1− Γ̃

kz
ω

∂

∂θ0

(

1

cos θ0

)

= µ̃ tan θ0.

This yields the sensitivity coefficients

∂ Re µ̃

∂θ0
= Re{µ̃} tan θ0, ∂ Im µ̃

∂θ0
= Im{µ̃} tan θ0.

Differentiation yields

∂ǫ̃c

∂θ0
=

∂

∂θ0

(

cos θ0
η0

1− Γ̃

1 + Γ̃

k2z + k20 sin
2 θ0

ωkz

)

=
1− Γ̃

1 + Γ̃

1

η0ωkz

(

cos θ0
[

2k20 sin θ0 cos θ0
]

− sin θ0
[

k2z + k20 sin
2 θ0
])

= ǫ̃c
(

k20 sin 2θ0

k2z + k20 sin
2 θ0

− tan θ0

)

.

Therefore

∂ Re ǫ̃c

∂θ0
= Re

{

ǫ̃c
(

k20 sin 2θ0

k2z + k20 sin
2 θ0

− tan θ0

)}

,

∂ Im ǫ̃c

∂θ0
= Im

{

ǫ̃c
(

k20 sin 2θ0

k2z + k20 sin
2 θ0

− tan θ0

)}

.

For parallel polarization, we have

µ̃ = η0 cos θ0
1 + Γ̃

1− Γ̃

k2

ωkz
,

ǫ̃c =
1

η0 cos θ0

1− Γ̃

1 + Γ̃

kz
ω
.
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Comparing to the case of perpendicular polarization, we quickly see that

∂ Re ǫ̃c

∂θ0
= Re{ǫ̃c} tan θ0, ∂ Im ǫ̃c

∂θ0
= Im{ǫ̃c} tan θ0.

and

∂ Re µ̃

∂θ0
= Re

{

µ̃

(

k20 sin 2θ0

k2z + k20 sin
2 θ0

− tan θ0

)}

,

∂ Im µ̃

∂θ0
= − Im

{

µ̃

(

k20 sin 2θ0

k2z + k20 sin
2 θ0

− tan θ0

)}

.

Note that the sensitivity coefficients are smallest at θ0 = 0. Thus, illuminating the sample
at normal incidence results in the least propagated error from angle uncertainty. In contrast,
as the incidence angle approaches grazing (θ0 = π/2), the propagated error increases without
bound, with sensitivity coefficients

∣

∣

∣

∣

∂ Re ǫ̃c

∂θ0

∣

∣

∣

∣

,

∣

∣

∣

∣

∂ Im ǫ̃c

∂θ0

∣

∣

∣

∣

,

∣

∣

∣

∣

∂ Re µ̃

∂θ0

∣

∣

∣

∣

,

∣

∣

∣

∣

∂ Im µ̃

∂θ0

∣

∣

∣

∣

∼ 1
π
2
− θ0

. ◭

◮ Example 4.36: Angle sensitivity coefficients for two-polarization method

Determine the sensitivity coefficients for uncertainty in measurement angle for the two-
polarization method. Compare the coefficients as functions of angle at 10 GHz for a sample
of EccosorbR© FGM-125 and a 1/4-wavelength-thick sample of TeflonR©.

Solution: From § 4.15.3.1 we have

µ̃

µ0
= ±j 1 + R̃⊥

1− R̃⊥

kz
k0

cot(kz∆)

cos θ0
,

ǫ̃c

ǫ0
= ∓j 1− R̃‖

1 + R̃‖

kz
k0

tan(kz∆)

cos θ0
.

Differentiation of ǫ̃c with respect to θ0 gives

∂ǫ̃c

∂θ0
= ∓jǫ0

1− R̃‖

1 + R̃‖

1

k0

[

kz tan(kz∆)
sin θ0
cos2 θ0

]

∓ jǫ0
1− R̃‖

1 + R̃‖

1

k0 cos θ0

[

kz∆

cos2(kz∆)
+ tan(kz∆)

]

dkz
dθ0

= ǫ̃c
{

tan θ0 +

[

2kz∆

sin(2kz∆)
+ 1

]

1

kz

dkz
dθ0

}

. (4.465)

Now,

k2z =
Y k20 sin

2 θ0 cos
2 θ0

1− Y cos2 θ0
=
Y k20
4

sin2(2θ0)

1− Y cos2 θ0
.

Thus,

2kz
∂kz
∂θ0

=
Y k20
4

(1− Y cos2 θ0)4 sin(2θ0) cos(2θ0)− 2Y sin2(2θ0) sin θ0 cos θ0
(1− Y cos2 θ0)2

,

which, after much simplification, leads to

∂kz
∂θ0

= kz cot θ0

(

1− k2z
k20

1

Y cos4 θ0

)

.
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Use of this in (4.465) gives

∂ǫ̃c

∂θ0
= ǫ̃c

{

tan θ0 + cot θ0

(

1 +
2kz∆

sin(2kz∆)

)(

1− k2z
k20

1

Y cos4 θ0

)}

.

From these the expressions for ∂ Re ǫ̃c/∂θ0 and ∂ Im ǫ̃c/∂θ0 can be obtained by taking real
and imaginary parts. An analogous set of steps gives

∂µ̃

∂θ0
= µ̃

{

tan θ0 + cot θ0

(

1− 2kz∆

sin(2kz∆)

)(

1− k2z
k20

1

Y cos4 θ0

)}

.

Note the term cot θ0 in each of these expressions. This term shows that the sensitivity co-
efficients approach infinity as normal incidence is approached. This is reasonable, since at
normal incidence the structure reflection coefficients for parallel and perpendicular polariza-
tion are identical, and thus the inverse problem is underdetermined.

To get a grasp on the magnitude of the sensitivity coefficients, consider two samples of
material. The first is a commercially available magnetic radar absorbing material (ma-
gRAM), Eccosorb FGM-125. This material is 125 one-thousandths of an inch (3.175 mm)
thick, and at 10 GHz has representative material parameters ǫ̃c = (7.32 − j0.0464)ǫ0 and
µ̃ = (0.576 − j0.484)µ0 [47]. Figure 4.60 plots the absolute values of the sensitivity coeffi-
cients vs. incidence angle. As expected, the coefficients approach infinity at normal incidence.
They also become large near grazing incidence. The smallest sensitivity coefficients appear
for an angle in the vicinity of 60◦ (although each coefficient has a different angle at which it
is minimum). At this angle,

∣

∣

∣

∣

∂ Re ǫ̃c

∂θ0

∣

∣

∣

∣

≈ 55ǫ0,

∣

∣

∣

∣

∂ Im ǫ̃c

∂θ0

∣

∣

∣

∣

≈ 203ǫ0,

∣

∣

∣

∣

∂ Re µ̃

∂θ0

∣

∣

∣

∣

≈ 18µ0,

∣

∣

∣

∣

∂ Im µ̃

∂θ0

∣

∣

∣

∣

≈ 4.2µ0.

These numbers are surprisingly large. Assume the uncertainty in the angle is σθ0 = 0.02 rad,
which is just over one degree. Then, the expected error in Re ǫ̃c is approximately σRe{ǫ̃c} =
55ǫ0 × 0.02 = 1.1ǫ0. Recall that Re ǫ̃c = 7.32ǫ0. This means that an uncertainty in angle
of just one degree leads to roughly a 15% error in Re ǫ̃c. Even worse is the error in Im ǫ̃c,
which at σIm ǫ̃c = 203ǫ0 × 0.02 = 4.06ǫ0 is 10,000%! The errors in Re µ̃ and Im µ̃ are around
30% and 9%, respectively. These suggest that it might be difficult to accurately employ the
two-polarization method because of the need to precisely control the incidence angle.
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FIGURE 4.60
Sensitivity coefficients for FGM-125 at 10 GHz.
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The second material sample consists of a quarter-wavelength-thick piece of Teflon, which
is a nonmagnetic dielectric with representative material parameters ǫ̃c = (2.08− j0.0008)ǫ0
and µ̃ = (1− j0)µ0 at 10 GHz [206]. Figure 4.61 plots the absolute values of the sensitivity
coefficients vs. incidence angle. As with the magRAM, the smallest sensitivity coefficients
appear for θ0 ≈ 60◦. At this angle,

∣

∣

∣

∣

∂ Re ǫ̃c

∂θ0

∣

∣

∣

∣

≈ 0.090ǫ0,

∣

∣

∣

∣

∂ Im ǫ̃c

∂θ0

∣

∣

∣

∣

≈ 43ǫ0,

∣

∣

∣

∣

∂Re µ̃

∂θ0

∣

∣

∣

∣

≈ 15.5µ0,

∣

∣

∣

∣

∂ Im µ̃

∂θ0

∣

∣

∣

∣

≈ 0.031µ0 .

Clearly, the errors due to angle uncertainty are much less for Teflon than for magRAM.
Indeed, the error is dependent on the contrast of the material parameters of the sample with
the parameters of the air region outside the sample. In general, the larger this contrast, the
larger the error.
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FIGURE 4.61
Sensitivity coefficients for Teflon at 10 GHz. ◭

4.16 Problems

4.1 Beginning with the Kramers–Kronig formulas (4.35)–(4.36), use the even–odd behav-
ior of the real and imaginary parts of ǫ̃c to derive the alternative relations (4.37)–(4.38).

4.2 Consider the complex permittivity dyadic of a magnetized plasma given by (4.90)–(4.93).
Show that we may decompose [̃̄ǫc] as the sum of two matrices

[̃̄ǫc] = [̃̄ǫ] +
[˜̄σ]

jω

where [̃̄ǫ] and [˜̄σ] are hermitian.

4.3 Show that the Debye permittivity formulas

Re{ǫ̃(ω)} − ǫ∞ =
ǫs − ǫ∞
1 + ω2τ2

, Im{ǫ̃(ω)} = −ωτ(ǫs − ǫ∞)

1 + ω2τ2
,
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obey the Kramers–Kronig relations.

4.4 The frequency-domain duality transformations for the constitutive parameters of an
anisotropic medium are given in (4.191). Determine the analogous transformations for
the constitutive parameters of a bianisotropic medium.

4.5 Establish the plane-wave identities (B.82)–(B.85) by direct differentiation in rectan-
gular coordinates.

4.6 Assume that sea water has the parameters ǫ = 80ǫ0, µ = µ0, σ = 4 S/m, and that
these parameters are frequency-independent. Plot the ω–β diagram for a plane wave
propagating in this medium and compare to Figure 4.18. Describe the dispersion: is it
normal or anomalous? Also plot the phase and group velocities and compare to Figure
4.19. How does the relaxation phenomenon affect the velocity of a wave in this medium?

4.7 Consider a uniform plane wave incident at angle θi onto an interface separating
two lossless media (Figure 4.26). Assuming perpendicular polarization, write the explicit
forms of the total fields in each region under the condition θi < θc, where θc is the critical
angle. Show that the total field in region 1 can be decomposed into a portion that is
a pure standing wave in the z-direction and a portion that is a pure traveling wave in
the z-direction. Also show that the field in region 2 is a pure traveling wave. Repeat for
parallel polarization.

4.8 Consider a uniform plane wave incident at angle θi onto an interface separating two
lossless media (Figure 4.26). Assuming perpendicular polarization, use the total fields
from Problem 4.7 to show that under the condition θi < θc the normal component of the
time-average Poynting vector is continuous across the interface. Here θc is the critical
angle. Repeat for parallel polarization.

4.9 Consider a uniform plane wave incident at angle θi onto an interface separating
two lossless media (Figure 4.26). Assuming perpendicular polarization, write the explicit
forms of the total fields in each region under the condition θi > θc, where θc is the critical
angle. Show that the field in region 1 is a pure standing wave in the z-direction and that
the field in region 2 is an evanescent wave. Repeat for parallel polarization.

4.10 Consider a uniform plane wave incident at angle θi onto an interface separating two
lossless media (Figure 4.26). Assuming perpendicular polarization, use the fields from
Problem 4.9 to show that under the condition θi > θc neither the fields in region 1 nor
the fields in region 2 carry time-average power in the z-direction. Here θc is the critical
angle. Repeat for parallel polarization.

4.11 Consider a uniform plane wave incident at angle θi from a lossless material onto
a good conductor (Figure 4.26). The conductor has permittivity ǫ0, permeability µ0,
and conductivity σ. Show that the transmission angle is θt ≈ 0 and thus the wave in
the conductor propagates normal to the interface. Also show that for perpendicular
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polarization the current per unit width induced by the wave in region 2 is

K̃(ω) = ŷσT̃⊥(ω)Ẽ⊥(ω)
1− j

2β2

and that this is identical to the tangential magnetic field at the surface:

K̃(ω) = −ẑ× H̃t|z=0.

If we define the surface impedance Zs(ω) of the conductor as the ratio of tangential
electric and magnetic fields at the interface, show that

Zs(ω) =
1 + j

σδ
= Rs(ω) + jXs(ω).

Then show that the time-average power flux entering region 2 for a monochromatic wave
of frequency ω̌ is simply

Sav,2 = ẑ 1
2 (Ǩ · Ǩ∗)Rs.

Note that the since the surface impedance is also the ratio of tangential electric field to
induced current per unit width in region 2, it is also called the internal impedance.

4.12 Consider a slab of lossless material with permittivity ǫ = ǫrǫ0 and permeability µ0

located in free space between the planes z = z1 and z = z2. A transient, perpendicularly
polarized plane wave is obliquely incident on the slab as shown in Figure 4.30. If the
temporal waveform of the incident wave is Ei⊥(t), find the transient reflected field in
region 0 and the transient transmitted field in region 2 in terms of an infinite superposition
of amplitude-scaled, time-shifted versions of the incident wave. Interpret each of the first
four terms in the reflected and transmitted fields in terms of multiple reflection within
the slab.

4.13 Consider a free-space gap embedded between the planes z = z1 and z = z2 in an
infinite, lossless dielectric medium of permittivity ǫrǫ0 and permeability µ0. A perpen-
dicularly polarized plane wave is incident on the gap at angle θi > θc as shown in Figure
4.30. Here θc is the critical angle for a plane wave incident on the single interface between
a lossless dielectric of permittivity ǫrǫ0 and free space. Apply the boundary conditions
and find the fields in each of the three regions. Find the time-average Poynting vector
in region 0 at z = z1, in region 1 at z = z2, and in region 2 at z = z2. Is conservation of
energy obeyed?

4.14 A uniform ferrite material has scalar permittivity ǫ̃ = ǫ and dyadic permeability
˜̄µ. Assume the ferrite is magnetized along the z-direction and has losses so that its
permeability dyadic is given by (4.127). Show that the wave equation for a TEM plane
wave of the form

H̃(r, ω) = H̃0(ω)e
−jkzz

is

k2zH̃0 = ω2ǫ˜̄µ · H̃0

where kz = β − jα. Find explicit formulas for the two solutions kz± = β± − jα±. Show
that when the damping parameter α ≪ 1, near resonance α+ ≫ α−.
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4.15 A time-harmonic, TE-polarized, uniform cylindrical wave propagates in a lossy
medium. Assuming |kρ| ≫ 1, show that the power per unit length passing through a
cylinder of radius ρ is given by

Pav/l = Re {Z∗
TE} |Ȟz0|2

e−2αρ

8|k| .

If the material is lossless, show that the power per unit length passing through a cylinder
is independent of the radius and is given by

Pav/l =
η|Ȟz0|2

8k
.

4.16 The radar cross-section of a two-dimensional object illuminated by a TM-polarized
plane wave is defined by

σ2D(ω, φ) = lim
ρ→∞

2πρ
|Ẽsz |2
|Ẽiz |2

.

This quantity has units of meters and is sometimes called the “scattering width” of the
object. Using the asymptotic form of the Hankel function, determine the formula for the
radar cross-section of a TM-illuminated cylinder made of perfect electric conductor. Show
that when the cylinder radius is small compared to a wavelength, the radar cross-section
may be approximated as

σ2D(ω, φ) = a
π2

k0a

1

ln2(0.89k0a)

and is thus independent of the observation angle φ.

4.17 A TE-polarized plane wave is incident on a material cylinder with complex per-
mittivity ǫ̃c(ω) and permeability µ̃(ω), aligned along the z-axis in free space. Apply the
boundary conditions on the surface of the cylinder and determine the total field both
internal and external to the cylinder. Show that as σ̃ → ∞ the magnetic field external
to the cylinder reduces to (4.365).

4.18 A TM-polarized plane wave is incident on a PEC cylinder of radius a aligned along
the z-axis in free space. The cylinder is coated with a material layer of radius b with
complex permittivity ǫ̃c(ω) and permeability µ̃(ω). Apply the boundary conditions on
the surface of the cylinder and across the interface between the material and free space
and determine the total field both internal and external to the material layer.

4.19 A PEC cylinder of radius a, aligned along the z-axis in free space, is illuminated by
a z-directed electric line source Ĩ(ω) located at (ρ0, φ0). Expand the fields in the regions
a < ρ < ρ0 and ρ > ρ0 in terms of nonuniform cylindrical waves, and apply the boundary
conditions at ρ = a and ρ = ρ0 to determine the fields everywhere.

4.20 Assuming

f(ξ, ω) =
k

2π
A(kx, ω) sin ξ,
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use the relations

cos z = cos(u + jv) = cosu coshv − j sinu sinh v,

sin z = sin(u+ jv) = sinu cosh v + j cosu sinh v,

to show that the contour in Figure 4.49 provides identical values of the integrand in

ψ̃(x, y, ω) =

∫

C

f(ξ, ω)e−jkρ cos(φ±ξ) dξ

as does the contour [−∞+ j∆,∞+ j∆] in

ψ̃(x, y, ω) =
1

2π

∞+j∆
∫

−∞+j∆

A(kx, ω)e
−jkxxe∓jkyy dkx. (4.466)

4.21 Verify (4.402) by writing the TE fields in terms of Fourier transforms and applying
boundary conditions.

4.22 Consider a z-directed electric line source Ĩ(ω) located on the y-axis at y = h.
The region y < 0 contains a perfect electric conductor. Write the fields in the regions
0 < y < h and y > h in terms of the Fourier transform solution to the homogeneous
Helmholtz equation. Note that in the region 0 < y < h terms representing waves traveling
in both the ±y-directions are needed, while in the region y > h only terms traveling in
the y-direction are needed. Apply the boundary conditions at y = 0, h to determine the
spectral amplitudes. Show that the total field may be decomposed into an impressed
term identical to (4.403) and a scattered term identical to (4.406).

4.23 Consider a z-directed magnetic line source Ĩm(ω) located on the y-axis at y = h.
The region y > 0 contains a material with parameters ǫ̃c1(ω) and µ̃1(ω), while the region
y < 0 contains a material with parameters ǫ̃c2(ω) and µ̃2(ω). Using the Fourier transform
solution to the Helmholtz equation, write the total field for y > 0 as the sum of an
impressed field of the magnetic line source and a scattered field, and write the field for
y < 0 as a scattered field. Apply the boundary conditions at y = 0 to determine the
spectral amplitudes.

4.24 Consider a TE-polarized plane wave incident on a PEC plane located at x = 0. If
the incident magnetic field is given by

H̃i(r, ω) = ẑH̃0(ω)e
jk(x cosφ0+y sinφ0),

solve for the scattered magnetic field using the Fourier transform approach.

4.25 Consider the layered medium of Figure 4.55 with alternating layers of free space
and perfect dielectric. The dielectric layer has permittivity 4ǫ0 and thickness ∆ while
the free space layer has thickness 2∆. Assuming a normally incident plane wave, solve
for k0∆ in terms of κ∆, and plot k0 vs. κ, identifying the stop and pass bands. This
type of ω–β plot for a periodic medium is named a Brillouin diagram, after L. Brillouin
who investigated energy bands in periodic crystal lattices [25].
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4.26Consider a periodic layered medium as in Figure 4.55, but with each cell consisting of
three different layers. Derive an eigenvalue equation similar to (4.419) for the propagation
constant.

4.27 The ionosphere may be considered as an ionized gas. A typical electron concen-
tration is N = 2 × 1011 electrons per cubic meter, and a typical collision frequency is
ν = 100 Hz. (a) Neglecting the earth’s magnetic field, compute the permittivity and
conductivity of the ionosphere at 5 MHz and at 100 MHz. (b) Neglecting collisions,
compute the entries in the permittivity dyadic assuming the earth’s magnetic field is 0.5
Gauss.

4.28 Consider a dielectric material with a single resonance. (a) Show that the maximum
value of Re{ǫ} occurs at ωmax = ω0

√

1− 2Γ/ω0 and has the value

Re{ǫ}max = ǫ0 +
1

4
ǫ0

ω2
p

Γ(ω0 − Γ)
.

(b) If the static permittivity of the material is ǫ = 5ǫ0 and the maximum value of Im{ǫ} is
Im{ǫ}max = −16ǫ0, find the width of the resonance curve as a percentage of the resonant
frequency.

4.29 A spherical time-harmonic wave in free space has the form

E(r, t) = θ̂
E0

r sin θ
cos(ω̌t− βr + ξE).

(a) Write the field in phasor form. (b) Find the magnetic field using

Ȟ =
r̂× Ě

η0
.

(c) Show that the fields obey the Sommerfeld radiation condition.

4.30 Consider sinusoidally varying fields E(r, t) and D(r, t). Compute the time-average
integral to show that

〈we(r, t)〉 = 1
4 Re

{

Ě(r) · Ď∗(r)
}

.

4.31A dielectric material has the constitutive parameters µ̃ = µ0 and ǫ̃
c = Re ǫ̃c+j Im ǫ̃c.

Derive the formulas for α and β.

4.32 The instantaneous fields in a source-free region of free space are given by

E(r, t) = x̂E0 cos(ωt− βz), H(r, t) = ŷ
E0

η0
cos(ωt− βz).

Verify the complex Poynting theorem over the cube 0 ≤ x, y, z ≤ a.

4.33 A plane wave propagates through a homogeneous material having permeability
µ = µ0 and permittivity

ǫ̃ =
1

µ0c2

(

2 + 10
c

ω

)2
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where c is the speed of light in free space. Calculate the group velocity and phase velocity.

4.34 The phasor electric field of a propagating plane wave is given by

Ě(r) = x̂E0e
−jβz + jŷE0e

−jβz.

By converting to the time domain, derive the equation for the locus traced out by the
tip of the electric field vector. What type of wave polarization is represented here?

4.35 The source of an EM field in free space is contained within a sphere of radius r.
The fields on the surface of the sphere are given by

Ě(r) = Ě0e
−jβr

[

θ̂
1

βr
+ r̂

j

(βr)2

]

sin θ,

Ȟ(r) =
Ě0

η0
e−jβr

[

φ̂
2

βr
− r̂

3j

(βr)2

]

sin θ.

Compute the time-average power supplied by the source. Assume that β and η0 are real
and that Ě0 is complex.

4.36 Consider a source-free region of space V , described by a ≤ ρ ≤ b, 0 ≤ φ < 2π,
0 ≤ z ≤ L. The parameters of the medium are (σ, ǫ, µ). The fields within the region are
given by

Ě(r) = ρ̂
Ě0a

ρ
e−jβze−αz, Ȟ(r) = φ̂

Ě0a

ηρ
e−jβze−αz.

Here Ě0 and η are complex numbers, while α and β are real. (a) Compute the total
electric current passing through the disk of radius (a + b)/2 located at z = 0. (b)
Compute the power dissipated within V . (c) Compute the power flowing through the
cross-section of V located at z. (d) Using Poynting’s theorem, find a formula for α in
terms of σ and η.

4.37 In the layer-shift method described in Section 4.15.1.4, a measurement is first taken
of the reflection from a material sample backed by a conductor, then with the conductor
removed a distance d from the sample. A variant of this method is to make the first
measurement with the conductor a distance dA behind the sample, and then to make a
second measurement with the conductor a distance dB behind the sample. Determine
expressions for Γ̃ and P̃ for this variant. Assume that in both measurements the region
between the sample and the conductor is free space.

4.38 In the two-thickness method described in Section 4.15.1.2, measurements are taken
of the reflection coefficient of a material sample with two different thicknesses. A variant
of this method is to make measurements of the transmission coefficient of a sample with
two thicknesses. If the samples have thicknesses ∆ and 2∆, determine expressions for Γ̃
and P̃ for this variant.
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Field decompositions and the EM potentials

5.1 Spatial symmetry decompositions

Spatial symmetry can often be exploited to solve electromagnetics problems. For analytic
solutions, symmetry can be used to reduce the number of boundary conditions that must
be applied. For computer solutions, the storage requirements can be reduced. Typical
symmetries include rotation about a point or axis, and reflection through a plane, along
an axis, or through a point. We shall consider the common case of reflection through a
plane.
Spatial symmetry decompositions may be applied even if the sources and fields possess

no spatial symmetry. As long as the boundaries and material media are symmetric,
the sources and fields may be decomposed into constituents that individually mimic the
symmetry of the environment.
Consider a region of space consisting of linear, isotropic, time-invariant media having

material parameters ǫ(r), µ(r), and σ(r). The electromagnetic fields (E,H) within this
region are related to their impressed sources (Ji,Jim) and their secondary sources Js = σE
through Maxwell’s curl equations:

∂Ez
∂y

− ∂Ey
∂z

= −µ∂Hx

∂t
− J imx, (5.1)

∂Ex
∂z

− ∂Ez
∂x

= −µ∂Hy

∂t
− J imy, (5.2)

∂Ey
∂x

− ∂Ex
∂y

= −µ∂Hz

∂t
− J imz, (5.3)

∂Hz

∂y
− ∂Hy

∂z
= ǫ

∂Ex
∂t

+ σEx + J ix, (5.4)

∂Hx

∂z
− ∂Hz

∂x
= ǫ

∂Ey
∂t

+ σEy + J iy, (5.5)

∂Hy

∂x
− ∂Hx

∂y
= ǫ

∂Ez
∂t

+ σEz + J iz. (5.6)

We assume the material constants are symmetric about some plane, say z = 0. Then

ǫ(x, y,−z) = ǫ(x, y, z), µ(x, y,−z) = µ(x, y, z), σ(x, y,−z) = σ(x, y, z).

That is, with respect to z the material constants are even functions. We further assume
that the boundaries and boundary conditions, which guarantee uniqueness of solution, are
also symmetric about the z = 0 plane. Then we define two cases of reflection symmetry.

493
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5.1.1 Conditions for even symmetry

We claim that if the sources obey

J ix(x, y, z) = J ix(x, y,−z), J imx(x, y, z) = −J imx(x, y,−z),
J iy(x, y, z) = J iy(x, y,−z), J imy(x, y, z) = −J imy(x, y,−z),
J iz(x, y, z) = −J iz(x, y,−z), J imz(x, y, z) = J imz(x, y,−z),

then the fields obey

Ex(x, y, z) = Ex(x, y,−z), Hx(x, y, z) = −Hx(x, y,−z),
Ey(x, y, z) = Ey(x, y,−z), Hy(x, y, z) = −Hy(x, y,−z),
Ez(x, y, z) = −Ez(x, y,−z), Hz(x, y, z) = Hz(x, y,−z).

The electric field shares the symmetry of the electric source: components parallel to the
z = 0 plane are even in z, and the component perpendicular is odd. The magnetic field
shares the symmetry of the magnetic source: components parallel to the z = 0 plane are
odd in z, and the component perpendicular is even.

We can verify our claim by showing that the symmetric fields and sources obey
Maxwell’s equations. At an arbitrary point z = a > 0, Equation (5.1) requires

∂Ez
∂y

∣

∣

∣

∣

z=a

− ∂Ey
∂z

∣

∣

∣

∣

z=a

= −µ|z=a
∂Hx

∂t

∣

∣

∣

∣

z=a

− J imx|z=a.

By the assumed symmetry condition on source and material constant, we get

∂Ez
∂y

∣

∣

∣

∣

z=a

− ∂Ey
∂z

∣

∣

∣

∣

z=a

= −µ|z=−a
∂Hx

∂t

∣

∣

∣

∣

z=a

+ J imx|z=−a.

If our claim holds regarding the field behavior, then

∂Ez
∂y

∣

∣

∣

∣

z=−a
= −∂Ez

∂y

∣

∣

∣

∣

z=a

,
∂Ey
∂z

∣

∣

∣

∣

z=−a
= −∂Ey

∂z

∣

∣

∣

∣

z=a

,
∂Hx

∂t

∣

∣

∣

∣

z=−a
= −∂Hx

∂t

∣

∣

∣

∣

z=a

,

and we have

−∂Ez
∂y

∣

∣

∣

∣

z=−a
+
∂Ey
∂z

∣

∣

∣

∣

z=−a
= µ|z=−a

∂Hx

∂t

∣

∣

∣

∣

z=−a
+ J imx|z=−a.

So this component of Faraday’s law is satisfied. With similar reasoning we can show that
the symmetric sources and fields satisfy (5.2)–(5.6) as well.

5.1.2 Conditions for odd symmetry

We can also show that if the sources obey

J ix(x, y, z) = −J ix(x, y,−z), J imx(x, y, z) = J imx(x, y,−z),
J iy(x, y, z) = −J iy(x, y,−z), J imy(x, y, z) = J imy(x, y,−z),
J iz(x, y, z) = J iz(x, y,−z), J imz(x, y, z) = −J imz(x, y,−z),
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then the fields obey

Ex(x, y, z) = −Eix(x, y,−z), Hx(x, y, z) = Hx(x, y,−z),
Ey(x, y, z) = −Ey(x, y,−z), Hy(x, y, z) = Hy(x, y,−z),
Ez(x, y, z) = Ez(x, y,−z), Hz(x, y, z) = −Hz(x, y,−z).

Again the electric field has the same symmetry as the electric source. However, in this
case components parallel to the z = 0 plane are odd in z and the component perpendicular
is even. Similarly, the magnetic field has the same symmetry as the magnetic source. Here
components parallel to the z = 0 plane are even in z and the component perpendicular
is odd.

5.1.3 Field symmetries and the concept of source images

In the case of odd symmetry, the electric field parallel to the z = 0 plane is an odd
function of z. If we assume that the field is also continuous across this plane, then the
electric field tangential to z = 0 must vanish: the condition required at the surface of a
perfect electric conductor (PEC). We may regard the problem of sources above a perfect
conductor in the z = 0 plane as equivalent to the problem of sources odd about this
plane, provided the sources in both cases are identical for z > 0. We call the source
in the region z < 0 the image of the source in the region z > 0. So the image source
(JI ,JIm) obeys

JIx(x, y,−z) = −J ix(x, y, z), JImx(x, y,−z) = J imx(x, y, z),

JIy (x, y,−z) = −J iy(x, y, z), JImy(x, y,−z) = J imy(x, y, z),

JIz (x, y,−z) = J iz(x, y, z), JImz(x, y,−z) = −J imz(x, y, z).

That is, parallel components of electric current image in the opposite direction, and
the perpendicular component images in the same direction; parallel components of the
magnetic current image in the same direction, while the perpendicular component images
in the opposite direction.
In the case of even symmetry, the magnetic field parallel to the z = 0 plane is odd,

and thus the magnetic field tangential to the z = 0 plane must be zero. We therefore
have an equivalence between the problem of a source above a plane of perfect magnetic
conductor (PMC) and the problem of sources even about that plane. In this case we
identify image sources that obey

JIx(x, y,−z) = J ix(x, y, z), JImx(x, y,−z) = −J imx(x, y, z),
JIy (x, y,−z) = J iy(x, y, z), JImy(x, y,−z) = −J imy(x, y, z),

JIz (x, y,−z) = −J iz(x, y, z), JImz(x, y,−z) = J imz(x, y, z).

Parallel components of electric current image in the same direction, and the perpendicular
component images in the opposite direction; parallel components of magnetic current
image in the opposite direction, and the perpendicular component images in the same
direction.
In the case of odd symmetry, we sometimes say that an “electric wall” exists at z = 0.

The term “magnetic wall” can be used in the case of even symmetry. These terms are
particularly common in the description of waveguide fields.



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 496 — #520
✐

✐

✐

✐

✐

✐

496 Electromagnetics

5.1.4 Symmetric field decomposition

Field symmetries may be applied to arbitrary source distributions through a symmetry
decomposition of the sources and fields. Consider the general impressed source distribu-
tions (Ji,Jim). The source set

J iex (x, y, z) = 1
2

[

J ix(x, y, z) + J ix(x, y,−z)
]

,

J iey (x, y, z) = 1
2

[

J iy(x, y, z) + J iy(x, y,−z)
]

,

J iez (x, y, z) = 1
2

[

J iz(x, y, z)− J iz(x, y,−z)
]

,

J iemx(x, y, z) =
1
2

[

J imx(x, y, z)− J imx(x, y,−z)
]

,

J iemy(x, y, z) =
1
2

[

J imy(x, y, z)− J imy(x, y,−z)
]

,

J iemz(x, y, z) =
1
2

[

J imz(x, y, z) + J imz(x, y,−z)
]

is clearly of even symmetric type, while the source set

J iox (x, y, z) = 1
2

[

J ix(x, y, z)− J ix(x, y,−z)
]

,

J ioy (x, y, z) = 1
2

[

J iy(x, y, z)− J iy(x, y,−z)
]

,

J ioz (x, y, z) = 1
2

[

J iz(x, y, z) + J iz(x, y,−z)
]

,

J iomx(x, y, z) =
1
2

[

J imx(x, y, z) + J imx(x, y,−z)
]

,

J iomy(x, y, z) =
1
2

[

J imy(x, y, z) + J imy(x, y,−z)
]

,

J iomz(x, y, z) =
1
2

[

J imz(x, y, z)− J imz(x, y,−z)
]

is of the odd symmetric type. Since Ji = Jie+Jio and Jim = Jiem+Jiom, we can decompose
any source into constituents having, respectively, even and odd symmetry with respect
to a plane. The source with even symmetry produces an even field set, while the source
with odd symmetry produces an odd field set. The total field is the sum of the fields
from each field set.

5.1.5 Planar symmetry for frequency-domain fields

The symmetry conditions introduced above for the time-domain fields also hold for the
frequency-domain fields. Because both the conductivity and permittivity must be even
functions, we combine their effects and require the complex permittivity to be even.
Otherwise the field symmetries and source decompositions are identical.

◮ Example 5.1: Line source between conducting planes

Consider a z-directed electric line source Ĩ0 located at y = h, x = 0 between conducting
planes at y = ±d, d > h. The material between the plates has permeability µ̃(ω) and complex
permittivity ǫ̃c(ω). Find the electric field everywhere between the plates by decomposing the
source into one of even symmetric type with line sources Ĩ0/2 located at y = ±h, and one of
odd symmetric type with a line source Ĩ0/2 located at y = h and a line source −Ĩ0/2 located
at y = −h. Find the electric field for each of these problems by exploiting the appropriate
symmetry, and superpose the results to find the field for the original problem.

Solution: For the even-symmetric case, we begin by using (4.400) to represent the impressed
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field:

Ẽiz(x, y, ω) = −ωµ̃
Ĩ0(ω)

2

2π

∞+j∆
∫

−∞+j∆

e−jky |y−h| + e−jky |y+h|

2ky
e−jkxx dkx.

For y > h this becomes

Ẽiz(x, y, ω) = −ωµ̃
Ĩ0(ω)

2

2π

∞+j∆
∫

−∞+j∆

2 cos kyh

2ky
e−jkyye−jkxx dkx.

The secondary (scattered) field consists of waves propagating in both the ±y-directions:

Ẽsz(x, y, ω) =
1

2π

∞+j∆
∫

−∞+j∆

[

A+(kx, ω)e
−jkyy + A−(kx, ω)e

jkyy
]

e−jkxx dkx. (5.7)

The impressed field is even about y = 0. Since the total field Ez = Eiz +Esz must be even in
y (Ez is parallel to the plane y = 0), the scattered field must also be even. Thus, A+ = A−

and the total field is for y > h

Ẽz(x, y, ω) =
1

2π

∞+j∆
∫

−∞+j∆

[

2A+(kx, ω) cos kyy

− ωµ̃
Ĩ0(ω)

2

2 cos kyh

2ky
e−jkyy

]

e−jkxx dkx.

Now the electric field must obey the boundary condition Ẽz = 0 at y = ±d. However, since
Ẽz is even the satisfaction of this condition at y = d automatically implies its satisfaction
at y = −d. So we set

1

2π

∞+j∆
∫

−∞+j∆

[

2A+(kx, ω) cos kyd− ωµ̃
Ĩ0(ω)

2

2 cos kyh

2ky
e−jkyd

]

e−jkxx dkx = 0

and invoke the Fourier integral theorem to get

A+(kx, ω) = ωµ̃
Ĩ0(ω)

2

cos kyh

2ky

e−jkyd

cos kyd
.

The total field for this case is

Ẽz(x, y, ω) = −ωµ̃
Ĩ0(ω)

2

2π

∞+j∆
∫

−∞+j∆

[

e−jky |y−h| + e−jky |y+h|

2ky

− 2 cos kyh

2ky

e−jkyd

cos kyd
cos kyy

]

e−jkxx dkx.

For the odd-symmetric case the impressed field is

Ẽiz(x, y, ω) = −ωµ̃
Ĩ0(ω)

2

2π

∞+j∆
∫

−∞+j∆

e−jky |y−h| − e−jky |y+h|

2ky
e−jkxx dkx,
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which for y > h is

Ẽiz(x, y, ω) = −ωµ̃
Ĩ0(ω)

2

2π

∞+j∆
∫

−∞+j∆

2j sin kyh

2ky
e−jkyye−jkxx dkx.

The scattered field has the form of (5.7) but must be odd. Thus A+ = −A− and the total
field for y > h is

Ẽz(x, y, ω) =
1

2π

∞+j∆
∫

−∞+j∆

[

2jA+(kx, ω) sin kyy

− ωµ̃
Ĩ0(ω)

2

2j sin kyh

2ky
e−jkyy

]

e−jkxx dkx.

Setting Ẽz = 0 at z = d and solving for A+, we find that the total field for this case is

Ẽz(x, y, ω) = −ωµ̃
Ĩ0(ω)

2

2π

∞+j∆
∫

−∞+j∆

[

e−jky |y−h| − e−jky |y+h|

2ky

− 2j sin kyh

2ky

e−jkyd

sin kyd
sin kyy

]

e−jkxx dkx.

Adding the fields for the two cases, we find that

Ẽz(x, y, ω) = −ωµ̃Ĩ0(ω)
2π

∞+j∆
∫

−∞+j∆

e−jky |y−h|

2ky
e−jkxx dkx

+
ωµ̃Ĩ0(ω)

2π

∞+j∆
∫

−∞+j∆

[

cos kyh cos kyy

cos kyd
+ j

sin kyh sin kyy

sin kyd

]

e−jkyd

2ky
e−jkxx dkx,

(5.8)

which is a superposition of impressed and scattered fields. ◭

◮ Example 5.2: Line source centered between conducting planes

Consider a z-directed electric line source Ĩ0 centered between conducting planes at y = ±d.
The material between the plates is TeflonR© with permeability µ0 and complex permittivity
ǫ̃c = (2.08 − j0.0008)ǫ0 . Plot the magnitude of Ẽz in the region −2d ≤ x ≤ 2d, −d ≤ y ≤ d
for d = 2λ0.

Solution: We can adapt the solution of Example 5.1 to the present problem by setting
h = 0. Since the line source is centered, both the impressed and scattered fields will be even
about y = 0. For computation expediency, we use the Hankel function representation of
impressed field, and normalize all distances to d. Thus we can write,

Ẽiz(x, y, ω)d

η0Ĩ0
= −k0d

4
H

(2)
0

(

k0dǫ̃
c
r

√

x̄2 + ȳ2
)

which is a dimensionless quantity. Here x̄ = x/d, ȳ = y/d, and ǫ̃cr = ǫ̃c/ǫ0. Since the
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scattered field has only an even contribution, we have

Ẽsz(x, y, ω)d

η0Ĩ0
=
k0d

2π

∫ ∞

0

cos (k0dκȳ)

cos (k0dκ)
e−jk0dκ

cos (k0dξx̄)

κ
dξ

where ξ = kx/k0 and κ =
√

ǫ̃cr − ξ2, with Im{κ} < 0. Note that we have used the even and
odd behavior of the integrand about x = 0 to reduce the domain of integration to [0,∞).
Because the trigonometric functions diverge as ξ → ∞, it is useful to rewrite the integrand
in terms of exponential functions:

Ẽsz(x, y, ω)d

η0Ĩ0
=
k0d

2π

∫ ∞

0

e−jk0dκ(2−ȳ) + e−jk0dκ(2+ȳ)

1 + e−2jk0dκ

cos (k0dξx̄)

κ
dξ.

Letting d = 2λ0 so that k0d = 4π, the magnitude of the total electric field is computed
and plotted in Figure 5.1. Since the impressed field diverges on the z-axis, the normalized
total field is cropped at a value of 2. The impressed field sets up a traveling wave between
the plates that interferes with the scattered field to produce a standing wave pattern, with
nulls separated by a half-wavelength in the material. Note that the total field is zero at
y = ±d, as required by the boundary conditions.

-1

-0.5

 0

 0.5

 1

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

y
/d

x/d

 0

 0.5

 1

 1.5

 2

FIGURE 5.1
Magnitude of the total field |Ẽzd/(η0Ĩ0)| produced by a line source centered between parallel
plates. ◭

5.2 Solenoidal–lamellar decomposition and the electromagnetic
potentials

We now discuss the decomposition of a general vector field into a lamellar component
having zero curl and a solenoidal component having zero divergence. This is known as a
Helmholtz decomposition. If V is any vector field, then we wish to write

V = Vs +Vl, (5.9)

where Vs and Vl are the solenoidal and lamellar components of V. Formulas expressing
these components in terms of V are obtained as follows. We first write Vs in terms of a
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“vector potential” A as

Vs = ∇×A. (5.10)

This is possible by virtue of (B.55). Similarly, we write Vl in terms of a “scalar potential”
φ as

Vl = ∇φ. (5.11)

To obtain a formula for Vl we take the divergence of (5.9) and use (5.11) to get

∇ ·V = ∇ ·Vl = ∇ · ∇φ = ∇2φ.

The result,

∇2φ = ∇ ·V,

may be regarded as Poisson’s equation for the unknown φ. This equation is solved in
Chapter 3. By (3.41) we have

φ(r) = −
∫

V

∇′ ·V(r′)

4πR
dV ′,

where R = |r− r′|, and we have

Vl(r) = −∇
∫

V

∇′ ·V(r′)

4πR
dV ′. (5.12)

Similarly, a formula for Vs can be obtained by taking the curl of (5.9) to get

∇×V = ∇×Vs.

Substituting (5.10) we have

∇×V = ∇× (∇×A) = ∇(∇ ·A)−∇2A.

We may choose any value we wish for ∇ · A, since this does not alter Vs = ∇ × A.
(We discuss such “gauge transformations” in greater detail later in this chapter.) With
∇ ·A = 0 we obtain

−∇×V = ∇2A.

This is Poisson’s equation for each rectangular component of A; therefore

A(r) =

∫

V

∇′ ×V(r′)

4πR
dV ′,

and we have

Vs(r) = ∇×
∫

V

∇′ ×V(r′)

4πR
dV ′.

Summing the results, we obtain the Helmholtz decomposition

V = Vl +Vs = −∇
∫

V

∇′ ·V(r′)

4πR
dV ′ +∇×

∫

V

∇′ ×V(r′)

4πR
dV ′. (5.13)
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5.2.1 Identification of the electromagnetic potentials

Let us write the electromagnetic fields as a general superposition of solenoidal and lamel-
lar components:

E = ∇×AE +∇φE , (5.14)

B = ∇×AB +∇φB . (5.15)

One possible form of the potentials AE , AB, φE , and φB appears in (5.13). However,
because E and B are related by Maxwell’s equations, the potentials should be related to
the sources. We can determine the explicit relationship by substituting (5.14) and (5.15)
into Ampere’s and Faraday’s laws. It is most convenient to analyze the relationships
using superposition of the cases for which Jm = 0 and J = 0.
With Jm = 0, Faraday’s law is

∇×E = −∂B
∂t
. (5.16)

Since ∇ × E is solenoidal, B must be solenoidal and thus ∇φB = 0. This implies
that φB = 0, which is equivalent to the auxiliary Maxwell equation ∇ · B = 0. Now,
substitution of (5.14) and (5.15) into (5.16) gives

∇× (∇×AE +∇φE) = − ∂

∂t
(∇×AB) .

Using ∇× (∇φE) = 0 and combining the terms, we get

∇×
(

∇×AE +
∂AB

∂t

)

= 0,

hence

∇×AE = −∂AB

∂t
+∇ξ.

Substitution into (5.14) gives

E = −∂AB

∂t
+∇φE +∇ξ.

Combining the two gradient functions together, we see that we can write both E and B
in terms of two potentials:

E = −∂Ae

∂t
−∇φe, (5.17)

B = ∇×Ae, (5.18)

where the negative sign on the gradient term is introduced by convention.

5.2.2 Gauge transformations

5.2.2.1 The Coulomb gauge

We pay a price for the simplicity of using only two potentials to represent E and B.
While ∇×Ae is definitely solenoidal, Ae itself may not be; because of this, (5.17) may
not be a decomposition into solenoidal and lamellar components. However, a corollary
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of the Helmholtz theorem states that a vector field is uniquely specified only when both
its curl and divergence are specified. Here there is an ambiguity in the representation of
E and B; we may remove this ambiguity and define Ae uniquely by requiring that

∇ ·Ae = 0. (5.19)

Then Ae is solenoidal and the decomposition (5.17) is solenoidal–lamellar. This require-
ment on Ae is called the Coulomb gauge.

The ambiguity implied by the nonuniqueness of ∇ ·Ae can also be expressed by the
observation that a transformation of the type

Ae → Ae +∇Γ, (5.20)

φe → φe −
∂Γ

∂t
,

leaves expressions (5.17) and (5.18) unchanged. This is called a gauge transformation,
and the choice of a certain Γ alters the specification of ∇ ·Ae. Thus we may begin with
the Coulomb gauge as our baseline, and allow any alteration of Ae according to (5.20)
as long as we augment ∇ ·Ae by ∇ · ∇Γ = ∇2Γ.

Once ∇ · Ae is specified, the relationship between the potentials and the current J
can be found by substitution of (5.17) and (5.18) into Ampere’s law. At this point
we assume media that are linear, homogeneous, isotropic, and described by the time-
invariant parameters µ, ǫ, and σ. Writing J = Ji + σE, we have

1

µ
∇× (∇×Ae) = Ji − σ

∂Ae

∂t
− σ∇φe − ǫ

∂2Ae

∂t2
− ǫ

∂

∂t
∇φe. (5.21)

Taking the divergence of both sides of (5.21), we get

0 = ∇ · Ji − σ
∂

∂t
∇ ·A− σ∇ · ∇φe − ǫ

∂2

∂t2
∇ ·Ae − ǫ

∂

∂t
∇ · ∇φe. (5.22)

Then, by substitution from the continuity equation and use of (5.19) along with ∇·∇φe =
∇2φe, we obtain

∂

∂t

(

ρi + ǫ∇2φe
)

= −σ∇2φe.

For a lossless medium, this reduces to

∇2φe = −ρi/ǫ (5.23)

and we have

φe(r, t) =

∫

V

ρi(r′, t)

4πǫR
dV ′. (5.24)

We can obtain an equation for Ae by expanding the left side of (5.21) to get

∇ (∇ ·Ae)−∇2Ae = µJi − σµ
∂Ae

∂t
− σµ∇φe − µǫ

∂2Ae

∂t2
− µǫ

∂

∂t
∇φe, (5.25)

hence

∇2Ae − µǫ
∂2Ae

∂t2
= −µJi + σµ

∂Ae

∂t
+ σµ∇φe + µǫ

∂

∂t
∇φe

under the Coulomb gauge. For lossless media this becomes

∇2Ae − µǫ
∂2Ae

∂t2
= −µJi + µǫ

∂

∂t
∇φe. (5.26)
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Observe that the left side of (5.26) is solenoidal (since the Laplacian term came from
the curl-curl, and ∇ ·Ae = 0), while the right side contains a general vector field Ji and
a lamellar term. We might expect the ∇φe term to cancel the lamellar portion of Ji, and
this does happen [92]. By (5.12) and the continuity equation we can write the lamellar
component of the current as

Jil(r, t) = −∇
∫

V

∇′ · Ji(r′, t)
4πR

dV ′ =
∂

∂t
∇
∫

V

ρi(r′, t)

4πR
dV ′ = ǫ

∂

∂t
∇φe.

Thus (5.26) becomes

∇2Ae − µǫ
∂2Ae

∂t2
= −µJis. (5.27)

Therefore, the vector potential Ae, which describes the solenoidal portion of both E and
B, is found from just the solenoidal portion of the current. On the other hand, the scalar
potential, which describes the lamellar portion of E, is found from ρi, which arises from
∇ · Ji, the lamellar portion of the current.
From the perspective of field computation, we see that the introduction of potential

functions has reoriented the solution process from dealing with two coupled first-order
partial differential equations (Maxwell’s equations), to two uncoupled second-order equa-
tions (the potential equations (5.23) and (5.27)). The decoupling of the equations is often
worth the added complexity of dealing with potentials, and, in fact, is the solution tech-
nique of choice in such areas as radiation and guided waves. It is worth pausing to
examine the form of these equations. We see that the scalar potential obeys Poisson’s
equation with the solution (5.24), while the vector potential obeys the wave equation.
As a wave, the vector potential must propagate away from the source with finite velocity.
However, the solution for the scalar potential (5.24) shows no such behavior. In fact, any
change to the charge distribution instantaneously permeates all of space. This apparent
violation of Einstein’s postulate shows that we must be careful when interpreting the
potentials physically. Once the computations (5.17) and (5.18) are undertaken, we find
that both E and B behave as waves, and thus propagate at finite velocity. Mathemat-
ically, the conundrum can be resolved by realizing that individually the solenoidal and
lamellar components of current must occupy all of space, even if their sum, the actual
current Ji, is localized [92].

5.2.2.2 The Lorenz gauge

A different choice of gauge condition can allow both the vector and scalar potentials to
act as waves. In this case E may be written as a sum of two terms: one purely solenoidal,
and the other a superposition of lamellar and solenoidal parts.
Let us examine the effect of choosing the Lorenz gauge

∇ ·Ae = −µǫ∂φe
∂t

− µσφe. (5.28)

Substituting this expression into (5.25) we find that the gradient terms cancel, giving

∇2Ae − µσ
∂Ae

∂t
− µǫ

∂2Ae

∂t2
= −µJi. (5.29)

For lossless media,

∇2Ae − µǫ
∂2Ae

∂t2
= −µJi, (5.30)
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and (5.22) becomes

∇2φe − µǫ
∂2φe
∂t2

= −ρ
i

ǫ
. (5.31)

For lossy media we have obtained a second-order differential equation for Ae, but φe
must be found through the somewhat cumbersome relation (5.28). For lossless media
the coupled Maxwell equations have been decoupled into two second-order equations, one
involving Ae and one involving φe. Both (5.30) and (5.31) are wave equations, with Ji

as the source for Ae and ρi as the source for φe. Thus the expected finite-velocity wave
nature of the electromagnetic fields is also manifested in each of the potential functions.
The drawback is that, even though we can still use (5.17) and (5.18), the expression for
E is no longer a decomposition into solenoidal and lamellar components. Nevertheless,
the choice of the Lorenz gauge is popular in the study of radiated and guided waves.

5.2.3 The Hertzian potentials

With a little manipulation and the introduction of a new notation, we can maintain
the wave nature of the potential functions and still provide a decomposition into purely
lamellar and solenoidal components. In this analysis we shall assume lossless media only.

When we chose the Lorenz gauge to remove the arbitrariness of the divergence of the
vector potential, we established a relationship between Ae and φe. Thus we should be
able to write both the electric and magnetic fields in terms of a single potential function.
From the Lorenz gauge we can write φe as

φe(r, t) = − 1

µǫ

∫ t

−∞
∇ ·Ae(r, t) dt.

By (5.17) and (5.18) we can thus write the EM fields as

E =
1

µǫ
∇
∫ t

−∞
∇ ·Aedt−

∂Ae

∂t
, (5.32)

B = ∇×Ae. (5.33)

The integro-differential representation of E in (5.32) is somewhat clumsy in appear-
ance. We can make it easier to manipulate by defining the Hertzian potential

Πe =
1

µǫ

∫ t

−∞
Ae dt.

In differential form,

Ae = µǫ
∂Πe

∂t
. (5.34)

With this, (5.32) and (5.33) become

E = ∇(∇ ·Πe)− µǫ
∂2

∂t2
Πe, (5.35)

B = µǫ∇× ∂Πe

∂t
.

An equation for Πe in terms of the source current can be found by substituting (5.34)
into (5.30):

µǫ
∂

∂t

(

∇2Πe − µǫ
∂2

∂t2
Πe

)

= −µJi.
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Let us define

Ji =
∂Pi

∂t
. (5.36)

For general impressed current sources, (5.36) is just a convenient notation. However, we
can conceive of an impressed polarization current that is independent of E and defined
through the relation D = ǫ0E + P + Pi. Then (5.36) has a physical interpretation as
described in (2.101). We now have

∇2Πe − µǫ
∂2

∂t2
Πe = −1

ǫ
Pi, (5.37)

which is a wave equation forΠe. Thus the Hertzian potential has the same wave behavior
as the vector potential under the Lorenz gauge.
We can use (5.37) to perform one final simplification of the EM field representation.

By the vector identity ∇(∇ ·Π) = ∇× (∇×Π) +∇2Π we get

∇ (∇ ·Πe) = ∇× (∇×Πe)−
1

ǫ
Pi + µǫ

∂2

∂t2
Πe.

Substituting this into (5.35), we obtain

E = ∇× (∇×Πe)−
Pi

ǫ
, (5.38)

B = µǫ∇× ∂Πe

∂t
.

Let us examine these closely. We know that B is solenoidal since it is written as the
curl of another vector (this is also clear from the auxiliary Maxwell equation ∇ ·B = 0).
The first term in the expression for E is also solenoidal. So the lamellar part of E must
be contained within the source term Pi. If we write Pi in terms of its lamellar and
solenoidal components by using

Jis =
∂Pis
∂t

, Jil =
∂Pil
∂t

,

then (5.38) becomes

E =

[

∇× (∇×Πe)−
Pis
ǫ

]

− Pil
ǫ
.

So we have again succeeded in dividing E into lamellar and solenoidal components.

5.2.4 Potential functions for magnetic current

We can proceed as above to derive the field–potential relationships when Ji = 0 but
Jim 6= 0. We assume a homogeneous, lossless, isotropic medium with permeability µ and
permittivity ǫ, and begin with Faraday’s and Ampere’s laws

∇×E = −Jim − ∂B

∂t
, (5.39)

∇×H =
∂D

∂t
.

We write H and D in terms of two potential functions Ah and φh as

H = −∂Ah

∂t
−∇φh, D = −∇×Ah,
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and the differential equation for the potentials is found by substitution into (5.39):

∇× (∇×Ah) = ǫJim − µǫ
∂2Ah

∂t2
− µǫ

∂

∂t
∇φh. (5.40)

Taking the divergence of this equation and substituting from the magnetic continuity
equation, we obtain

µǫ
∂2

∂t2
∇ ·Ah + µǫ

∂

∂t
∇2φh = −ǫ∂ρ

i
m

∂t
.

Under the Lorenz gauge condition

∇ ·Ah = −µǫ∂φh
∂t

,

this reduces to

∇2φh − µǫ
∂2φh
∂t2

= −ρ
i
m

µ
.

Expanding the curl-curl operation in (5.40) we have

∇(∇ ·Ah)−∇2Ah = ǫJim − µǫ
∂2Ah

∂t2
− µǫ

∂

∂t
∇φh,

which, upon substitution of the Lorenz gauge condition, gives

∇2Ah − µǫ
∂2Ah

∂t2
= −ǫJim. (5.41)

We can also derive a Hertzian potential for the case of magnetic current. Letting

Ah = µǫ
∂Πh

∂t
(5.42)

and employing the Lorenz condition, we have

D = −µǫ∇× ∂Πh

∂t
, H = ∇(∇ ·Πh)− µǫ

∂2Πh

∂t2
.

The wave equation for Πh is found by substituting (5.42) into (5.41) to give

∂

∂t

[

∇2Πh − µǫ
∂2Πh

∂t2

]

= − 1

µ
Jim. (5.43)

Defining Mi through

Jim = µ
∂Mi

∂t
,

we write the wave equation as

∇2Πh − µǫ
∂2Πh

∂t2
= −Mi.

We can think of Mi as a convenient way of representing Jim, or we can conceive of an
impressed magnetization current that is independent of H and defined through B =
µ0(H+M+Mi). With the help of (5.43) we can also write the fields as

H = ∇× (∇×Πh)−Mi, D = −µǫ∇× ∂Πh

∂t
.
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5.2.5 Summary of potential relations for lossless media

When both electric and magnetic sources are present, we may superpose the potential
representations derived above. We assume a homogeneous, lossless medium with time-
invariant parameters µ and ǫ. For the scalar/vector potential representation, we have

E = −∂Ae

∂t
−∇φe −

1

ǫ
∇×Ah, (5.44)

H =
1

µ
∇×Ae −

∂Ah

∂t
−∇φh. (5.45)

Here the potentials satisfy the wave equations

(

∇2 − µǫ
∂2

∂t2

){

Ae

φe

}

=

{−µJi
− ρi

ǫ

}

, (5.46)

(

∇2 − µǫ
∂2

∂t2

){

Ah

φh

}

=

{

−ǫJim
− ρim

µ

}

,

and are linked by the Lorenz conditions

∇ ·Ae = −µǫ∂φe
∂t

, (5.47)

∇ ·Ah = −µǫ∂φh
∂t

.

We also have the Hertz potential representation

E = ∇(∇ ·Πe)− µǫ
∂2Πe

∂t2
− µ∇× ∂Πh

∂t

= ∇× (∇×Πe)−
Pi

ǫ
− µ∇× ∂Πh

∂t
,

H = ǫ∇× ∂Πe

∂t
+∇(∇ ·Πh)− µǫ

∂2Πh

∂t2

= ǫ∇× ∂Πe

∂t
+∇× (∇×Πh)−Mi.

The Hertz potentials satisfy the wave equations
(

∇2 − µǫ
∂2

∂t2

){

Πe

Πh

}

=

{

− 1
ǫP

i

−Mi

}

.

5.2.6 Potential functions for the frequency-domain fields

In the frequency domain it is much easier to handle lossy media. Consider a lossy,
isotropic, homogeneous medium described by the frequency-dependent parameters µ̃, ǫ̃,
and σ̃. Maxwell’s curl equations are

∇× Ẽ = −J̃im − jωµ̃H̃, (5.48)

∇× H̃ = J̃i + jωǫ̃cẼ. (5.49)

Here we have separated the primary and secondary currents through J̃ = J̃i + σ̃Ẽ, and
used the complex permittivity ǫ̃c = ǫ̃ + σ̃/jω. As with the time-domain equations, we
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introduce the potential functions using superposition. If J̃im = 0 and J̃i 6= 0, then we
may introduce the electric potentials through the relationships

Ẽ = −∇φ̃e − jωÃe, (5.50)

H̃ =
1

µ̃
∇× Ãe. (5.51)

Assuming the Lorenz condition

∇ · Ãe = −jωµ̃ǫ̃cφ̃e,

we find that upon substitution of (5.50)–(5.51) into (5.48)–(5.49) the potentials must
obey the Helmholtz equation

(

∇2 + k2
)

{

φ̃e
Ãe

}

=

{

−ρ̃i/ǫ̃c
−µ̃J̃i

}

.

If J̃im 6= 0 and J̃i = 0, then we may introduce the magnetic potentials through

Ẽ = − 1

ǫ̃c
∇× Ãh, (5.52)

H̃ = −∇φ̃h − jωÃh. (5.53)

Assuming ∇ · Ãh = −jωµ̃ǫ̃cφ̃h, we find that upon substitution of (5.52)–(5.53) into
(5.48)–(5.49), the potentials must obey

(

∇2 + k2
)

{

φ̃h
Ãh

}

=

{

−ρ̃im/µ̃
−ǫ̃cJ̃im

}

.

When both electric and magnetic sources are present, we use superposition:

Ẽ = −∇φ̃e − jωÃe −
1

ǫ̃c
∇× Ãh,

H̃ =
1

µ̃
∇× Ãe −∇φ̃h − jωÃh.

Using the Lorenz conditions, we can also write the fields in terms of the vector potentials
alone:

Ẽ = − jω
k2

∇(∇ · Ãe)− jωÃe −
1

ǫ̃c
∇× Ãh, (5.54)

H̃ =
1

µ̃
∇× Ãe −

jω

k2
∇(∇ · Ãh)− jωÃh. (5.55)

We can also define Hertzian potentials for the frequency-domain fields. When J̃im = 0
and J̃i 6= 0, we let

Ãe = jωµ̃ǫ̃cΠ̃e

and find

Ẽ = ∇(∇ · Π̃e) + k2Π̃e = ∇× (∇× Π̃e)−
J̃i

jωǫ̃c
(5.56)

and
H̃ = jωǫ̃c∇× Π̃e. (5.57)
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Here J̃i can represent either an impressed electric current source or an impressed polar-
ization current source J̃i = jωP̃i. The electric Hertzian potential obeys

(∇2 + k2)Π̃e = − J̃i

jωǫ̃c
. (5.58)

When J̃im 6= 0 and J̃i = 0, we let

Ãh = jωµ̃ǫ̃cΠ̃h

and find

Ẽ = −jωµ̃∇× Π̃h (5.59)

and

H̃ = ∇(∇ · Π̃h) + k2Π̃h = ∇× (∇× Π̃h)−
J̃im
jωµ̃

. (5.60)

Here J̃im can represent either an impressed magnetic current source or an impressed
magnetization current source J̃im = jωµ̃M̃i. The magnetic Hertzian potential obeys

(∇2 + k2)Π̃h = − J̃im
jωµ̃

.

If both electric and magnetic sources are present, then by superposition,

Ẽ = ∇(∇ · Π̃e) + k2Π̃e − jωµ̃∇× Π̃h

= ∇× (∇× Π̃e)−
J̃i

jωǫ̃c
− jωµ̃∇× Π̃h

and

H̃ = jωǫ̃c∇× Π̃e +∇(∇ · Π̃h) + k2Π̃h

= jωǫ̃c∇× Π̃e +∇× (∇× Π̃h)−
J̃im
jωµ̃

.

5.2.7 Solution for potentials in an unbounded medium: the retarded
potentials

Under the Lorenz condition, each of the potential functions obeys the wave equation.
This equation can be solved using the method of Green’s functions to determine the
potentials, and the electromagnetic fields can therefore be determined. We now examine
the solution for an unbounded medium. Solutions for bounded regions are considered in
§ 5.2.9.
Consider a linear operator L that operates on a function of r and t. If we wish to solve

the equation

L{ψ(r, t)} = S(r, t), (5.61)

we first solve

L{G(r, t|r′, t′)} = δ(r− r′)δ(t− t′)
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and determine the Green’s function G for the operator L. Provided that S resides within
V , we have

L
{∫

V

∫ ∞

−∞
S(r′, t′)G(r, t|r′, t′) dt′ dV ′

}

=

∫

V

∫ ∞

−∞
S(r′, t′)L{G(r, t|r′, t′)} dt′ dV ′

=

∫

V

∫ ∞

−∞
S(r′, t′)δ(r− r′)δ(t− t′) dt′ dV ′

= S(r, t),

hence

ψ(r, t) =

∫

V

∫ ∞

−∞
S(r′, t′)G(r, t|r′, t′) dt′ dV ′ (5.62)

by comparison with (5.61).
We can also apply this idea in the frequency domain. The solution to

L{ψ̃(r, ω)} = S̃(r, ω) (5.63)

is

ψ̃(r, ω) =

∫

V

S̃(r′, ω)G̃(r|r′;ω) dV ′

where the Green’s function G̃ satisfies

L{G̃(r|r′;ω)} = δ(r− r′).

Equation (5.62) is the basic superposition integral that allows us to find the potentials
in an infinite, unbounded medium. If the medium is bounded, we must use Green’s
theorem to include the effects of sources that reside external to the boundaries. These
are manifested in terms of the values of the potentials on the boundaries in the same
manner as with the static potentials in Chapter 3. In order to determine whether (5.62)
is the unique solution to the wave equation, we must also examine the behavior of the
fields on the boundary as the boundary recedes to infinity. In the frequency domain we
find that an additional “radiation condition” is required to ensure uniqueness.

5.2.7.1 The retarded potentials in the time domain

Consider an unbounded, homogeneous, lossy, isotropic medium described by parameters
µ, ǫ, σ. In the time domain the vector potentialAe satisfies (5.29). The scalar components
of Ae must obey

∇2Ae,n(r, t)− µσ
∂Ae,n(r, t)

∂t
− µǫ

∂2Ae,n(r, t)

∂t2
= −µJ in(r, t) (n = x, y, z).

We may write this in the form

(

∇2 − 2Ω

v2
∂

∂t
− 1

v2
∂2

∂t2

)

ψ(r, t) = −S(r, t) (5.64)

where ψ = Ae,n, v
2 = 1/µǫ, Ω = σ/2ǫ, and S = µJ in. The solution is

ψ(r, t) =

∫

V

∫ ∞

−∞
S(r′, t′)G(r, t|r′, t′) dt′ dV ′
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where G satisfies

(

∇2 − 2Ω

v2
∂

∂t
− 1

v2
∂2

∂t2

)

G(r, t|r′, t′) = −δ(r− r′)δ(t− t′).

In § A.2.6, we find that

G(r, t|r′, t′) = e−Ω(t−t′) δ(t− t′ −R/v)

4πR

+
Ω2

4πv
e−Ω(t−t′)

I1

(

Ω
√

(t− t′)2 − (R/v)2
)

Ω
√

(t− t′)2 − (R/v)2
(t− t′ > R/v),

where R = |r− r′|. For lossless media where σ = 0, this becomes

G(r, t|r′, t′) = δ(t− t′ −R/v)

4πR

and thus

ψ(r, t) =

∫

V

∫ ∞

−∞
S(r′, t′)

δ(t− t′ −R/v)

4πR
dt′ dV ′

=

∫

V

S(r′, t−R/v)

4πR
dV ′. (5.65)

For lossless media, the scalar potentials and all rectangular components of the vector
potentials obey the same wave equation. Thus, for instance, the solutions to (5.46) are

Ae(r, t) =
µ

4π

∫

V

Ji(r′, t−R/v)

R
dV ′, (5.66)

φe(r, t) =
1

4πǫ

∫

V

ρi(r′, t−R/v)

R
dV ′. (5.67)

These are called the retarded potentials, since their values at time t are determined by
the values of the sources at an earlier (or retardation) time t − R/v. The retardation
time is determined by the propagation velocity v of the potential waves.
The fields are determined by the potentials:

E(r, t) = −∇ 1

4πǫ

∫

V

ρi(r′, t−R/v)

R
dV ′ − ∂

∂t

µ

4π

∫

V

Ji(r′, t−R/v)

R
dV ′,

H(r, t) = ∇× 1

4π

∫

V

Ji(r′, t−R/v)

R
dV ′.

The derivatives may be brought inside the integrals, but some care must be taken when
the observation point r lies within the source region. In this case the integrals must be
performed in a principal value sense by excluding a small volume around the observation
point. We discuss this in more detail below for the frequency-domain fields. For details
regarding this procedure in the time domain, the reader may see Hansen [79].
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5.2.7.2 The retarded potentials in the frequency domain

Consider an unbounded, homogeneous, isotropic medium described by µ̃(ω) and ǫ̃c(ω). If
ψ̃(r, ω) represents a scalar potential or any rectangular component of a vector or Hertzian
potential, then it must satisfy

(∇2 + k2)ψ̃(r, ω) = −S̃(r, ω) (5.68)

where k = ω(µ̃ǫ̃c)1/2. This Helmholtz equation has the form of (5.63), and thus

ψ̃(r, ω) =

∫

V

S̃(r′, ω)G̃(r|r′;ω) dV ′

where
(∇2 + k2)G̃(r|r′;ω) = −δ(r− r′). (5.69)

This is Equation (A.47) and its solution, as given by (A.50), is

G̃(r|r′;ω) = e−jkR

4πR
. (5.70)

Here we use v2 = 1/µ̃ǫ̃ and Ω = σ̃/2ǫ in (A.48):

k =
1

v

√

ω2 − j2ωΩ = ω

√

µ̃

(

ǫ̃− j
σ̃

ω

)

= ω
√

µ̃ǫ̃c.

The solution to (5.68) is therefore

ψ̃(r, ω) =

∫

V

S̃(r′, ω)
e−jkR

4πR
dV ′. (5.71)

When the medium is lossless, the potential must also satisfy the radiation condition

lim
r→∞

r

(

∂

∂r
+ jk

)

ψ̃(r) = 0 (5.72)

to guarantee uniqueness of solution. In § 5.2.9 we shall show how this requirement arises
from the solution within a bounded region. For a uniqueness proof for the Helmholtz
equation, the reader may consult Chew [35].

We may use (5.71) to find that

Ãe(r, ω) =
µ̃

4π

∫

V

J̃i(r′, ω)
e−jkR

R
dV ′.

Comparison with (5.65) shows that in the frequency domain, time retardation takes the
form of a phase shift. Similarly,

φ̃(r, ω) =
1

4πǫ̃c

∫

V

ρ̃i(r′, ω)
e−jkR

R
dV ′.

◮ Example 5.3: Fields of a Hertzian dipole

Figure 5.2 depicts a short electric line current of length l ≪ λ at position rp, oriented along a
direction p̂ in a medium with constitutive parameters µ̃(ω), ǫ̃c(ω). Use the vector potential
to find the electric and magnetic fields produced by the source. Repeat for a short magnetic
current.



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 513 — #537
✐

✐

✐

✐

✐

✐

Field decompositions and the EM potentials 513

FIGURE 5.2
Geometry of an electric Hertzian dipole.

Solution: We assume that the frequency-domain current Ĩ(ω) is independent of position,
and therefore this Hertzian dipole must be terminated by point charges

Q̃(ω) = ± Ĩ(ω)
jω

as required by the continuity equation. The electric vector potential produced by this short
current element is

Ãe =
µ̃

4π

∫

Γ

Ĩp̂
e−jkR

R
dl′.

At observation points far from the dipole (compared to its length) such that |r − rp| ≫ l,
we may approximate

e−jkR

R
≈ e−jk|r−rp|

|r− rp|
.

Then

Ãe = p̂µ̃ĨG̃(r|rp;ω)
∫

Γ

dl′ = p̂µ̃Ĩ lG̃(r|rp;ω). (5.73)

Note that we obtain the same answer if we let the current density of the dipole be

J̃ = jωp̃δ(r− rp)

where p̃ is the dipole moment defined by

p̃ = Q̃lp̂ =
Ĩ l

jω
p̂.

That is, we consider a Hertzian dipole to be a “point source” of electromagnetic radiation.
With this notation we have

Ãe = µ̃

∫

V

[

jωp̃δ(r′ − rp)
]

G̃(r|r′;ω) dV ′ = jωµ̃p̃G̃(r|rp;ω),

which is identical to (5.73). The electromagnetic fields are then

H̃(r, ω) = jω∇× [p̃G̃(r|rp;ω)], (5.74)
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and

Ẽ(r, ω) =
1

ǫ̃c
∇×∇× [p̃G̃(r|rp;ω)]. (5.75)

Here we have obtained Ẽ from H̃ outside the source region by applying Ampere’s law. By
duality we may obtain the fields produced by a magnetic Hertzian dipole of moment

p̃m =
Ĩml

jω
p̂

located at r = rp as

Ẽ(r, ω) = −jω∇× [p̃mG̃(r|rp;ω)],

H̃(r, ω) =
1

µ̃
∇×∇× [p̃mG̃(r|rp;ω)]. ◭

◮ Example 5.4: Near-zone and far-zone fields of a Hertzian dipole

Consider the special case of a Hertzian dipole located on the z-axis and centered on the
origin. Identify the terms in the field expressions that are dominant very near to the dipole,
and those that are dominant very far from the dipole.

Solution: Using p̂ = ẑ and rp = 0 in (5.74), we find that

H̃(r, ω) = jω∇×
[

ẑ
Ĩ

jω
l
e−jkr

4πr

]

= φ̂
1

4π
Ĩlk2

[

1

(kr)2
+ j

1

kr

]

sin θe−jkr. (5.76)

By Ampere’s law,

Ẽ(r, ω) =
1

jωǫ̃c
∇× H̃(r, ω) = r̂

η

4π
Ĩlk2

[

2

(kr)2
− j

2

(kr)3

]

cos θe−jkr

+ θ̂
η

4π
Ĩlk2

[

j
1

kr
+

1

(kr)2
− j

1

(kr)3

]

sin θe−jkr.

(5.77)

The fields involve various inverse powers of r, with the 1/r and 1/r3 terms 90◦ out of phase
from the 1/r2 term. Some terms dominate the field close to the source, while others dominate
far away. Assume the dipole is so small that r ≫ l at all points of interest. We then say
that an observation point is in the near-zone region of the dipole when kr ≪ 1. The terms
that are dominant near the dipole are the near-zone fields or induction-zone fields:

H̃
NZ(r, ω) = φ̂

Ĩlk2

4π

e−jkr

(kr)2
sin θ,

Ẽ
NZ(r, ω) = −jη Ĩlk

2

4π

e−jkr

(kr)3

[

2r̂ cos θ + θ̂ sin θ
]

.

Note that H̃NZ and ẼNZ are 90◦ out of phase. Also, the electric field has the same spatial
dependence as the field of a static electric dipole. The terms that dominate far from the
source (kr ≫ 1) are called the far-zone or radiation fields:

H̃
FZ(r, ω) = φ̂

jk2 Ĩl

4π

e−jkr

kr
sin θ,

Ẽ
FZ(r, ω) = θ̂η

jk2Ĩ l

4π

e−jkr

kr
sin θ.
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The far-zone fields are in-phase and in fact form a TEM spherical wave with

H̃
FZ =

r̂× ẼFZ

η
. (5.78)

The dipole field is the first term in a general expansion of the electromagnetic fields in
terms of the multipole moments of the sources. Either a Taylor expansion or a spherical-
harmonic expansion may be used. See Papas [143] for details. ◭

◮ Example 5.5: Power radiated by a Hertzian dipole

Compute the power radiated by a Hertzian dipole in free space.

Solution: We speak of the time-average power radiated by a time-harmonic source as the
integral of the time-average power density over a large sphere. Thus radiated power is the
power delivered by the sources to infinity. If the dipole is situated within a lossy medium,
all of the time-average power delivered by the sources is dissipated by the medium. If the
medium is lossless then all the time-average power is delivered to infinity.

For a time-harmonic Hertzian dipole immersed in a lossless medium, we write (5.76) and
(5.77) in terms of phasors and compute the complex Poynting vector

S
c(r) = Ě(r)× Ȟ

∗(r)

= θ̂η

(

|Ǐ |l
4π

)2

j
2

kr5
[

k2r2 + 1
]

cos θ sin θ

+ r̂η

(

|Ǐ |l
4π

)2
k2

r2

[

1− j
1

k3r5

]

sin2 θ.

The θ-component of Sc is purely imaginary and gives rise to no time-average power flux;
it decays as 1/r3 for large r and produces no net flux through a sphere of radius r → ∞.
Additionally, the angular variation cos θ sin θ integrates to zero over a sphere. In contrast, the
r-component has a real part that varies as 1/r2 and as sin2 θ. Hence the total time-average
power passing through a sphere expanding to infinity is nonzero:

Pav = lim
r→∞

∫ 2π

0

∫ π

0

1
2
Re

{

r̂η

(

|Ǐ |l
4π

)2
k2

r2
sin2 θ

}

· r̂r2 sin θ dθ dφ = η
π

3
|Ǐ|2

(

l

λ

)2

where λ = 2π/k is the wavelength in the lossless medium. This is the power radiated by the
Hertzian dipole.

Note that the radiated power is proportional to |Ǐ |2 as it is in a circuit, and thus we may
define a radiation resistance

Rr =
2Pav

|Ǐ |2
= η

2π

3

(

l

λ

)2

representing the resistance of a lumped element that would absorb the same power as radi-
ated by the Hertzian dipole when carrying the same current. We also note that the power
radiated by a Hertzian dipole (and, in fact, by any source of finite extent) may be calculated
directly from its far-zone fields. In fact, from (5.78) we have the simple formula for the
time-average power density in lossless media

Sav = 1
2
Re
{

Ě
FZ × Ȟ

FZ∗
}

= r̂
|ĚFZ |2

2η
.

The concepts of radiated power and radiation resistance are treated in detail in § 6.4. ◭
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5.2.8 The electric and magnetic dyadic Green’s functions

The frequency-domain electromagnetic fields may be found for electric sources from the
electric vector potential using (5.54) and (5.55):

Ẽ(r, ω) = −jωµ̃(ω)
∫

V

J̃i(r′, ω)G̃(r|r′;ω) dV ′ − jωµ̃(ω)

k2
∇∇ ·

∫

V

J̃i(r′, ω)G̃(r|r′;ω) dV ′,

H̃ = ∇×
∫

V

J̃i(r′, ω)G̃(r|r′;ω) dV ′. (5.79)

Provided the observation point r does not lie within the source region, we may take the
derivatives inside the integrals. Using

∇ ·
[

J̃i(r′, ω)G̃(r|r′;ω)
]

= J̃i(r′, ω) · ∇G̃(r|r′;ω) + G̃(r|r′;ω)∇ · J̃(r′, ω)

= ∇G̃(r|r′;ω) · J̃i(r′, ω)

we have

Ẽ(r, ω) = −jωµ̃(ω)
∫

V

{

J̃i(r′, ω)G̃(r|r′;ω) + 1

k2
∇
[

∇G̃(r|r′;ω) · Ji(r′, ω)
]

}

dV ′.

This can be written more compactly as

Ẽ(r, ω) = −jωµ̃(ω)
∫

V

Ḡe(r|r′;ω) · J̃i(r′, ω) dV ′

where

Ḡe(r|r′;ω) =
[

Ī+
∇∇
k2

]

G̃(r|r′;ω) (5.80)

is called the electric dyadic Green’s function. Using

∇× [J̃iG̃] = ∇G̃× J̃i + G̃∇× J̃i = ∇G̃× J̃i,

we have for the magnetic field

H̃(r, ω) =

∫

V

∇G̃(r|r′;ω)× J̃i(r′, ω) dV ′.

Now, using the dyadic identity (B.16), we may show that

J̃i ×∇G̃ = (J̃i ×∇G̃) · Ī = (∇G̃× Ī) · Ji.

So

H̃(r, ω) = −
∫

V

Ḡm(r|r′;ω) · J̃i(r′, ω) dV ′

where
Ḡm(r|r′;ω) = ∇G̃(r|r′;ω)× Ī (5.81)

is called the magnetic dyadic Green’s function.
Proceeding similarly for magnetic sources (or using duality), we have

H̃(r) = −jωǫ̃c
∫

V

Ḡe(r|r′;ω) · J̃im(r′, ω) dV ′,

Ẽ(r) =

∫

V

Ḡm(r|r′;ω) · J̃im(r′, ω) dV ′.
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FIGURE 5.3

Geometry of excluded region used to compute the electric field within a source region.

When both electric and magnetic sources are present, we simply use superposition and
add the fields.
When the observation point lies within the source region, we must be more careful

when formulating the dyadic Green’s functions. In (5.79) we encounter the integral

∫

V

J̃i(r′, ω)G̃(r|r′;ω) dV ′.

If r lies within the source region, then G̃ is singular, since R→ 0 when r → r′. However,
the integral converges and the potentials exist within the source region. While trouble
arises from passing both derivatives in the operator∇∇· through the integral and allowing
them to operate on G̃, as differentiation of G̃ increases the order of the singularity, we
may safely take one derivative of G̃.
Even when applying just one derivative to G̃, we must compute the integral carefully.

We exclude the point r by surrounding it with a small volume element Vδ as shown in
Figure 5.3, and write

∇∇ ·
∫

V

J̃i(r′, ω)G̃(r|r′;ω) dV ′ =

lim
Vδ→0

∫

V−Vδ
∇
[

∇G̃(r|r′;ω) · J̃i(r′, ω)
]

dV ′ + lim
Vδ→0

∇
∫

Vδ

∇G̃(r|r′;ω) · J̃i(r′, ω) dV ′.

The first integral on the right is called the principal value integral and is usually abbre-
viated

P.V.

∫

V

∇
[

∇G̃(r|r′;ω) · J̃i(r′, ω)
]

dV ′.

It converges to a value dependent on the shape of the excluded region Vδ, as does the
second integral. However, the sum of these two integrals produces a unique result. Using
∇G̃ = −∇′G̃, the identity ∇′ · (J̃G̃) = J̃ · ∇′G̃ + G̃∇′ · J̃, and the divergence theorem,
we can write

−
∫

Vδ

∇′G̃(r|r′;ω) · J̃i(r′, ω) dV ′ =

−
∮

Sδ

G̃(r|r′;ω)J̃i(r′, ω) · n̂′ dS′ +

∫

Vδ

G̃(r|r′;ω)∇′ · J̃i(r′, ω) dV ′
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where Sδ is the surface surrounding Vδ. By the continuity equation, the second integral
on the right is proportional to the scalar potential produced by the charge within Vδ,
and thus vanishes as Vδ → 0. The first term is proportional to the field at r produced
by surface charge on Sδ, which results in a value proportional to Ji. Thus

lim
Vδ→0

∇
∫

Vδ

∇G̃(r|r′;ω) · J̃i(r′, ω) dV ′ = − lim
Vδ→0

∇
∮

Sδ

G̃(r|r′;ω)J̃i(r′, ω) · n̂′ dS′

= −L̄ · J̃i(r, ω), (5.82)

so

∇∇ ·
∫

V

J̃i(r′, ω)G̃(r|r′;ω) dV ′ = P.V.

∫

V

∇
[

∇G̃(r|r′;ω) · J̃i(r′, ω)
]

dV ′ − L̄ · J̃i(r, ω).

Here L̄ is usually called the depolarizing dyadic [120]. Its value depends on the shape of
Vδ, as considered below.

We may now write

Ẽ(r, ω) = −jωµ̃(ω) P.V.
∫

V

Ḡe(r|r′;ω) · J̃(r′, ω) dV ′ − 1

jωǫ̃c(ω)
L̄ · J̃i(r, ω). (5.83)

We may also incorporate both terms into a single dyadic Green’s function using the
notation

Ḡ(r|r′;ω) = P.V. Ḡe(r|r′;ω)−
1

k2
L̄δ(r− r′).

Hence, when we compute

Ẽ(r, ω) = −jωµ̃(ω)
∫

V

Ḡ(r|r′;ω) · J̃i(r′, ω) dV ′

= −jωµ̃(ω)
∫

V

[

P.V. Ḡe(r|r′;ω)−
1

k2
L̄δ(r− r′)

]

· J̃i(r′, ω) dV ′,

we reproduce (5.83). That is, the symbol P.V. on Ḡe indicates that a principal value
integral must be performed.

Our final task is to compute L̄ from (5.82). Removal of the excluded region from the
principal value computation leaves behind a hole in the source region. The contribution
to the field at r by the sources in the excluded region is found from the scalar potential
produced by the surface distribution n̂ · Ji. The value of this correction term depends
on the shape of the excluded volume. However, the correction term always adds to
the principal value integral to give the true field at r, regardless of the shape of the
volume. So we must always match the shape of the excluded region used to compute
the principal value integral with that used to compute the correction term so that the
true field is obtained. Note that as Vδ → 0, the phase factor in the Green’s function
becomes insignificant, and the values of the current on the surface approach the value at
r (assuming Ji is continuous at r). Thus we may write

lim
Vδ→0

∇
∮

Sδ

J̃i(r, ω) · n̂′

4π|r− r′| dS′ = L̄ · J̃i(r, ω).

This has the form of a static field integral. For a spherical excluded region, we may com-
pute the above quantity quite simply by assuming the current to be uniform throughout
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FIGURE 5.4

Geometry for solution to the frequency-domain Helmholtz equation.

Vδ and by aligning the current with the z-axis and placing the center of the sphere at the
origin. We then compute the integral at a point r within the sphere, take the gradient,
and allow r → 0. We thus have for a sphere

lim
Vδ→0

∇
∮

S

J̃ i cos θ′

4π|r− r′| dS
′ = L̄ · [ẑJ̃ i(r, ω)].

This integral has been computed in § 3.3.8 with the result given by (3.78). Using this
we find

lim
Vδ→0

[

∇
(

1
3 J̃

iz
)]

∣

∣

∣

∣

r=0

= ẑ 1
3 J̃

i = L̄ · [ẑJ̃ i(r, ω)]

and thus
L̄ = 1

3 Ī.

We leave it as an exercise to show that for a cubical excluded volume, the depolarizing
dyadic has this same value. Values for other shapes may be found in Yaghjian [215].
The theory of dyadic Green’s functions is well developed and there exist techniques for

their construction under a variety of conditions. For an excellent overview, the reader
may see Tai [189].

5.2.9 Solution for potential functions in a bounded medium

In the previous section, we solved for the frequency-domain potential functions in an
unbounded region of space. Here we extend the solution to a bounded region and identify
the physical meaning of the radiation condition (5.72).
Consider a bounded region of space V containing a linear, homogeneous, isotropic

medium characterized by µ̃(ω) and ǫ̃c(ω). As shown in Figure 5.4, we decompose the
multiply connected boundary into a closed “excluding surface” S0 and a closed “encom-
passing surface” S∞ permitted to expand outward to infinity. S0 may consist of more
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than one closed surface and is often used to exclude unknown sources from V . We wish
to solve the Helmholtz equation (5.68) for ψ̃ within V in terms of the sources within V
and the values of ψ̃ on S0. The actual sources of ψ̃ lie entirely with S∞ but may lie
partly, or entirely, within S0.

The approach parallels that of § 3.3.5.2. We begin with Green’s second identity, written
in terms of the source point (primed) variables and applied to the region V :

∫

V

[ψ(r′, ω)∇′2G̃(r|r′;ω)− G̃(r|r′;ω)∇′2ψ(r′, ω)] dV ′ =

∮

S0+S∞

[

ψ(r′, ω)
∂G̃(r|r′;ω)

∂n′ − G̃(r|r′;ω)∂ψ(r
′, ω)

∂n′

]

dS′.

Here n̂ points outward from V , and G̃ is the Green’s function (5.70). By inspection, the
latter obeys the reciprocity condition

G̃(r|r′;ω) = G̃(r′|r;ω)

and satisfies
∇2G̃(r|r′;ω) = ∇′2G̃(r|r′;ω).

Substituting ∇′2ψ̃ = −k2ψ̃ − S̃ from (5.68) and ∇′2G̃ = −k2G̃ − δ(r − r′) from (5.69)
we get

ψ̃(r, ω) =

∫

V

S̃(r′, ω)G̃(r|r′;ω) dV ′

−
∮

S0+S∞

[

ψ̃(r′, ω)
∂G̃(r|r′;ω)

∂n′ − G̃(r|r′;ω)∂ψ̃(r
′, ω)

∂n′

]

dS′.

Hence ψ̃ within V may be written in terms of the sources within V and the values of ψ̃
and its normal derivative over S0 + S∞. The surface contributions account for sources
excluded by S0.

Let us examine the integral over S∞ more closely. If we let S∞ recede to infinity, we
expect no contribution to the potential at r from the fields on S∞. Choosing a sphere
centered at the origin, we note that n̂′ = r̂′ and that as r′ → ∞,

G̃(r|r′;ω) = e−jk|r−r
′|

4π|r− r′| ≈
e−jkr

′

4πr′
,

∂G̃(r|r′;ω)
∂n′ = n̂′ · ∇′G̃(r|r′;ω) ≈ ∂

∂r′
e−jkr

′

4πr′
= −(1 + jkr′)

e−jkr
′

4πr′
.

Substituting these, we find that as r′ → ∞,

∮

S∞

[

ψ̃
∂G̃

∂n′ − G̃
∂ψ̃

∂n′

]

dS′ ≈
∫ 2π

0

∫ π

0

[

−1 + jkr′

r′2
ψ̃ − 1

r′
∂ψ̃

∂r′

]

e−jkr
′

4π
r′

2
sin θ′ dθ′ dφ′

≈ −
∫ 2π

0

∫ π

0

[

ψ̃ + r′
(

jkψ̃ +
∂ψ̃

∂r′

)]

e−jkr

4π
sin θ′ dθ′ dφ′.

Since this gives the contribution to the field in V from the fields on the surface receding
to infinity, we expect that this term should be zero. For a lossy medium the exponential
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term decays and drives the contribution to zero. For a lossless medium the contribution
is zero if

lim
r→∞

ψ̃(r, ω) = 0, (5.84)

lim
r→∞

r

[

jkψ̃(r, ω) +
∂ψ̃(r, ω)

∂r

]

= 0. (5.85)

This is the radiation condition for the Helmholtz equation. It is also called the Sommer-
feld radiation condition after the German physicist A. Sommerfeld. Note that we have
not derived this condition: we have merely postulated it. As with all postulates it is
subject to experimental verification.
The radiation condition implies that for points far from the source, the potentials

behave as spherical waves:

ψ̃(r, ω) ∼ e−jkr

r
(r → ∞).

Substituting this into (5.84) and (5.85), we find that the radiation condition is satisfied.
With S∞ → ∞ we have

ψ̃(r, ω) =

∫

V

S̃(r′, ω)G̃(r|r′;ω) dV ′

−
∮

S0

[

ψ̃(r′, ω)
∂G̃(r|r′;ω)

∂n′ − G̃(r|r′;ω)∂ψ̃(r
′, ω)

∂n′

]

dS′,

which is the expression for the potential within an infinite medium having source-
excluding regions. As S0 → 0, we obtain the expression for the potential in an unbounded
medium:

ψ̃(r, ω) =

∫

V

S̃(r′, ω)G̃(r|r′;ω) dV ′,

as expected.
The time-domain equation (5.64) may also be solved (at least for the lossless case) in

a bounded region of space. The interested reader should see Pauli [147] for details.

5.3 Transverse–longitudinal decomposition

We have seen that when only electric sources are present, the electromagnetic fields in
a homogeneous, isotropic region can be represented by a single Hertzian potential Πe.
Similarly, when only magnetic sources are present, the fields can be represented by a
single Hertzian potential Πh. Hence two vector potentials may be used to represent the
field if both electric and magnetic sources are present.
We may also represent the electromagnetic field in a homogeneous, isotropic region us-

ing two scalar functions and the sources. This follows naturally from another important
field decomposition: a splitting of each field vector into (1) a component along a certain
pre-chosen constant direction, and (2) a component transverse to this direction. Depend-
ing on the geometry of the sources, it is possible that only one of these components will
be present. A special case of this decomposition, the TE–TM field decomposition, holds
for a source-free region and will be discussed in the next section.
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5.3.1 Transverse–longitudinal decomposition for isotropic media

Consider a direction defined by a constant unit vector û. We define the longitudinal
component of A as ûAu where

Au = û ·A,
and the transverse component of A as

At = A− ûAu.

We may thus decompose any vector into a sum of longitudinal and transverse parts. An
important consequence of Maxwell’s equations is that the transverse fields may be written
entirely in terms of the longitudinal fields and the sources. This holds in both the time
and frequency domains; we derive the decomposition in the frequency domain and leave
the derivation of the time-domain expressions as exercises. We begin by decomposing
the operators in Maxwell’s equations into longitudinal and transverse components. We
note that

∂

∂u
≡ û · ∇

and define a transverse del operator as

∇t ≡ ∇− û
∂

∂u
.

Using these basic definitions, the identities listed in Appendix B may be derived. We
shall find it helpful to express the vector curl and Laplacian operations in terms of their
longitudinal and transverse components. Using (B.99) and (B.102), we find that the
transverse component of the curl is given by

(∇×A)t = −û× û× (∇×A)

= −û× û× (∇t ×At)− û× û×
(

û×
[

∂At

∂u
−∇tAu

])

.

The first term in the right member is zero by property (B.97). Using (B.7) we can replace
the second term by

−û

{

û ·
(

û×
[

∂At

∂u
−∇tAu

])}

+ (û · û)
(

û×
[

∂At

∂u
−∇tAu

])

.

The first of these terms is zero since

û ·
(

û×
[

∂At

∂u
−∇tAu

])

=

[

∂At

∂u
−∇tAu

]

· (û× û) = 0,

hence

(∇×A)t = û×
[

∂At

∂u
−∇tAu

]

. (5.86)

The longitudinal part is then, by property (B.86), merely the difference between the curl
and its transverse part, or

û (û · ∇ ×A) = ∇t ×At. (5.87)

A similar set of steps gives the transverse component of the Laplacian as

(∇2A)t =

[

∇t(∇t ·At) +
∂2At

∂u2
−∇t ×∇t ×At

]

,
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and the longitudinal part as

û
(

û · ∇2A
)

= û∇2Au. (5.88)

Verification is left as an exercise.
Now we are ready to give a transverse–longitudinal decomposition of the fields in a

lossy, homogeneous, isotropic region in terms of the direction û. We write Maxwell’s
equations as

∇× Ẽ = −jωµ̃H̃t − jωµ̃ûH̃u − J̃imt − ûJ̃ imu,

∇× H̃ = jωǫ̃cẼt + jωǫ̃cûẼu + J̃it + ûJ̃ iu,

where we have split the right-hand sides into longitudinal and transverse parts. Then,
using (5.86) and (5.87), we can equate the transverse and longitudinal parts of each
equation to obtain

∇t × Ẽt = −jωµ̃ûH̃u − ûJ̃ imu, (5.89)

− û×∇tẼu + û× ∂Ẽt
∂u

= −jωµ̃H̃t − J̃imt, (5.90)

∇t × H̃t = jωǫ̃cûẼu + ûJ̃ iu, (5.91)

− û×∇tH̃u + û× ∂H̃t

∂u
= jωǫ̃cẼt + J̃it. (5.92)

Let us isolate the transverse fields in terms of the longitudinal fields. Forming the cross
product of û and the partial derivative of (5.92) with respect to u, we have

−û× û×∇t
∂H̃u

∂u
+ û× û× ∂2H̃t

∂u2
= jωǫ̃cû× ∂Ẽt

∂u
+ û× ∂J̃it

∂u
.

Using (B.7) and (B.86) we find that

∇t
∂H̃u

∂u
− ∂2H̃t

∂u2
= jωǫ̃cû× ∂Ẽt

∂u
+ û× ∂J̃it

∂u
. (5.93)

Multiplying (5.90) by jωǫ̃c, we have

−jωǫ̃cû×∇tẼu + jωǫ̃cû× ∂Ẽt
∂u

= ω2µ̃ǫ̃cH̃t − jωǫ̃cJ̃imt. (5.94)

We now add (5.93) to (5.94) and eliminate Ẽt to get

(

∂2

∂u2
+ k2

)

H̃t = ∇t
∂H̃u

∂u
− jωǫ̃cû×∇tẼu + jωǫ̃cJ̃imt − û× ∂J̃it

∂u
. (5.95)

This one-dimensional Helmholtz equation can be used to express the transverse magnetic
field in terms of the longitudinal components of Ẽ and H̃. Similar steps lead to a formula
for the transverse component of Ẽ:

(

∂2

∂u2
+ k2

)

Ẽt = ∇t
∂Ẽu
∂u

+ jωµ̃û×∇tH̃u + û× ∂J̃imt
∂u

+ jωµ̃J̃it. (5.96)
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We find the longitudinal components from the wave equation for Ẽ and H̃. Recall that
the fields satisfy

(∇2 + k2)Ẽ =
1

ǫ̃c
∇ρ̃i + jωµ̃J̃i +∇× J̃im,

(∇2 + k2)H̃ =
1

µ̃
∇ρ̃im + jωǫ̃cJ̃im −∇× J̃i.

Splitting the vectors into longitudinal and transverse parts, and using (5.87) and (5.88),
we equate the longitudinal components of the wave equations to obtain

(

∇2 + k2
)

Ẽu =
1

ǫ̃c
∂ρ̃i

∂u
+ jωµ̃J̃ iu + û · (∇t × J̃imt), (5.97)

(

∇2 + k2
)

H̃u =
1

µ̃

∂ρ̃im
∂u

+ jωǫ̃cJ̃ imu − û · (∇t × J̃it). (5.98)

Note that if J̃im = J̃it = 0, then H̃u = 0 and the fields are TM to the u-direction; these
fields may be determined completely from Ẽu. Similarly, if J̃i = J̃imt = 0, then Ẽu = 0
and the fields are TE to the u-direction; these fields may be determined completely from
H̃u. These properties are used in § 4.11.8.2, where the fields of z-directed electric and
magnetic line sources are assumed to be purely TMz or TEz, respectively.

5.3.2 Transverse–longitudinal decomposition for anisotropic media

The transverse–longitudinal decomposition presented in Section 5.3.1 for a homogeneous
isotropic medium may also be formulated for a homogeneous anisotropic medium, with
an expected increase in complexity. In fact, the decomposition may even be formulated
for a homogeneous bianisotropic medium, but we restrict ourselves to anisotropic media
for expediency. The reader interested in the bianisotropic case should see [42].

Consider a homogeneous anisotropic medium with constitutive relations D̃ = ˜̄ǫ · Ẽ and
B̃ = ˜̄µ · H̃. Maxwell’s equations can be written as

∇× Ẽ = −jωB̃t − jωûB̃u − J̃imt − ûJ̃ imu,

∇× H̃ = jωD̃t + jωûD̃u + J̃it + ûJ̃ iu,

where we have split the right-hand sides into longitudinal and transverse parts. Using
(5.86) and (5.87), we can equate the transverse and longitudinal parts of each equation
to obtain

∇t × Ẽt = −jωûB̃u − ûJ̃ imu, (5.99)

− û×∇tẼu + û× ∂Ẽt
∂u

= −jωB̃t − J̃imt, (5.100)

∇t × H̃t = jωûD̃u + ûJ̃ iu, (5.101)

− û×∇tH̃u + û× ∂H̃t

∂u
= jωD̃t + J̃it. (5.102)

To proceed, we must write B̃u and B̃t in terms of H̃u and H̃t, and D̃u and D̃t in terms
of Ẽu and Ẽt.
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First note that

B̃u = û · B̃ = û · (˜̄µ · H̃) = (û · ˜̄µ) · H̃ = µ̃ · H̃,
where we have used (B.11), and where we define µ̃ = û · ˜̄µ. Then

B̃u = µ̃ · (H̃t + ûH̃u) = µ̃ · H̃t + µ̃uuH̃u, (5.103)

where µ̃uu = û · ˜̄µ · û = µ̃ · û. Next note that

B̃t = B̃− ûB̃u = ˜̄µ · (H̃t + ûH̃u)− û(µ̃ · H̃t + µ̃uuH̃u) = ˜̄µt · H̃t + µ̃tH̃u, (5.104)

where we have defined ˜̄µt = ˜̄µ− ûµ̃ and µ̃t = (Ī− ûû) · ˜̄µ · û. Similarly,

D̃u = ǫ̃ · Ẽt + ǫ̃uuẼu, (5.105)

D̃t = ˜̄ǫt · Ẽt + ǫ̃tẼu, (5.106)

where ǫ̃ = û · ˜̄ǫ, ǫ̃uu = û · ˜̄ǫ · û = ǫ̃ · û, ˜̄ǫt = ˜̄ǫ− ûǫ̃, and ǫ̃t = (Ī− ûû) · ˜̄ǫ · û.
Substituting (5.103), (5.104), (5.105), and (5.106) into (5.100) and (5.102), we obtain

− û×∇tẼu + û× ∂Ẽt
∂u

= −jω(˜̄µt · H̃t + µ̃tH̃u)− J̃imt, (5.107)

− û×∇tH̃u + û× ∂H̃t

∂u
= jω(˜̄ǫt · Ẽt + ǫ̃tẼu) + J̃it. (5.108)

Next, crossing û with (5.107) and using (B.99), we get

∂Ẽt
∂u

= ∇tẼu + jωû× (˜̄µt · H̃t) + jωû× (µ̃tH̃u) + û× J̃imt. (5.109)

Taking ∂/∂u of (5.108) and using (5.109) to eliminate Ẽt, we have

− û×∇t
∂H̃u

∂u
+ û× ∂2H̃t

∂u2
=

jω˜̄ǫt ·
[

∇tẼu + jωû× (˜̄µt · H̃t) + jωû× (µ̃tH̃u) + û× J̃imt

]

+ jωǫ̃t
∂Ẽu
∂u

+
∂J̃it
∂u

.

This can be written more conveniently by forming û crossed with this expression:

∇t
∂H̃u

∂u
−∂

2H̃t

∂u2
= jωû× (˜̄ǫt · ∇tẼu)− ω2û×

{

˜̄ǫt · [û× (˜̄µt · H̃t)]
}

−ω2û×
{

˜̄ǫt · [û× (µ̃tH̃u)]
}

+ jω(û× ǫ̃t)
∂Ẽu
∂u

+ jωû× [̃̄ǫt · (û× J̃imt)] + û× ∂J̃it
∂u

.

(5.110)

Several terms in (5.110) may be simplified. Use of (B.12) gives

û× ǫ̃t = û× (Ī− ûû) · ˜̄ǫ · û = û× (˜̄ǫ · û) = (û× ˜̄ǫ) · û.

With use of the additional relations

û× (˜̄ǫt · ∇tẼu) = û× (˜̄ǫ · ∇tẼu − ûǫ̃ · ∇tẼu) = (û× ˜̄ǫ) · ∇tẼu,

û×
{

˜̄ǫt · [û× (˜̄µt · H̃t)]
}

= (û× ˜̄ǫt) · [û× (˜̄µt · H̃t)] = [(û× ˜̄ǫ) · (û× ˜̄µ)] · H̃t,

û×
{

˜̄ǫt · [û× (µ̃tH̃u)]
}

= (û× ˜̄ǫt) · [û× (µ̃tH̃u)] = [(û× ˜̄ǫ) · (û× ˜̄µ)] · (ûH̃u),

û× [̃̄ǫt · (û× J̃imt)] = (û× ˜̄ǫ) · (û× J̃imt),
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(5.110) becomes

∂2H̃t

∂u2
− ω2 [(û× ˜̄ǫ) · (û× ˜̄µ)] · H̃t = ∇t

∂H̃u

∂u
− jω(û× ˜̄ǫ) · ∇tẼu

+ ω2 [(û× ˜̄ǫ) · (û× ˜̄µ)] · (ûH̃u)− jω(û× ˜̄ǫ) · (û× J̃imt)− û× ∂J̃it
∂u

. (5.111)

This expresses the transverse component of H̃ in terms of the longitudinal components
of H̃ and Ẽ and the sources. Similar steps yield the transverse component of Ẽ as

∂2Ẽt
∂u2

− ω2 [(û× ˜̄µ) · (û× ˜̄ǫ)] · Ẽt = ∇t
∂Ẽu
∂u

+ jω(û× ˜̄µ) · ∇tH̃u

+ ω2 [(û× ˜̄µ) · (û× ˜̄ǫ)] · (ûẼu)− jω(û× ˜̄µ) · (û× J̃it) + û× ∂J̃imt
∂u

. (5.112)

This is left as an exercise.

◮ Example 5.6: Transverse–longitudinal decomposition for isotropic media

Show that (5.111)–(5.112) reduce to (5.95)–(5.96) when the medium is isotropic.

Solution: For an isotropic medium, we have

˜̄ǫ = Īǫ̃c, (5.113)

˜̄µ = Īµ̃. (5.114)

Using (B.12) we have

[(û× ˜̄ǫ) · (û× ˜̄µ)] · H̃t = (û × ˜̄ǫ) · [û× (˜̄µ · H̃t)].

By (5.114),

[(û × ˜̄ǫ) · (û× ˜̄µ)] · H̃t = (û× ˜̄ǫ) · [û × (µ̃Ī · H̃t)] = µ̃(û× ˜̄ǫ) · (û× H̃t).

By (5.113),

[(û× ˜̄ǫ) · (û× ˜̄µ)] · H̃t = µ̃ǫ̃c(û× Ī) · (û× H̃t) = µ̃ǫ̃cû× [̄I · (û× H̃t)]

= µ̃ǫ̃cû× (û× H̃t) = −µ̃ǫ̃cH̃t.

Similarly

[(û × ˜̄ǫ) · (û× ˜̄µ)] · (ûH̃u) = (û× ˜̄ǫ) · [û× (˜̄µ · ûH̃u)] = (û× ˜̄ǫ) · [µ̃(û× ûH̃u)] = 0.

We also have
(û× ˜̄ǫ) · ∇tẼu = û× (ǫ̃cĪ · ∇tẼu) = ǫ̃cû ×∇tẼu,

and
(û× ˜̄ǫ) · (û× J̃

i
mt) = û× [̃̄ǫ · (û× J̃

i
mt)] = ǫ̃cû× (û× J̃

i
mt)] = −ǫ̃cJ̃imt.

By these and (5.111), we obtain

∂2H̃t

∂u2
+ ω2ǫ̃cµ̃H̃t = ∇t

∂H̃u

∂u
− jωǫ̃cû×∇tẼu + jωǫ̃cJ̃imt − û × ∂J̃it

∂u
.

Since k2 = ω2µ̃ǫ̃c, this is identical to (5.95). Similar steps show that (5.112) reduces to
(5.96). ◭



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 527 — #551
✐

✐

✐

✐

✐

✐

Field decompositions and the EM potentials 527

It would be convenient to solve (5.111)–(5.112) explicitly for the transverse fields in
terms of the longitudinal fields and the sources. This is done most expediently by applying
a spatial Fourier transform to eliminate the u-derivatives. A Fourier transform approach
is particularly useful when the geometry of a problem is invariant in the longitudinal
direction (such as in the case of waveguides or transmission lines). Define the Fourier
transform pair f(u) ↔ fu(ku) according to

fu(ku) =

∫ ∞

−∞
f(u)e−jkuu du, f(u) =

1

2π

∫ ∞

−∞
fu(ku)e

kuu dku.

Writing each term in (5.111) as an inverse Fourier transform and invoking the Fourier
integral theorem, we obtain

k2uH̃
u
t + ω2 [(û× ˜̄ǫ) · (û× ˜̄µ)] · H̃u

t = −jku∇tH̃
u
u + jω(û× ˜̄ǫ) ·

[

∇tẼ
u
u + ûjkuẼ

u
u

]

−ω2 [(û× ˜̄ǫ) · (û× ˜̄µ)] · ûH̃u
u + jω(û× ˜̄ǫ) ·

[

û× J̃iumt

]

+ jkuû× J̃iut .

(5.115)

Defining the dyadic
Ω̄ = k2uĪ+ ω2(û× ˜̄ǫ) · (û× ˜̄µ)

we can solve (5.115) for H̃u
t :

H̃u
t = Ω̄

−1 ·
{

jω(û× ˜̄ǫ) ·
[

∇tẼ
u
u + ûjkuẼ

u
u

]

− jku∇tH̃
u
u

−ω2 [(û× ˜̄ǫ) · (û× ˜̄µ)] · ûH̃u
u + jω(û× ˜̄ǫ) ·

[

û× J̃iumt

]

+ jkuû× J̃iut

}

. (5.116)

Similarly, we can transform the entities in (5.112) and solve for Ẽut :

Ẽut = Φ̄
−1 ·

{

−jω(û× ˜̄µ) ·
[

∇tH̃
u
u + ûjkuH̃

u
u

]

− jku∇tẼ
u
u

−ω2 [(û× ˜̄µ) · (û× ˜̄ǫ)] · ûẼuu + jω(û× ˜̄µ) ·
[

û× J̃iut

]

− jkuû× J̃iumt

}

, (5.117)

where
Φ̄ = k2uĪ+ ω2(û× ˜̄µ) · (û× ˜̄ǫ).

◮ Example 5.7: Transverse field relations for isotropic media

Specialize (5.116)–(5.117) for the case of an isotropic medium.

Solution: The dyadic permeability and permittivity for an isotropic medium are given by
(5.114) and (5.113). Proceeding as in Example 5.6, we have

(û× ˜̄ǫ) ·
[

û × H̃
u
t

]

= ǫ̃cû×
[

Ī · (û× H̃
u
t )
]

= ǫ̃cû× (û× H̃
u
t ) = −ǫ̃cH̃u

t ,

(û× ˜̄ǫ) ·
[

û × J̃
iu
mt

]

= ǫ̃cû×
[

Ī · (û× J̃
iu
mt)
]

= ǫ̃cû× (û× J̃
iu
mt) = −ǫ̃cJ̃iumt,

(û× ˜̄ǫ) · ∇tẼ
u
u = û× (ǫ̃cĪ · ∇tẼ

u
u) = ǫ̃cû×∇tẼ

u
u ,

(û× ˜̄ǫ) · ûẼuu = û× (ǫ̃cĪ · ûẼuu) = ǫ̃c(û× û)Ẽuu = 0,
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and

[(û × ˜̄ǫ) · (û× ˜̄µ)] · (ûH̃u
u ) = (û× ˜̄ǫ) · [û× (˜̄µ · ûH̃u

u )] = (û× ˜̄ǫ) · [µ̃(û× ûH̃u
u )] = 0.

Substituting these into (5.116), we get the transverse magnetic field

(k2u − ω2µ̃ǫ̃c)H̃t = −jku∇tH̃u + jωǫ̃cû ×∇tẼu − jωǫ̃cJ̃iumt + jkuû× J̃
iu
t .

Similar steps allow (5.117) to be written as

(k2u − ω2µ̃ǫ̃c)Ẽt = −jku∇tẼu − jωµ̃û ×∇tH̃u − jωµ̃J̃iut − jkuû× J̃
iu
mt. ◭

5.4 TE–TM decomposition

5.4.1 TE–TM decomposition in terms of fields

A particularly useful field decomposition results for a source-free region. With J̃i =
J̃im = 0 in (5.95)–(5.96) we obtain

(

∂2

∂u2
+ k2

)

H̃t = ∇t
∂H̃u

∂u
− jωǫ̃cû×∇tẼu, (5.118)

(

∂2

∂u2
+ k2

)

Ẽt = ∇t
∂Ẽu
∂u

+ jωµ̃û×∇tH̃u. (5.119)

Setting the sources to zero in (5.97)–(5.98) we get

(

∇2 + k2
)

Ẽu = 0,
(

∇2 + k2
)

H̃u = 0.

Hence the longitudinal field components satisfy the homogeneous Helmholtz equation,
and the transverse components are specified solely in terms of the longitudinal compo-
nents. The electromagnetic field is completely specified by the two scalar fields Ẽu and
H̃u (and, of course, appropriate boundary values).

Superposition aids in the task of solving (5.118)–(5.119). Since each equation has two
forcing terms on the right, we can solve the equations using one forcing term at a time,
and add the results. That is, let Ẽ1 and H̃1 be the solutions to (5.118)–(5.119) with
Ẽu = 0, and Ẽ2 and let H̃2 be the solutions with H̃u = 0. This results in a decomposition

Ẽ = Ẽ1 + Ẽ2,

H̃ = H̃1 + H̃2,

with

Ẽ1 = Ẽ1t, H̃1 = H̃1t + H̃1uû,

H̃2 = H̃2t, Ẽ2 = Ẽ2t + Ẽ2uû.

Because Ẽ1 has no u-component, Ẽ1 and H̃1 are termed transverse electric (or TE ) to
the u-direction; H̃2 has no u-component, and Ẽ2 and H̃2 are termed transverse magnetic
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(or TM ) to the u-direction.∗ We see that in a source-free region any electromagnetic
field can be decomposed into a set of two fields that are TE and TM, respectively, to
some fixed u-direction. This is useful for boundary value (e.g., waveguide and scattering)
problems where external source information is easily specified using field values on the
boundary of the source-free region. In that case Ẽu and H̃u are determined by solving
the homogeneous wave equation in an appropriate coordinate system, and the other
field components are found from (5.118)–(5.119). Often the boundary conditions can be
satisfied by the TM fields or the TE fields alone. This simplifies the analysis of many
types of EM systems.

5.4.2 TE–TM decomposition in terms of Hertzian potentials

We are free to represent Ẽ and H̃ in terms of scalar fields other than Ẽu and H̃u. In
doing so, it is helpful to retain the wave nature of the solution so that a meaningful
physical interpretation is still possible; we thus use Hertzian potentials since they obey
the wave equation.
For the TM case let Π̃h = 0 and Π̃e = ûΠ̃e. Setting J̃i = 0 in (5.58) we have

(∇2 + k2)Π̃e = 0.

Since Π̃e is purely longitudinal, we can use (B.105) to obtain the scalar Helmholtz
equation for Π̃e:

(∇2 + k2)Π̃e = 0. (5.120)

Once a solution Π̃e has been found, the fields are determined by (5.56)–(5.57) with
J̃i = 0:

Ẽ = ∇× (∇× Π̃e),

H̃ = jωǫ̃c∇× Π̃e. (5.121)

We can evaluate Ẽ by noting that Π̃e is purely longitudinal. Use of (B.104) gives

∇×∇× Π̃e = ∇t
∂Π̃e
∂u

− û∇2
t Π̃e.

Then, by (B.103),

∇×∇× Π̃e = ∇t
∂Π̃e
∂u

− û

[

∇2Π̃e −
∂2Π̃e
∂u2

]

.

By (5.120) then,

Ẽ = ∇t
∂Π̃e
∂u

+ û

(

∂2

∂u2
+ k2

)

Π̃e. (5.122)

The field H̃ can be found by noting that Π̃e is purely longitudinal. Use of (B.102) in
(5.121) gives

H̃ = −jωǫ̃cû×∇tΠ̃e. (5.123)

∗Some authors prefer the terminology E mode instead of TM, and H mode instead of TE, indicating the
presence of a u-directed electric or magnetic field component.
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Similar steps yield the TE representation. Substitution of Π̃e = 0 and Π̃h = ûΠ̃h into
(5.59)–(5.60) gives

Ẽ = jωµ̃û×∇tΠ̃h, (5.124)

H̃ = ∇t
∂Π̃h
∂u

+ û

(

∂2

∂u2
+ k2

)

Π̃h, (5.125)

while Π̃h must satisfy
(∇2 + k2)Π̃h = 0.

5.4.2.1 Hertzian potential representation of TEM fields

An interesting situation occurs when a field is both TE and TM to a particular direction.
Such a field is said to be transverse electromagnetic (or TEM ) to that direction. Un-
fortunately, with Ẽu = H̃u = 0 we cannot obtain the transverse field components from
(5.118) or (5.119). It turns out that a single scalar potential function suffices to represent
the field, and we may use either Π̃e or Π̃h.

For the TM case, Equations (5.122)–(5.123) show that we can represent the electro-
magnetic fields completely with Π̃e. Unfortunately, (5.122) has a longitudinal component
and cannot describe a TEM field. But if we require that Π̃e obey the additional equation

(

∂2

∂u2
+ k2

)

Π̃e = 0, (5.126)

then both Ẽ and H̃ are transverse to u and thus describe a TEM field. Since Π̃e must
also obey

(

∇2 + k2
)

Π̃e = 0,

using (B.103) we can write (5.126) as

∇2
t Π̃e = 0.

Similarly, for the TE case the EM fields were completely described in (5.124)–(5.125)
by Π̃h. Here H̃ has a longitudinal component. Thus, if we require

(

∂2

∂u2
+ k2

)

Π̃h = 0, (5.127)

then both Ẽ and H̃ are transverse to u. Equation (5.127) is equivalent to

∇2
t Π̃h = 0.

We can therefore describe a TEM field using either Π̃e or Π̃h, since a TEM field is both
TE and TM to the longitudinal direction. If we choose Π̃e we can use (5.122)–(5.123) to
obtain the expressions

Ẽ = ∇t
∂Π̃e
∂u

,

H̃ = −jωǫ̃cû×∇tΠ̃e, (5.128)

where Π̃e must obey

∇2
t Π̃e = 0,

(

∂2

∂u2
+ k2

)

Π̃e = 0.
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If we choose Π̃h we can use (5.124)–(5.125) to obtain

Ẽ = jωµ̃û×∇tΠ̃h,

H̃ = ∇t
∂Π̃h
∂u

,

where Π̃h must obey

∇2
t Π̃h = 0,

(

∂2

∂u2
+ k2

)

Π̃h = 0.

5.4.3 TE–TM decomposition in spherical coordinates

It is not necessary for the longitudinal direction to be constant to achieve a TE–TM de-
composition. It is possible, for instance, to represent the electromagnetic field in terms of
components either TE or TM to the radial direction of spherical coordinates. This may
be shown using a procedure identical to that used for the longitudinal–transverse decom-
position in rectangular coordinates. We carry out the decomposition in the frequency
domain and leave the time-domain decomposition as an exercise.

5.4.3.1 TE–TM decomposition in terms of the radial fields

Consider a source-free region of space filled with a homogeneous, isotropic material de-
scribed by parameters µ̃(ω) and ǫ̃c(ω). We substitute the spherical coordinate represen-
tation of the curl into Faraday’s and Ampere’s laws with source terms J̃ and J̃m set to
zero. Equating vector components, we have, in particular,

1

r

[

1

sin θ

∂Ẽr
∂φ

− ∂

∂r
(rẼφ)

]

= −jωµ̃H̃θ (5.129)

and
1

r

[

∂

∂r
(rH̃θ)−

∂H̃r

∂θ

]

= jωǫ̃cẼφ. (5.130)

We seek to isolate the transverse components of the fields in terms of the radial compo-
nents. Multiplying (5.129) by jωǫ̃cr we get

jωǫ̃c
1

sin θ

∂Ẽr
∂φ

− jωǫ̃c
∂(rẼφ)

∂r
= k2rH̃θ;

next, multiplying (5.130) by r and then differentiating with respect to r we get

∂2

∂r2
(rH̃θ)−

∂2H̃r

∂θ∂r
= jωǫ̃c

∂(rẼφ)

∂r
.

Subtracting these two equations and rearranging, we obtain

(

∂2

∂r2
+ k2

)

(rH̃θ) = jωǫ̃c
1

sin θ

∂Ẽr
∂φ

+
∂2H̃r

∂r∂θ
.

This is a one-dimensional wave equation for the product of r with the transverse field
component H̃θ. Similarly

(

∂2

∂r2
+ k2

)

(rH̃φ) = −jωǫ̃c ∂Ẽr
∂θ

+
1

sin θ

∂2H̃r

∂r∂φ
,



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 532 — #556
✐

✐

✐

✐

✐

✐

532 Electromagnetics

and
(

∂2

∂r2
+ k2

)

(rẼφ) =
1

sin θ

∂2Ẽr
∂φ∂r

+ jωµ̃
∂H̃r

∂θ
,

(

∂2

∂r2
+ k2

)

(rẼθ) =
∂2Ẽr
∂θ∂r

+ jωµ̃
1

sin θ

∂H̃r

∂φ
.

Hence we can represent the electromagnetic field in a source-free region in terms of the
scalar quantities Ẽr and H̃r. Superposition allows us to solve the TE case with Ẽr = 0,
solve the TM case with H̃r = 0, and combine the results for the general expansion of the
field.

5.4.3.2 TE–TM decomposition in terms of potential functions

If we allow the vector potential (or Hertzian potential) to have only an r-component, the
resulting fields are TE or TM to the r-direction. Unfortunately, this scalar component
does not satisfy the Helmholtz equation. To employ a potential component that satisfies
the Helmholtz equation, we must discard the Lorenz condition in favor of a different
relation between the vector and scalar potentials.

1. TM fields. To generate fields TM to r we recall that the electromagnetic fields
may be written in terms of electric vector and scalar potentials as

Ẽ = −jωÃe −∇φe, (5.131)

B̃ = ∇× Ãe. (5.132)

In a source-free region, we have by Ampere’s law,

Ẽ =
1

jωµ̃ǫ̃c
∇× B̃ =

1

jωµ̃ǫ̃c
∇× (∇× Ãe).

Here φ̃e and Ãe must satisfy a differential equation that may be derived by examining

∇× (∇× Ẽ) = −jω∇× B̃ = −jω(jωµ̃ǫ̃cẼ) = k2Ẽ,

where k2 = ω2µ̃ǫ̃c. Substitution from (5.131) gives

∇×
(

∇× [−jωÃe −∇φ̃e]
)

= k2[−jωÃe −∇φ̃e]

or

∇× (∇× Ãe)− k2Ãe =
k2

jω
∇φ̃e. (5.133)

We are still free to specify ∇ · Ãe.
At this point let us examine the effect of choosing a vector potential with only an

r-component: Ãe = r̂Ãe. Since

∇× (r̂Ãe) =
θ̂

r sin θ

∂Ãe
∂φ

− φ̂

r

∂Ãe
∂θ

(5.134)

we see that B = ∇× Ãe has no r-component. Since

∇× (∇× Ãe) = − r̂

r sin θ

[

1

r

∂

∂θ

(

sin θ
∂Ãe
∂θ

)

+
1

r sin θ

∂2Ãe
∂φ2

]

+
θ̂

r

∂2Ãe
∂r∂θ

+
φ̂

r sin θ

∂2Ãe
∂r∂φ
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we see that Ẽ ∼ ∇× (∇× Ãe) has all three components. This choice of Ãe produces a
field TM to the r-direction. We need only choose ∇· Ãe so that the resulting differential
equation is convenient to solve. Substituting the above expressions into (5.133), we find
that

− r̂

r sin θ

[

1

r

∂

∂θ

(

sin θ
∂Ãe
∂θ

)

+
1

r sin θ

∂2Ãe
∂φ2

]

+
θ̂

r

∂2Ãe
∂r∂θ

+
φ̂

r sin θ

∂2Ãe
∂r∂φ

− r̂k2Ãe =

r̂
k2

jω

∂φ̃e
∂r

+
θ̂

r

k2

jω

∂φ̃e
∂θ

+
φ̂

r sin θ

k2

jω

∂φ̃e
∂φ

. (5.135)

Since ∇ · Ãe only involves the derivatives of Ãe with respect to r, we may specify ∇ · Ãe

indirectly through

φ̃e =
jω

k2
∂Ãe
∂r

.

With this, (5.135) becomes

1

r sin θ

[

1

r

∂

∂θ

(

sin θ
∂Ãe
∂θ

)

+
1

r sin θ

∂2Ãe
∂φ2

]

+ k2Ãe +
∂2Ãe
∂r2

= 0.

Using

1

r

∂

∂r

[

r2
∂

∂r

(

Ãe
r

)]

=
∂2Ãe
∂r2

we can write the differential equation as

1

r2
∂

∂r

[

r2
∂(Ãe/r)

∂r

]

+
1

r2 sin θ

∂

∂θ

[

sin θ
∂(Ãe/r)

∂θ

]

+
1

r2 sin2 θ

∂2(Ãe/r)

∂φ2
+ k2

Ãe
r

= 0.

The first three terms of this expression are precisely the Laplacian of Ãe/r. Thus

(∇2 + k2)

(

Ãe
r

)

= 0 (5.136)

and the quantity Ãe/r satisfies the homogeneous Helmholtz equation.
The TM fields generated by the vector potential Ãe = r̂Ãe may be found by using

(5.131)–(5.132). By (5.131) we have

Ẽ = −jωÃe −∇φ̃e = −jωr̂Ãe −∇
(

jω

k2
∂Ãe
∂r

)

.

Expanding the gradient, we have the field components

Ẽr =
1

jωµ̃ǫ̃c

(

∂2

∂r2
+ k2

)

Ãe, (5.137)

Ẽθ =
1

jωµ̃ǫ̃c
1

r

∂2Ãe
∂r∂θ

, (5.138)

Ẽφ =
1

jωµ̃ǫ̃c
1

r sin θ

∂2Ãe
∂r∂φ

. (5.139)
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The magnetic field components are found using (5.132) and (5.134):

H̃θ =
1

µ̃

1

r sin θ

∂Ãe
∂φ

, (5.140)

H̃φ = − 1

µ̃

1

r

∂Ãe
∂θ

. (5.141)

2. TE fields. To generate fields TE to r we recall that the electromagnetic fields in
a source-free region may be written in terms of magnetic vector and scalar potentials as

H̃ = −jωÃh −∇φh, (5.142)

D̃ = −∇× Ãh. (5.143)

In a source-free region, we have from Faraday’s law,

H̃ =
1

−jωµ̃ǫ̃c∇× D̃ =
1

jωµ̃ǫ̃c
∇× (∇× Ãh).

Here φ̃h and Ãh must satisfy a differential equation that may be derived by examining

∇× (∇× H̃) = jω∇× D̃ = jωǫ̃c(−jωµ̃H̃) = k2H̃,

where k2 = ω2µ̃ǫ̃c. Substitution from (5.142) gives

∇×
(

∇× [−jωÃh −∇φ̃h]
)

= k2[−jωÃh −∇φ̃h]

or

∇× (∇× Ãh)− k2Ãh =
k2

jω
∇φ̃h.

Choosing Ãh = r̂Ãh and

φ̃h =
jω

k2
∂Ãh
∂r

we find, as with the TM fields,

(∇2 + k2)

(

Ãh
r

)

= 0. (5.144)

Thus the quantity Ãh/r obeys the Helmholtz equation.
We can find the TE fields using (5.142)–(5.143):

H̃r =
1

jωµ̃ǫ̃c

(

∂2

∂r2
+ k2

)

Ãh, (5.145)

H̃θ =
1

jωµ̃ǫ̃c
1

r

∂2Ãh
∂r∂θ

, (5.146)

H̃φ =
1

jωµ̃ǫ̃c
1

r sin θ

∂2Ãh
∂r∂φ

, (5.147)

Ẽθ = − 1

ǫ̃c
1

r sin θ

∂Ãh
∂φ

, (5.148)

Ẽφ =
1

ǫ̃c
1

r

∂Ãh
∂θ

. (5.149)
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◮ Example 5.8: Spherical TE–TM decomposition of a plane wave

A uniform plane wave propagates along the z-direction in a homogeneous material of complex
permittivity ǫ̃c and permeability µ̃. Represent its electromagnetic field

Ẽ(r, ω) = x̂Ẽ0(ω)e
−jkz = x̂Ẽ0(ω)e

−jkr cos θ,

H̃(r, ω) = ŷ
Ẽ0(ω)

η
e−jkz = x̂

Ẽ0(ω)

η
e−jkr cos θ,

as a superposition of fields TE to r and TM to r.

Solution: After finding the potential functions Ãe = r̂Ãe and Ãh = r̂Ãh that represent the
field, we can use (5.137)–(5.141) and (5.145)–(5.149) to get the TE and TM representations.

From (5.137) we see that Ãe is related to Ẽr, where

Ẽr = Ẽ0 sin θ cos φe
−jkr cos θ

=
Ẽ0 cos φ

jkr

∂

∂θ

[

e−jkr cos θ
]

.

The identity (E.103) lets us separate the r and θ dependences of the exponential function.
Since

jn(−z) = (−1)njn(z)

= j−2njn(z)

we have

e−jkr cos θ =

∞
∑

n=0

j−n(2n+ 1)jn(kr)Pn(cos θ). (5.150)

Using

∂Pn(cos θ)

∂θ
=
∂P 0

n(cos θ)

∂θ

= P 1
n(cos θ)

we thus have

Ẽr = − jẼ0 cosφ

kr

∞
∑

n=1

j−n(2n+ 1)jn(kr)P
1
n(cos θ).

Here we start the sum at n = 1 since P 1
0 (x) = 0. We can now identify the vector potential

as
Ãe
r

=
Ẽ0k

ω
cosφ

∞
∑

n=1

j−n(2n+ 1)

n(n+ 1)
jn(kr)P

1
n(cos θ) (5.151)

since by direct differentiation we have

Ẽr =
1

jωµ̃ǫ̃c

(

∂2

∂r2
+ k2

)

Ãe

=
Ẽ0k

jω2µ̃ǫ̃c
cos φ

∞
∑

n=1

j−n(2n+ 1)

n(n+ 1)
P 1
n(cos θ)

(

∂2

∂r2
+ k2

)

[rjn(kr)]

= − jẼ0 cosφ

kr

∞
∑

n=1

j−n(2n+ 1)jn(kr)P
1
n(cos θ),
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which satisfies (5.137). Here we have used the defining equation of the spherical Bessel
functions (E.15) to show that

(

∂2

∂r2
+ k2

)

[rjn(kr)] = r
∂2

∂r2
jn(kr) + 2

∂

∂r
jn(kr) + k2rjn(kr)

= k2r

[

∂2

∂(kr)2
+

2

kr

∂

∂(kr)

]

jn(kr) + k2rjn(kr)

= −k2r
[

1− n(n+ 1)

(kr)2

]

jn(kr) + k2rjn(kr)

=
n(n+ 1)

r
jn(kr).

Observe that Ãe/r satisfies the Helmholtz equation (5.136), since it has the form of the
separation of variables solution (D.113).

We may find the vector potential Ãh = r̂Ãh in the same manner. Noting that

H̃r =
Ẽ0

η
sin θ sin φe−jkr cos θ =

Ẽ0 sinφ

ηjkr

∂

∂θ

[

e−jkr cos θ
]

=
1

jωµ̃ǫ̃c

(

∂2

∂r2
+ k2

)

Ãh,

we have
Ãh
r

=
Ẽ0k

ηω
sinφ

∞
∑

n=1

j−n(2n+ 1)

n(n+ 1)
jn(kr)P

1
n(cos θ). (5.152)

We may now compute the transverse components of the TM field using (5.138)–(5.141).
For convenience let us define Ĵn(x) = xjn(x). Then

Ẽr = − jẼ0 cos φ

(kr)2

∞
∑

n=1

j−n(2n+ 1)Ĵn(kr)P
1
n(cos θ), (5.153)

Ẽθ =
jẼ0

kr
sin θ cosφ

∞
∑

n=1

anĴ
′
n(kr)P

1
n
′
(cos θ), (5.154)

Ẽφ =
jẼ0

kr sin θ
sinφ

∞
∑

n=1

anĴ
′
n(kr)P

1
n(cos θ), (5.155)

H̃θ = − Ẽ0

krη sin θ
sinφ

∞
∑

n=1

anĴn(kr)P
1
n(cos θ), (5.156)

H̃φ =
Ẽ0

krη
sin θ cosφ

∞
∑

n=1

anĴn(kr)P
1
n
′
(cos θ). (5.157)

Here

Ĵ ′
n(x) =

d

dx
Ĵn(x) =

d

dx
[xjn(x)] = xj′n(x) + jn(x)

and

an =
j−n(2n+ 1)

n(n+ 1)
. (5.158)

Similarly, we have the TE fields from (5.146)–(5.149):

H̃r = − jẼ0 sinφ

η(kr)2

∞
∑

n=1

j−n(2n+ 1)Ĵn(kr)P
1
n(cos θ), (5.159)
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H̃θ = j
Ẽ0

ηkr
sin θ sinφ

∞
∑

n=1

anĴ
′
n(kr)P

1
n
′
(cos θ), (5.160)

H̃φ = −j Ẽ0

ηkr sin θ
cos φ

∞
∑

n=1

anĴ
′
n(kr)P

1
n(cos θ), (5.161)

Ẽθ = − Ẽ0

kr sin θ
cosφ

∞
∑

n=1

anĴn(kr)P
1
n(cos θ), (5.162)

Ẽφ = − Ẽ0

kr
sin θ sinφ

∞
∑

n=1

anĴn(kr)P
1
n
′
(cos θ). (5.163)

The total field is the sum of the TE and TM components. ◭

◮ Example 5.9: Scattering by a sphere using spherical TE–TM decomposition

Consider a PEC sphere of radius a centered at the origin and embedded in a homogeneous,
isotropic material having parameters µ̃ and ǫ̃c. The sphere is illuminated by a plane wave
incident along the z-axis with the fields

Ẽ(r, ω) = x̂Ẽ0(ω)e
−jkz = x̂Ẽ0(ω)e

−jkr cos θ ,

H̃(r, ω) = ŷ
Ẽ0(ω)

η
e−jkz = x̂

Ẽ0(ω)

η
e−jkr cos θ .

Find the field scattered by the sphere.

Solution: The boundary condition determining the scattered field is that the total (incident
plus scattered) electric field tangential to the sphere must vanish. Example 5.8 showed that
the incident electric field may be written as a sum of fields TE and TM to the r-direction.
Since the region outside the sphere is source-free, we may also represent the scattered field
as a sum of TE and TM fields. These may be obtained from the functions Ãse and Ãsh,
which obey Helmholtz equations (5.136) and (5.144). Separation of variables applied to the
Helmholtz equation in spherical coordinates (§ A.5.3) yields the general solution

{

Ãse/r

Ãsh/r

}

=

∞
∑

n=0

n
∑

m=−n

CnmYnm(θ, φ)h(2)
n (kr).

Here Ynm is the spherical harmonic and we take the spherical Hankel function h
(2)
n as the

radial dependence, since it represents the expected outward-going wave behavior of the scat-
tered field. Since the incident field generated by the potentials (5.151) and (5.152) exactly
cancels the field generated by Ãse and Ãsh on the surface of the sphere, by orthogonality the
scattered potential must have φ and θ dependences matching those of the incident field.
Thus

Ãse
r

=
Ẽ0k

ω
cosφ

∞
∑

n=1

bnh
(2)
n (kr)P 1

n(cos θ),

Ãsh
r

=
Ẽ0k

ηω
sinφ

∞
∑

n=1

cnh
(2)
n (kr)P 1

n(cos θ),

where bn and cn are constants to be determined by the boundary conditions. By superposi-
tion, the total field may be computed from the total potentials, which are sums of incident
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and scattered potentials:

Ãte
r

=
Ẽ0k

ω
cosφ

∞
∑

n=1

[

anjn(kr) + bnh
(2)
n (kr)

]

P 1
n(cos θ),

Ãth
r

=
Ẽ0k

ηω
sinφ

∞
∑

n=1

[

anjn(kr) + cnh
(2)
n (kr)

]

P 1
n(cos θ),

where an is given by (5.158).
The total transverse electric field is found by superposing the TE and TM transverse fields

found from the total potentials. We have already computed the transverse incident fields
and may easily generalize these results to the total potentials. By (5.154) and (5.162) we
have

Ẽtθ(a) =
jẼ0

ka
sin θ cosφ

∞
∑

n=1

[

anĴ
′
n(ka) + bnĤ

(2)′
n (ka)

]

P 1
n
′
(cos θ)

− Ẽ0

ka sin θ
cos φ

∞
∑

n=1

[

anĴn(ka) + cnĤ
(2)
n (ka)

]

P 1
n(cos θ) = 0,

where
Ĥ(2)
n (x) = xh(2)

n (x).

By (5.155) and (5.163) we have

Ẽtφ(a) =
jẼ0

ka sin θ
sinφ

∞
∑

n=1

[

anĴ
′
n(ka) + bnĤ

(2)′
n (ka)

]

P 1
n(cos θ)

− Ẽ0

ka
sin θ sinφ

∞
∑

n=1

[

anĴn(ka) + cnĤ
(2)
n (ka)

]

P 1
n
′
(cos θ) = 0.

These two sets of equations are satisfied by the conditions

bn = − Ĵ ′
n(ka)

Ĥ
(2)′
n (ka)

an, cn = − Ĵn(ka)

Ĥ
(2)
n (ka)

an.

Therefore

Ẽ
s
r = −jẼ0 cos φ

∞
∑

n=1

bn
[

Ĥ(2)′′
n (kr) + Ĥ(2)

n (kr)
]

P 1
n(cos θ), (5.164)

Ẽ
s
θ =

Ẽ0

kr
cosφ

∞
∑

n=1

[

jbn sin θĤ
(2)′
n (kr)P 1

n
′
(cos θ)− cn

1

sin θ
Ĥ(2)
n (kr)P 1

n(cos θ)

]

, (5.165)

Ẽ
s
φ =

Ẽ0

kr
sinφ

∞
∑

n=1

[

jbn
1

sin θ
Ĥ(2)′
n (kr)P 1

n(cos θ)− cn sin θĤ
(2)
n (kr)P 1

n
′
(cos θ)

]

. ◭ (5.166)

◮ Example 5.10: Radar cross-section of a sphere

Specialize the fields scattered by a sphere to the far zone and compute the radar cross-section
of the sphere.

Solution: To approximate the scattered field for observation points far from the sphere, we
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approximate the spherical Hankel functions using (E.70) as

Ĥ(2)
n (z) = zh(2)

n (z) ≈ jn+1e−jz, Ĥ(2)′
n (z) ≈ jne−jz, Ĥ(2)′′

n (z) ≈ −jn+1e−jz.

Substituting these, we find that Ẽr → 0 as expected for the far-zone field, while

Ẽsθ ≈ Ẽ0
e−jkr

kr
cos φ

∞
∑

n=1

jn+1

[

bn sin θP
1
n
′
(cos θ)− cn

1

sin θ
P 1
n(cos θ)

]

,

Ẽsφ ≈ Ẽ0
e−jkr

kr
sinφ

∞
∑

n=1

jn+1

[

bn
1

sin θ
P 1
n(cos θ)− cn sin θP

1
n
′
(cos θ)

]

.

From the far-zone fields we can compute the radar cross-section (RCS) or echo area of
the sphere, defined by

σ = lim
r→∞

(

4πr2
|Ẽs|2

|Ẽi|2

)

. (5.167)

Carrying units of m2, this quantity describes the relative energy density of the scattered
field normalized by the distance from the scattering object. Figure 5.5 shows the RCS of
a conducting sphere in free space for the monostatic case: when the observation direction
is aligned with the direction of the incident wave (i.e., θ = π), also called the backscatter

direction. At low frequencies the RCS is proportional to λ−4; this is the range of Rayleigh
scattering , showing that higher-frequency light scatters more strongly from microscopic par-
ticles in the atmosphere (explaining why the sky is blue) [22]. At high frequencies the result
approaches that of geometrical optics, and the RCS becomes the interception area of the
sphere, πa2. This is the region of optical scattering. Between these two regions lies the
resonance region, or the region of Mie scattering, named for G. Mie who in 1908 published
the first rigorous solution for scattering by a sphere (followed soon after by Debye in 1909).

 0.01

 0.1

 1

 10

 0  2  4  6  8  10

σ
/π

a
2

ka

FIGURE 5.5
Monostatic radar cross-section of a conducting sphere. ◭

◮ Example 5.11: Time-domain scattering from a sphere

Consider the far-zone field scattered by a sphere found in Example 5.10. Transform the
field into the time-domain using the inverse Fourier transform, and identify the significant
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scattering events.

Solution: Several interesting phenomena of sphere scattering are best examined in the time
domain. We may compute the temporal scattered field numerically by performing an inverse
fast Fourier transform of the frequency-domain field. Figure 5.6 shows Eθ(t) computed in
the backscatter direction (θ = π) when the incident field waveform E0(t) is a Gaussian pulse
and the sphere is in free space. Two distinct features are seen in the scattered field waveform.
The first is a sharp pulse almost duplicating the incident field waveform, but of opposite
polarity. This is the specular reflection produced when the incident field first contacts the
sphere and begins to induce a current on the sphere surface. The second feature, called
the creeping wave, occurs at a time approximately (2 + π)a/c seconds after the specular
reflection. This represents the field radiated back along the incident direction by a wave of
current excited by the incident field at the tangent point, which travels around the sphere
at approximately the speed of light in free space. Although this wave continues to traverse
the sphere, its amplitude is reduced so significantly by radiation damping that only a single
feature is seen.

-0.5 0.0 0.5 1.0 1.5 2.0

t/(2πa/c)
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-0.8

-0.4
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R
e
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v
e
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m
p
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u
d
e

incident field

waveform
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reflection

B: creeping wave

A

B

FIGURE 5.6
Time-domain field back-scattered by a conducting sphere. ◭

5.4.4 TE–TM decomposition for anisotropic media

To obtain a decomposition in terms of TE and TM fields, we set the sources in (5.116)–(5.117)
to zero. It is clear that we can use superposition to find the transverse fields as a sum
of those fields having Ẽu = 0 (TE fields) and those having H̃u = 0 (TM fields). For TE
fields, we have

H̃u
t = Ω̄

−1 ·
{

−jku∇tH̃
u
u − ω2 [(û× ˜̄ǫ) · (û× ˜̄µ)] · ûH̃u

u

}

, (5.168)

Ẽut = Φ̄
−1 ·

{

−jω(û× ˜̄µ) · [∇tH̃
u
u + ûjkuH̃

u
u ]
}

, (5.169)
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while for TM fields

H̃u
t = Ω̄

−1 ·
{

jω(û× ˜̄ǫ) · [∇tẼ
u
u + ûjkuẼ

u
u ]
}

, (5.170)

Ẽut = Φ̄
−1 ·

{

−jku∇tẼ
u
u − ω2 [(û× ˜̄µ) · (û× ˜̄ǫ)] · ûẼuu

}

. (5.171)

To employ the TE–TM decomposition in a practical situation, it is necessary to determine
differential equations for Ẽuu and H̃u

u . Once these are solved, the transverse fields may
be found using (5.168)–(5.171).
We first find the differential equation for H̃u

u for TE fields. From (5.99) and (5.103)
we see that

∇t × Ẽut = −jωû(µ̃ · H̃u
t + µ̃uuH̃

u
u ). (5.172)

Substitution from (5.168)–(5.169) gives

∇t ×
[

Φ̄
−1 ·

{

−jω(û× ˜̄µ) · [∇tH̃
u
u + ûjkuH̃

u
u ]
}]

+ jωûµ̃uuH̃
u
u

+ jωû
[

(û · ˜̄µ) · Ω̄−1 ·
{

−jku∇tH̃
u
u − ω2 [(û× ˜̄ǫ) · (û× ˜̄µ)] · ûH̃u

u

}]

= 0, (5.173)

which is a differential equation for H̃u
u . For TM fields we use (5.101) and (5.105) to find

∇t × H̃u
t = jωû(ǫ̃ · Ẽut + ǫ̃uuẼ

u
u ).

Substitution from (5.170)–(5.171) gives a differential equation for Ẽuu :

∇t ×
[

Ω̄
−1 ·

{

jω(û× ˜̄ǫ) · [∇tẼ
u
u + ûjkuẼ

u
u ]
}]

− jωûǫ̃uuẼ
u
u

− jωû
[

(û · ˜̄ǫ) · Φ̄−1 ·
{

−jku∇tẼ
u
u − ω2 [(û× ˜̄µ) · (û× ˜̄ǫ)] · ûẼuu

}]

= 0.

◮ Example 5.12: TE fields in a lossless magnetized ferrite

Consider fields TEz in a lossless ferrite magnetized along the y-direction. Find the wave
equation for Ẽzz , and find the relations between the transverse fields and Ẽzz .

Solution: For a lossless ferrite magnetized along ŷ we have (§ 4.6.5) the permittivity dyadic
˜̄ǫ = ǫĪ and the permeability dyadic

[˜̄µ(ω)] =





µ 0 jκ
0 µ0 0

−jκ 0 µ



 = x̂µx̂+ x̂jκẑ− ẑjκx̂ + ŷµ0ŷ + ẑµẑ,

where µ and κ are given by (4.125)–(4.126). Using the relations

û× ˜̄µ = ẑ× [x̂µx̂+ x̂jκẑ− ẑjκx̂ + ŷµ0ŷ + ẑµẑ] = ŷµx̂+ ŷjκẑ− x̂µ0ŷ,

û× ˜̄ǫ = ẑ× (ǫĪ) = ǫẑ× (x̂x̂+ ŷŷ + ẑẑ) = ŷǫx̂− x̂ǫŷ,

we can construct the dyadics

(û× ˜̄µ) · (û× ˜̄ǫ) = [ŷµx̂+ ŷjκẑ− x̂µ0ŷ] · [ŷǫx̂− x̂ǫŷ] = −x̂ǫµ0x̂− ŷǫµŷ,

(û× ˜̄ǫ) · (û× ˜̄µ) = [ŷǫx̂− x̂ǫŷ] · [ŷµx̂+ ŷjκẑ − x̂µ0ŷ] = −x̂ǫµx̂− ŷǫµ0ŷ − x̂jκǫẑ.
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Thus

Φ̄ = k2uĪ+ ω2(û× ˜̄µ) · (û× ˜̄ǫ) = x̂(k2z − ω2µ0ǫ)x̂+ ŷ(k2z − ω2µǫ)ŷ + ẑk2z ẑ

=





k2z − ω2µ0ǫ 0 0
0 k2z − ω2µǫ 0
0 0 k2z



 .

The inverse of Φ̄ is trivial to compute, since Φ̄ is diagonal:

Φ̄
−1

=







1
k2z−ω

2µ0ǫ
0 0

0 1
k2z−ω

2µǫ
0

0 0 1
k2z







= x̂(k2z − ω2µ0ǫ)
−1

x̂+ ŷ(k2z − ω2µǫ)−1
ŷ + ẑk−2

z ẑ. (5.174)

We also have

Ω̄ = k2uĪ+ ω2(û× ˜̄ǫ) · (û× ˜̄µ)

= x̂(k2z − ω2µǫ)x̂+ ŷ(k2z − ω2µ0ǫ)ŷ + ẑk2z ẑ− x̂jω2κǫẑ

=





k2z − ω2µǫ 0 jωκǫ
0 k2z − ω2µ0ǫ 0
0 0 k2z



 .

The inverse of Ω̄ is slightly more complicated. Noting that





A 0 D

0 B 0

0 0 C





−1

=





1
A

0 − D
AC

0 1
B

0

0 0 1
C



 ,

we can write

Ω̄
−1

= x̂(k2z − ω2µǫ)−1
x̂+ ŷ(k2z − ω2µ0ǫ)

−1
ŷ + ẑk−2

z ẑ+ x̂jω2κǫ(k2z − ω2µǫ)−1k−2
z ẑ.

Finally, noting that
(û× ˜̄µ) · û = jκŷ

and

(û× ˜̄µ) · ∇tH̃
u
u = [ŷµx̂+ ŷjκẑ− x̂µ0ŷ] ·

[

x̂
∂H̃z

z

∂x
+ ŷ

∂H̃z
z

∂y

]

= ŷµ
∂H̃z

z

∂x
− x̂µ0

∂H̃z
z

∂y
,

we have the information necessary to compute the transverse fields.
From (5.169) we have the transverse electric field

Ẽ
z
t = Φ̄

−1 ·
(

−jωµŷ∂H̃
z
z

∂x
+ jωµ0x̂

∂H̃z
z

∂y
+ ẑjωκkzH̃

z
z

)

,

and thus

Ẽ
z
t = x̂

jωµ0

k2z − ω2µ0ǫ

∂H̃z
z

∂y
+ ŷ

[

−jωµ
k2z − ω2µǫ

∂H̃z
z

∂x
+

jωκkz
k2z − ω2µǫ

H̃z
z

]
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by (5.174). From (5.168) we have the transverse magnetic field

H̃
z
t = Ω̄

−1 ·
(

−jkz x̂∂H̃
z
z

∂x
− jkz ŷ

∂H̃z
z

∂y
+ x̂jω2κǫH̃z

z

)

= x̂

[

−jkz
k2z − ω2µǫ

∂H̃z
z

∂x
+

jω2κǫ

k2z − ω2µǫ
H̃z
z

]

+ ŷ
−jkz

k2z − ω2µ0ǫ

∂H̃z
z

∂y
.

With the transverse fields determined, it is straightforward to derive the wave equation
for H̃z

z by the same procedure used to obtain (5.173). From (5.172) we have

∇t × Ẽ
z
t = −jωẑ(ẑ× ˜̄µ) · H̃z

t − jωẑµzzH̃
z
z .

Substitution gives

(

x̂
∂

∂x
+ ŷ

∂

∂y

)

×
{

x̂
jωµ0

k2z − ω2µ0ǫ

∂H̃z
z

∂y
+ ŷ

[

−jωµ
k2z − ω2µǫ

∂H̃z
z

∂x
+

jωκkz
k2z − ω2µǫ

H̃z
z

]}

= −jωẑ(−jκx̂+ µẑ) ·
{

x̂

[

−jkz
k2z − ω2µǫ

∂H̃z
z

∂x
+

jω2κǫ

k2z − ω2µǫ
H̃z
z

]

+ ŷ
−jkz

k2z − ω2µ0ǫ

∂H̃z
z

∂y

}

−jωµẑH̃z
z .

Carrying out the vector operations, we find that only z-components survive, and

− jωµ

k2z − ω2µǫ

∂2H̃z
z

∂x2
+

jωκkz
k2z − ω2µǫ

∂H̃z
z

∂x
− jωµ0

k2z − ω2µ0ǫ

∂2H̃z
z

∂y2

= −jω
(

− kzκ

k2z − ω2µǫ

∂H̃z
z

∂x
+

ω2κ2ǫ

k2z − ω2µǫ
H̃z
z

)

− jωµH̃z
z .

Simplification yields the desired differential equation for H̃z
z :

[

∂2

∂x2
+

(

µ0

µ

k2z − ω2µǫ

k2z − ω2µ0ǫ

)

∂2

∂y2
+ k2c

]

H̃z
z = 0,

where

k2c = ω2µǫ

(

1− κ2

µ2

)

− k2z . ◭

5.5 Solenoidal–lamellar decomposition of solutions to the vector
wave equation and the vector spherical wave functions

In § 5.2 we showed how potential functions may be used to represent a general vector field
in terms of solenoidal and lamellar components. Here we restrict our study to solutions
of the homogeneous vector Helmholtz equation. Since the electromagnetic field in a
source-free homogeneous region of space satisfies this equation, we may use the solutions
to construct solutions to Maxwell’s equations in such regions. In the process we find
a solenoidal–lamellar decomposition for the vector solution in terms of vector functions
called vector spherical wave functions [183]. Our approach follows closely that of the
book by Chen [31], which includes additional details and applications.
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5.5.1 The vector spherical wave functions

Consider a vector function V(r) that satisfies the homogeneous vector Helmholtz equa-
tion,

∇2V + k2V = 0,

where k is a complex constant. Expanding the Laplacian, we can write this as

∇(∇ ·V)−∇× (∇×V) + k2V = 0. (5.175)

We seek general representations of the vector function V.
A first candidate for solution is simply

L(r) = ∇f(r) (5.176)

where f(r) is a scalar function satisfying the homogeneous scalar Helmholtz equation

∇2f + k2f = 0. (5.177)

This is shown to be a valid solution by substitution. Putting (5.176) into (5.175), we
find that

∇(∇ · ∇f)−∇× (∇×∇f) + k2∇f = 0.

The middle term is zero by (B.56). Thus,

∇
[

∇ · ∇f + k2f
]

= 0.

Since ∇ · ∇f = ∇2f , the left side is zero by virtue of (5.177). So L is a solution to
(5.175). Moreover, (5.176) shows that

∇× L(r) = 0,

so L is irrotational and thus lamellar. Since

∇ · L(r) = ∇ · ∇f = ∇2f = −k2f 6= 0,

the function L is not useful for representing the electromagnetic field in a source-free
homogeneous region where ∇ · E = ∇ ·H = 0.

Solenoidal solutions to (5.175) also exist. Consider the candidate solution

M(r) = ∇× (rf),

where f satisfies (5.177). Substitution into (5.175) gives

−∇×∇×M+ k2M = 0, (5.178)

since ∇ ·M = ∇ · [∇× (rf)] = 0. Substituting for M and using k2f = −∇2f , we find
that

∇×
[

∇×∇× (rf) + r∇2f
]

= 0.

Let the bracketed term be a vector field W(r). If we can show that W is the gradient
of a scalar field, then the equality is satisfied and M is verified as a solution. Use

M = ∇× (rf) = f∇× r− r×∇f = −r×∇f
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since ∇× r = 0. It expedient to represent W in spherical coordinates. Use

M = −r×∇f = −rr̂×
[

r̂
∂f

∂r
+ θ̂

1

r

∂f

∂θ
+ φ̂

1

r sin θ

∂f

∂φ

]

= −φ̂
∂f

∂θ
+ θ̂

1

sin θ

∂f

∂φ
, (5.179)

so that

∇×(r×∇f)

=
r̂

r sin θ

[

∂

∂θ

(

sin θ
∂f

∂θ

)

+
1

sin θ

∂2f

∂φ2

]

− θ̂

r

[

∂

∂r

(

r
∂f

∂θ

)]

− φ̂

r

[

∂

∂r

(

r

sin θ

∂f

∂φ

)]

.

With this we have

W = −∇× (r ×∇f) + rr̂∇2f

= r̂

[

− 1

r sin θ

∂

∂θ

(

sin θ
∂f

∂θ

)

− 1

r sin2 θ

∂2f

∂φ2
+

1

r

∂

∂r

(

r2
∂f

∂r

)

+
1

r sin θ

∂

∂θ

(

sin θ
∂f

∂θ

)

+
1

r sin2 θ

∂2f

∂φ2

]

+
θ̂

r

[

∂

∂r

(

r
∂f

∂θ

)]

+
φ̂

r

[

∂

∂r

(

r

sin θ

∂f

∂φ

)]

= r̂
1

r

[

2r
∂f

∂r
+ r2

∂2f

∂r2

]

+
θ̂

r

[

∂f

∂θ
+

∂

∂θ

(

r
∂f

∂r

)]

+
φ̂

r sin θ

[

∂f

∂φ
+

∂

∂φ

(

r
∂f

∂r

)]

.

Factorization yields

W = r̂

[

∂

∂r

(

f + r
∂f

∂r

)]

+
θ̂

r

[

∂

∂θ

(

f + r
∂f

∂r

)]

+
φ̂

r sin θ

[

∂

∂φ

(

f + r
∂f

∂r

)]

= ∇
(

f + r
∂f

∂r

)

= ∇ ∂

∂r
(rf) ,

and thus M is a solution to (5.175).
Note from (5.179) that M has no r-component, and is thus insufficient for representing

general solenoidal fields. Consider a third candidate solution to (5.175)

N = k−1∇×M,

which is clearly solenoidal. Substitution into (5.175) gives

−k−1∇× [∇× (∇×M)] + k∇×M = 0,

since ∇ ·N = 0. Writing this as

∇× [−∇× (∇×M) + k2M] = 0,

we see that the equation is satisfied, since we have demonstrated that the term in brackets
is zero in (5.178). As we shall show, the vector field N does have a radial component.
In summary, the three vector spherical wave functions are

L(r) = ∇f(r), (lamellar)

M(r) = ∇× [rf(r)] , (solenoidal)

N(r) = k−1∇×M(r). (solenoidal)
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5.5.2 Representation of the vector spherical wave functions in spher-
ical coordinates

The vector spherical wave functions are most often employed to solve Maxwell’s equations
for systems embedded in regions unbounded in the θ and φ directions. For this situation it
is convenient to represent the function f as the solution to the scalar Helmholtz equation
in spherical coordinates using the separation of variables approach described in Appendix
A. Since the z-axis is included in the solution space, and since no boundaries restrict the
value of φ, we may write

f
e
omn

(r) = zn(kr)P
m
n (cos θ)

{

cos(mφ)
sin(mφ)

}

.

Here zn is a properly chosen spherical Bessel function, and the subscripts e and o denote
functions even or odd in φ. Computing the gradient of f , we get

L e
omn

= r̂

[

d

dr
zn(kr)

]

Pmn (cos θ)

{

cos(mφ)
sin(mφ)

}

+ θ̂
1

r
zn(kr)

[

d

dθ
Pmn (cos θ)

]{

cos(mφ)
sin(mφ)

}

∓ φ̂
m

r sin θ
zn(kr)P

m
n (cos θ)

{

sin(mφ)
cos(mφ)

}

.

The function M is easily found using (5.179):

M e
omn

= ∓θ̂
m

sin θ
zn(kr)P

m
n (cos θ)

{

sin(mφ)
cos(mφ)

}

− φ̂zn(kr)

[

d

dθ
Pmn (cos θ)

]{

cos(mφ)
sin(mφ)

}

. (5.180)

To find N we note that

N =
1

k

[

W − rr̂∇2f
]

=
1

k

[

∇ ∂

∂r
(rf) + r̂rk2f

]

.

The r-component of N is

Nr =
1

k

[

r
∂2f

∂r2
+ 2

∂f

∂r
+ k2rf

]

= Pmn (cos θ)

{

cos(mφ)
sin(mφ)

}

kr

[

z′′n(kr) +
2

kr
z′n(kr) + zn(kr)

]

= Pmn (cos θ)

{

cos(mφ)
sin(mφ)

}

n(n+ 1)

kr
zn(kr)

by virtue of (E.15). Computing the remaining components of the gradient then gives

N e
omn

= r̂
n(n+ 1)

kr
zn(kr)P

m
n (cos θ)

{

cos(mφ)
sin(mφ)

}

+ θ̂
1

kr

[

d

dr
{rzn(kr)}

] [

d

dθ
Pmn (cos θ)

]{

cos(mφ)
sin(mφ)

}

∓ φ̂
m

kr sin θ

[

d

dr
{rzn(kr)}

]

Pmn (cos θ)

{

sin(mφ)
cos(mφ)

}

. (5.181)
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Note that the present notation does not distinguish between, for instance, the function
M that uses zn(kr) = jn(kr) and the function M that uses zn(kr) = nn(kr). It is useful
to designate

z(1)n (x) = jn(x), z(2)n (x) = nn(x), z(3)n (x) = h(1)n (x), z(4)n (x) = h(2)n (x),

such that M(1) uses jn(kr), etc.

◮ Example 5.13: Representation of a plane wave using vector spherical wave functions

A uniform plane wave propagates in the z-direction in a homogeneous, isotropic material of
permittivity ǫ̃c and permeability µ̃ with its electric field polarized along x. Represent the
electric and magnetic fields in terms of vector spherical wave functions.

Solution: We can write the electric and magnetic fields of the plane waves as

Ẽ(r, ω) = x̂Ẽ0(ω)e
−jkz,

H̃(r, ω) = ŷ
Ẽ0(ω)

η
e−jkz.

Converting the coordinate variable z and the unit vectors to spherical coordinates, we have

Ẽ = [r̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sinφ]Ẽ0e
−jkr cos θ , (5.182)

H̃ = [r̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cos φ]
Ẽ0

η
e−jkr cos θ. (5.183)

Since ∇ · Ẽ = 0, we do not need L functions in the expansion of Ẽ. Comparing the φ
dependence in (5.182) to that in (5.180) and (5.181), we see that only the Mo1n and Ne1n

functions are required. We write

Ẽ =

∞
∑

n=0

[anMo1n + bnNe1n], (5.184)

and seek the amplitudes an and bn that make this expression the same as (5.182).
To find bn we equate the r-component of (5.182) with that of (5.184). The fact that

Ẽr = Ẽ0 cosφ sin θe
−jkr cos θ = Ẽ0 cos φ

1

jkr

∂

∂θ

[

e−jkr cos θ
]

(5.185)

will facilitate comparison of like terms. Substituting the expansion (5.150) for the exponen-
tial function into (5.185), we get

Ẽr = Ẽ0 cos φ
1

jkr

∞
∑

n=0

∂

∂θ
[j−n(2n+ 1)jn(kr)Pn(cos θ)].

Using the derivative relationship

d

dθ
Pn(cos θ) = −P 1

n(cos θ)

we have

Ẽr = −Ẽ0 cos φ
1

jkr

∞
∑

n=0

j−n(2n+ 1)jn(kr)P
1
n(cos θ).
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Now we equate this expression with the r-component of (5.184) to find

−Ẽ0
1

jkr

∞
∑

n=1

j−n(2n+ 1)jn(kr)P
1
n(cos θ) =

∞
∑

n=1

bn
n(n+ 1)

kr
jn(kr)P

1
n(cos θ).

Here we have used P 1
0 (x) = 0 and have chosen zn = jn as the spherical Bessel functions in

the spherical vector wave function expansion. By orthogonality of the spherical harmonics
we obtain jẼ0j

−n(2n+ 1) = n(n+ 1)bn so that

bn = Ẽ0(−j)n−1 2n+ 1

n(n+ 1)
.

To find an we equate the r-components of the magnetic field. By Faraday’s law

H̃ =
j

ωµ
∇× Ẽ =

j

ωµ

∞
∑

n=0

[an∇×Mo1n + bn∇×Ne1n].

But
∇×Mo1n = kNo1n,

and by (5.178),
∇×Ne1n = ∇×∇×Me1n = kMe1n.

Thus,

H̃ =
j

η

∞
∑

n=0

[anNo1n + bnMe1n]. (5.186)

Equating the r-component of (5.183) with the r-component of (5.186) and proceeding as
before, we quickly find

an = Ẽ0(−j)n
2n+ 1

n(n+ 1)
.

With an and bn identified, we have the final expansion for the plane wave:

Ẽ = Ẽ0

∞
∑

n=1

(−j)n 2n+ 1

n(n+ 1)

[

M
(1)
o1n + jN

(1)
e1n

]

, (5.187)

H̃ = − Ẽ0

η

∞
∑

n=1

(−j)n 2n+ 1

n(n+ 1)

[

M
(1)
e1n − jN

(1)
o1n

]

, (5.188)

where the superscripts on the vector spherical wave functions indicate that we are using
zn(kr) = jn(kr). Substitution of the explicit expressions for the vector spherical wave
functions shows that the fields (5.187)–(5.188) are identical to those found using potential
functions, i.e., (5.153)–(5.157) superposed with (5.159)–(5.163). ◭

◮ Example 5.14: Scattering by a conducting sphere using vector spherical wave functions

Consider a PEC sphere of radius a centered at the origin and embedded in a homogeneous,
isotropic material of permittivity ǫ̃c and permeability µ̃. The sphere is illuminated by a
plane wave incident along the z-direction with its electric field polarized along x. Find the
scattered electric and magnetic fields in terms of vector spherical wave functions.

Solution: The fields of the incident plane wave are given by (5.187)–(5.188). We expect
the symmetry of the scattered field to conform to that of the incident field, hence the former
will involve only the m = 1 vector spherical wave functions. Expecting the scattered field to
take the form of an outward traveling wave, we choose the radial functions zn = h

(2)
n . With
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these observations we write the scattered fields as vector spherical wave function expansions:

Ẽ
s = Ẽ0

∞
∑

n=1

(−j)n 2n+ 1

n(n+ 1)

[

dnM
(4)
o1n + jenN

(4)
e1n

]

, (5.189)

H̃
s = − Ẽ0

η

∞
∑

n=1

(−j)n 2n+ 1

n(n+ 1)

[

enM
(4)
e1n − jdnN

(4)
o1n

]

,

and seek dn and en so that the fields satisfy the boundary conditions on the surface of the
sphere. Note that these expansions satisfy Faraday’s law.

The total electric field is the sum of the incident plane-wave field (5.187) and the scattered
field (5.189). Setting the θ-component of the total field to zero at r = a produces the equation

∞
∑

n=1

(−j)n 2n+ 1

n(n+ 1)

{

cos φ

sin θ
jn(ka)P

1
n(cos θ)

+j
cos φ

ka

[

d

dr
{rjn(kr)}

]

∣

∣

∣

r=a

[

d

dθ
P 1
n(cos θ)

]}

=−
∞
∑

n=1

(−j)n 2n+ 1

n(n+ 1)

{

dn
cosφ

sin θ
h(2)
n (ka)P 1

n(cos θ)

+jen
cosφ

ka

[

d

dr

{

rh(2)
n (kr)

}

]

∣

∣

∣

r=a

[

d

dθ
P 1
n(cos θ)

]}

.

Orthogonality of the spherical harmonics requires

jn(ka) = −dnh(2)
n (ka),

[

d

dr
{rjn(kr)}

]

∣

∣

∣

r=a
= −en

[

d

dr

{

rh(2)
n (kr)

}

]

∣

∣

∣

r=a
,

and so

dn = − jn(ka)

h
(2)
n (ka)

, en = −

[

d
dr

{rjn(kr)}
]

∣

∣

∣

r=a
[

d
dr

{

rh
(2)
n (kr)

}] ∣

∣

∣

r=a

.

Substituting these coefficients into (5.189) and using the explicit representations of the vector
spherical wave functions, we may show that the electric field is identical to that found using
potentials, as given by (5.164)–(5.166).

Note that using the boundary condition on the φ-component of the total electric field
produces identical results for dn and en. ◭

5.6 Application: guided waves and transmission lines

Guided wave structures use material boundaries to guide electromagnetic energy and
encoded information along specified directions. The direction may be along an axis (as
in hollow-pipe waveguides), radially in cylindrical coordinates (as between two parallel
plates), or radially in spherical coordinates (as between coaxial cones). Guided wave
structures are critically important in communications, radar, and digital electronics, and
are the subject of numerous books, both general and specialized. We will primarily
restrict ourselves to the fundamental electromagnetic aspects of guided waves, including
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modal field structure, dispersion, and power transmission. While we touch on some
advanced topics such as mode excitation and discontinuities, much more detail may be
found in specialized texts such as [104, 38, 39].

Guided wave structures fall into closed boundary and open boundary types. A closed
boundary structure has a conducting shell that encloses the fields; as a result it can
neither radiate nor interact with adjacent systems or structures. Its modal spectrum
is described by discrete eigenvalues and associated modal field structures. Examples
include hollow-pipe waveguides, coaxial cables, and shielded transmission lines. An open
boundary structure is not enclosed by a conductor, hence can radiate into the surrounding
medium and couple strongly with adjacent structures. It is characterized by both discrete
and continuous spectra of eigenvalues and associated fields. Examples include fiber-optic
cables, twin-wire transmission lines, and microstrip.

The modal field structure of guided waves may be categorized as TE, TM, TEM,
or hybrid. In certain situations the boundary conditions may be satisfied by a field
structure that is purely TE or TM to a specified direction. These modes are often
convenient because of their simple field structures (possibly rendering their excitation
easier) and their propagation characteristics. They generally have an associated cutoff
frequency below which waves of a specific mode no longer propagate. TEM guided
waves are only supported by structures with two or more conductors; these structures,
known as transmission lines, have the benefit of low (potentially zero) dispersion and are
therefore desirable for guiding analog-encoded information such as voice. Their absence
of a lower cutoff frequency makes them useful in wideband (and baseband) applications.
TEM structures can also support TE and TM fields (called higher-order modes) with
nonzero cutoff, and these modes determine the usable bandwidth of the transmission
line. Hybrid modes have field structures that cannot be categorized as purely TE or
TM (or TEM) to any particular direction. Their field structure is generally complicated,
but may be dominated by an electric or magnetic field in the guiding direction and thus
categorized as “TE-like” or “TM-like.” Hybrid modes generally occur in structures with
more than one material, such as coated optical fibers. A notable example is microstrip,
only supporting hybrid modes but having a “TEM-like” mode where the axial fields are
much weaker than the transverse fields, and hence useful as an ersatz transmission line.

5.6.1 Hollow-pipe waveguides

A hollow-pipe waveguide consists of a conducting tube aligned with a preferred axis,
often chosen as the z-axis for convenience. The pipe may contain multiple materials,
both isotropic and anisotropic, but the cross-section geometry is assumed to be invariant
along the axial direction. For the purpose of analyzing the modal structure of the fields,
the waveguide is taken to be infinitely long and source free. The presence of sources
leads to the more complicated problem of excitation; this problem, often handled by
superposing source-free solutions using a Green’s function, is not considered in its full
generality here.

5.6.1.1 Hollow-pipe waveguides with homogeneous, isotropic filling

Let us begin by examining a hollow-pipe waveguide with PEC walls, completely filled
with a homogeneous, isotropic material and aligned with the z-axis. The filling material
has permeability µ̃ and complex permittivity ǫ̃c. The guide cross-sectional shape is
independent of z.

The fields in a waveguide homogeneously filled with an isotropic material may be
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decomposed into modes that are respectively TE to the z-direction (designated TEz
modes) and TM to the z-direction (TMz modes). Each mode set independently satisfies
the boundary condition that the tangential electric field must vanish on the conducting
boundary. We may construct the modal fields either in terms of the longitudinal field
components Ẽz and H̃z or the Hertzian potentials. We adopt the Hertzian potentials
here. Later we will use the longitudinal fields to determine field behavior in anisotropic
materials (§ 5.6.1.2). For TM fields we choose Π̃e = ẑΠ̃e, Π̃h = 0; for TE fields we
choose Π̃h = ẑΠ̃h, Π̃e = 0. Both of the potentials must obey the Helmholtz equation

(

∇2 + k2
)

Π̃z = 0,

where Π̃z represents either Π̃e or Π̃h. This may be solved by a Fourier transform approach
or by separation of variables. In either case we introduce the transverse position vector
ρ by the relation r = ẑz + ρ and write

Π̃z(r, ω) = Π̃z(z,ρ, ω).

We also split the Laplacian operator into transverse and longitudinal parts, writing the
Helmholtz equation as

(

∇2
t +

∂2

∂z2
+ k2

)

Π̃z(z,ρ, ω) = 0. (5.190)

Solution for Π̃z by Fourier transform approach. To solve (5.190) using Fourier
transforms, we write Π̃z as an inverse transform

Π̃z(r, ω) =
1

2π

∫ ∞

−∞
ψ̃(kz ,ρ, ω)e

jkzz dkz , (5.191)

where ψ̃ is the spatial Fourier spectrum of Π̃z:

ψ̃(kz ,ρ, ω) =

∫ ∞

−∞
Π̃z(r, ω)e

−jkzz dz.

Substituting (5.191) into the Helmholtz equation (5.190) and taking the derivatives, we
have

1

2π

∫ ∞

−∞

[

(

∇2
t + k2 − k2z

)

ψ̃(kz ,ρ, ω)
]

ejkzz dkz = 0.

By the Fourier integral theorem, the bracketed term must be zero. Thus, we have a
differential equation for ψ̃:

∇2
t ψ̃(kz ,ρ, ω) + k2c ψ̃(kz ,ρ, ω) = 0 (5.192)

where
kc =

√

k2 − k2z (5.193)

is called the cutoff wavenumber . A hollow-pipe waveguide is a closed boundary structure,
with kc (and hence kz) taking discrete values. The spectrum (5.191) reduces to a discrete
sum of modal contributions to the potential. Each term has the form

Π̃z(r, ω) = ψ̃(ρ, ω)e∓jkzz,

where ψ̃ satisfies (5.192).
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Solution for Π̃z by separation of variables. Alternatively, we may try a product
solution Π̃z(r, ω) = Z̃(z, ω)ψ̃(ρ, ω). Substitution into (5.190) yields

1

ψ̃(ρ, ω)
∇2
t ψ̃(ρ, ω) + k2 = − 1

Z(z, ω)

∂2

∂z2
Z(z, ω).

Because the left side has positional dependence only on ρ while the right side has de-
pendence only on z, both must equal the same constant, say k2z . The resulting ordinary
differential equation

∂2Z

∂z2
+ k2zZ = 0

has solutions Z = e∓jkzz . The second implication

∇2
t ψ̃(ρ, ω) + k2c ψ̃(ρ, ω) = 0 (5.194)

is a wave equation with kc given by (5.193). The complete solution is a superposition of
terms of the form

Π̃z(r, ω) = ψ̃(ρ, ω)e∓jkzz

with kz taking discrete values.

Solution to the differential equation for ψ̃. To find the eigenvalues and associated
field distributions for a hollow-pipe waveguide with homogeneous isotropic filling, we
must solve (5.192) or (5.194). For certain geometries this can be done in closed form
using separation of variables. If the boundary conforms to a coordinate level surface
in a separable coordinate system, the separation of variables solutions define individual
modes. Classic examples include the rectangular and circular guides considered below,
along with elliptical guides [72] and variants of circular guides such as coaxial cables
and sectoral guides. A few interesting geometries such as equilateral triangles and the
isosceles right triangle considered below may be solved by superposing finitely many
individual separation of variables solutions to construct each mode.

Numerical approaches may be required for complex geometries. Examples include the
finite element method [2] and the integral equation method (§ 7.4.4).

Field representation for TE and TM modes. The fields may be computed from
the Hertzian potentials using u = z in (5.122)–(5.123) and (5.124)–(5.125). Because the
fields all contain the term e∓jkzz , we define new field quantities ẽ and h̃:

Ẽ(r, ω) = ẽ(ρ, ω)e∓jkzz , H̃(r, ω) = h̃(ρ, ω)e∓jkzz .

Substituting Π̃e = ψ̃ee
∓jkzz, we have for TM fields

ẽ = ∓jkz∇tψ̃e + ẑk2c ψ̃e, h̃ = −jωǫ̃cẑ×∇tψ̃e.

The simple relationship between the transverse parts of Ẽ and H̃ permits us to write

ẽz = k2c ψ̃e, (5.195)

ẽt = ∓jkz∇tψ̃e, (5.196)

h̃t = ±Ye(ẑ × ẽt). (5.197)

Here
Ye = ωǫ̃c/kz
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is the complex TM wave admittance. We can also write ẑ× h̃t = ±Yeẑ×(ẑ× ẽt) = ∓Yeẽt
so that

ẽt = ∓Ze(ẑ× h̃t),

where Ze = 1/Ye is the TM wave impedance.
For TE fields, we have with Π̃h = ψ̃he

∓jkzz,

ẽ = jωµ̃ẑ×∇tψ̃h, h̃ = ∓jkz∇tψ̃h + ẑk2c ψ̃h,

or

h̃z = k2c ψ̃h, (5.198)

h̃t = ∓jkz∇tψ̃h, (5.199)

ẽt = ∓Zh(ẑ× h̃t), (5.200)

where
Zh = ωµ̃/kz (5.201)

is the TE wave impedance.

Modal solutions for the transverse field dependence. Equation (5.194) governs
the transverse behavior of the waveguide fields. When coupled with an appropriate
boundary condition, this homogeneous equation has an infinite spectrum of discrete solu-
tions called eigenmodes or simply modes. Each mode is associated with a real eigenvalue
kc that depends on the cross-sectional geometry but not on frequency or homogeneous
material parameters. We number the modes so that kc = kcn for the nth mode. The
amplitude of each modal solution depends on the excitation source within the waveguide.
The appropriate boundary conditions are implied by the condition that for both TM

and TE fields the tangential component of Ẽmust vanish on the waveguide walls: n̂×Ẽ =
0, where n̂ is the unit interior normal to the waveguide wall. For TM fields we have Ẽz = 0
and thus

ψ̃e(ρ, ω) = 0 (ρ ∈ Γ) (5.202)

where Γ is the contour describing the waveguide boundary. For TE fields we have n̂×Ẽt =
0 or

n̂× (ẑ ×∇tψ̃h) = 0.

Using n̂× (ẑ×∇tψ̃h) = ẑ(n̂ · ∇tψ̃h)− (n̂ · ẑ)∇tψ̃h and noting that n̂ · ẑ = 0, we have

n̂ · ∇tψ̃h(ρ, ω) =
∂ψ̃h(ρ, ω)

∂n
= 0 (ρ ∈ Γ).

Wave nature of the waveguide fields. We have seen that all waveguide field com-
ponents, for both TE and TM modes, vary as e∓jkznz. Here k2zn = k2 − k2cn is the
propagation constant of the nth mode. Letting

kz =
√

k2 − k2c = β − jα (5.203)

we see that Ẽ, H̃ ∼ e∓jβze∓αz. Assuming β is nonzero, and choosing the branch of the
square root function such that β > 0, the minus sign yields a wave propagating in the
direction of increasing z, while the plus sign is associated with a wave propagating in the
opposite direction.



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 554 — #578
✐

✐

✐

✐

✐

✐

554 Electromagnetics

When the guide is filled with a good dielectric we may assume µ̃ = µ is real and
frequency independent and use (4.239) to show that

kz = β − jα =
√

[ω2µRe ǫ̃c − k2c ]− jω2µRe ǫ̃c tan δc

=
√

µRe ǫ̃c
√

ω2 − ω2
c

√

1− j
tan δc

1− (ωc/ω)
2

where δc is the loss tangent (4.238) and where

ωc = kc/
√

µRe ǫ̃c

is the cutoff frequency. Under the condition

tan δc

1− (ωc/ω)
2 ≪ 1 (5.204)

we may approximate the square root using the first two terms of the binomial series to
show that

β − jα ≈
√

µRe ǫ̃c
√

ω2 − ω2
c

[

1− j
1

2

tan δc

1− (ωc/ω)
2

]

. (5.205)

Condition (5.204) requires that ω be sufficiently removed from ωc, either by having
ω > ωc or ω < ωc. When the frequency is above cutoff (ω > ωc) we find from (5.205)
that

β ≈ ω
√

µRe ǫ̃c
√

1− ω2
c/ω

2, α ≈ ω2µRe ǫ̃c

2β
tan δc.

Here α ≪ β and the wave propagates down the guide with relatively little loss. When
the frequency is below cutoff or the waveguide is cut off (ω < ωc) we find that

α ≈ ω
√

µRe ǫ̃c
√

ω2
c/ω

2 − 1, β ≈ ω2µRe ǫ̃c

2α
tan δc.

Here the phase constant is small and the attenuation rate is large. For frequencies near
ωc the transition between these two types of wave behavior is rapid but continuous.

When the filling material is lossless, having permittivity ǫ and permeability µ, the
transition across the cutoff frequency is discontinuous. For ω > ωc we have

β = ω
√
µǫ
√

1− ω2
c/ω

2, α = 0,

and the wave propagates without loss. For ω < ωc

α = ω
√
µǫ
√

ω2
c/ω

2 − 1, β = 0,

and the wave is evanescent. The dispersion diagram in Figure 5.7 displays the abrupt
cutoff phenomenon. We can compute the phase and group velocities of the wave above
cutoff just as we did for plane waves:

vp =
ω

β
=

v
√

1− ω2
c/ω

2
,

vg =
dω

dβ
= v
√

1− ω2
c/ω

2, (5.206)
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FIGURE 5.7

Dispersion plot for a hollow-pipe waveguide. Light line computed using v = 1/
√
µǫ.

where v = 1/
√
µǫ. Note that vgvp = v2. We show later that vg is the velocity of energy

transport within a lossless guide. Note that vp → v and vg → v as ω → ∞. More
interestingly, as ω → ωc we find that vp → ∞ and vg → 0 (Figure 5.8).
We may also speak of the guided wavelength of a monochromatic wave propagating

with frequency ω̌ in a waveguide. We define this wavelength as λg = 2π/β. When the
filling material is lossless the guided wavelength is

λg =
2π

β
=

λ
√

1− ω2
c/ω̌

2
=

λ
√

1− λ2/λ2c
.

Here

λ =
2π

ω̌
√
µǫ
, λc =

2π

kc
.

Orthogonality of waveguide modes. The modal fields in a closed-pipe waveguide
obey several orthogonality relations. Let (Ěn, Ȟn) be the time-harmonic electric and
magnetic fields of one particular waveguide mode (TE or TM), and let (Ěm, Ȟm) be
the fields of a different mode (TE or TM). One very useful relation states that for a
waveguide containing lossless materials,

∫

CS

ẑ ·
(

ěn × ȟ∗
m

)

dS = 0 (m 6= n), (5.207)

where CS is the guide cross-section. This is used to establish that the total power carried
by a wave is the sum of the powers carried by individual modes (see below).
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FIGURE 5.8

Phase and group velocity for a hollow-pipe waveguide.

Other important relationships include the orthogonality of the longitudinal fields,
∫

CS

ĚzmĚzn dS = 0 (m 6= n), (5.208)

∫

CS

ȞzmȞzn dS = 0 (m 6= n), (5.209)

and the orthogonality of transverse fields,
∫

CS

Ětm · Ětn dS = 0 (m 6= n), (5.210)

∫

CS

Ȟtm · Ȟtn dS = 0 (m 6= n).

These may be combined as orthogonality properties of the total fields:
∫

CS

Ěm · Ěn dS = 0 (m 6= n), (5.211)

∫

CS

Ȟm · Ȟn dS = 0 (m 6= n). (5.212)

See Collin [38] for proofs of these relations.

Power carried by time-harmonic waves in lossless waveguides. The power car-
ried by a time-harmonic wave propagating down a waveguide is defined as the time-
average Poynting flux passing through the guide cross-section:

Pav =
1

2

∫

CS

Re(Ě× Ȟ∗) · ẑ dS.
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The field within the guide is assumed to be a superposition of all possible waveguide
modes. For waves traveling in the +z-direction this implies

Ě =
∑

m

(ětm + ẑězm) e−jkzmz, Ȟ =
∑

n

(

ȟtn + ẑȟzn
)

e−jkznz.

Substitution gives

Pav = 1
2 Re

{

∫

CS

[

∑

m

(ětm + ẑězm) e−jkzmz ×
∑

n

(

ȟ∗
tn + ẑȟ∗zn

)

ejk
∗
znz

]

· ẑ dS
}

= 1
2 Re

{

∑

m

∑

n

e−j(kzm−k∗zn)z
∫

CS

ẑ ·
(

ětm × ȟ∗
tn

)

dS

}

= 1
2 Re

{

∑

n

e−j(kzn−k
∗
zn)z

∫

CS

ẑ ·
(

ětn × ȟ∗
tn

)

dS

}

by (5.207). For modes propagating in a lossless guide, kzn = βzn. For modes that are cut
off, kzn = −jαzn. However, we find below that terms in this series representing modes
that are cut off are zero. Thus

Pav =
∑

n

1
2 Re

{∫

CS

ẑ ·
(

ětn × ȟ∗
tn

)

dS

}

=
∑

n

Pn,av.

Hence for waveguides filled with lossless media the total time-average power flow is given
by the superposition of the individual modal powers.
Simple formulas for the individual modal powers in a lossless guide may be obtained

by substituting the expressions for the fields. For TM modes we use (5.196)–(5.197) to
get

Pav = 1
2 Re

{

|kz|2Y ∗
e e

−j(kz−k∗z )
∫

CS

ẑ ·
(

∇tψ̌e × [ẑ×∇tψ̌
∗
e ]
)

dS

}

= 1
2 |kz|

2 Re {Y ∗
e } e−j(kz−k

∗
z)

∫

CS

∇tψ̌e · ∇tψ̌
∗
e dS.

Here we have used (B.7) and ẑ · ∇tψ̌e = 0. This expression can be simplified via the
two-dimensional version of Green’s first identity (B.35):

∫

S

(∇ta · ∇tb+ a∇2
t b) dS =

∮

Γ

a
∂b

∂n
dl.

Using a = ψ̌e and b = ψ̌∗
e and integrating over the waveguide cross-section, we have

∫

CS

(∇tψ̌e · ∇tψ̌
∗
e + ψ̌e∇2ψ̌∗

e ) dS =

∮

Γ

ψ̌e
∂ψ̌∗

e

∂n
dl.

Substituting ∇2
t ψ̌

∗
e = −k2c ψ̌∗

e and remembering that ψ̌e = 0 on Γ, we reduce this to
∫

CS

∇tψ̌e · ∇tψ̌
∗
e dS = k2c

∫

CS

ψ̌eψ̌
∗
e dS. (5.213)

Thus,

Pav = 1
2 Re {Y

∗
e } |kz|2k2ce−j(kz−k

∗
z)z

∫

CS

ψ̌eψ̌
∗
e dS.
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For modes above cutoff we have kz = β and Ye = ω̌ǫ/kz = ω̌ǫ/β. The power carried by
these modes is therefore

Pav = 1
2 ω̌ǫβk

2
c

∫

CS

ψ̌eψ̌
∗
e dS.

For modes below cutoff we have kz = −jα and Ye = jω̌ǫ/α. Thus, Re{Y ∗
e } = 0 and

Pav = 0. At frequencies below cutoff, the fields are evanescent and do not carry power
in the manner of propagating waves.

The corresponding result for TE modes,

Pav = 1
2 ω̌µβk

2
c

∫

CS

ψ̌hψ̌
∗
h dS, (5.214)

is left as an exercise.

Stored energy in a waveguide and velocity of energy transport. Consider a
source-free section of lossless waveguide bounded on its two ends by the cross-sectional
surfaces CS1 and CS2. Setting J̌i = J̌c = 0 in (4.156), we have

1

2

∮

S

(Ě× Ȟ∗) · dS = 2jω̌

∫

V

[〈we〉 − 〈wm〉] dV,

where V is the region of the guide between CS1 and CS2. The right-hand side represents
the difference between the total time-average stored electric and magnetic energies. Thus

2jω̌ [〈We〉 − 〈Wm〉] =
1

2

∫

CS1

−ẑ · (Ě× Ȟ∗) dS +
1

2

∫

CS2

ẑ · (Ě× Ȟ∗) dS − 1

2

∫

Scond

(Ě× Ȟ∗) · dS,

where Scond consists of the conducting waveguide walls and n̂ points into the guide. For
a propagating mode, the first two terms on the right cancel, since with no loss Ě× Ȟ∗ is
the same on CS1 and CS2. The third term is zero because (Ě× Ȟ∗) · n̂ = (n̂× Ě) · Ȟ∗,
and n̂× Ě = 0 on the waveguide walls. Therefore

〈We〉 = 〈Wm〉

for any section of a lossless waveguide.
We may compute the time-average stored magnetic energy in a section of lossless

waveguide of length l as

〈Wm〉 = µ

4

∫ l

0

∫

CS

Ȟ · Ȟ∗ dS dz.

For propagating TM modes, we can substitute (5.197) to find

〈Wm〉/l = µ

4
(βYe)

2

∫

CS

(ẑ×∇tψ̌e) · (ẑ×∇tψ̌
∗
e) dS.

But (ẑ×∇tψ̌e) · (ẑ×∇tψ̌
∗
e) = ẑ · [∇tψ̌

∗
e × (ẑ×∇tψ̌e)] = ∇tψ̌e · ∇tψ̌

∗
e so

〈Wm〉/l = µ

4
(βYe)

2

∫

CS

∇tψ̌e · ∇tψ̌
∗
e dS.
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Finally, by (5.213) we have the stored energy per unit length for a propagating TM mode:

〈Wm〉/l = 〈We〉/l =
µ

4
(ω̌ǫ)2k2c

∫

CS

ψ̌eψ̌
∗
e dS.

The corresponding result for a TE mode,

〈We〉/l = 〈Wm〉/l = ǫ

4
(ω̌µ)2k2c

∫

CS

ψ̌hψ̌
∗
h dS,

is left as an exercise.
As with plane waves in (4.241) we may describe the velocity of energy transport as the

ratio of the Poynting flux density to the total stored energy density:

Sav = 〈wT 〉ve.

For TM modes this energy velocity is

ve =
1
2 ω̌ǫβk

2
c ψ̌eψ̌

∗
e

2µ4 (ω̌ǫ)
2k2c ψ̌eψ̌

∗
e

=
β

ω̌µǫ
= v
√

1− ω2
c/ω̌

2,

which is identical to the group velocity (5.206). This is also the case for TE modes, for
which

ve =
1
2 ω̌µβk

2
c ψ̌hψ̌

∗
h

2 ǫ4 (ω̌µ)
2k2c ψ̌hψ̌

∗
h

=
β

ω̌µǫ
= v
√

1− ω2
c/ω̌

2.

Attenuation due to wall loss; perturbation approximation. The attenuation
constant resulting from losses in the material filling a waveguide with PEC walls is
determined using (5.203):

α = − Im
{

√

ω2µ̃ǫ̃c − k2c

}

.

There will be additional attenuation of the propagating wave if the walls are imperfectly
conducting, due to power transfered into the walls by the fields in the guide. Computing
this power loss requires knowledge of the fields when the walls are not PEC. These
fields are difficult to determine because the boundary conditions established for PEC
boundaries no longer apply, and a separation of variables solution is usually not possible.
In fact, often the only reliable way to determine the fields with high accuracy is to use
a purely numerical solution. However, an approximation to the power delivered to the
walls may be established by assuming that when the walls are good (but not perfect)
conductors, the fields inside the guide are identical to those found when the walls are
PEC. Using these fields, the power delivered to the wall can be found using the diffusion
equations from §3.6.2, provided the walls are locally planar.
A frequency-domain field diffuses into a conductor with conductivity σ and perme-

ability µ such that the current induced in the conductor is given by (3.213). For a
time-harmonic field the phasor current can be written as

J̌(x) = σĚ0e
−x
δ e−j

x
δ

where δ = 1/
√

πf̌µσ is the skin depth and Ě0 is the phasor amplitude of the tangential
electric field at the surface. The time-average power dissipated in the conductor is, by
the complex Poynting theorem,

Pd =
1

2

∫

V

Ě · J̌∗ dV =
1

2σ

∫

V

|J̌|2 dV.
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Substitution yields the power dissipated per unit length at position z:

Pd(z)

l
=
σ

2

∫ ∫ ∞

0

|Ě0|2e−2 xδ dx dy =
σδ

4

∫

|Ě0|2dy.

We also know that the tangential magnetic field is given by (3.215), such that

|Ě0|2 = 2
|Ȟtan|2
σ2δ2

where |Ȟtan| = |n̂× Ȟ|. Substitution gives

Pd(z)

l
=

∫

Rs
2
|Ȟtan|2 dy

where Rs = 1/σδ is the surface resistance (3.216). If the surface is non-planar with
varying magnetic field, we generalize this expression to

Pd(z)

l
=

∫

Γ

Rs
2
|Ȟtan|2 dl, (5.215)

where Γ describes the contour of the surface transverse to z.
To use (5.215) to obtain the attenuation coefficient for a waveguide with lossy walls,

we note that the power passing through the waveguide cross-section at axial position z
can be written as

Pav(z) = P0e
−2αcz,

where P0 = Pav(z = 0) and αc is the attenuation constant due to conductor loss. Thus

dPav(z)

dz
= −2αcP0e

−2αcz = −2αcPav(z).

But the derivative is just the power dissipated per unit length at position z. Equating
this with (5.215) gives a formula for the attenuation constant

αc =
Pd(z)/l

2Pav(z)
=
Pd(0)/l

2P0
. (5.216)

We employ this formula as follows. First the fields are computed assuming PEC wave-
guide walls. The time-average power carried through the cross-section of the waveguide
by the propagating wave, P0, is then computed. Then the power dissipated in the walls
per unit length is computed from (5.215) using the magnetic field found with the walls
assumed to be PEC. Finally, the attenuation constant is found from (5.216). This per-
turbational approach assumes that the change in magnetic field introduced by the wall
losses is negligible.

Fields of a rectangular waveguide. Consider a rectangular waveguide with a cross-
section occupying 0 ≤ x ≤ a and 0 ≤ y ≤ b. The filling is assumed to be a lossless
dielectric of permittivity ǫ and permeability µ. We seek the modal fields within the
guide.

Both TE and TM fields can exist. In each case we must solve the differential equation

∇2
t ψ̃ + k2c ψ̃ = 0,
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where k2z + k2c = k2. A product solution in rectangular coordinates results from the
separation of variables technique (§ A.5.3):

ψ̃(x, y, ω) = [Ax sin kxx+Bx cos kxx] [Ay sin kyy + By cos kyy] (5.217)

where k2x + k2y = k2c . This is easily checked by substitution.
For TM modes the solution is subject to the boundary condition (5.202):

ψ̃e(ρ, ω) = 0 (ρ ∈ Γ). (5.218)

Applying this at x = 0 and y = 0 we find Bx = By = 0. Applying the boundary condition
at x = a we then find sin kxa = 0 and thus kx = nπ/a for n = 1, 2, . . .. (Note that n = 0
corresponds to the trivial solution ψ̃e = 0.) Similarly, from the condition at y = b we
find that ky = mπ/b for m = 1, 2, . . .. Thus

ψ̃e(x, y, ω) = Anm sin
(nπx

a

)

sin
(mπy

b

)

.

By (5.195)–(5.197) the fields are

Ẽz = k2cnmAnm

[

sin
nπx

a
sin

mπy

b

]

e∓jkzz , (5.219)

Ẽt = ∓jkzAnm
[

x̂
nπ

a
cos

nπx

a
sin

mπy

b
+ ŷ

mπ

b
sin

nπx

a
cos

mπy

b

]

e∓jkzz , (5.220)

H̃t = jkzYeAnm

[

x̂
mπ

b
sin

nπx

a
cos

mπy

b
− ŷ

nπ

a
cos

nπx

a
sin

mπy

b

]

e∓jkzz, (5.221)

where

Ye =
1

η
√

1− ω2
cnm/ω

2
, η = (µ/ǫ)1/2.

Each pair m,n describes a different field pattern and thus a different mode, designated
TMnm. The cutoff wavenumber of the TMnm mode is

kcnm =

√

(nπ

a

)2

+
(mπ

b

)2

(m,n = 1, 2, 3, . . .)

and the cutoff frequency is

ωcnm = v

√

(nπ

a

)2

+
(mπ

b

)2

(m,n = 1, 2, 3, . . .)

where v = 1/(µǫ)1/2. Thus the TM11 mode has the lowest cutoff frequency of any TM
mode. There is a range of frequencies for which this is the only propagating TM mode.
For TE modes the solution is subject to

n̂ · ∇tψ̃h(ρ, ω) =
∂ψ̃h(ρ, ω)

∂n
= 0 (ρ ∈ Γ).

At x = 0 we have ∂ψ̃h/∂x = 0 leading to Ax = 0. At y = 0 we have ∂ψ̃h/∂y = 0 leading
to Ay = 0. At x = a we require sin kxa = 0 and thus kx = nπ/a for n = 0, 1, 2, . . ..
Similarly, from the condition at y = b we find ky = mπ/b (m = 0, 1, 2, . . .). The case
n = m = 0 produces the trivial solution. Thus

ψ̃h(x, y, ω) = Bnm cos
(nπx

a

)

cos
(mπy

b

)

(m,n = 0, 1, 2, . . . , m+ n > 0). (5.222)
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By (5.198)–(5.200) the fields are

H̃z = k2cnmBnm

[

cos
nπx

a
cos

mπy

b

]

e∓jkzz , (5.223)

H̃t = ±jkzBnm
[

x̂
nπ

a
sin

nπx

a
cos

mπy

b
+ ŷ

mπ

b
cos

nπx

a
sin

mπy

b

]

e∓jkzz, (5.224)

Ẽt = jkzZhBnm

[

x̂
mπ

b
cos

nπx

a
sin

mπy

b
− ŷ

nπ

a
sin

nπx

a
cos

mπy

b

]

e∓jkzz, (5.225)

where
Zh =

η
√

1− ω2
cnm/ω

2
.

In this case the modes are designated TEnm. The cutoff wavenumber of the TEnm
mode is

kcnm =

√

(nπ

a

)2

+
(mπ

b

)2

(m,n = 0, 1, 2, . . . , m+ n > 0)

and the cutoff frequency is

ωcnm = v

√

(nπ

a

)2

+
(mπ

b

)2

(m,n = 0, 1, 2, . . . , m+ n > 0)

where v = 1/(µǫ)1/2. Modes having the same cutoff frequency are said to be degenerate.
This is the case with the TE and TM modes. But the field distributions differ so the
modes are distinct. Note that we may also have degeneracy among the TE or TM modes.
For instance, if a = b then the cutoff frequency of the TEnm mode is identical to that
of the TEmn mode. If a ≥ b then the TE10 mode has the lowest cutoff frequency and is
termed the dominant mode in a rectangular guide. There is a finite band of frequencies
in which this is the only mode propagating (although the bandwidth is small if a ≈ b).

◮ Example 5.15: Lowest-order mode in a rectangular waveguide

Find the cutoff frequency and the fields for the lowest-order mode in a rectangular waveguide
filled with a lossless isotropic material of permittivity ǫ and permeability µ. Assume a > b.

Solution: The lowest order mode in a rectangular waveguide with a > b is the TE10 mode
with cutoff wavenumber kc10 = π/a and cutoff frequency

fc10 =
v

2a
,

where v = 1/
√
µǫ. Note that fc10 is independent of b. The fields are given by (5.223)–(5.225):

H̃z = k2c10B10 cos
πx

a
e∓jkzz,

H̃t = ±jkzB10
π

a
x̂ sin

πx

a
e∓jkzz,

Ẽt = −jkzZhB10
π

a
ŷ sin

πx

a
e∓jkzz.

Note that the lowest-order TM mode is the TM11 mode with cutoff wavenumber

kc11 =

√

(π

a

)2

+
(π

b

)2

=
π

a

√

1 +
(a

b

)2

,



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 563 — #587
✐

✐

✐

✐

✐

✐

Field decompositions and the EM potentials 563

and cutoff frequency

fc11 =
v

2a

√

1 +
(a

b

)2

.

The second TE mode to propagate is either the TE01 mode with cutoff frequency fc01 =
v/(2b) or the TE20 mode with cutoff frequency fc20 = v/a, depending on the ratio a/b.
Often a/b = 2 is used, making the cutoff frequencies of the TE20 and TE01 modes both v/a,
and the cutoff frequencies of the TE11 and TM11 modes both

√

5/4v/a.
For a square waveguide, the cutoff frequencies of the TE10 and the TE01 modes coincide

(the modes are degenerate). ◭

◮ Example 5.16: Power flow of the TE10 mode in a rectangular waveguide

Find the time-average power flow for the lowest order mode in a rectangular waveguide filled
with a lossless isotropic material of permittivity ǫ and permeability µ. Assume a > b.

Solution: We specialize the potential (5.222) to time harmonic form for the TE10 mode to
get

ψ̌h = B10 cos
πx

a
.

Substitution into (5.214) gives

Pav = 1
2
|B10|2ω̌µβ

(π

a

)2
∫ b

0

∫ a

0

cos2
πx

a
dx dy =

b

4a
π2ω̌µβ|B10|2. ◭ (5.226)

◮ Example 5.17: Attenuation constant for the TE10 mode in a rectangular waveguide

Find the attenuation constant due to wall loss, αc, for the lowest order mode in a rectangu-
lar waveguide filled with a lossless isotropic material of permittivity ǫ and permeability µ.
Assume a > b.

Solution: The power dissipated in the waveguide walls per unit length is given by (5.215).
Substituting for the magnetic field from Example 5.15 we see that on the walls at x = 0 and
x = a,

|n̂ × Ȟ|2
∣

∣

z=0
= k4c10 |B10|2.

Similarly, on the walls at y = 0 and y = b,

|n̂ × Ȟ|2
∣

∣

z=0
= k4c10 |B10|2 cos2 πx

a
+ k2z |B10|2

(π

a

)2

sin2 πx

a
.

So the time-average power dissipated per unit length in the waveguide walls is

Pd(0)

l
= 2

Rs
2

∫ b

0

k4c10 |B10|2 dy + 2
Rs
2

∫ a

0

k4c10 |B10|2 cos2 πx
a
dx

+ 2
Rs
2

∫ a

0

k2z|B10|2
(π

a

)2

sin2 πx

a
dx.

Integration gives

Pd(0)

l
= Rs|B10|2

(π

a

)2
{

b
(π

a

)2

+
a

2

[

(π

a

)2

+ k2z

]}

=
Rs|B10|2π2

2a4
[2bπ2 + k2a3]. (5.227)
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Substituting the power dissipated (5.227) and the power flux (5.226) into the perturbational
formula for the attenuation constant (5.216), we have

αc =
Pd(0)/l

2P0
=
Rs|B10|2π2

2a4
[2bπ2 + k2a3]

4a

2bπ2ω̌µβ|B10|2

=
Rs

ω̌µa3bβ
[2bπ2 + k2a3].

The behavior of αc with frequency is important practically. Consider an X-band WR-
90 rectangular guide (a = 22.86 mm, b = 10.16 mm) made of brass with conductivity
σ = 1.4 × 107 S/m, permittivity ǫ0, and permeability µ0. Recalling that Rs = 1/σδ where
δ = 1/

√
πfµσ is the skin depth, and plotting αc vs. frequency, we obtain the curve shown

in Figure 5.9. Two important characteristics of αc are exhibited. First, the attenuation
constant increases without bound near the 6.557 GHz cutoff frequency. This implies that
one should observe an operational safety margin to avoid excessive loss. WR-90 waveguide
has a suggested operational band of 8.2–12.5 GHz (the upper frequency determined by the
cutoff frequency of the first higher-order mode). Second, the attenuation reaches a minimum
at a certain frequency (in this case 15.4 GHz) and then increases with frequency. This is
characteristic of all rectangular waveguide modes.
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FIGURE 5.9
Attenuation constant due to wall loss for an air-filled WR-90 X-band waveguide constructed
from brass. The vertical dashed line indicates the cutoff frequency. ◭

Fields of a circular waveguide. Consider a circular waveguide with a cross-section
occupying 0 ≤ ρ ≤ a and 0 ≤ φ < 2π. The filling is a lossless dielectric of permittivity ǫ
and permeability µ. We seek the modal fields.

Both TE and TM fields can exist here as well. In each case we must solve the differential
equation

∇2
t ψ̃ + k2c ψ̃ = 0,

where k2c + k2z = k2. Separation of variables in cylindrical coordinates (§ A.5.3) yields
solutions of the form

ψ̃(ρ, φ, ω) = [AρJkφ(kcρ) +BρNkφ(kcρ)][Aφ sin kφφ+Bφ cos kφφ]. (5.228)
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Finiteness of the fields on the z-axis requires Bρ = 0. Periodicity in φ implies that
kφ = n = 0, 1, 2, . . .. Note that n = 0 corresponds to the case of azimuthal symmetry
(φ-invariance). The relationship between Akφ and Bkφ cannot be determined outside the
excitation problem; we therefore take the φ-dependence as cos(nφ+Φn) where Φn is an
undetermined phase angle. Thus, the solution is written as

ψ̃(ρ, φ, ω) = AnJn(kcρ) cos(nφ+Φn).

For TM modes the solution is subject to the boundary condition (5.202):

ψ̃e(ρ, ω) = 0 (ρ ∈ Γ).

Applying this at ρ = a for 0 ≤ φ < 2π we find that Jn(kca) = 0. If pnm denotes the mth

zero of Jn(x), the cutoff wavenumber for the TMnm mode is kcnm = pnm/a, the cutoff
frequency is ωcnm = pnmv/a where v = 1/

√
µǫ, and the propagation constant is

kz =

√

k2 −
(pnm

a

)2

.

With these we have the potential function

ψ̃e(ρ, φ, ω) = AnmJn

(

ρ
pnm
a

)

cos(nφ+Φn).

By (5.195)–(5.197) the fields are

Ẽz =
(pnm

a

)2

AnmJn

(

ρ
pnm
a

)

cos(nφ+Φn)e
∓jkzz,

Ẽρ = ∓jkzAnm
pnm
a
J ′
n

(

ρ
pnm
a

)

cos(nφ+Φn)e
∓jkzz ,

Ẽφ = ±jkzAnm
n

ρ
Jn

(

ρ
pnm
a

)

sin(nφ+Φn)e
∓jkzz,

H̃ρ = −jkzYeAnm
n

ρ
Jn

(

ρ
pnm
a

)

sin(nφ+Φn)e
∓jkzz,

H̃φ = −jkzYeAnm
pnm
a
J ′
n

(

ρ
pnm
a

)

cos(nφ+Φn)e
∓jkzz,

where

Ye =
1

η
√

1− ω2
cnm/ω

2
, η = (µ/ǫ)1/2.

Each pair m,n generates the field pattern of a distinct TMnm mode.
For TE modes the solution is subject to

n̂ · ∇tψ̃h(ρ, ω) =
∂ψ̃h(ρ, ω)

∂ρ
= 0 (ρ ∈ Γ).

Applying this at ρ = a for 0 ≤ φ < 2π we find that J ′
n(kca) = 0. Denoting by p′nm the

mth zero of J ′
n(x), the cutoff wavenumber for the TEnm mode is

kcnm =
p′nm
a
, (5.229)

the cutoff frequency is

ωcnm = p′nm
v

a
,
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TABLE 5.1

Zeros of Jn(x)

m = 1 m = 2 m = 3 m = 4 m = 5

n = 0 2.40483 5.52008 8.65373 11.79153 14.93092
n = 1 3.83171 7.01559 10.17347 13.32369 16.47063
n = 2 5.13562 8.41724 11.61984 14.79595 17.95982
n = 3 6.38016 9.76102 13.01520 16.22347 19.40942
n = 4 7.58834 11.06471 14.37254 17.61597 20.82693
n = 5 8.77148 12.33860 15.70017 18.98013 22.21780

and the propagation constant is

kz =

√

k2 −
(

p′nm
a

)2

.

With these we have the potential function

ψ̃h(ρ, φ, ω) = BnmJn

(

ρ
p′nm
a

)

cos(nφ+Φn). (5.230)

By (5.198)–(5.200) the fields are

H̃z =

(

p′nm
a

)2

BnmJn

(

ρ
p′nm
a

)

cos(nφ+Φn)e
∓jkzz , (5.231)

H̃ρ = ∓jkzBnm
p′nm
a
J ′
n

(

ρ
p′nm
a

)

cos(nφ+Φn)e
∓jkzz, (5.232)

H̃φ = ±jkzBnm
n

ρ
Jn

(

ρ
p′nm
a

)

sin(nφ+Φn)e
∓jkzz, (5.233)

Ẽρ = jkzZhBnm
n

ρ
Jn

(

ρ
p′nm
a

)

sin(nφ+Φn)e
∓jkzz, (5.234)

Ẽφ = jkzZhBnm
p′nm
a
J ′
n

(

ρ
p′nm
a

)

cos(nφ+Φn)e
∓jkzz, (5.235)

where
Zh =

η
√

1− ω2
cnm/ω

2
.

Each pair m,n generates the field pattern of a distinct TEnm mode.
The ordering of modes according to their cutoff frequencies is determined by the zeros

of Jn(x) and J
′
n(x). Some approximate values are given in Tables 5.1 and 5.2. Note that

the cutoff frequencies are arranged as

TE11 TM01 TE21 TE01 TM11 TE31 TM21 TE41 TE12 TM02

The TE01 and TM11 modes are degenerate, since p′01 = p11; in fact, the TE0m mode is
degenerate with the TM1,m mode because J ′

0(x) = −J1(x).
Although the fundamental mode of the circular guide is the TE11 mode, the TE01 has

advantages including low wall loss attenuation. Its azimuthal symmetry also makes it
the mode with the simplest field structure. The examples below concern this mode.



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 567 — #591
✐

✐

✐

✐

✐

✐

Field decompositions and the EM potentials 567

TABLE 5.2

Zeros of J ′
n(x)

m = 1 m = 2 m = 3 m = 4 m = 5

n = 0 3.83171 7.01559 10.17347 13.32369 16.47063
n = 1 1.84118 5.33144 8.53632 11.70600 14.86359
n = 2 3.05424 6.70613 9.96947 13.17037 16.34752
n = 3 4.20119 8.01524 11.34592 14.58585 17.78875
n = 4 5.31755 9.28240 12.68191 15.96411 19.19603
n = 5 6.41562 10.51986 13.98719 17.31284 20.57551

◮ Example 5.18: TE01 mode in a circular waveguide

Find the cutoff frequency and the fields for the TE01 mode in a circular waveguide filled
with a lossless isotropic material of permittivity ǫ and permeability µ.

Solution: The cutoff wavenumber for the TE01 mode is found using (5.229) and Table 5.2.
Since p′01 = 3.83171,

kc01 =
3.83171

a
,

and the cutoff frequency is

fc10 =
kc01v

2π
=

0.609836v

a
, (5.236)

where v = 1/
√
µǫ. The fields are given by (5.231)–(5.235):

H̃z =

(

p′01
a

)2

B01J0

(

ρ
p′01
a

)

e∓jkzz,

H̃ρ = ±jkzB01
p′01
a
J1

(

ρ
p′01
a

)

e∓jkzz,

Ẽφ = −jkzZhB01
p′01
a
J1

(

ρ
p′01
a

)

e∓jkzz,

H̃φ = Ẽρ = 0,

where we have incorporated the phase Φ into the amplitude B01 and have used J ′
0(x) =

−J1(x). ◭

◮ Example 5.19: Power flow of the TE01 mode in a circular waveguide

Find the time-average power flow for the TE01 mode in a circular waveguide filled with a
lossless isotropic material of permittivity ǫ and permeability µ.

Solution: We specialize the potential (5.230) to time harmonic form for the TE01 mode to
get

ψ̌h = B01J0

(

ρ
p′01
a

)

.

Substitution into (5.214) gives

Pav = 1
2
|B10|2ω̌µβ

(

p′01
a

)2 ∫ 2π

0

∫ a

0

J2
0

(

ρ
p′01
a

)

ρ dρ dφ.
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Use of
∫ a

0

J2
0

(

ρ
p′01
a

)

ρ dρ =
a2

2
J2
0 (p

′
01)

gives

Pav = |B10|2ω̌µβ π
2
(p′01)

2J2
0 (p

′
01). ◭ (5.237)

◮ Example 5.20: Attenuation constant for the TE01 mode in a circular waveguide

Find the attenuation constant due to wall loss, αc, for the TE01 mode in a circular waveguide
filled with a lossless isotropic material of permittivity ǫ and permeability µ.

Solution: The power dissipated in the waveguide walls per unit length is given by (5.215).
Substituting for the magnetic field from Example 5.18, we see that on the wall at ρ = a,

|n̂ × Ȟ|2
∣

∣

z=0
=

(

p′01
a

)4

|B01|2J2
0 (p

′
01).

So the time-average power dissipated per unit length in the waveguide walls is

Pd(0)

ℓ
=
Rs
2

∫ 2π

0

(

p′01
a

)4

|B01|2J2
0 (p

′
01)a dφ

= πaRs

(

p′01
a

)4

|B01|2J2
0 (p

′
01). (5.238)

Substituting (5.237) and (5.238) into (5.216), we find that

αc =
Pd(0)/ℓ

2P0

=
πaRs

(

p′01
a

)4

|B01|2J2
0 (p

′
01)

|B10|2ω̌µβπ (p′01)
2 J2

0 (p
′
01)

=
Rs
ω̌µaβ

(

p′01
a

)2

. (5.239)

The behavior of αc with frequency for the TE01 mode is quite different from that of
the attenuation constant for a rectangular waveguide (and from that of most modes in a
circular guide). Consider a circular guide with radius a = 27.88 mm made from brass with
conductivity σ = 1.4× 107 S/m, permittivity ǫ0, and permeability µ0. Using (5.236), we see
that this value of a produces a TE01 mode cutoff frequency of 6.557 GHz, identical to that
of the fundamental (TE10) mode in the WR-90 rectangular guide considered in Example
5.17. Recalling that

Rs =
1

σδ
where

δ =
1√
πfµσ

and plotting αc vs. frequency, we obtain the curve shown in Figure 5.10. Also shown is the
attenuation constant for the WR-90 rectangular waveguide considered in Example 5.17.
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FIGURE 5.10
Attenuation constants due to wall loss for an air-filled circular waveguide and an air-filled
WR-90 X-band waveguide, both constructed from brass. Vertical dashed line indicates the
cutoff frequency.

Not only is the attenuation constant for the TE01 mode in a circular guide much smaller
than for the TE10 mode in a rectangular guide with the same cutoff frequency, the attenua-
tion constant of the TE01 circular waveguide mode decreases monotonically with frequency.
This monotonic behavior is shared by all azimuthally symmetric TE modes in a circular
waveguide (i.e., all TE0m modes). In contrast, all other TE modes and all TM modes (even
azimuthally symmetric modes) in a circular guide have attenuation constants that increase
with frequency after some point, as do all modes in rectangular guides. Of course, the cir-
cular guide will have three other modes (TE11, TM01, and TE21) that propagate along with
the TE01 mode. It is necessary to suppress these other modes to truly take advantage of the
low attenuation properties of the TE01 mode. This was the subject of extensive research at
Bell Laboratories before the advent of low-loss fiber optic cables [133]. ◭

Waveguide excitation by current sheets. An important property of the spectrum
of eigenfields for a perfectly conducting closed-pipe waveguide is that they represent
a complete and orthogonal set of functions that can be used to construct an arbitrary
solution to Maxwell’s equations within the guide. Consider, for instance, a surface electric
current in the plane z = 0 in a waveguide (Figure 5.11). The current will excite TEz and
TMz modes in the regions z > 0 and z < 0. We seek the amplitudes of the modal fields.
The fields in each region may be constructed from superpositions of waveguide modes.

We consider only the transverse fields, since only they are needed for application of the
boundary conditions at the position of the source. For z < 0 we have only waves traveling
(or evanescent) in the −z direction, with the transverse fields given by

Ẽt =

∞
∑

n=1

anẽtn(ρ, ω)e
+jkznz,

H̃t =
∞
∑

n=1

anh̃tn(ρ, ω)e
+jkznz.
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FIGURE 5.11

Surface current sheet in the cross-sectional plane of a hollow-pipe waveguide.

For z > 0 we have only waves traveling (or evanescent) in the +z direction, with

Ẽt =

∞
∑

n=1

bnẽtn(ρ, ω)e
−jkznz,

H̃t = −
∞
∑

n=1

bnh̃tn(ρ, ω)e
−jkznz.

Note that we have embedded the sign difference on the transverse magnetic fields traveling
in the ±z directions, as described in (5.197) and (5.199). The amplitudes an and bn are
determined by imposing the boundary conditions on the transverse fields at z = 0.

Continuity of the transverse electric field at z = 0 requires

∞
∑

n=1

anẽtn(ρ, ω) =

∞
∑

n=1

bnẽtn(ρ, ω) (ρ ∈ CS).

Dotting both sides by ẽtm(ρ, ω) and integrating over the cross-section of the guide, we
have ∞

∑

n=1

an

∫

CS

ẽtn · ẽtm dS =

∞
∑

n=1

bn

∫

CS

ẽtn · ẽtm dS.

The orthogonality condition (5.210) implies that only the n = m term survives from each
series, giving an = bn for all n. The transverse magnetic field is discontinuous by the
surface current according to

∞
∑

n=1

(−bn − an) ẑ× h̃tn(ρ, ω) = J̃s(ρ, ω) (ρ ∈ CS).
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But

ẑ× h̃tn =
ẽtn
Zn

for both TE and TM modes, where Zn is the wave impedance for the nth mode. Using
this along with an = bn, we have

∞
∑

n=1

1

Zn
(−2an) ẽtn(ρ, ω) = J̃s(ρ, ω) (ρ ∈ CS).

Dotting both sides with ẽtm(ρ, ω) and integrating over CS, we get

−
∞
∑

n=1

2

Zn
an

∫

CS

ẽtn · ẽtm dS =

∫

CS

ẽtm · J̃s dS.

By orthogonality of the transverse fields,
∫

CS

ẽtn · ẽtm dS = Cnδmn (5.240)

where δmn is the Kronecker delta. The modal amplitudes are therefore

an = −1

2

Zn
Cn

∫

CS

ẽtn · J̃s dS. (5.241)

◮ Example 5.21: Vertical current sheet in a rectangular waveguide

A uniform, vertically directed current sheet of density ŷJs0 resides in the plane z = 0 within
a rectangular waveguide. Find the amplitudes of the modes excited in the guide.

Solution: As a y-independent current produces y-independent fields, only the TEn0 mode
is excited. From (5.225) we find that

ẽtn = ŷ sin
(nπ

a
x
)

.

Equations (5.240) and (5.241) give

Cn =

∫ b

0

∫ a

0

sin2
(nπ

a
x
)

=
ab

2
, an = −Zn

ab
Js0

∫ b

0

∫ a

0

sin
(nπ

a
x
)

dx.

Integration shows that an = 0 for even n, while for odd n

an = −2ZnJs0
nπ

. ◭

Higher-order modes in a coaxial cable. The coaxial cable is normally operated in
its principal mode, which is the transmission-line (TEM) mode (§ 5.6.3). Because this
mode has no cutoff, the cable may be operated at any desired frequency. But higher-
order modes begin to propagate at higher frequencies. Hence the usable frequency band
of a coaxial cable extends to the cutoff frequency of the first higher-order mode. It is
clearly important to understand the behavior of these modes.
An ideal coaxial cable consists of coaxial conducting cylinders of radii a and b (a < b).

The guiding region between the cylinders is filled with material having permittivity ǫ̃c
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and permeability µ̃. It is possible to satisfy the boundary conditions at both conductors
with fields purely TE or purely TM to the z-direction. The solution to the wave equation
for the potential function is given by (5.228), and since we must retain both the Bessel
functions of the first and second kinds in the region a ≤ ρ ≤ b, we can write the potential
as

ψ̃(ρ, φ, ω) = [AnJn(kcρ) +BnNn(kcρ)] cos(nφ+Φn),

where kc will be determined from the boundary conditions.
For TM modes, the boundary condition is that

ψ̃e = 0

at ρ = a and ρ = b, 0 ≤ φ < 2π. This gives the set of homogeneous equations

[

Jn(kca) Nn(kca)
Jn(kcb) Nn(kcb)

] [

An
Bn

]

=

[

0
0

]

.

A nontrivial solution is only possible when the determinant of the coefficient matrix is
zero:

Jn(kca)Nn(kcb)− Jn(kcb)Nn(kca) = 0.

This characteristic equation must be satisfied by the cutoff wavenumber kc of the TM
modes. For TE modes, the boundary condition requires

n̂ · ∇tψ̃h =
∂ψ̃h
∂ρ

= 0,

at ρ = a and ρ = b, 0 ≤ φ < 2π. We obtain

[

J ′
n(kca) N

′
n(kca)

J ′
n(kcb) N

′
n(kcb)

] [

An
Bn

]

=

[

0
0

]

and equate the determinant of the coefficient matrix to zero to get the characteristic
equation for TE modes:

J ′
n(kca)N

′
n(kcb)− J ′

n(kcb)N
′
n(kca) = 0.

Neither characteristic equation has a closed-form solution, so a numerical root search is
required.

The first higher-order mode is TE11. Since its one full sinusoidal variation of the
fields in 0 ≤ φ < 2π is reminiscent of the behavior of the TE20 mode in a rectangular
guide, we might expect the fields to be similar if the rectangular guide were wrapped
into a circle. The cutoff wavenumber of the rectangular mode is kc = 2π/A where A is
the rectangular guide width. Replacing A with the average circumference of the coaxial
guide, 2π(a+ b)/2, we get an approximate formula

kca =
2

a+ b

for the cutoff wavenumber of the TE11 mode of the coaxial guide. The cutoff frequency
of a lossless guide with v = 1/

√
ǫµ should be approximately

fca =
vkc
2π

=
v

π(a+ b)
.
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FIGURE 5.12

Ratio of exact and approximate cutoff frequencies for the TE11 mode of a coaxial guide.

The validity of this approximation depends on the ratio b/a. To test its accuracy, we
write the characteristic equation for the TE11 mode as

J ′
1 (kca)N

′
1

(

kca
b

a

)

−N ′
1 (kca)J

′
1

(

kca
b

a

)

= 0, (5.242)

and find kca in terms of b/a. We then compare this to the approximate value

kcaa =
2

1 + b
a

.

The ratio of these kca values is also the ratio of the exact and approximate cutoff fre-
quencies. It is plotted in Figure 5.12 vs. b/a. When b ≈ a, the approximation for fc is
very accurate. As b/a increases, the approximation becomes too small, with a maximum
error of about 3% at b/a ≈ 3.5. As b/a increases further, the error is reduced until the
approximation is exact at b/a ≈ 8.5. For b/a above this value, the approximate cutoff
frequency is too large, and the error continues to increase with b/a.

◮ Example 5.22: Operating band of a precision 3.5 mm coaxial connector

The inner radius of the outer conductor of a precision 3.5 mm coaxial connector is 3.5/2=1.75 mm.
If the connector mates with a coaxial line having characteristic resistance 50 Ω, find the ra-
dius of the inner conductor and the operating band of the coaxial line.

Solution: The characteristic resistance of a coaxial cable is given by (5.312):

Rc =
η

2π
ln

(

b

a

)

.

A precision connector uses an air-filled cable with η = η0. Hence for Rc = 50Ω we have

b/a = e
100π
η0 = 2.302.

With b = 1.75 mm we get a = 0.7601 mm.
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The operating band of the connector is from dc to the cutoff frequency of the TE11 mode.
The approximate formula yields

fca =
c

π(a+ b)
= 38.02 GHz.

Solving (5.242) using a root search we find that kca = 0.6182 when b/a = 2.302. This gives
an exact cutoff frequency

fc =
c

2πa
kca = 38.81 GHz.

Note that fc/fca = 1.021, which matches the value shown in Figure 5.12. ◭

Fields of an isosceles triangle waveguide. Rectangular and circular waveguides are
examples of geometries where each separation of variables solution defines an individual
mode. Certain triangular waveguides may be analyzed using separation of variables in
rectangular coordinates, but the boundary conditions can only be satisfied by a finite
superposition of separation of variables solutions [142]. Classic examples include the
equilateral triangle [170] and the right isosceles triangle of Figure 5.13 [97]. We will
consider the latter problem.

For TM modes, consider the separation of variables solution (5.217) with the boundary
condition (5.218). To make ψ̃e = 0 at both x = 0 and y = 0, we require

ψ̃e(x, y, ω) = A sin
nπx

a
sin kyy (n = 1, 2, . . .).

It is clear that a single term of this form cannot satisfy ψ̃e = 0 on the remaining boundary.
However, a superposition of two terms can.

Consider the solution

ψ̃e(x, y, ω) = A1 sin
nπx

a
sin ky1y +A2 sin

mπx

a
sin ky2y. (5.243)

We know that for a rectangular guide, each of these terms can satisfy the boundary
conditions at x = a and y = a while having individual, different cutoff wavenumbers
kc. Our present goal is to have (5.243) represent a single mode of the triangular guide
associated with a single cutoff frequency kc. Substituting (5.243) into the transverse
wave equation (5.194), we get

A1 sin
nπx

a
sin ky1y

[

−
(nπ

a

)2

− k2y1 + k2c

]

+A2 sin
mπx

a
sin ky2y

[

−
(mπ

a

)2

− k2y2 + k2c

]

= 0 ((x, y) ∈ CS)

where CS is the guide cross-section. This requires

k2c =
(nπ

a

)2

+ k2y1 =
(mπ

a

)2

+ k2y2. (5.244)

The remaining boundary condition requires ψ̃e(x, y, ω) = 0 on the line y = x. Substi-
tution gives

ψ̃e(x, y = x, ω) = A1 sin
nπx

a
sin ky1x+A2 sin

mπx

a
sin ky2x = 0 (0 ≤ x ≤ a). (5.245)

Clearly the choice −A2 = A1 = A along with

ky1 =
mπ

a
, ky2 =

nπ

a
,
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FIGURE 5.13

Right isosceles triangle waveguide.

satisfies boundary condition (5.245). But since it also satisfies wavenumber condition
(5.244), the resulting potential function satisfies the transverse wave equation. The
potential for TM fields is

ψ̃e(x, y, ω) = Anm

[

sin
(nπx

a

)

sin
(mπy

a

)

− sin
(mπx

a

)

sin
(nπy

a

)]

. (5.246)

Each pair m,n defines an individual waveguide mode. Swapping m and n produces only
a sign change, so the m,n mode and the n,m mode are the same. Since n = m produces
the trivial solution, as does n = 0, we restrict the indices according to 0 < m < n.
By (5.246) the fields in a right isosceles triangular guide are

Ẽz = k2cnmAnm

{[

sin
nπx

a
sin

mπy

a

]

−
[

sin
mπx

a
sin

nπy

a

]}

e∓jkzz, (5.247)

Ẽt = ∓jkzAnm
{[

x̂
nπ

a
cos

nπx

a
sin

mπy

a
+ ŷ

mπ

a
sin

nπx

a
cos

mπy

a

]

−
[

x̂
mπ

a
cos

mπx

a
sin

nπy

a
+ ŷ

nπ

a
sin

mπx

a
cos

nπy

a

]}

e∓jkzz, (5.248)

H̃t = jkzYeAnm

{[

x̂
mπ

b
sin

nπx

a
cos

mπy

a
− ŷ

nπ

a
cos

nπx

a
sin

mπy

a

]

−
[

x̂
nπ

a
sin

mπx

a
cos

nπy

a
− ŷ

mπ

a
cos

mπx

a
sin

nπy

a

]}

e∓jkzz. (5.249)

Here

Ye =
1

η
√

1− ω2
cnm/ω

2
,

with η = (µ/ǫ)1/2 and

kcnm =

√

(nπ

a

)2

+
(mπ

a

)2

.

Comparing (5.247)–(5.249) with (5.219)–(5.221) and noting that kcnm = kcmn , we
recognize the fields in a right isosceles triangular waveguide as superpositions of the
(m,n) and (n,m) mode fields in a square waveguide. Johnson [97] gives a nice geometrical
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description of how this superposition satisfies the boundary condition on the slanted wall
at y = x.

For TE modes, the potential function

ψ̃h(x, y, ω) = Bnm

[

cos
(nπx

a

)

cos
(mπy

a

)

+ cos
(mπx

a

)

cos
(nπy

a

)]

(5.250)

satisfies (5.194). The fields are

H̃z = k2cnmBnm

{[

cos
nπx

a
cos

mπy

a

]

+
[

cos
mπx

a
cos

nπy

a

]}

e∓jkzz, (5.251)

H̃t = ±jkzBnm
{[

x̂
nπ

a
sin

nπx

a
cos

mπy

a
+ ŷ

mπ

a
cos

nπx

a
sin

mπy

a

]

+
[

x̂
mπ

a
sin

mπx

a
cos

nπy

a
+ ŷ

nπ

a
cos

mπx

a
sin

nπy

a

]}

e∓jkzz, (5.252)

Ẽt = jkzZhBnm

{[

x̂
mπ

a
cos

nπx

a
sin

mπy

a
− ŷ

nπ

a
sin

nπx

a
cos

mπy

a

]

+
[

x̂
nπ

a
cos

mπx

a
sin

nπy

a
− ŷ

mπ

a
sin

mπx

a
cos

nπy

a

]}

e∓jkzz, (5.253)

where

Zh =
η

√

1− ω2
cnm/ω

2
, kcnm =

√

(nπ

a

)2

+
(mπ

a

)2

.

The cutoff wavenumber formula is the same as that for TM modes.
Note that Ẽy = 0 on the wall at x = 0 and Ẽx = 0 on the wall at y = 0. To check

whether the tangential electric field is zero on the remaining wall, we compute

Ẽtan = n̂× Ẽt,

where the unit normal to the wall at x = y is

n̂ =
x̂− ŷ√

2
.

These relations do yield Ẽtan = 0. So the wave equation and boundary conditions are
satisfied, and the potential function (5.250) represents TE mode solutions.

Further, we find that the triangular guide fields (5.251)–(5.253) are superpositions of
the (m,n) and (n,m) TE mode fields of a square guide. In the TE case, n = m is allowed,
as is either m = 0 or n = 0 but not both. Since swapping m and n produces the same
mode, we restrict the indices to 0 ≤ m ≤ n, m+ n > 0.

◮ Example 5.23: Lowest order mode in a triangular waveguide

Find the cutoff frequency and the fields for the lowest order mode in a right isosceles trian-
gular waveguide filled with a lossless isotropic material of permittivity ǫ and permeability
µ.

Solution: The lowest order mode in a triangular guide is the TE10 mode with cutoff
wavenumber kc10 = π/a and cutoff frequency

fc10 =
v

2a
, v = 1/

√
µǫ.

This is also the cutoff frequency for a TE10 mode in a square guide. The fields are given by
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(5.251)–(5.253):

H̃z = k2c10B10

{

cos
πx

a
+ cos

πy

a

}

e∓jkzz,

H̃t = ±jkzB10
π

a

{

x̂ sin
πx

a
+ ŷ sin

πy

a

}

e∓jkzz,

Ẽt = jkzZhB10
π

a

{

x̂ sin
πy

a
− ŷ sin

πx

a

}

e∓jkzz.

Note that the lowest order TM mode is TM21 with cutoff wavenumber

kc21 =

√

(

2π

a

)2

+
(π

a

)2

=
√
5
π

a

and cutoff frequency

fc10 =

√
5v

2a
. ◭

◮ Example 5.24: Power flow in a triangular waveguide

Find the time-average power flow for the lowest order mode in a right isosceles triangu-
lar waveguide filled with a lossless isotropic material of permittivity ǫ and permeability µ.
Compare to the power carried by the lowest order mode in a square waveguide.

Solution: We specialize the potential (5.250) to time harmonic form for the TE10 mode,

ψ̌h = B10

[

cos
πx

a
+ cos

πy

a

]

,

and substitute into (5.214):

Pav = 1
2
|B10|2ω̌µβ

(π

a

)2
∫

CS

[

cos2
πx

a
+ cos2

πy

a
+ 2 cos

πx

a
cos

πy

a

]

dS.

The third integral is

∫ a

0

cos
πx

a

∫ x

0

cos
πy

a
dy dx =

a

π

∫ a

0

cos
πx

a
sin

πx

a
dx = 0.

The first two integrals combine to give

∫ a

0

∫ a

y

cos2
πx

a
dx dy +

∫ a

0

∫ x

0

cos2
πy

a
dy dx

=

∫ a

0

[

a

2
− y

2
− sin 2πy

a

4π
a

]

dy +

∫ a

0

[

x

2
+

sin 2πx
a

4π
a

]

dx =
a2

4
+
a2

4
=
a2

2

and thus

Pav =
π2

4
ω̌µβ|B10|2.

Comparison with (5.226) shows that the power flow for the TE10 mode in the isosceles right
triangle waveguide is the same as that for the TE10 mode in a square waveguide of side
length a. Although it has only half the cross-sectional area of the rectangular guide, the
triangular guide carries the TE10 and TE01 modes of the square guide simultaneously. ◭
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5.6.1.2 A hollow-pipe waveguide filled with a homogeneous anisotropic
material

Both gyromagnetic materials (such as ferrites) and gyroelectric materials (such as plas-
mas) may be placed in waveguides for special purposes. Because anisotropic materials
couple orthogonal field components, it is often impossible to satisfy the boundary condi-
tions at the waveguide walls with purely TE or TM modes. But pure TE or TM modes
do exist in certain situations. One of these is considered next.

Rectangular waveguide filled with a lossless magnetized ferrite. So far we
have only considered waveguides filled with isotopic materials, computing the fields from
a potential function. For a waveguide filled with a ferrite material, which is anisotropic,
we compute the transverse fields by first obtaining the longitudinal fields. This field-based
approach also applies to waveguides filled with isotropic materials as an alternative to
the potential approach (e.g., [156]), but is particularly useful for waveguide problems
with anisotropic materials.

Consider a rectangular waveguide with cross-section occupying 0 ≤ x ≤ a and 0 ≤ y ≤
b, filled with a lossless ferrite magnetized in the y-direction. We will restrict ourselves to
solutions for fields that are TE to the z-direction and, like the TEn0 modes in a waveguide
filled with an isotropic medium, are y-invariant. Using the results of Example 5.12 with
y-derivatives set to zero, we have the transverse field formulas

Ẽzt = ŷ

[

−jωµ
k2z − ω2µǫ

∂H̃z
z

∂x
+

jωκkz
k2z − ω2µǫ

H̃z
z

]

, (5.254)

H̃z
t = x̂

[

−jkz
k2z − ω2µǫ

∂H̃z
z

∂x
+

jω2κǫ

k2z − ω2µǫ
H̃z
z

]

, (5.255)

where H̃z
z obeys the wave equation

(

∂2

∂x2
+ k2c

)

H̃z
z = 0 (5.256)

with

k2c = ω2µǫ

(

1− κ2

µ2

)

− k2z . (5.257)

The solution to (5.256) is

H̃z
z (x, kz , ω) = A sin(kcx) +B cos(kcx).

Substitution into (5.254) gives the transverse electric field

Ẽzy =
jω

k2z − ω2µǫ
[(−Aµkc +Bκkz) cos(kcx) + (Bµkc +Aκkz) sin(kcx)] .

Applying the boundary condition on Ẽzy at x = 0, we get −Aµkc + Bκkz = 0. Solving
for A and substituting into (5.254), we find that

Ẽzy =
jω

k2z − ω2µǫ
B
κ2

µkc

(

k2cµ
2

κ2
+ k2z

)

sin(kcx).
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This can be simplified using (5.257):

Ẽzy = −j ωµ
kc
B

(

1− κ2

µ2

)

sin(kcx).

Applying the boundary condition on Ẽzy at x = a, we have sin(kca) = 0. So kc takes the
discrete values

kcn = nπ/a (n = 1, 2, . . .)

just as in a rectangular guide filled with an isotropic material. Since kc is discrete, so are
kz and the modal spectrum. Use of (5.255) and some simplification yield the complete
field set

H̃zn(x, z, ω) = Bn

[

cos
(nπ

a
x
)

+
κkzn
µkcn

sin
(nπ

a
x
)

]

ejkznz,

H̃xn(x, z, ω) = −j kzn
kcn

Bn

[

sin
(nπ

a
x
)

+
κkcn
µkzn

cos
(nπ

a
x
)

]

ejkznz ,

Ẽyn(x, z, ω) = −j ωµ
kcn

(

1− κ2

µ2

)

Bn sin
(nπ

a
x
)

ejkznz,

where

k2zn = ω2µǫ

(

1− κ2

µ2

)

−
(nπ

a

)2

. (5.258)

These expressions hold for waves traveling in the −z direction; for waves traveling in the
+z direction, we replace kz by −kz. This means that both H̃xn and Ẽyn have different
forms for waves propagating in the ±z directions, an important observation practically.
It is clear that, unlike in the case of a waveguide filled with an isotropic material,

we cannot represent the ratio of transverse electric to transverse magnetic fields as a
spatially invariant wave impedance. Furthermore, since µ and κ depend on frequency,
the cutoff effect is more complicated than in the case of a guide filled with a lossless
dielectric. By (4.125) and (4.126) we have

µ = µ0
f2 − f2

0 − f0fM
f2 − f2

0

, κ = µ0
ffM

f2 − f2
0

.

Substituting these into (5.258) and simplifying, we get

k2zn =

(

2π

v0

)2 [

f2

(

f2 − f2
B

f2 − f2
A

)

− f2
c0

]

.

Here fA =
√

f0(f0 + fM ), fB = f0 + fM , v0 = 1/
√
µ0ǫ, and fc0 = nv0/(2a). So v0 is the

velocity of the wave in an unbounded dielectric medium with parameters µ0 and ǫ, and
fc0 is the cutoff frequency of the TE10 mode in a rectangular guide filled with a dielectric
medium with parameters µ0 and ǫ. For f ≫ fB, the wavenumber becomes

k2zn =

(

2π

v0

)2
[

f2 − f2
c0

]

,

which is that of the dielectric-filled guide. There is a low frequency bandstop region
where the wave will not propagate. Clearly, for fA < f < fB we have k2zn < 0 and
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the waveguide is in cutoff. A more careful analysis shows that k2zn < 0 for f < f1 and
fA < f < f2, where

f2
1,2 =

f2
B + f2

c0

2
∓

√

(

f2
B + f2

c0

2

)2

− f2
Af

2
c0.

Since f1 < fc0, the lower cutoff frequency of the ferrite-filled guide is less than that for
a guide filled with dielectric of permittivity ǫ and permeability µ0.

We can compute the time average power carried by a time-harmonic wave propagating
in a ferrite-loaded waveguide by first integrating the time-average Poynting flux over the
cross-section:

Pav =

∫

CS

1
2 ẑ · Re

{

Ě× Ȟ∗} dS

=

∫ b

0

∫ a

0

1
2 Re{−ĚyȞ

∗
x} dx dy.

It is convenient to normalize the fields such that the phasor amplitude of the electric
field is E0. Then, for a wave traveling in the +z direction,

Ěyn(x, z) = E0 sin
(nπ

a
x
)

e−jkznz ,

Ȟxn(x, z) = −kzn
ω̌µ

E0
(

1− κ2

µ2

)

[

sin
(nπ

a
x
)

− κkcn
µkzn

cos
(nπ

a
x
)

]

e−jkznz,

and

Pav = Re







k∗zn
2ω̌µ

|E0|2
(

1− κ2

µ2

)

∫ b

0

∫ a

0

sin2
(nπ

a
x
)

dxdy







− κkcn
2ω̌µ2

|E0|2
(

1− κ2

µ2

)

∫ b

0

∫ a

0

sin
(nπ

a
x
)

cos
(nπ

a
x
)

dxdy

=
ab

4

Re{kzn}
ω̌µ

|E0|2
(

1− κ2

µ2

) . (5.259)

◮ Example 5.25: Rectangular waveguide filled with ferrite

Assume the commercial ferrite G-1010 of Example 4.10 fills a WR-90 X-band rectangular
waveguide of dimensions a = 22.86 by b = 10.16 mm, and is biased at H0 = 1500 Oe.
Determine the lower cutoff frequency and the bandstop region for the TE10 mode. Plot
the dispersion curve for 0 < f < 10 GHz, and plot the phase and group velocities and the
normalized power flow vs. frequency.

Solution: By Example 4.10 we have f0 = 4.2 GHz and fM = 2.8 GHz. To compute the
cutoff frequencies we need the permittivity value. A typical value for G-1010 is ǫr = 14.2;
use of this value gives fc0 = 1.740 GHz. We also have f1 = 1.331 GHz, fA = 5.422 GHz,
fB = 7 GHz, and f2 = 7.089 GHz. Thus, the wave is cut off for f < 1.331 GHz, and in the
band 5.422 < f < 7.089 GHz.

The dispersion curve is shown in Figure 5.14. Here β =
√
k2z when k2z ≥ 0. The lower
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cutoff at 1.331 GHz and the bandstop region between 5.422 and 7.089 GHz are clearly
visible. Also shown is the dispersion curve for a rectangular guide filled with a dielectric
with relative permittivity ǫr = 14.2. At high frequencies the behavior of the ferrite-filled
guide approaches that of the dielectric-filled guide. The latter has a higher cutoff frequency
and shows no bandstop effect.

 0
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ferrite-loaded guide

dielectric-loaded guide
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H
z
)

β (r/m)

FIGURE 5.14
Dispersion plots for material-filled rectangular waveguides. Solid line corresponds to a
ferrite-filled guide; dashed line corresponds to a dielectric-filled guide with ǫr = 14.2.

The phase and group velocities may be found from the dispersion curve and the formulas
vp = ω/β and vg = dω/dβ. These velocities are plotted in Figure 5.15 for the TE10 mode,
relative to the velocity in an unbounded medium, v0 = c/

√
ǫr = 7.956× 107 m/s. Note that

the phase and group velocities both approach zero near the bottom of the stop band.
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FIGURE 5.15
Phase and group velocities for the TE10 mode in a ferrite-filled rectangular waveguide.

To plot the power flow, it is convenient to normalize (5.259). Let us divide by the time-
average power carried across an equal size aperture by a plane wave of amplitude E0 traveling
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in a material with permittivity ǫ = ǫrǫ0, where ǫr = 14.2. This power is

P0 =
|E0|2
2η

ab

where η = η0/
√
ǫr. So

Pav
P0

=
Re{kzn} η

2ω̌

µ

µ2 − κ2
.

The normalized power is plotted in Figure 5.16 for the TE10 mode. Since kz is imaginary
in the cutoff region, there is no time-average power flow there.
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FIGURE 5.16
Normalized power carried by the TE10 fields in a ferrite-filled rectangular waveguide. ◭

5.6.1.3 Hollow-pipe waveguides filled with more than one material

Partially filled hollow-pipe waveguides are encountered in a variety of circumstances.
Dielectrics may be added to alter the phase velocity of the guided wave, or to create
a filter. Ferrite slabs are used in waveguides to create nonreciprocal devices such as
circulators or isolators. The simplest examples involve isotropic materials symmetrically
filling regions of circular or rectangular guides. We consider two simple examples below.

A rectangular waveguide with a centered material slab: TEn0 modes. Con-
sider a rectangular waveguide with a lossless slab of material of permittivity ǫ and per-
meability µ centered along the x-direction (Figure 5.17). The material occupies region 2
(−d/2 ≤ x ≤ d/2), while free space (air) occupies regions 1 and 3 (−a/2 ≤ x < −d/2 and
d/2 < x ≤ a/2, respectively). We find that the boundary conditions cannot be satisfied
by fields TE or TM to the z-direction, unless the fields are y-invariant. The boundary
conditions can be satisfied, however, with fields TE or TM to the x-direction (also called
longitudinal section modes). We consider only the y-invariant TE to z case here; the
reader interested in constructing solutions using fields TE or TM to the x-direction may
consult [82].

We proceed as in the rectangular waveguide case, seeking a separation of variables
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FIGURE 5.17

Partially filled rectangular waveguide.

solution for the potential function ψ̃h. By (5.217) the potential function takes the form

ψ̃h = C1 sin kxx+ C2 cos kxx

since the fields are y-invariant. Here k2x = k2 − k2z . Since the material in region 2 differs
from that in regions 1 and 3, the values of k differ as do those of kx. However, to satisfy
the boundary conditions, kz must be the same in each region. This makes sense because
the wave velocity depends on kz , and the wave must propagate with the same velocity
in each region to ensure field continuity.
We also note that the structure is symmetric about x = 0. We thus expect that fields

with even or odd symmetry should satisfy the boundary conditions independently, and
so we consider even and odd modes according to the symmetry of the potential function
ψ̃h. The boundary condition on the walls at x = ±a/2 is

∂ψ̃h
∂x

= 0.

Thus, for even modes

ψ̃h1(x) = A cos kx0

(

x+
a

2

)

,

ψ̃h2(x) = B cos kxx,

ψ̃h3(x) = A cos kx0

(

x− a

2

)

.

Clearly these potentials are even about x = 0 and satisfy the boundary conditions at
x = ±a/2. We also have

k2x0 = k20 − k2z , k2x = k2 − k2z , (5.260)
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where k20 = ω2µ0ǫ0 and k2 = ω2µǫ. By (5.198) the axial magnetic fields are

h̃z1 = Ak2x0 cos kx0

(

x+
a

2

)

,

h̃z2 = Bk2x cos kxx,

h̃z3 = Ak2x0 cos kx0

(

x− a

2

)

,

and by (5.200) the transverse electric fields are

ẽy1 = −Ajkx0ωµ0 sin kx0

(

x+
a

2

)

,

ẽy2 = −Bjkxωµ sin kxx,

ẽy3 = −Ajkx0ωµ0 sin kx0

(

x− a

2

)

,

for waves traveling in the +z direction. Note that for an even potential function, H̃z is
even but Ẽy is odd.

The constants A and B and the axial wavenumber kz are determined by applying
the boundary conditions at x = ±d/2. By symmetry, boundary conditions enforced at
x = d/2 will also be satisfied at x = −d/2. Continuity of H̃z and Ẽy at x = d/2 gives

Bk2x cos kx
d

2
= Ak2x0 cos kx0

d− a

2
,

Bkxµ sin kx
d

2
= Akx0µ0 sin kx0

d− a

2
.

Setting the determinant of the coefficient matrix to zero gives a characteristic equation
relating kx and kx0:

µ

kx
tan kx

d

2
= − µ0

kx0
tan kx0

a− d

2
. (5.261)

Subtracting the equations in (5.260) gives a second relationship between kx and kx0:

k2x − k2x0 = k2 − k20 = k20(µrǫr − 1). (5.262)

Simultaneous solution of these two equations determines kx and kx0, and thus kz through
(5.260).

For odd modes

ψ̃1(x) = −A cos kx0

(

x+
a

2

)

,

ψ̃2(x) = B sin kxx,

ψ̃3(x) = A cos kx0

(

x− a

2

)

,

which are odd about x = 0 and satisfy the boundary conditions at x = ±a/2. With
these we have the relations (5.260). By (5.198) the axial magnetic fields are

h̃z1 = −Ak2x0 cos kx0
(

x+
a

2

)

,

h̃z2 = Bk2x sin kxx,

h̃z3 = Ak2x0 cos kx0

(

x− a

2

)

,
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and by (5.200) the transverse electric fields are

ẽy1 = Ajkx0ωµ0 sin kx0

(

x+
a

2

)

, (5.263)

ẽy2 = Bjkxωµ cos kxx, (5.264)

ẽy3 = −Ajkx0ωµ0 sin kx0

(

x− a

2

)

. (5.265)

Note that for an odd potential function, H̃z is odd but Ẽy is even.

As with the even-mode case, we apply continuity of H̃z and Ẽy at x = d/2 to get

Bk2x sin kx
d

2
= Ak2x0 cos kx0

d− a

2
, (5.266)

Bkxµ cos kx
d

2
= −Akx0µ0 sin kx0

d− a

2
. (5.267)

Setting the determinant of the coefficient matrix to zero gives a characteristic equation
relating kx and kx0:

µ

kx
cotkx

d

2
=

µ0

kx0
tan kx0

a− d

2
. (5.268)

Simultaneous solution of this and (5.262) determines kx and kx0, and thus kz through
(5.260).

◮ Example 5.26: Rectangular waveguide partially filled with Teflon: first odd mode

Assume that a Teflon sample partially fills a WR-90 X-band rectangular waveguide of di-
mensions a = 22.86 by b = 10.16 mm, as shown in Figure 5.17. The sample has width
d = a/4 and material properties ǫr = 2.1, µr = 1. Plot the dispersion curve for the first odd
mode and compare it to that for the TE10 mode when the waveguide is completely filled
with air or with Teflon. Also plot |Ẽy| for both a partially filled waveguide and an air-filled
waveguide at 10 GHz.

Solution: The dispersion curve for the odd modes of the partially filled guide can be
plotted by numerically solving the characteristic equation (5.268) along with (5.260). Since
the materials are lossless, kz = β. Typically, the frequency is set and a search is conducted
for a value of β satisfying the two equations. With increasing frequency, more solutions for
β will appear, corresponding to both the fundamental mode and the higher-order modes.
Below the cutoff frequency of the fundamental mode, no solutions for β exist.

Figure 5.18 shows the dispersion curve of the lowest order odd mode for the guide partially
filled with Teflon. Also shown are the dispersion curves for the same guide completely filled
with air, and completely filled with Teflon. These curves can be generated from the usual
relationships

β =
√

k2 − k2c ,

kc = π/a.

They can also be generated by solving (5.268) and (5.260), with either d ≈ 0 (for the air-
filled guide) or d ≈ a (for the Teflon-filled guide). Comparing this limiting case for the two
solutions is a good way to check the solution for the partially filled guide.
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FIGURE 5.18
Dispersion plot for a waveguide partially filled with Teflon. Solid line is for the first odd
mode of the partially filled guide. Dashed lines correspond to the TE10 mode in a fully filled
guide.

Notice that the presence of Teflon lowers the cutoff frequency from 6.56 GHz for the air-
filled guide to 5.28 GHz. The dispersion curve is also lowered, but follows the same trend
as the curve for the air-filled guide. The cutoff frequency is above that of the Teflon-filled
guide (4.52 GHz). Also, since the field maximum is in the material region, and the field
minimum is in the air region, the dispersion curve is closer to that for Teflon than that for
air. The opposite effect occurs for the second mode (Example 5.27). The addition of the
dielectric also lowers the phase velocity (Figure 5.19). Hence dielectric-loaded waveguides
act as slow-wave structures; such structures are revisited in Example 5.28.
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FIGURE 5.19
Phase velocity for a waveguide partially filled with Teflon. Solid line is for the first odd
mode of the partially filled guide. Dashed lines correspond to the TE10 mode in a fully filled
guide.
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The magnitude of Ẽy may be computed from (5.263)–(5.265). The needed relation be-
tween A and B can be obtained from either (5.266) or (5.267). Figure 5.20 shows the
normalized field along with the TE10 field in an air-filled guide (both fields are normalized
to a maximum value of unity). Note that the presence of the material concentrates the
electric field within the material region at the center of the guide, and reduces it accordingly
in the air region. Also note that Ẽy is continuous at the air-material boundary, as required
by the boundary conditions.

 0

 0.2

 0.4

 0.6

 0.8

 1

-12 -10 -8 -6 -4 -2  0  2  4  6  8  10  12

air-filled
guide

partially filled
guide

|E
y
| 
(r

e
la

ti
v
e
)

x (mm)

FIGURE 5.20
Normalized electric field for a waveguide partially filled with Teflon. f = 10 GHz. Solid line
is for the first odd mode of the partially filled guide. Dashed lines correspond to the TE10

mode in an air-filled guide. Vertical lines indicate extent of the material. ◭

◮ Example 5.27: Rectangular waveguide partially filled with Teflon: first even mode

Repeat Example 5.26 to plot the dispersion curve for the first even mode of the partially
filled rectangular waveguide. Compare the curve to those of the TE20 mode for a guide fully
filled with air and with Teflon. Also, plot the fields at 15 GHz, and compare to those in a
fully filled guide.

Solution: The dispersion curve for the even modes of the partially filled guide can be
plotted by numerically solving the characteristic equation (5.261) along with the relationship
(5.260). Figure 5.21 shows the dispersion curve of the lowest-order even mode for the guide
partially filled with Teflon. Also shown are the dispersion curves for the TE20 mode in
guides completely filled with air and Teflon, respectively. As with the first odd mode of
Example 5.26, the effect of adding the Teflon is to lower the cutoff frequency from that of
the air-filled guide. The resulting dispersion curve is closer to that for an air-filled guide
than for a Teflon-filled guide — the opposite of the effect seen in Figure 5.18 for the first
odd mode. This is because the field maxima for the first even mode occur in the air region
of the partially filled guide, rather than in the material region. As seen in Figure 5.22, the
electric field is concentrated somewhat by the presence of the Teflon, but the field null is
maintained at the center of the guide.
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FIGURE 5.21
Dispersion plot for a waveguide partially filled with Teflon. Solid line is for the first even
mode of the partially filled guide. Dashed lines correspond to the TE20 mode in a fully filled
guide.
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FIGURE 5.22
Normalized electric field for a waveguide partially filled with Teflon. f = 15 GHz. Solid line
is for the first even mode of the partially filled guide. Dashed lines correspond to the TE20

mode in an air-filled guide. Vertical lines indicate extent of the material. ◭

A material-lined circular waveguide. Lining a circular waveguide with a material
layer can provide a variety of advantages over an empty guide, including bandwidth
improvement [129] and lowering of the phase velocity [51]. Consider a circular guide of
radius b with a material layer occupying the region a < ρ < b (region 2) adjacent to
the conductor (Figure 5.23). The material has permittivity ǫ̃c and permeability µ̃, while
free space (air) occupies region 1 (0 ≤ ρ ≤ a). We find that the boundary conditions
cannot be satisfied using fields TE or TM to the z-direction unless they are φ-invariant
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FIGURE 5.23

Material-lined waveguide.

(i.e., azimuthally symmetric). We will consider only the TE to z azimuthally symmetric
modes here.
We proceed as in the circular waveguide case, seeking a separation of variables solution

for the potential function ψ̃. By (5.228) this function takes the form

ψ̃h = C1J0(kρρ) + C2N0(kρρ)

since the fields are φ-invariant. Here k2ρ = k2 − k2z . Since the materials of regions 2
and 1 differ, the k values also differ and so do the kρ. However, to satisfy the boundary
conditions, kz must be the same in each region. We must omit the term containing
N0(kρρ) in region 1, as this function is unbounded near the z-axis. So we write

ψ̃h1 = AJ0(kρ0ρ), ψ̃h2 = CJ0(kρρ) +DN0(kρρ),

where
k2ρ0 = k20 − k2z , k2ρ = k2 − k2z , (5.269)

with k20 = ω2µ0ǫ0 and k2 = ω2µ̃ǫ̃c. The boundary condition on the conducting wall
requires

∂ψ̃h2
∂ρ

∣

∣

∣

∣

ρ=b

= 0,

leading to D = −CJ ′
0(kρb)/N

′
0(kρb), and therefore

ψ̃h2 = C

[

J0(kρρ)−N0(kρρ)
J ′
0(kρb)

N ′
0(kρb)

]

= B [J0(kρρ)N
′
0(kρb)−N0(kρρ)J

′
0(kρb)] .

By (5.198) the axial magnetic fields are

h̃z1 = Ak2ρ0J0(kρ0ρ),

h̃z2 = Bk2ρ [J0(kρρ)N
′
0(kρb)−N0(kρρ)J

′
0(kρb)] ,
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and by (5.200) the transverse electric fields are

ẽφ1 = Ajkρ0ωµ0J
′
0(kρ0ρ),

ẽφ2 = Bjkρωµ [J
′
0(kρρ)N

′
0(kρb)−N ′

0(kρρ)J
′
0(kρb)] .

Constants A and B are determined from the boundary conditions at ρ = a. Equating
H̃z1 = H̃z2 and Ẽφ1 = Ẽφ2 gives the simultaneous equations

Ak2ρ0J0(kρ0a) = Bk2ρf1,

−Akρ0µ0J1(kρ0a) = Bkρµ̃f2,

where

f1 = N0(kρa)J1(kρb)− J0(kρa)N1(kρb),

f2 = J1(kρa)N1(kρb)−N1(kρa)J1(kρb),

and where the relations J ′
0(x) = −J1(x) and N ′

0(x) = −N1(x) have been used. Setting
the determinant of the coefficient matrix to zero gives the characteristic equation for the
azimuthally symmetric TE modes,

µ̃

µ0
P (kρ0) +Q(kρ) = 0, (5.270)

where

P (kρ0) = kρ0
J0(kρ0a)

J1(kρ0a)
, Q(kρ) = kρ

f1
f2
. (5.271)

Simultaneous solution of (5.270) and (5.269) yields the dispersion relationship between
ω and kz.

◮ Example 5.28: Circular waveguide partially filled with barium tetratitinate

A circular waveguide having radius a = 27.88 mm is lined with a layer of the ceramic barium
tetratitinate (BaTi04O9), with an inner radius b = 0.9a = 25.09 mm. Assume the sample is
lossless, with ǫr = 38 and µr = 1. Plot the dispersion curve for the first n = 0 TE mode
and compare it to that for the TE01 mode when the guide is filled with air or with barium
tetratitinate. Plot the phase velocity for the partially filled and air-filled guides.

Solution: The dispersion curve for the partially filled guide can be plotted by numerically
solving the characteristic equation (5.270) along with the relations (5.269). Since the ma-
terials are lossless, kz = β. Some caution is required in the numerical solution process as
one or both of kρ0 and kρ will be imaginary. Hence we use (5.271) only when k20 ≥ β2 and
k2 ≥ β2. If k20 < β2, we define

√

k20 − β2 = jτ and use

J0(jx) = I0(x), J1(jx) = jI1(x), (5.272)

to find

P (τ ) = τ
I0(τa)

I1(τa)
.

If k2 < β2 we define
√

k2 − β2 = jχ and use (5.272) along with

N0(jx) = jI0(x)−
2

π
K0(x), N1(jx) = −I1(x) + j

2

π
K1(x),
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to find

Q(χ) = χ
K0(χa)I1(χb) + I0(χa)K1(χb)

K1(χa)I1(χb)− I1(χa)K1(χb)
.

With these definitions, the characteristic equation (5.270) can be used as is.
Typically, the frequency is set and one searches for β satisfying the two equations. Note

that additional solutions for β will appear with increasing frequency; these correspond to
both the fundamental mode and the higher-order modes. For frequencies below fundamental
mode cutoff, no solutions for β exist.

Figure 5.24 shows the dispersion curve of the lowest-order mode for the circular guide
lined with barium tetratitinate. Also shown are the dispersion curves for the TE01 mode in
the same guide completely filled with air, and completely filled with barium tetratitinate.
These can be generated from the usual relationships

β =
√

k2 − k2c ,

kc = p′01/a,

or by solving (5.270) and (5.269) with either a ≈ b (for the air-filled guide) or a ≈ 0 (for
the barium-tetratitinate-filled guide). Comparing this limiting case for the two solutions is
a good way to verify the solution for the partially filled guide.
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FIGURE 5.24
Dispersion plot for a circular waveguide lined with barium tetratitinate. Solid line is for the
first n = 0 TE mode of the partially filled guide. Dashed lines correspond to the TE01 mode
in a fully filled guide.

Figure 5.24 shows that the presence of barium tetratitinate lowers the cutoff frequency
and thus significantly reduces the phase velocity in the dielectric-lined guide. Since the
dielectric constant of the ceramic is relatively large, only a thin layer (one tenth the guide
radius) is needed for the low phase velocity. This slow-wave effect is used in microwave
amplifiers where a beam of electrons is sent down the axis of the guide with a velocity
approximately equal to the phase velocity of the wave. The interaction force between the
beam and the electromagnetic fields serves to transfer the kinetic energy of the beam to the
wave, producing the desired amplification. Figure 5.25 shows that the dielectric lowers the
phase velocity to less than 20% of the speed of light by 12 GHz.
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FIGURE 5.25
Phase velocity for a circular waveguide lined with barium tetratitinate. Solid line is for the
first n = 0 TE mode of the partially filled guide. Dashed line corresponds to the TE01 mode
in an air-filled guide. ◭

5.6.2 Cascaded hollow-pipe waveguides

Waveguide junctions arise when two dissimilar waveguides are connected together in a
plane, as might happen in the case of a transition from, say, a rectangular to a circular
guide [125], or when waveguides connect through an iris [101]. Cascaded connections
of dissimilar guides through multiple junctions are often used as filters or transformers
[145], and for the measurements of the properties of materials [49].

Analysis of multiply connected guides may be undertaken by extending the two-port
T-parameter cascading technique of § 4.11.5.7 to multi-mode systems. However, this
approach requires the inversion of ill-conditioned matrices. An alternative to cascading
network matrices is a recursive approach as described in § 4.11.5.6 for plane waves in
planar layeredmedia. Analysis begins at one end of the system and an input is propagated
through to the other end. This technique was proposed by Gessel and Ciric using a
mode-matching approach [68, 69], but without much physical insight into the meaning
of the equations. Franza and Chew provided a physical basis for a recursive mode-
matching approach [65] by employing transmission and reflection operators as is done
with layered media [35]. This approach provides some physical insight, but it is possible
to provide a much more compact form with a simpler perspective on the origination of
the various terms. Here we describe a simple implementation of the recursion approach
in terms of interfacial transmission and reflection matrices that relate the amplitudes of
the modes across the junction between two waveguide sections. These matrices may be
obtained by any convenient means, such as moment method, finite element method, or
mode matching. We give examples of computing the matrices for simple capacitive and
inductive steps in rectangular guides using mode matching.

5.6.2.1 Recursive technique for cascaded multi-mode waveguide sections

Consider a system composed of N uniform waveguide sections connected at N − 1 junc-
tions (Figure 5.26). It is assumed that the first waveguide (region 0) and the last wave-
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FIGURE 5.26

Cascaded system on N uniform waveguides.

guide (region N − 1) propagate a single dominant mode (although they need not be
identical waveguides). For convenience, the input port to the cascaded system of wave-
guides is taken to be at z = z1, even though the first section (region 0) may be of nonzero
length to allow for attenuation of the higher-order modes. If desired, the port may be
moved to a position z < z1 by accommodating the propagation of the dominant mode.
The output port is taken to be at z = zN .
As shown in Figure 5.27, the modal amplitudes of the waves traveling in the +z

direction immediately to the left of interface n are given by the vector an, while those
traveling in the −z direction are given by the vector bn. The global reflection matrix Rn
relates bn to an through bn = Rnan, and thus describes the reflection from the entire
structure to the right of interface n.
Assuming the dominant mode amplitudes are the first entries in the amplitude vectors,

the global reflection and transmission coefficients of the cascaded system are

S11 =
(b1)1
(a1)1

, S21 =
(aN )1
(a1)1

,

respectively, with the output port assumed matched, so that bN = 0. Here S11 and
S21 are the scattering parameters or S-parameters of the cascaded system [156]. All
the waveguides are assumed to contain isotropic materials, so S12 = S21 by reciprocity.
However, S11 = S22 only if the structure is symmetric.
The permittivity and permeability of the material uniformly filling section n are ǫ̃cn

and µ̃n, respectively, and the length of section n is ∆n. The interface between region
n − 1 and region n is located at z = zn. The interfacial reflection coefficient matrix at
this junction, Γn, relates the modal amplitudes of the waves reflected at the interface
to those incident from the left in the case that regions n − 1 and n are semi-infinite.
The interfacial transmission coefficient matrix Tn relates the modal amplitudes of the
waves transmitted through the interface to those incident at the interface from the left.
Similarly, Γ̄n is the interfacial reflection coefficient matrix at zn for waves incident on
the interface from the right, while T̄n is the interfacial transmission coefficient matrix at
zn for waves incident on the interface from the right.
As the mth modal wave (propagating or evanescent) transitions from the interface

at zn to the interface at zn+1, it will undergo a phase shift and attenuation given by
exp{−jknzm∆n}, where knzm is the propagation constant of the mth mode of region n.
It is thus expedient to define the propagation matrix for the modes of section n as a
diagonal matrix Pn with entries [Pn]i,j = δij exp{−jknzi∆n}, where δij is the Kronecker
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FIGURE 5.27

Region n of cascaded waveguide system.

delta.
The wave amplitudes incident on interface n + 1 may be viewed as consisting of two

terms. The first is given by the wave amplitudes incident on interface n multiplied by the
interfacial transmission matrix Tn to account for transmission through interface n, and
then multiplied by the propagation matrix Pn to account for propagation across region
n. Added to that term are the wave amplitudes reflected by the entire structure to the
right of region n, which are propagated back to interface n, reflected at interface n, and
then propagated back to interface n+ 1. The net result is

an+1 = Pn(Tnan) + PnΓ̄nPn(Rn+1an+1). (5.273)

Similarly, the wave amplitudes transmitted back into region n− 1 from region n can be
written as a sum of two terms:

bn = Γnan + T̄nPn(Rn+1an+1). (5.274)

The reflection coefficient for the cascaded structure can be computed recursively using
(5.273)–(5.274). From (5.273) it is seen that

an+1 = τnan (5.275)

where

τn = [I − Γ̄′
nR

′
n+1]

−1T ′
n

with Γ̄′
n = PnΓ̄n, T

′
n = PnTn, R

′
n+1 = PnRn+1, and I the identity matrix. Substituting

(5.275) into (5.274), we obtain

bn = Γnan + T̄nR
′
n+1τnan.

But bn = Rnan, so

Rn = Γn + T̄nR
′
n+1τn. (5.276)
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Equation (5.276) is the key recursive equation. To find S11 for the cascaded system,
the output port is matched terminated so that RN = 0. This implies RN−1 = ΓN−1.
Using (5.276), RN−2 is computed as

RN−2 = ΓN−2 + T̄N−2R
′
N−1τN−2.

This process is repeated until we reach R1. Then, S11 = (R1)11 since the (1, 1) entry in
the reflection matrix corresponds to the dominant mode.
The transmission coefficient for the cascaded system may be computed using the values

of τ generated while performing recursion on S11. From (5.275),

aN = τN−1aN−1,

aN−1 = τN−2aN−2,

aN−2 = τN−3aN−3,

...

Backsubstitution beginning with a2 = τ1a1 gives

aN = (τN−1τN−2τN−3 · · · τ1)a1 = τa1.

Thus, S21 = (τ)11.
If S12 and S22 are sought, the process may be repeated by recursing in the opposite

direction.
Note that this recursive technique may be used for any termination at the output port,

such as a short or open circuit, a known impedance, or the known reflection coefficient for
some other structure. This is useful when altering only a portion of a cascaded system.
Since the structure to the right of the altered portion is unchanged, its known reflection
may be used as the starting point in the recursion. For instance, if the unknown material
properties of a sample held in a waveguide sample holder are to be found through some
iterative search, then the structure to the right of the sample need not be reanalyzed,
since only the properties of the sample are changed during the search.

5.6.2.2 Junction matrices found using mode matching

The transmission and reflection matrices at a waveguide junction may be found using any
convenient method, including purely numerical techniques like finite element or integral
equation methods. Here the use of mode matching is detailed for the case where a smaller
waveguide opens completely into a larger guide (waveguide expansion), or where a larger
guide connects with a smaller guide (waveguide reduction). See Figure 5.28. In each
case, the smaller aperture is assumed to be completely contained within the larger. Note
that the waveguides need not have the same cross-sectional shape.
Assume guide A occupies the semi-infinite region z < 0 while guide B occupies z > 0,

as shown in Figure 5.29 for a simple capacitive step between two rectangular guides of
the same width. The transverse fields in region A (z < 0) may be expanded in a modal
series as

Ẽt(r) =

NA
∑

n=1

[

ane
−jkAz,nz + bne

jkAz,nz
]

ẽAn (ρ),

H̃t(r) =

NA
∑

n=1

[

ane
−jkAz,nz − bne

jkAz,nz
]

h̃An (ρ),
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FIGURE 5.28

Junction between two waveguides. Left: waveguide reduction. Right: waveguide expan-
sion.

while for the fields in region B,

Ẽt(r) =

NB
∑

n=1

[

cne
−jkBz,nz + dne

jkBz,nz
]

ẽBn (ρ),

H̃t(r) =

NB
∑

n=1

[

cne
−jkBz,nz − dne

jkBz,nz
]

h̃Bn (ρ).

For numerical expediency, the expansions have been truncated at NA modes for the fields
in region A and NB modes for region B. The propagation constants for the nth mode
in region {A,B} are given by kA,Bz,n , while ẽA,Bn are the transverse electric field wave
functions of the nth mode in region {A,B}.

Caution is warranted when combining the fields for TE and TM modes, as the modal
amplitudes must have the same units. For instance, the units carried by amplitude Anm
in (5.220) differ from those of amplitude Bnm in (5.225). In the expansions above, we
choose to specify ẽA,Bn for both TE and TM modes, then find the transverse magnetic
fields using

h̃A,Bn =
ẑ × ẽA,Bn

ZA,Bn

.

Here the wave impedances are, for modes TE or TM with respect to the z-direction,

ZA,Bn =











ωµ̃A,B

kA,Bz,n
, TEz,

kA,Bz,n

ωǫ̃cA,B
, TMz .

Application of the boundary conditions on tangential electric field and tangential mag-
netic field, respectively, at z = 0 gives

NA
∑

n=1

[an + bn]ẽ
A
n (ρ) =















NB
∑

n=1

[cn + dn]ẽ
B
n (ρ), ρ ∈ SB,

0, ρ ∈ ∆S,

(5.277)
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FIGURE 5.29

Step junction between two rectangular waveguides sharing a common bottom wall. (a)
waveguide expansion (b) waveguide reduction.

NA
∑

n=1

[an − bn]h̃
A
n (ρ) =

NB
∑

n=1

[cn − dn]h̃
B
n (ρ), ρ ∈ SB, (5.278)

for the case of waveguide reduction, and

NB
∑

n=1

[cn + dn]ẽ
B
n (ρ) =















NA
∑

n=1

[an + bn]ẽ
A
n (ρ), ρ ∈ SA,

0, ρ ∈ ∆S,

(5.279)

NB
∑

n=1

[cn − dn]h̃
B
n (ρ) =

NA
∑

n=1

[an − bn]h̃
A
n (ρ), ρ ∈ SA, (5.280)

for the case of waveguide expansion. Here {SA, SB} is the cross-sectional surface of
waveguide {A,B}, and ∆S is the PEC surface joining the two guides at the junction.
See Figure 5.28.
To obtain a system of linear mode-matching equations for waveguide reduction, (5.277)

is multiplied by ẽAm(ρ) (1 ≤ m ≤ NA) and integrated over SA, while (5.278) is multiplied
by h̃Bm(ρ) (1 ≤ m ≤ NB) and integrated over SB . Similarly, for waveguide expansion,
(5.279) is multiplied by ẽBm(ρ) (1 ≤ m ≤ NB) and integrated over SB, while (5.280) is
multiplied by h̃Am(ρ) (1 ≤ m ≤ NA) and integrated over SA. This gives, in both cases,
two sets of simultaneous equations of the form

NA
∑

n=1

anCmn +

NA
∑

n=1

bnCmn −
NB
∑

n=1

cnDmn −
NB
∑

n=1

dnDmn = 0 (1 ≤ m ≤ NA), (5.281)

NA
∑

n=1

anEmn −
NA
∑

n=1

bnEmn −
NB
∑

n=1

cnFmn +

NB
∑

n=1

dnFmn = 0 (1 ≤ m ≤ NB). (5.282)
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For waveguide reduction, the coefficients may be written as

Cmn = fAn δmn, (5.283)

Dmn = Qmn, (5.284)

Emn =
1

ZBmZ
A
n

Qnm, (5.285)

Fmn =

(

1

ZBn

)2

fBn δmn, (5.286)

where

fAn =

∫

SA

eAn (ρ) · eAn (ρ) dS, fBn =

∫

SB

eBn (ρ) · eBn (ρ) dS, (5.287)

and δmn is the Kronecker delta. Here mode orthogonality in each waveguide system has
been used to obtain (5.283) and (5.286). For waveguide expansion, the coefficients are

Cmn = Qnm, (5.288)

Dmn = fBn δmn, (5.289)

Emn =

(

1

ZAn

)2

fAn δmn, (5.290)

Fmn =
1

ZAmZ
B
n

Qmn. (5.291)

In these equations,

Qmn =

∫

S0

ẽBn (ρ) · ẽAm(ρ) dS, (5.292)

where S0 is the common aperture at the waveguide junction: SA for a waveguide expan-
sion, and SB for a waveguide reduction.

To find the reflection and transmission matrices, let dn = 0. In the case of waveguide
reduction, the matrices C and F are diagonal by mode orthogonality, and it is expedient
to write (5.281)–(5.282) as the vector equations

− a− b+ (C−1D)c = 0,

− (F−1E)a+ (F−1E)b+ c = 0,

since the inverses of C and F are trivial to compute. Defining the interfacial reflection
matrix Γ through b = Γa and the interfacial transmission matrix through c = Ta, the
equations may be solved to give

T = 2(V U + I)−1V, Γ = (UT − I), U = C−1D, V = F−1E

where I is the identity matrix. In the case of waveguide expansion, the matrices D and
E are diagonal, and similar steps give

T = 2(V U + I)−1V, Γ = −(UT − I), U = E−1F, V = D−1C.

Finally, a compact form for Γ and T may be obtained by noting that Qmn for wave-
guide reduction is identical to Qnm for waveguide expansion. Thus, substituting from
(5.283)–(5.291), we have the compact form
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Waveguide reduction

T = 2 (BA+ I)
−1
B, Γ = (AT − I),

Amn =
Qmn
fAm

(1 ≤ m ≤ NA, 1 ≤ n ≤ NB),

Bmn =
ZBm
ZAn

Qnm
fBm

(1 ≤ m ≤ NB, 1 ≤ n ≤ NA).

Waveguide expansion

T = 2 (BA+ I)−1B, Γ = −(AT − I),

Amn =
ZAm
ZBn

Qmn
fAm

(1 ≤ m ≤ NA, 1 ≤ n ≤ NB),

Bmn =
Qnm
fBm

(1 ≤ m ≤ NB, 1 ≤ n ≤ NA).

In these expressions, Qmn is computed for a waveguide reduction.
Note that the only term used in computing Γ and T that is frequency or material-

parameter dependent is the ratio of the wave impedances. This fact may be used to
reduce the computation time in iterative applications or during sweeps across frequency
bands.

◮ Example 5.29: Capacitive step in a rectangular waveguide

Consider a capacitive junction [82] between two rectangular waveguides of different heights
hA and hB but identical widths, both sharing a common lower wall (see Figure 5.29). Find
the values fn and Qmn that determine the reflection and transmission matrices.

Solution: If the waves originating from the left transition from a shorter to a taller guide,
such that hB > hA, then the junction represents a waveguide expansion. If hB < hA, the
transition is a waveguide reduction.

It is assumed that all junctions in the waveguide system are capacitive, and that the first
junction is excited solely by a TE10 mode. Then, by symmetry, the modes in all the guides
will be either TE1νn or TM1νn , where νn is the index of mode n according to

νn =











n− 1

2
, TE1νn , n = 1, 3, 5, . . .

n

2
, TM1νn , n = 2, 4, 6, . . .

The transverse wave functions of the nth mode in region {A,B} for a rectangular guide are
thus given by

ẽ
A,B
n =







































x̂kA,By,n cos
(π

a
x
)

sin(kA,By,n y)

− ŷ
π

a
sin
(π

a
x
)

cos(kA,By,n y), TEz

− x̂
π

a
cos
(π

a
x
)

sin(kA,By,n y)

− ŷkA,By,n sin
(π

a
x
)

cos(kA,By,n y), TMz

(5.293)
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where the various wavenumbers are related through

(kA,Bc,n )2 = (π/a)2 + (kA,By,n )2,

(kA,B)
2 = ω2µ̃A,B ǫ̃

c
A,B = (kA,Bc,n )2 + (kA,Bz,n )2,

kA,By,n =
νnπ

hA,B
.

The functions fA,Bn are found using (5.287). Substituting for ẽA,Bn and integrating, we
have

fA,Bn =
a

2

hA,B
ǫνn

(kA,Bc,n )2, ǫνn =

{

1, νn = 0,

2, νn > 0.

The reflection and transmission matrices are determined by the values of Qmn found from
(5.292). Substituting from (5.293), it is found that Qmn depends on whether the wave
functions in the product in (5.292) are TEz or TMz.

TEm ·TEn

Qmn =











fBn , kAym = kByn

a

2
(−1)νn

kAym(kBcn)
2 sin(kAymhB)

(kAym)2 − (kByn)2
, kAym 6= kByn

TMm ·TMn

Qmn =











fBn , kAym = kByn

a

2
(−1)νn

kByn(k
A
cm)2 sin(kAymhB)

(kAym)2 − (kByn)2
, kAym 6= kByn

TMm ·TEn

Qmn =







0, kAym = kByn
π

2
(−1)νn sin(kAymhB), kAym 6= kByn

TEm ·TMn

Qmn = 0. ◭

◮ Example 5.30: Capacitive waveguide iris

Consider a thick iris in an X-band rectangular waveguide (Figure 5.30), corresponding to
three cascaded rectangular guides (N = 3). Guides 0 and 2 are standard air-filled WR-90
waveguides with dimensions a = 0.9 inch by b = 0.4 inch (22.86 by 10.16 mm). The iris
is also air filled, with thickness ∆1 = 0.125 inch (3.175 mm) and step height h1 = 0.125
inches (3.175 mm). If the output port is taken to be at the second interface (with ∆2 = 0),
compute the S-parameters of the iris waveguide system. Explore the dependence of these
parameters on the number of modes used for field expansion.
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FIGURE 5.30
Side view of a three-region capacitive X-band iris. All regions are empty. h0 = h2 =
10.16 mm, h1 = 3.175 mm, ∆1 = 3.175 mm.

Solution: From the given dimensions, we have h0 = h2 = 0.4 inch (10.16 mm). To ensure
rapid convergence of the mode-matching technique, the number of modes in each region
should be chosen carefully [68, 65, 117]. For the waveguide step problem, the ratio of the
number of modes used to the height of the opening should be kept constant (i.e., Ni/hi
should be the same for each region). Since there is no TM10 mode, it is useful to choose the
number of modes as Ni = 2MRi+1. Here Ri is an integer determined from the least common
multiple of the step heights, and M is an integer multiplier. For the present waveguide iris
example, h0 = h2 = 0.4 and h1 = 0.125. Thus, h1/h0 = 16/5, and R0 = R2 = 16, R1 = 5.
The table below shows the convergence of S11 and S21 at f = 12.4 GHz as M is increased.

M N0 N1 |S11| (dB) ∠S11 (◦) |S21| (dB) ∠S21 (◦)
1 33 11 -1.08495 -167.779 -6.55492 -77.7787
2 65 21 -1.08367 -167.800 -6.55941 -77.8001
5 161 51 -1.08327 -167.807 -6.56085 -77.8069
10 321 101 -1.08323 -167.808 -6.56099 -77.8076

The S-parameters for the waveguide iris were generated across X-band using mode match-
ing with M = 10. Because the structure is symmetric, S22 = S11. The results are shown in
Figures 5.31 and 5.32.
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FIGURE 5.31
Magnitude of S-parameters of a capacitive waveguide iris.
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FIGURE 5.32
Phase of S-parameters of a capacitive waveguide iris. ◭

◮ Example 5.31: Waveguide sample holder

Consider a sample holder comprising a material sandwiched between two capacitive wave-
guide irises in an X-band rectangular waveguide (Figure 5.33). This is a cascading of five
rectangular waveguides, with aperture heights h0 = 10.16, h1 = 2.54, h2 = 5.08, h3 = 2.54,
and h4 = 10.16 mm. Guides 0 and 4 are standard air-filled WR-90 waveguides with dimen-
sions a = 0.9 inch by b = 0.4 inch (22.86 by 10.16 mm). All regions are air-filled except
for the central region (region 2), which contains a lossless dielectric material of relative per-
mittivity ǫr2 = 2.1 (Teflon). Taking the output port at the fourth interface (with ∆4 = 0),
compute the S-parameters of the iris waveguide system.

Δ� Δ Δ!

ℎ#

ℎ� ℎ ℎ!

ℎ$
%& , '&

FIGURE 5.33
Side view of a five-region X-band sample holder. All regions are empty except region 2,
which contains a material with µr = 1, ǫr = 2.1. h0 = h4 = 10.16 mm, h1 = h3 = 2.54 mm,
h2 = 5.08 mm, ∆1 = ∆3 = 2.54 mm, ∆2 = 5.08 mm.

Solution: The number of modes in each region is based on the least common multiple of
the heights as Ni = 2MRi + 1, with R0 = 4, R1 = 1, R2 = 2, R3 = 1, and R4 = 4. The
S-parameters for the sample holder as a function of frequency are shown in Figures 5.34
and 5.35, where they are computed using M = 50. Note the deep null in S11 near 10 GHz
where there is near complete transmission through the system. For frequencies near the
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null, convergence requires a large number of modes. Computation can be accelerated by
extrapolating from smaller values of M .
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FIGURE 5.34
Magnitude of S-parameters of a waveguide sample holder.
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FIGURE 5.35
Phase of S-parameters of a waveguide sample holder. ◭

◮ Example 5.32: Inductive step in a rectangular waveguide

Consider an inductive junction [82] between two rectangular waveguides of different widths
WA andWB but identical heights, both centered on the z-axis (Figure 5.36). Find the values
fn and Qmn that determine the reflection and transmission matrices.

Solution: If the waves originating from the left transition from a narrower to a wider guide,
such that WB > WA, then the junction represents a waveguide expansion. If WB < WA,
the transition is a waveguide reduction.



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 604 — #628
✐

✐

✐

✐

✐

✐

604 Electromagnetics

�

� = 0

 !
"!

#

$!

%!&' &()' )(

∆)

�

� = 0

 !
"!

#

$!

%!&' &(

)'
)(

∆)

(a) (b)

)+ )+

∆) ∆)

FIGURE 5.36
Top view of an inductive step junction between two centered rectangular waveguides of
different widths. (a) waveguide expansion (b) waveguide reduction.

It is assumed that all junctions in the waveguide system are inductive, with each guide
centered on the z-axis, and that the first junction is excited solely by a TE10 mode. Then,
by symmetry, the modes in all the guides will be TEn0, where n is an odd integer. Since
all the guides are centered on the z-axis, the transverse wave functions of the nth mode in
region {A,B} for a rectangular guide are given by

ẽ
A,B
n = ŷkA,Bxn sin

[

kA,Bxn (x− 1
2
WA,B)

]

(|x| ≤ 1
2
WA,B, n = 1, 2, . . .). (5.294)

Here

kA,Bxn =
(2n− 1)π

WA,B
,

and the relationship between the wavenumbers is

(kA,B)
2 = ω2µ̃A,B ǫ̃

c
A,B = (kA,Bxn )2 + (kA,Bzn )2.

Note that it is convenient for computational purposes to rewrite the wave functions (5.294)
using a trigonometric identity as

ẽ
A,B
n = ŷ(−1)nkA,Bxn cos(kA,Bxn x). (5.295)

The functions fA,Bn are found using (5.287). Substitution for ẽA,Bn from (5.295) and
integration give

fA,Bn =
WA,Bb

2
(kA,Bx,n )2.

The reflection and transmission matrices are determined by the values of Qmn found from
(5.292). Substituting from (5.295) and integrating, Qmn is found to be

Qmn =











(−1)m+nfBn , kAxm = kBxn

(−1)m+12b cos

(

kAxm
WB

2

)

(kBxn)
2kAxm

(kBxn)2 − (kAxm)2
, kAxm 6= kBxn

for a waveguide reduction, and

Qmn =











(−1)m+nfAm, kAxm = kBxn

(−1)n+12b cos

(

kBxn
WA

2

)

(kAxm)2kBxn
(kAxm)2 − (kBxn)2

, kAxm 6= kBxn

for a waveguide expansion. ◭
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◮ Example 5.33: Inductive waveguide iris

Consider a thick inductive iris in an S-band rectangular waveguide, as shown in Figure 5.37,
corresponding to three cascaded rectangular guides (N = 3). Guides 0 and 2 are standard
air-filled WR-284 waveguides with dimensions a = 2.84 inch by b = 1.34 inch (72.136 by
34.036 mm). The iris region is cubical shaped, with thickness ∆1 = 34.036 mm and width
W1 = 34.036 mm. The iris is filled with a dielectric material of relative permittivity ǫr = 2.1
(Teflon). Taking the output port at the second interface (with ∆2 = 0), compute the
S-parameters of the iris waveguide system.

Δ�

 !  �  "#$ , %$

FIGURE 5.37
Top view of a three-region inductive S-band iris. ǫr = 2.1, µr = 1, W0 = W2 = 72.136 mm,
W1 = ∆1 = 34.036 mm.

Solution: From the given dimensions, we have W0 = W2 = 2.84 inch (72.136 mm). The
ratio of W0 to W1 does not allow for a simple relationship between the number of modes
in each waveguide region, so the field expansion is done with N0 = N2 = 200 modes, and
N1 = 100 modes. This provides reasonable accuracy in the magnitude and phase of the
S-parameters, which are shown in Figures 5.38 and 5.39 as a function of frequency. As was
noted for the sample holder of Example 5.31, there is a deep null in S11 where there is near
complete transmission through the system, in this case near 10 GHz.
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FIGURE 5.38
Magnitude of S-parameters of an inductive iris.
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FIGURE 5.39
Phase of S-parameters of an inductive iris. ◭

5.6.3 TEM modes in axial waveguiding structures

TEM modes are the primary operating modes of transmission lines. They offer zero
cutoff frequency and, under lossless conditions, zero dispersion. Transmission line theory
is extensive, and here we only consider the basic concepts of the propagation of TEM
modes. We assume the geometry of the guiding structure is independent of a chosen axial
direction, and that the structure is composed of conductors immersed in a homogeneous
isotropic material with permittivity ǫ̃c(ω) and permeability µ̃(ω).

5.6.3.1 Field relationships for TEM modes

In §5.4.2.1 we found that TEM fields can be represented by either a magnetic or an
electric Hertzian potential. In either case the potential satisfies

∇2Π̃ = 0,

(

∂2

∂u2
+ k2

)

Π̃ = 0.

With z as the guided-wave axis, this equation has solutions of the form

Π̃(ρ, z, ω) = ψ̃(ρ, ω)e∓jkz ,

where the ∓ signs yield waves propagating in the ±z directions, respectively, and ψ̃
satisfies ∇2

t ψ̃ = 0. Note that the propagation constant is given by the wavenumber k;
unlike TE and TM modes in hollow-pipe waveguides, guided TEM modes lack cutoff
frequencies and therefore propagate at all frequencies. This behavior is similar to that
of a uniform plane wave.

If we adopt the electric Hertzian potential, the electric field is given by (5.128). It is
traditional to define a new potential function Φ̃ as

Φ̃(ρ, ω) = ±jkψ̃(ρ, ω),



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 607 — #631
✐

✐

✐

✐

✐

✐

Field decompositions and the EM potentials 607

such that

Ẽ(r, ω) = ẽt(ρ, ω)e
∓jkz , (5.296)

H̃(r, ω) = h̃t(ρ, ω)e
∓jkz ,

where

ẽt = −∇tΦ̃, h̃t = ±ωǫ̃
c

k
ẑ×∇tΦ̃.

Then

ẽt = −∇tΦ̃, (5.297)

h̃t = ± ẑ× ẽt
ZTEM

, (5.298)

where ZTEM = η =
√

µ/ǫ̃c is the TEM wave impedance. Note that since ∇2
t ψ̃ = 0,

∇2
t Φ̃ = 0. (5.299)

The wave nature of the TEM fields. The field components for TEM modes vary
as e∓jkz . Thus, the propagation constant is identical to the wavenumber in the medium
supporting the waveguiding structure and the wave characteristics are the same as those
for a plane wave. We can write the propagation constant as k = β − jα so that Ẽ, H̃ ∼
e∓jβze∓αz. If the source of the fields lies at z = d, then for z > d we choose the minus
sign to obtain a wave propagating away from the source; for z < −d we choose the plus
sign.
When the guide material is a good dielectric, we may assume µ̃ = µ is real and

frequency independent and use (4.239) to show that

k = β − jα = ω
√

µRe ǫ̃c
√

1− j tan δc

where δc is the loss tangent (4.238). Under low-loss conditions where tan δc ≪ 1, we may
approximate the square root using the first two terms of the binomial series to get

β − jα ≈ ω
√

µRe ǫ̃c
(

1− j 12 tan δc
)

, (5.300)

and therefore

β ≈ ω
√

µRe ǫ̃c, α = −ω Im ǫ̃c

2η
(5.301)

where η =
√

µ/Re ǫ̃c is the lossless intrinsic impedance. Comparing (5.300) with (5.205),
we see that the cutoff frequency of TEM modes is zero, hence they propagate at all
frequencies.
We can compute the phase and group velocities of the wave just as we did for plane

waves: vp = ω/β and vg = dω/dβ. The guided wavelength of a TEM wave is λg = 2π/β.
Under low-loss conditions, (5.301) yields

vp = vg =
1√

µRe ǫ̃c
,

so the wave propagates (approximately) without dispersion.
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Attenuation due to conductor losses for TEM modes. The attenuation of TEM
modes due to imperfectly conducting metals in the guiding structure may be computed
using a perturbation method, exactly as with hollow-pipe guides. The attenuation con-
stant is given by (5.216):

αc =
Pd(0)/l

2P0
,

where P0 is the time-average power carried by the guide at z = 0 and Pd(0)/ℓ is the
power dissipated per unit length in the conductors.

5.6.3.2 Voltage and current on a transmission line

We define the frequency-domain voltage between two points P1 and P2 in a specific
cross-sectional plane of the TEM-mode waveguiding structure as the line integral of the
electric field (5.296):

Ṽ21(z, ω) = −
∫ P2

P1

Ẽ(ρ, z, ω) · dl.

Use of (5.297) gives

Ṽ21(z, ω) = e∓jkz
∫ P2

P1

∇tΦ̃(ρ, ω) · dl =
[

Φ̃(ρ2, ω)− Φ̃(ρ1, ω)
]

e∓jkz = Ṽ0e
∓jkz

regardless of the path taken from P1 to P2. So the voltage Ṽ21 is a traveling wave.
Moreover, the spatial dependence of the potential in the transverse plane is identical to
that of the static potential. Hence we can define an absolute potential in the manner of
the absolute static potential, such that the potential difference is the difference in absolute
potentials evaluated at ρ2 and ρ1 with a reference potential chosen at a convenient point.

The voltage difference Ṽ0 can be maintained by using a pair of perfect electric conduc-
tors with a z-invariant geometry (Figure 5.40). Observe that we cannot maintain the
voltage difference with a single conductor, so a hollow-pipe guide cannot support a TEM
mode. Extension of the voltage concept to a set of more than two conductors is left for
the interested reader. By proper choice of reference potential, we can define the potential
on conductor 1 to be a voltage −Ṽ0/2, and on conductor 2 to be a voltage Ṽ0/2, such
that the difference is Ṽ0. Then the electric field lines will emanate from conductor 1,
which carries a positive charge, and terminate on conductor 2, which carries a negative
charge. Because the fields are TEM, both the electric and magnetic fields lie entirely in
the transverse plane.

There is an important relationship between the transmission line voltage and the cur-
rent carried by each conductor. Assume for simplicity that the conductors are embedded
in a lossless material so that ǫ̃c = ǫ and µ̃ = µ are both real. The current can be found
by first computing the surface charge density on the conductors using the boundary
condition on normal D̃:

ρ̃s(r, ω) = e∓jkz n̂ · ǫẽt(ρ, ω), (5.302)

where ρ describes points on the surface of the conductors. Hence the charge is a traveling
wave. Similarly, the surface current density on the surface of the conductors is

J̃s(r, ω) = e∓jkz n̂× h̃t(ρ, ω) = ±e∓jkzn̂× ẑ× ẽt(ρ, ω)

ZTEM
,

or

J̃s = ±ẑe∓jkz
n̂ · ẽt
ZTEM

.
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FIGURE 5.40

Two-conductor transmission line.

The current is also a traveling wave, and flows in the axial direction. The current flowing
at some axial distance z can be found by integrating the surface current density. Using
(5.302) and integrating around the conductor with the positive charge, we have

Ĩ(z, ω) =

∮

Γ

ẑ · J̃s(r, ω) dl = ± 1

ǫZTEM

∮

Γ

ρ̃s(r, ω) dl = Ĩ0e
∓jkz .

Next examine Figure 5.41. The total charge lying on the surface of the positively charged
conductor between z0 − ℓ/2 and z0 + ℓ/2 is

Q̃ =

∫

S

ρ̃s dS =

∫ z0+ℓ/2

z0−ℓ/2

∮

Γ

ρ̃s dl dz.

Thus, for a wave traveling in the +z direction,

Q̃ = ǫZTEM Ĩ0

∫ z0+ℓ/2

z0−ℓ/2
e−jkz dl = ǫZTEM Ĩ0e

−jkz0 2 sin
(

k ℓ2
)

k
.

Assuming kℓ≪ 1 and using sinx ≈ x for small x, we have the charge per unit length at
z = z0:

Q̃

ℓ
= ǫZTEM Ĩ0e

−jkz0 .

With this we can compute the capacitance per unit length,

C =
C

ℓ
=
Q̃/ℓ

Ṽ
= ǫZTEM

Ĩ0e
−jkz0

Ṽ0e−jkz0
= ǫη

Ĩ0

Ṽ0
= ǫ

η

Rc
,
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FIGURE 5.41

Calculation of the capacitance of a two-conductor transmission line.

and write the current as

Ĩ =
Ṽ0
Rc
e∓jkz

where

Rc =
Ṽ0

Ĩ0
=
ǫZTEM

C
=
ǫη

C
(5.303)

is the characteristic resistance of the transmission line.
Transmission lines have inductance as well as capacitance [39]. Consider Figure 5.42;

we may think of the two conductors as forming a long loop carrying current Ĩ(z) =
Ĩ0e

−jkz . The magnetic flux through surface S is

ψ̃m =

∫ z0+ℓ/2

z0−ℓ/2

∫ P2

P1

µH̃ · n̂ dS.

Use of (5.298) gives, for a wave traveling in the +z direction,

ψ̃m =

∫ z0+ℓ/2

z0−ℓ/2

∫ P2

P1

µ

ZTEM
n̂·(ẑ×ẽt)e

−jkz dS =
µ

ZTEM

∫ z0+ℓ/2

z0−ℓ/2

[

∫ P2

P1

−ẽt · dl
]

e−jkz dz.

The inner integral is just the voltage, so

ψ̃m =
µṼ0
ZTEM

∫ z0+ℓ/2

z0−ℓ/2
e−jkz dz =

µṼ0
ZTEM

e−jkz0
2 sin

(

k ℓ2
)

k
.
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FIGURE 5.42

Calculation of the inductance of a two-conductor transmission line.

Assuming kℓ << 1 and using sin(x) ≈ x for small x, we have the flux per unit length at
z = z0:

ψ̃m
ℓ

=
µ

ZTEM
Ṽ0e

−jkz0 .

Using this, we compute the inductance per unit length:

L =
ψ̃m/ℓ

Ĩ
=

µ

ZTEM

Ṽ0e
−jkz0

Ĩ0e−jkz0
=
µ

η
Rc.

But, since Rc = ǫη/C, we have

LC =

(

µ

η
Rc

)(

ǫη

Rc

)

= µǫ

and
L

C
=

(

µ

η
Rc

)(

Rc
ǫη

)

= R2
c

so that
Rc =

√

L/C. (5.304)

5.6.3.3 Telegraphist’s equations

With perfect conductors and lossless materials, the method used to compute capacitance
and inductance for a transmission line is identical to that used in statics and quasistatics.
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The formulas obtained in those sections can be used to determine the characteristic resis-
tance of a transmission line. For lossy lines, the behaviors of the voltage and current are
often described by a set of coupled differential equations called the telegraphist’s equa-
tions. These may be derived from Maxwell’s equations via some simplifying assumptions.

Suppose the conductors have conductivity σ̃c and are embedded in a material having
frequency-independent permeability µ and complex permittivity ǫ̃c. Because the conduc-
tors are imperfect, the current will penetrate into the volume, and as a result of Ohm’s
law, J̃ = σẼ, the electric field inside the conductor will have a z-component. So the
transmission line mode is not purely TEM in this circumstance and, in fact, can sup-
port radiation (see [104] for a rigorous development of transmission line theory based
on Maxwell’s equations). For simplicity we consider the addition of loss to only slightly
perturb the ideal fields found with no loss and continue to regard the transmission-line
mode as TEM.

Consider the path Γ shown in Figure 5.43, having segments along the surface of the
conductors and transverse to the conductors. The large-scale form of Faraday’s law reads

∮

Γ

Ẽ · dl = −jωψ̃m.

The integrals transverse to the conductors give the voltages at z and z + ∆z. For ∆z
small, the magnetic flux is approximately

ψ̃m = ∆z

[

∫ P2

P1

µH̃ · n
]

= ∆zLeĨ(z, ω)

where Le is the external inductance per unit length of the transmission line. The inte-
grals along the surface of the conductors may be approximated using the planar surface
impedance relationship (3.214). For conductor 1 we have

∫

C1

Ẽ · dl = Ĩ

∫ z+∆z

z

1 + j

δσcw1
dl = ∆zĨR1 + jω∆zL1Ĩ ,

while for conductor 2,
∫

C2

Ẽ · dl = ∆zĨR2 + jω∆zL2Ĩ .

Here,

Rn =
1

σcδwn
and Ln =

1

ωσcδwn

are, respectively, the resistance and internal inductance per unit length of conductor n.
Also, δ is the skin depth of the conductor and wn is an appropriate width parameter
depending on the cross-sectional geometry of conductor n. For circular wires of radius
a, (3.225) reveals that w = 2πa when δ ≪ a. As shown below, R may also be computed
using power considerations. We now write Faraday’s law as

Ṽ (z +∆z)− Ṽ (z) + ∆zĨ(R1 + R2) = −jω∆z(L1 + L2 + Le)

or
Ṽ (z +∆z)− Ṽ (z)

∆z
= −Ĩ(R+ jωL)
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FIGURE 5.43

Diagram for derivation of the first telegraphist’s equation.

where R = R1 + R2 is the total resistance per unit length and L = L1 + L2 + Le is
the total inductance per unit length of the transmission line. As ∆z → 0, the left side
becomes a derivative so that

dṼ

dz
= −ĨZ (5.305)

where Z = R+ jωL is the series impedance per unit length of the line. Equation (5.305)
is the first telegraphist’s equation.
The second telegraphist’s equation follows from the large-scale form of Ampere’s law.

We start with

∇× H̃ = J̃i + jωǫ̃cẼ = J̃i + jω(Re ǫ̃c + j Im ǫ̃c)Ẽ

and take the divergence to get

∇ · J̃i = −jω(Re ǫ̃c)∇ · Ẽ+ ω(Im ǫ̃c)∇ · Ẽ.

Consider Figure 5.44. Integrating over the closed surface S consisting of the surfaces Si
for i = 1, 2, 3, we have

∮

S

J̃i · n̂ dS = −jω(Re ǫ̃c)
∮

S

Ẽ · n̂ dS +

∮

S

ω Im(ǫ̃c)Ẽ · n̂ dS. (5.306)

The left side is the flux of the current through S, consisting of the current Ĩ(z + ∆z)
flowing out through S1 and the current Ĩ(z) flowing in through S2. Since we consider Ẽ
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to be predominantly transverse to z, the integrals on the right side only contribute over
S3. Noting that for the lossless transmission line

∮

S

Ẽ · n̂ dS =
1

ǫ

∮

s

D̃ · n̂ dS = Q̃/ǫ,

and that the capacitance per unit length is

C =
Q̃/Ṽ

∆z
,

we have
∮

S

Ẽ · n̂ dS =
∆zC

ǫ
Ṽ

and by (5.306)

Ĩ(z +∆z)− Ĩ(z) = ω
Im ǫ̃c

Re ǫ̃c
∆zCṼ − jω∆zCṼ .

Division by ∆z and the limit passage ∆z → 0 yield

dĨ

dz
= −Ṽ (G+ jωC)

where

G = −ω Im ǫ̃c

Re ǫ̃c
C = ω tan δcC (5.307)

is the conductance per unit length. Here tan δc is the loss tangent of the material support-
ing the conductors. Note that GṼ is the shunt current per unit length flowing between
the conductors through the lossy material in between. If the material is a dielectric with
real permittivity ǫ and conductivity σd, then

G =
σd
ǫ
C.

From this we have
C

G
=

ǫ

σd
,

which is identical to the RC product relationship (3.181) found using the quasistatic
definitions of resistance and capacitance. Finally, defining the shunt susceptance per
unit length,

Y = G+ jωC,

we have the second telegraphist’s equation

dĨ

dz
= −Ṽ Y. (5.308)

Equations (5.305) and (5.308) form a coupled system of differential equations that may
be easily separated using substitution. The result is a set of wave equations,

(

d2

dz2
− γ2

){

Ṽ (z)

Ĩ(z)

}

= 0,

where

γ =
√
YZ =

√

(R+ jωL)(G+ jωC) = jω
√
LC

√

1− R

ωL

G

ωC
− j

(

R

ωL
+

G

ωC

)

= α+ jβ
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FIGURE 5.44

Diagram for derivation of the second telegraphist’s equation.

is the propagation constant for the transmission line. Here α = Re{γ} is the attenuation
constant and β = Im{γ} is the phase constant of the traveling wave. As usual, we can
use β to determine the phase and group velocities vp = ω/β and vg = dω/dβ along with
the wavelength λ = ω/β. Solution for the voltage gives

Ṽ (z) = Ṽ +e−γz + Ṽ −eγz,

a superposition of waves traveling in the +z and −z directions. Equation (5.305) yields
the current in terms of the voltage:

Ĩ(z) = − 1

Z

dṼ (z)

dz
=

1

Zc
[Ṽ +e−γz − Ṽ −eγz]

where

Zc =

√

Z

Y
=

√

R+ jωL

G+ jωC
=

√

L

C

√

1− j R
ωL

1− j G

ωC

is the characteristic impedance of the transmission line. Note that for a lossless line,
where R = G = 0, we have

γ = jω
√
LC = jω

√
µǫ = jk, Zc =

√

L/C = Rc.

These results match those obtained earlier for a lossless line.
Most transmission lines are designed with minimal losses (and hence minimal attenu-

ation and dispersion) in mind. By definition, a low-loss transmission line has

R

ωL
≪ 1,

G

ωC
≪ 1.
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FIGURE 5.45

Cross-section of a lossless transmission line.

Under these conditions, a binomial series approximation gives

γ ≈ jω
√
LC

[

1− j
1

2

(

R

ωL
+

G

ωC

)]

,

so that

α ≈ 1

2

(

R

Rc
+ GRc

)

, β ≈ jω
√
LC. (5.309)

Here Rc =
√

L/C is the characteristic resistance of a lossless transmission line. To this
order of approximation, the phase constant is identical to that of a lossless line.

5.6.3.4 Power carried by time-harmonic waves on lossless transmission lines

The power carried by a time-harmonic wave propagating on a transmission line is defined
as the time-average Poynting flux passing through the cross-section:

Pav =
1

2

∫

CS

Re
{

Ě× Ȟ∗} · ẑ dS.

For simplicity we assume the line is lossless; then

Pav =
1

2

∫

CS

Re
{

Ět × Ȟ∗
t

}

· ẑ dS

since the fields are transverse to z. It is convenient to express this in terms of the
transmission line voltage and current. Figure 5.45 shows the transverse (cross-sectional)
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plane at axial position z. The voltage difference between the conductors is V̌0, with
conductor 2 held at a reference zero potential. Using ět = −∇Φ̌, and assuming the wave
is propagating in the +z direction, we have

Pav = −1

2

∫

CS

Re
{

e−jkz∇Φ̌× Ȟ∗
t

}

· ẑ dS,

hence

Pav = −1

2

∫

CS

Re
{

e−jkz∇× (Φ̌Ȟ∗
t )
}

· ẑ dS +
1

2

∫

CS

Re
{

e−jkzΦ̌∇× Ȟ∗
t

}

· ẑ dS

using (B.49). By Ampere’s law, the curl of the magnetic field in the second integral
is the volume current density flowing in the axial direction, which is zero as no axial
conduction current flows in the material medium. Hence the second integral vanishes.
Use of Stokes’ theorem on the first integral gives

Pav = − 1
2 Re

{

e−jkz
∫

Γ

Φ̌Ȟ∗
t · dl

}

.

Because the potential decays to zero as Γ∞ recedes to infinity, and since the potential is
zero on Γ2, only the contribution from Γ1 survives, and on that contour the potential is
V̌0. Noting that dl = (n̂× ẑ) dl we can write Ȟ∗

t ·dl = Ȟ∗
t · (n̂× ẑ) dl = −(n̂× Ȟ∗

t ) · ẑ dl:

Pav =
1
2 Re

{

V̌0e
−jkz

∫

Γ1

J̌∗ · ẑ dl
}

.

The integral is the complex conjugate of the axial current in the wire, so

Pav = 1
2 Re

{

V̌ Ǐ∗
}

exactly as in circuit theory. In fact, since Ǐ = V̌ /Rc for a lossless line, we also have

Pav =
|V̌ |2
2Rc

= 1
2 |Ǐ|

2Rc. (5.310)

With this expression for time-average power, it is possible to find a formula for the
resistance per unit length of a transmission line. The attenuation coefficient for a low-loss
line with only conductor loss is, by (5.309),

α =
R

2Rc
.

Equating this with the perturbational formula for the attenuation constant (5.309), we
have

R

2Rc
=
Pd(0)/l

2P0
.

Then by (5.310),

R =
2Pd(0)/l

|Ǐ|2
=

2Pd(0)/l

|V̌ |2
R2
c . (5.311)
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FIGURE 5.46

Strip transmission line.

5.6.3.5 Example: the strip (parallel-plate) transmission line

A simple transmission line can be made from two long parallel conducting plates of width
W , thickness t, and separation d, as shown in Figure 5.46. The plates have conductivity
σ̃ and are embedded in a medium with permeability µ̃ and complex permittivity ǫ̃c. A
voltage difference Ṽ0 is placed across the conductors.

If W/d ≫ 1, we can neglect fringing with little error in the resulting transmission
line parameters. We first determine the fields between the plates, assuming the latter
are perfectly conducting. Neglecting fringing, the potential is approximately Φ̃(r, ω) =
Φ̃(y, ω) and, hence, by (5.299),

∇2
t Φ̃ =

∂2

∂y2
Φ̃ = 0.

Two integrations yield Φ̃ = C1y + C2. Evaluating the constants through the boundary
values Φ̃(y = 0) = Ṽ0 and Φ̃(y = d) = 0, we get

Φ̃ = Ṽ0

(

1− y

d

)

.

By (5.297) and (5.298) the fields are

ẽt = ŷ
Ṽ0
d
, h̃t = −x̂

Ṽ0
ηd
.

The capacitance per unit length of the parallel plate transmission line can be found by
assuming that the material in which the plates are embedded is lossless with permittivity
ǫ and permeability µ, and computing the charge per unit length. For a wave traveling in
the +z direction, the charge density on the lower conductor is

ρ̃s = ǫŷ · Ẽ =
ǫṼ0
d
e−jkz .

Integration gives

Q̃

ℓ
=

∫ W/2

−W/2
ρ̃s dx =

WǫṼ0
d

e−jkz .
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Thus, the capacitance per unit length is

C =
Q̃/ℓ

Ṽ
=

WǫṼ0

d e−jkz

Ṽ0e−jkz
= ǫW/d.

From (5.303) we also have the characteristic resistance of the transmission line,

Rc = ǫη/C = ηd/W.

The external inductance per unit length can be found using (5.304):

Le = CR2
c = µd/W.

To account for losses, we compute the resistance, conductance, and internal inductance
per unit length. By (5.307), the conductance per unit length is

G = −ω Im ǫ̃c

Re ǫ̃c
C =Wω tan δ/d.

The internal inductance per unit length for each conductor is found by assuming that
t≫ δ and using (3.217):

Li =
1

Wωσ̃δ
.

Since the inductance of the upper plate is identical, the total internal inductance is

Li =
2

Wωσ̃δ
.

To find the resistance per unit length, we first use (5.215) to compute the power dissipated
in the conductors. For the bottom conductor we have

Pd(z)

l
=
Rs
2

∫ W/2

−W/2

|V̌0|2
η2d2

dx =
Rs
2
W

|V̌0|2
η2d2

,

hence, for both conductors,
Pd(z)

l
= RsW

|V̌0|2
η2d2

.

This and (5.311) yield the resistance per unit length:

R = 2Rs/W.

The simple relationship
R/Li = Rsωσ̃δ = ω

seen here holds for all transmission lines involving conductors much thicker than a skin
depth [156].

◮ Example 5.34: Characteristics of a strip transmission line

Design a strip transmission line using Rogers RT/duroidR© 6002 high-frequency laminate.
The strip is etched onto the top and bottom of the laminate with a width chosen to produce a
characteristic resistance of 50Ω. The properties of the laminate are ǫr = 2.94, tan δ = 0.0012,
and d = 0.02 inches (0.508 mm). The weight of the copper cladding from which the strips
are etched is 1 oz/ft2 (t = 0.35µm). Determine the width W of the strip that will produce a
50Ω characteristic resistance. Determine all the relevant characteristics of this transmission
line at f = 10 GHz.

Solution: The characteristic resistance of the line is Rc = ηd/W = 50Ω. Using η =
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√

µ0/(ǫ0ǫr) = 219.7Ω we find that W = 2.232 mm and therefore W/d = 4.394. Although
this ratio is not exceptionally large compared to unity, it should be large enough that fringing
can be neglected without introducing significant error.

The capacitance per unit length of the lossless line is C = ǫW/d = 114.4 pF/m, so the
external inductance per unit length is Le = CR2

c = 0.286 µH/m. These quantities are all
frequency independent. The remaining quantities depend on frequency. The skin depth at
10 GHz is

δ =
1√

πfµ0σ
= 0.6609 × 10−6 m,

making t/δ = 52.96. Since the conductor is many skin depths thick, the resistance and
internal inductance formulas should be fairly accurate. With the surface resistance value

Rs =
1

σδ
= 0.0261 Ω/�,

the resistance per unit length and internal inductance per unit length are

R = 2Rs/W = 23.4 Ω/m, Li = R/ω = 3.72 × 10−4µH/m.

Because it is much smaller than the external inductance, the internal inductance is often
ignored. The conductance per unit length is

G = ωC tan δ = 8.62 × 10−3 S/m.

Now we can check whether the line is low loss by computing

R

ωL
= 1.30× 10−3,

G

ωC
= 1.20 × 10−3,

and noting that ratios are small compared to unity. It is interesting to compute the charac-
teristic impedance

Zc =

√

R+ jωL

G+ jωC
= 50.03 − j0.002482 Ω

and see that the lossless value of Rc = 50 Ω matches the result when losses are included (to
three significant figures). The small imaginary part (in this case a small fraction of an ohm)
is usually ignored. The propagation constant is

γ =
√

(R+ jωL)(G+ jωC) = 0.44935 + j359.60 m−1.

Hence α = 0.44935 Np/m and β = 359.60 r/m. For this low-loss line we can use (5.309) to
find the attenuation and phase constants:

αc =
1

2

R

Rc
= 0.23375 Np/m,

αd =
1

2
GRc = 0.21562 Np/m,

β = ω
√
LC = 359.60 r/m.

Note that αc and αd are comparable in magnitude; this contrasts with the case of the
coaxial transmission line considered in Example 5.34 where αc ≫ αd (albeit for a different
frequency and dielectric). The sum αd + αc = 0.44937 matches well with the value of α
found by computing γ. Also, the lossless value of β matches the value found by computing
γ to more than five significant figures. Often the attenuation is given in terms of dB per 100
meters. The conversion formula

atten = −20 log10 e
−αd = 8.686αd
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FIGURE 5.47

Coaxial cable transmission line.

with d = 100 m yields atten = 868.6α = 390.3 dB.
Lastly, we can compute the velocity of the transmission line wave relative to the speed of

light in vacuum: vp/c = (ω/β)/c = 0.583. ◭

5.6.3.6 Example: the coaxial transmission line

As a more complicated example, consider a coaxial cable consisting of a solid inner
conductor and an outer conducting tube (Figure 5.47). The conductors have conductivity
σ̃, and the intervening material has permeability µ̃ and complex permittivity ǫ̃c. There
is a voltage difference Ṽ0 between the conductors.
We start with the fields inside the cable, assuming perfectly conducting walls. By

symmetry, Φ̃(ρ, ω) = Φ̃(ρ, ω), and, hence, by (5.299),

∇2
t Φ̃ =

1

ρ

∂

∂ρ

(

ρ
∂Φ̃

∂ρ

)

= 0.

Successive integrations yield Φ̃ = C1 ln ρ + C2; application of the boundary conditions
Φ̃(ρ = a) = Ṽ0 and Φ̃(ρ = b) = 0 yields

Φ̃ = −Ṽ0
ln(ρ/b)

ln(b/a)
.

By (5.297) and (5.298) the fields are

ẽt = ρ̂
Ṽ0

ρ ln(b/a)
, h̃t = φ̂

Ṽ0
ηρ ln(b/a)

.
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The capacitance per unit length can be found by assuming that the material filling the
cable is lossless with permittivity ǫ and permeability µ, and computing the charge per
unit length. For a wave traveling in the +z direction, the charge density on the inner
conductor is

ρ̃s = ǫρ̂ · Ẽ =
ǫṼ0

a ln(b/a)
e−jkz .

Integration gives
Q̃

ℓ
=

∫ 2π

0

ρ̃sa dφ =
2πǫṼ0
ln(b/a)

e−jkz .

So the capacitance per unit length is

C =
Q̃/ℓ

Ṽ
=

2πǫṼ0

ln(b/a)e
−jkz

Ṽ0e−jkz
=

2πǫ

ln(b/a)
.

From (5.303) we obtain the characteristic resistance of the coaxial cable:

Rc =
ǫη

C
=

η

2π
ln(b/a). (5.312)

The external inductance per unit length can be found using (5.304):

Le = CR2
c =

µ

2π
ln(b/a).

To account for losses in the cable, we compute the resistance, conductance, and internal
inductance per unit length. By (5.307), the conductance per unit length is simply

G = ωC tan δ = −2πω Im ǫ̃c

ln(b/a)
.

The internal inductance per unit length for the inner conductor is found by assuming
that a≫ δ, and using (3.226) from Example 3.57:

Li =
µ

4π

δ

a
.

We may use the same formula for the outer conductor by replacing a with b. Thus, the
total internal inductance is

Li =
µ

4π

δ

a

(

1 +
a

b

)

.

To find the resistance per unit length, we first compute the power dissipated in the
conductors using (5.215). For the conductor at ρ = a we have

Pd(z)

l
=
Rs
2

∫ 2π

0

|V̌0|2
η2a2 ln2(b/a)

a dφ = πRs
|V̌0|2

η2a ln2(b/a)
.

Repeating for ρ = b and adding gives the total power dissipated in both conductors as

Pd(z)

l
= πRs

|V̌0|2
η2 ln2(b/a)

(

1

a
+

1

b

)

.

Substitution into (5.311) then gives the resistance per unit length as

R =
Rs
2πa

(

1 +
a

b

)

.
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Note that the ratio of resistance per unit length to internal inductance per unit length is

R

Li
=

2Rs
δµ

= ω.

This simple relation holds for any transmission line having conductors much thicker than
a skin depth [156].

◮ Example 5.35: Characteristics of RG-405/U coaxial cable

RG-405/U coaxial cable has a solid inner conductor of radius a = 0.254 mm and a solid
outer conductor of inner radius b = 0.7874 mm and thickness t = 0.5 mm. The conductors
are copper with σ = 5.8 × 107 S/m. The material between the conductors is Teflon with
dielectric constant ǫr = 2.05, loss tangent tan δ = 2×10−4 , and permeability µ0. Determine
all the relevant characteristics of this transmission line at f = 1 GHz.

Solution: The characteristic resistance and capacitance per unit length of the lossless line
are

Rc =
η

2π
ln(b/a) = 47.4 Ω, C =

2πǫrǫ0
ln(b/a)

= 100.8 pF/m,

so the external inductance per unit length is

Le = CR2
c = 0.226 µH/m.

These quantities are frequency independent. The remaining quantities depend on frequency.
The skin depth at 1 GHz is

δ =
1√

πfµ0σ
= 2.09× 10−6 m.

Hence the normalized radius of the inner conductor and thickness of the outer conductor
are a/δ = 121.4 and t/δ = 23.9. Both conductors are many skin depths thick; the resistance
and internal inductance formulas should be fairly accurate. The surface resistance is

Rs =
1

σδ
= 8.25 × 10−3 Ω/�,

so the resistance and internal inductance per unit length are

R =
Rs
2πa

(

1 +
a

b

)

= 6.84 Ω/m,

Li =
R

ω
= 1.09 × 10−3µH/m.

Much smaller than the external inductance, the internal inductance is often ignored. The
conductance per unit length is

G = ωC tan δ = 1.27 × 10−4 S/m.

At this point we can verify that the line is low loss by computing

R

ωL
= 4.79 × 10−3,

G

ωC
= 2× 10−4
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and noting that these ratios are small compared to unity. The characteristic impedance is

Zc =

√

R+ jωL

G+ jωC
= 47.5− j0.109 Ω.

The lossless value of Rc = 47.4 Ω is thus very close to the result when losses are included. The
small imaginary part (in this case one tenth of an ohm) is usually ignored. The propagation
constant is

γ =
√

(R+ jωL)(G+ jωC) = 7.50 × 10−2 + j30.1 m−1

so that α = 7.50×10−2 Np/m and β = 30.1 r/m. For this low-loss line, we can also compute
the attenuation and phase constants using (5.309):

αc =
1

2

R

Rc
= 7.22× 10−2 Np/m,

αd =
1

2
GRc = 3.00 × 10−3 Np/m,

β = ω
√
LC = 30.1 r/m.

It is clear that conductor losses far exceed dielectric losses. The total of αc and αd closely
matches the value of α found by computing γ. Moreover, the lossless value of β is close to
the value found by computing γ. Often the attenuation is expressed in dB per 100 meters.
The conversion is

atten = −20 log10 e
−αd = 8.686αd

where d = 100 m; in other words, atten = 868.6α = 65.1 dB.
Lastly, we can compute the velocity of the transmission line wave relative to the speed of

light in vacuum using
vp
c

=
ω

βc
= 0.697. ◭

5.6.4 Open-boundary axial waveguides

Forming an important class of open-boundary waveguides, optical guides employ total
internal reflection to guide a wave in a purely dielectric structure or a combined di-
electric/metallic structure with a dielectric boundary open to the surrounding region.
Important examples include planar integrated optical guides, which are important com-
ponents of optical communications and computation circuitry, and fiber optical cables,
which are used for long-haul low-loss digital and analog communications.

Open-boundary guides have both discrete and continuous eigenvalue spectra, with the
continuous spectrum describing radiation from the guiding structure. We will consider
the discrete spectra describing guided-wave modes, investigating the conditions under
which these modes can be supported. We will find that these modes are characterized by
fields that travel axially and decay (are evanescent) in the transverse direction, and are
thus concentrated within the guiding structure and externally very near its surface. This
field concentration remains true even when the structures are bent or curved (although
radiation can result). Because the waves remain “attached” to the surface profle, they
are called surface waves.

Two simple examples of optical guides, the slab waveguide and the uniform optical
fiber, are considered below.
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FIGURE 5.48

Slab waveguide.

5.6.4.1 Example: the symmetric slab waveguide

The slab waveguide is the simplest planar integrated optical waveguide. As shown in
Figure 5.48, it consists of a material slab with permittivity ǫ̃c and permeability µ̃, sur-
rounded by free space. Since both the region above (the superstrate) and the region
below (the substrate) have the same properties, the guide is called a symmetric slab.
The important case where the substrate and superstrate differ is more complicated to
analyze, but the procedure for doing so is analogous with that used for the symmetric
guide, and is left as an exercise.
The slab occupies the region −d/2 ≤ x ≤ d/2. We seek y-invariant solutions to

Maxwell’s equations representing waves traveling along the z direction. The boundary
conditions can be satisfied by fields purely TE or TM to the z-direction, and thus we may
use the potential (5.217) obtained from separating variables in rectangular coordinates.
By the y-invariance we have

ψ̃(x, y, ω) = C1 sin kxx+ C2 cos kxx

where k2x = k2 − k2z . In regions 1 and 3, k = k0 = ω
√
µ0ǫ0; in region 2, k = ω

√
µ̃ǫ̃c.

Since k differs between the slab region and the surround, so does kx. However, to satisfy
the boundary conditions kz must be the same in each region. Indeed, we compute wave
velocity from kz and expect the wave to propagate identically in each region. So we write
k20 = k2x0 + k2z in regions 1 and 3, and k2 = k2x + k2z in region 2.
Symmetry about x = 0 leads us to expect that fields with even or odd symmetry

will satisfy the boundary conditions independently. Therefore we consider even and
odd modes according to the symmetry of the potential function ψ̃. Also, since the
waves propagate in the slab by total internal reflection, we expect standing waves in the
slab along the x-direction. The fields outside the slab should be evanescent along x.
The condition for evanescence in a lossless guide is k0 < kz , such that kx0 becomes an
imaginary value jτ and in regions 1 and 3 we can write

k20 = k2z − τ2, (5.313)

while in region 2
k2 = k2z + k2x. (5.314)
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In this case the trigonometric functions can be replaced by exponentials that decay away
from the slab. Hence for even modes the potential functions in each region are

ψ̃e1(x) = Aeτx, ψ̃e2(x) = B cos kxx, ψ̃e3(x) = Ae−τx.

Clearly these are even about x = 0. For odd modes,

ψ̃o1(x) = −Aeτx, ψ̃o2(x) = B sin kxx, ψ̃o3(x) = Ae−τx,

which are odd about x = 0.
For modes that are TEz, relation (5.198) yields the axial magnetic fields:

h̃ez1 = −Aτ2eτx, h̃oz1 = Aτ2eτx,

h̃ez2 = Bk2x cos kxx, h̃oz2 = Bk2x sin kxx,

h̃ez3 = −Aτ2e−τx, h̃oz3 = −Aτ2e−τx.

Relation (5.199) yields the transverse magnetic fields,

h̃ex1 = −Ajkzτeτx, h̃ox1 = Ajkzτe
τx,

h̃ex2 = Bjkxkz sin kxx, h̃ox2 = −Bjkxkz cos kxx,

h̃ex3 = Ajkzτe
−τx, h̃ox3 = Ajkzτe

−τx,

and (5.200) yields the transverse electric fields:

ẽey1 = Ajτωµ0e
τx, ẽoy1 = −Ajτωµ0e

τx,

ẽey2 = −Bjkxωµ̃ sin kxx, ẽoy2 = Bjkxωµ̃ cos kxx,

ẽey3 = −Ajτωµ0e
−τx, ẽoy3 = −Ajτωµ0e

−τx.

Note that for an even potential function, H̃z is even but Ẽy is odd. For an odd potential

function, H̃z is odd but Ẽy is even.
Constants A,B and the propagation constant kz are determined from the boundary

conditions at x = ±d/2. By symmetry, enforcement of these conditions at x = d/2 will
suffice. Continuity of H̃z and Ẽy at x = d/2 shows that for even TE modes,

Bk2x cos kx
d

2
= −Aτ2e−τd/2,

Bkxµ̃ sin kx
d

2
= Aτµ0e

−τd/2, (5.315)

and for odd TE modes,

Bk2x sin kx
d

2
= −Aτ2e−τd/2,

Bkxµ̃ cos kx
d

2
= −Aτµ0e

−τd/2.

Equating the determinant of the coefficient matrix to zero, we obtain a characteristic
equation relating kx and τ . For even TE modes we have

cotkx
d

2
= − µ̃

µ0

τ

kx
,
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while for odd TE modes,

tan kx
d

2
=

µ̃

µ0

τ

kx
.

Subtracting (5.313) from (5.314) gives a second relationship between kx and τ :

k2x + τ2 = k2 − k20 . (5.316)

Simultaneous solution of this and the characteristic equation determines kx and τ , and
thus kz .
For modes that are TMz, relation (5.195) yields the axial electric fields

ẽez1 = −Aτ2eτx, ẽoz1 = Aτ2eτx,

ẽez2 = Bk2x cos kxx, ẽoz2 = Bk2x sin kxx,

ẽez3 = −Aτ2e−τx, ẽoz3 = −Aτ2e−τx,

relation (5.196) gives the transverse electric fields

ẽex1 = −Ajkzτeτx, ẽox1 = Ajkzτe
τx,

ẽex2 = Bjkxkz sin kxx, ẽox2 = −Bjkxkz cos kxx,
ẽex3 = Ajkzτe

−τx, ẽox3 = Ajkzτe
−τx,

and relation (5.197) gives the transverse magnetic fields

h̃ey1 = −Ajτωǫ0eτx, h̃oy1 = Ajτωǫ0e
τx,

h̃ey2 = Bjkxωǫ̃
c sin kxx, h̃oy2 = −Bjkxωǫ̃c cos kxx,

h̃ey3 = Ajτωǫ0e
−τx, h̃oy3 = Ajτωǫ0e

−τx.

For an even potential function, Ẽz is even and H̃y is odd. For an odd potential function,

Ẽz is odd and H̃y is even.

Continuity of Ẽz and H̃y at x = d/2 imposes two conditions on A and B. For even
TM modes we have

Bk2x cos kx
d

2
= −Aτ2e−τd/2, Bkxǫ̃

c sin kx
d

2
= Aτǫ0e

−τd/2,

and for odd TM modes,

Bk2x sin kx
d

2
= −Aτ2e−τd/2, −Bkxǫ̃c cos kx

d

2
= Aτǫ0e

−τd/2.

Setting the determinant of the coefficient matrix to zero gives a characteristic equation
relating kx and τ . For even TM modes this reads

cot kx
d

2
= − ǫ̃

c

ǫ0

τ

kx
,

while for odd TM modes it reads

tan kx
d

2
=
ǫ̃c

ǫ0

τ

kx
.
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Solving the characteristic equation simultaneously with (5.316), we get kx, τ , and thus
kz .

The cutoff frequency of a lossless slab waveguide is the lowest frequency at which the
waves are guided by total internal reflection without radiation. Since τ =

√

k2z − k20 must
be real for the external fields to be evanescent, cutoff occurs when τ = 0, or equivalently
kz = k0. For even modes (both TE and TM) this requires

cot kx
d

2
= 0,

and for odd modes

tankx
d

2
= 0.

Hence kxd/2 = nπ/2, where n is odd for even modes and even for odd modes. But when
τ = 0 we also have from (5.316) that

kx =
√

k2 − k20 = k0
√

ǫrµr − 1.

With k0 = 2πfc/c, the cutoff frequencies are given by

fc =
nc

2d
√
ǫrµr − 1

(5.317)

where n = 1, 2, 3, . . . for even modes and n = 0, 2, 4, . . . for odd modes.
It is clear that in a lossless guide, the dominant modes are the first odd modes, which

have n = 0, designated TE0 and TM0. Both have fc = 0 and therefore propagate to zero
frequency.

◮ Example 5.36: Mode diagram for a circuit board substrate

A circuit board made with an FR-4 substrate comprises a slab of material with thickness
2.4 mm, relative permittivity ǫr = 4.8, and relative permeability µr = 1. Assume the
substrate is lossless and resides in free space. Plot the ω-β curves for several slab modes.
Also plot phase velocity as a function of frequency for the TE0 and TM0 modes.

Solution: The ω-β curves may be generated by solving the characteristic equations for
the odd and even TE and TM modes. This can be done numerically using a root-search
algorithm. It is straightforward to fix the frequency ω and search for values kz = β that
satisfy the equations. As k0 ≤ β ≤ k for propagating modes, we can restrict our search to
that regime. Figure 5.49 shows the curves for the first four sets of modes. The dashed lines
correspond to the phase velocity of waves propagating in unbounded free space (where β =
k0) and in an unbounded material (where β = k). The first two odd modes (n = 0) clearly
have no lower cutoff frequency. All higher-order modes have nonzero cutoff frequencies given
by (5.317); the first three are 32.04 GHz, 64.08 GHz, and 96.12 GHz.
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FIGURE 5.49
Dispersion plot for first four sets of modes in a slab waveguide. Dashed lines show the light
lines for β = k0 and β = k.

Near cutoff, β ≈ k0 and the decay constant τ is small. In this case the fields of the slab
guide extend significantly into the surrounding regions, and the wave propagates much as if
it is a plane wave in free space, with a phase velocity near the speed of light in vacuum. With
increasing frequency, β becomes nearer to k, τ becomes smaller, and the fields become more
confined within the slab. In this case the waves behave as if they are propagating within
a material with dielectric constant ǫr. This is clearly seen in Figure 5.50, which shows the
phase velocity of the TE0 and TM0 modes as functions of frequency. At low frequency the
waves have phase velocities near the speed of light in vacuum. As frequency increases and
the waves concentrate within the slab, the phase velocity approaches the speed of light in
the material.
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FIGURE 5.50
Phase velocity for TE0 and TM0 modes in a slab waveguide with d = 2.4 mm and ǫr = 4.8.
Horizontal dashed line indicates c/

√
ǫr. ◭

Power flow in a lossless slab for frequencies above cutoff may be computed from Poynt-
ing’s theorem. Consider the TE modes, for example; under the time-harmonic assump-
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tion, the time-average Poynting vector is

Sav =
1
2 Re{Ě× Ȟ∗} = x̂1

2 Re{ěyȟ
∗
z} − ẑ1

2 Re{ěyȟ
∗
x}.

Note the component in the transverse direction; upon substitution we find that ěyȟ
∗
z

is imaginary, however, and thus the transverse power flow is purely reactive (with zero
time-average value). Substituting the field expressions for even modes, we have

Sav =

{

ẑ 1
2 |B|2k2xkzω̌µ sin2 kxx, |x| < d/2,

ẑ1
2 |A|2τ2kzω̌µ0e

−2τ |x|, |x| > d/2.

Dotting with ẑ and integrating from x = −∞ to x = ∞, we obtain the power per unit
width carried by the traveling wave:

Pav
w

= 2

∫ d/2

0

1
2 |B|2k2xkzω̌µ sin2 kxx dx+ 2

∫ ∞

d/2

1
2 |A|

2τ2kzω̌µ0e
−2τx dx

=
|B|2
4
ω̌µ0kz

{

µrkx[kxd− sin kxd] + 2
|A|2
|B|2 τe

−τd
}

.

But by (5.315),
A

B
=
kx
τ
µre

τd/2 sin kx
d

2
.

Substitution and simplification yield

Pav
w

=
|B|2
4
ω̌µkxkz

{

[kxd− sin kxd] + µr
kx
τ

[1− cos kxd]

}

.

The first term represents the power carried by the fields in the slab, while the second
represents the power carried by the fields in the surrounding air. The ratio of the power
carried in the air to that carried in the slab is

Pair

Pslab
=
µr
τd

1− cos kxd

1− sin kxd
kxd

. (5.318)

Similar expressions may be obtained for odd TE modes and for TM modes.

◮ Example 5.37: Power ratio for a circuit board substrate

Consider the circuit board in Example 5.36. Plot the ratio of the power per unit width
carried by the TE1 mode in the slab to the power carried in the surrounding air.

Solution: We plot (5.318) vs. frequency for the TE1 mode in Figure 5.51. Near cutoff, most
of the power is carried in the surrounding air and the ratio is large. Far above cutoff, the
field in the air region decays rapidly with distance and most of the power is carried in the
slab. At 35 GHz more than ten times as much power is carried in the air than in the slab,
whereas at 100 GHz more than five times as much power is carried in the slab than in air.
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FIGURE 5.51
Ratio of average power per unit width carried by the TE1 mode in the slab of Example 5.36
to the power carried in air. Dashed vertical line shows the cutoff frequency for the TE1

mode. ◭

5.6.4.2 Optical fiber

The optical fiber, or fiber optic cable, is an important guiding structure in modern com-
munication systems. In its simplest form it is a long tube of homogeneous dielectric, such
as glass or plastic, with circular cross-section. The fiber guides electromagnetic waves via
total internal reflection, and thus there is an evanescent field outside the fiber. Because
the fiber contains no metal, the attenuation is often less than for a classical waveguide or
transmission line. In addition, by varying the dielectric constant over the cross-section
of the fiber, dispersion can be decreased and the bandwidth increased. We will consider
the simplest case of a fiber with uniform dielectric constant.
Consider a circular optical fiber of radius a (Figure 5.52). The fiber has permittivity

ǫ̃c1 and permeability µ̃1, while the region outside the fiber has permittivity ǫ̃c2 and per-
meability µ̃2. The boundary conditions cannot be satisfied by fields that are TE or TM
to the z-direction, unless the fields are φ-invariant (i.e., azimuthally symmetric). So we
restrict ourselves to these azimuthally symmetric modes.
We proceed as with the circular waveguide, seeking a separation of variables solution

for the potential function ψ̃. By (5.228), this function takes the form

ψ̃ = AJ0(kρρ) +BN0(kρρ)

by the assumed φ-independence. Here k2ρ = k2 − k2z . As the materials in region 1 and 2
differ, so do the respective values of k and hence of kρ. But satisfaction of the boundary
conditions implies that kz is the same for each region.
Since the waves are guided by total internal reflection within the fiber, we expect a

standing wave inside the fiber and an evanescent wave outside. Finiteness of the fields
along the z-axis requires that we omit terms of the type N0(kρρ) in region 1. We write

ψ̃h1 = AJ0(kρ1ρ), ψ̃e1 = BJ0(kρ1ρ),

where
k2ρ1 = k21 − k2z (5.319)
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FIGURE 5.52

Optical fiber waveguide.

with k21 = ω2µ̃1ǫ̃
c
1.

The potential in region 2 requires more care. Assume there is no loss so that k1 and k2
are real. The Bessel functions J0(kρρ) and N0(kρρ) represent standing waves, but there
is no boundary external to the fiber against which standing waves can form. However,

appropriate combinations of the Bessel functions yield Hankel functions H
(1)
0 and H

(2)
0

that represent waves traveling radially inward and outward, respectively. Because inward
traveling wave are nonphysical here, we write for region 2

ψ̃ = AH
(2)
0 (kρ2ρ) (5.320)

where k2ρ2 = k22 − k2z . If the fiber is lossless and kz is real, then for k2 > kz this solution
represents radiation from the fiber since the outward traveling wave carries power away
from the structure. This is not an appropriate condition for waves guided by total internal
reflection, where the external waves are evanescent and thus carry no outward-directed
power. However, if k2 < kz and kz is real, then kρ2 becomes imaginary, and we can write
kρ2 = −jτ . Then, since

H
(2)
0 (−jx) = j

2

π
K0(x),

the potential function (5.320) can be written as

ψ̃ = AK0(τρ),

where
τ2 = k2z − k22 . (5.321)

The modified Bessel function Kn(x) decreases with increasing x, so this function repre-
sents a wave evanescent in ρ when kz > k2. We therefore write the potentials in region
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2 as
ψ̃h2 = CK0(τρ), ψ̃e1 = DK0(τρ),

Finally, we note that if the fiber has losses then k1 will be complex and kz will take the
form kz = β + jα, incorporating both phase and attenuation constants.
For modes that are TMz, the relations (5.195) and (5.196) yield the transverse fields

ẽz1 = k2ρ1BJ0(kρ1ρ), h̃φ1 = jωǫ̃c1Bkρ1J1(kρ1ρ),

ẽz2 = τ2DK0(τρ), h̃φ2 = −jωǫ̃c2DτK1(kρ1ρ),

since J ′
0(x) = −J1(x) and K ′

0(x) = K1(x). Continuity of the tangential fields at ρ = a
yields

k2ρ1BJ0(kρ1a) = τ2DK0(τa), ǫ̃c1Bkρ1J1(kρ1a) = −ǫ̃c2DτK1(kρ1a),

and hence the characteristic equation

kρ1
ǫ̃c1

J0(kρ1a)

J1(kρ1a)
= − τ

ǫ̃c2

K0(τa)

K1(τa)
. (5.322)

Simultaneous solution of this with the sum of (5.319) and (5.321)

k2ρ1 + τ2 = k21 − k22 (5.323)

gives the kz-ω dispersion relation for azimuthally symmetric TM modes.
For TEz modes,

h̃z1 = k2ρ1AJ0(kρ1ρ), ẽφ1 = −jωµ̃1Akρ1J1(kρ1ρ),

h̃z2 = τ2CK0(τρ), ẽφ2 = jωµ̃2CτK1(kρ1ρ).

Continuity of tangential fields at ρ = a produces

k2ρ1AJ0(kρ1a) = τ2CK0(τa), −µ̃1Akρ1J1(kρ1a) = µ̃2CτK1(kρ1a),

and in turn the characteristic equation

kρ1
µ̃1

J0(kρ1a)

J1(kρ1a)
= − τ

µ̃2

K0(τa)

K1(τa)
. (5.324)

Its solution simultaneously with (5.323) gives the kz-ω dispersion relation for azimuthally
symmetric TE modes.
The cutoff frequency of a lossless optical fiber is the lowest frequency at which the

waves are guided by total internal reflection without radiation. Since τ =
√

k2z − k22
must be real for evanescent external fields, cutoff occurs when τ = 0 or equivalently
kz = k2. The small argument approximation of the modified Bessel functions (E.57) and
(E.58),

K0(x) ∼ − lnx, K1(x) ∼ 1/x,

shows that the right-hand sides of (5.322) and (5.324) behave as

lim
τa→0

τaK0(τa)

K1(τa)
= lim

τa→0
−(τa)2 ln(τa) = 0.
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Hence cutoff occurs when J0(kρ1a) = 0, or kρ1 = p0m/a. Using τ = 0 in (5.323), we can
also write the cutoff condition as

√

k21 − k22 =
p0m
a

or

fc =
1

2π
√
µ1ǫ1 − µ2ǫ2

p0m
a
.

Note µ1ǫ1 > µ2ǫ2 is needed for total internal reflection.

◮ Example 5.38: TE01 and TM01 modes in an optical fiber

An optical fiber made from silica glass has dielectric constant ǫr = 2.15 and diameter 0.1 mm.
If the fiber is immersed in free space, find the cutoff frequencies of the TE01 and TM01 modes
and plot the respective dispersion curves. Also, plot the phase velocity and compare wave
behavior near cutoff to that of a hollow-pipe waveguide.

Solution: Using p01 = 2.40483 and noting that glass is nonmagnetic, we find that

fc =
2.40483

2πa

c√
ǫr − 1

= 2.140 THz

for both the TE01 and TM01 modes.
Figure 5.53 shows the dispersion plot for TM modes obtained from (5.322), and for TE

modes obtained from (5.324). The curves differ only slightly. Near cutoff, the decay constant
τ is small, and the fields extend into the surrounding free-space region. In this case the wave
behaves much as if it is propagating in vacuum, with a phase velocity near the vacuum speed
of light. As frequency increases, so does τ , the fields becoming more confined to the fiber.
This is verified in Figure 5.54, which shows phase velocity as a function of frequency. At
cutoff, the phase velocity for the optical fiber is the speed of light in free space. As the
frequency increases, the phase velocity of the optical fiber approaches the velocity of light in
the fiber material, c/

√
ǫr. This is similar to the behavior of the phase velocity for the slab

waveguide considered in Example 5.36.
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FIGURE 5.53
Dispersion plot for TE01 and TM01 modes in an optical fiber with a = 0.05 mm and ǫr = 2.15.
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FIGURE 5.54
Phase velocity for TE01 and TM01 modes in an optical fiber with a = 0.05 mm and ǫr = 2.15.
Horizontal dashed line indicates vp = c/

√
ǫr.

The wave behavior of the optical fiber can be explored by examining the distribution of
the transverse fields. Figure 5.55 shows |Ẽφ| normalized to unity maximum for two different
frequencies. At f = 2.146 THz the fiber operates just above the 2.140 THz cutoff frequency
and the field outside the fiber decays slowly with distance. With the field in the outside
region dominant, the phase velocity vp/c = 0.9995 is close to that for a wave traveling in
air. In contrast, at f = 6.870 THz the fiber operates well above cutoff and the field is
well contained within the fiber. So the phase velocity vp/c = 0.720 is close to the value
vp/c = 1/

√
ǫr = 0.682 for a wave traveling in the glass material composing the fiber.
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FIGURE 5.55
Normalized |Eφ| for the TE01 modes of an optical fiber with a = 0.05 mm and ǫr = 2.15.
Vertical dashed line indicates the boundary of the fiber. ◭
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5.6.4.3 Accurate calculation of attenuation for a circular hollow-pipe
waveguide

The circular hollow-pipe waveguide can be treated as a boundary value problem by
assuming a waveguide wall many skin depths thick. Under this condition the fields
decay to small values before reaching the region external to the waveguide, and the wall
may be replaced by an infinite medium with material parameters equal to those of the
wall without affecting the value of the propagation constant. Since we have solved this
boundary value problem for the optical fiber, we need only specify that the region internal
to the fiber is air and the region external is a conductor. We can then solve either (5.322)
or (5.324) for kz to approximate the attenuation constants of the TM0m modes or the
TE0m modes in a circular hollow-pipe waveguide.

As an example, consider the characteristic equation (5.324) for the TE0m modes. Let
the waveguide walls have conductivity σ, permittivity ǫ0, and permeability µ0. Then

ǫ̃c2 = ǫ0

(

1− j
σ

ωǫ0

)

so that k2 =
ω

c

√

1− j
σ

ωǫ0
.

Since k2 is complex, so is kz = β− jα, with α corresponding to the attenuation constant
for the waveguide. If σ ≫ ωǫ0, then k2 is large and so is τ =

√

k2z − k22 . This can cause
troubles with the terms in (5.324), as the modified Bessel functions tend to overflow for
large complex arguments. We can circumvent this by using the asymptotic expansion for
the Bessel functions [1]

Kν(z) ∼
√

π

2z
e−z

N
∑

n=0

aν,n
(8z)n

, aν,0 = 1, aν,i = aν,i−1
4ν2 − (2i− 1)2

i
, i = 1, 2, . . . .

Here N must be chosen large enough for sufficient accuracy but not so large that the
series begins to diverge. For a wall comprising typical metals, a few terms are appropriate.
With this we have the ratio

K0(τa)

K1(τa)
=

∑N
n=0

a0,n
(8τa)n

∑N
n=0

a1,n
(8τa)n

,

which may be used to compute (5.324) without worry of overflow.

◮ Example 5.39: Accurate calculation of attenuation for a circular hollow-pipe waveguide

Solve the characteristic equation for an optical fiber to determine the attenuation constant
for the TE01 mode of a circular hollow-pipe waveguide of radius a = 27.88 mm with a wall
made from brass having conductivity σ = 1.4 × 107 S/m. Compare to the results found in
Example 5.20 using the perturbational formula.

Solution: It is important to note that phase constant β and attenuation constant α both
depend on wall loss. While the perturbational approach gives an estimate for α, it does not
predict the amount of error that results from assuming β to be that of the lossless waveguide.

By solving the characteristic equation (5.324) with finite conductivity in the outer region,
the change in β can be accurately computed along with an accurate value of α. It is
found that the error in the perturbational formula (5.239) is greatest very close to the
6.557 GHz cutoff frequency, but diminishes quickly as the frequency increases away from
cutoff. For example, at 6.560 GHz the solution to the characteristic equation gives β =
3.92195 r/m as compared to the lossless value of 3.77296 r/m, a difference of about 4%. The
computed value of α at that frequency is 0.143430 Np/m, compared to 0.149107 Np/m as
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predicted by the perturbational formula — again a difference of 4%. However, at 7 GHz
the characteristic equation gives β = 51.3430 r/m and α = 0.0106063 Np/m, compared
to a value of β = 51.3324 r/m for the lossless guide and α = 0.0106094 Np/m from the
perturbational formula. This is a difference of only 0.02% for β and 0.03% for α. At 10 GHz
the differences are only 0.01%. We conclude that for operating frequencies reasonably above
cutoff, the perturbational formula gives excellent estimates of the attenuation coefficient for
the TE01 mode of a circular waveguide. ◭

5.6.5 Waves guided in radial directions

5.6.5.1 Cylindrically guided waves: E-plane and H-plane sectoral guides

It is possible to guide waves radially in cylindrical coordinates. Guides with rectangular
cross-sections dependent on radial distance are used to form horn antennas, which are
particularly important in radar and other microwave applications. Two configurations
are popular: the E-plane and H-plane sectoral horns. Waveguides used to create these
horns are considered below.

E-plane sectoral waveguide. The waveguide shown in Figure 5.56 has perfectly con-
ducting walls and is filled with a homogeneous material of permeability µ̃ and permittivity
ǫ̃c. The top walls are parallel perfect conductors, while the side walls are PEC and form
an angle α. We seek solutions to Maxwell’s equations that represent waves traveling in
the ρ direction in cylindrical coordinates. As a simple case, assume the sectoral guide is
connected to a rectangular waveguide at its mouth at ρ = ρ0, which is operating in the
TE10 mode with the long axis aligned with z. Because the rectangular waveguide fields
are y-invariant, we expect the fields in the rectangular guide to transition into φ-invariant
sectoral waveguide fields. We also expect the field directions to be maintained across the
transition such that the sectoral waveguide fields have components Ẽφ(ρ, z), H̃z(ρ, z),

and H̃ρ(ρ, z). Then Faraday’s law requires

1

ρ

∂

∂ρ

(

ρẼφ

)

= −jωµ̃H̃z, (5.325)

− ∂Ẽφ
∂z

= −jωµ̃H̃ρ, (5.326)

while the source-free Ampere’s law requires

∂H̃ρ

∂z
− ∂H̃z

∂ρ
= jωǫ̃cẼφ. (5.327)

An equation for Ẽφ may be found by substituting (5.325) and (5.326) into (5.327):

∂2Ẽφ
∂ρ2

+
1

ρ

∂Ẽφ
∂ρ

+
∂2Ẽφ
∂z2

+

(

k2 − 1

ρ2

)

Ẽφ = 0. (5.328)

We seek a product solution to (5.328) subject to Ẽφ = 0 at z = 0 and z = a. Let

Ẽφ = P (ρ)Z(z). Substitution gives

[

1

P

(

∂2P

∂ρ2
+

1

ρ

∂P

∂ρ

)

+ k2 − 1

ρ2

]

+

[

1

Z

∂2Z

∂z2

]

= 0.
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FIGURE 5.56

E-plane sectoral waveguide.

This equation can only be satisfied if the terms in brackets are equal to constants. Let
the first term equal a constant k2z and examine

1

Z

∂2Z

∂z2
= −k2z .

This has solutions
Z(z) = C1 sin(kzz) + C2 cos(kzz).

To satisfy Ẽφ = 0 at z = 0, we must have Z(0) = 0 and thus C2 = 0. To satisfy Ẽφ = 0
at z = a, we must have sin(kza) = 0 and thus

kz = nπ/a (n = 1, 2, 3, . . .).

Because the sectoral guide is fed by a rectangular waveguide operating in the TE10 mode,
we choose n = 1 to provide for smooth transition of the fields. Thus we have the equation
for P :

1

P

(

∂2P

∂ρ2
+

1

ρ

∂P

∂ρ

)

+ k2 − 1

ρ2
=
(π

a

)2

,

or
∂2P

∂ρ2
+

1

ρ

∂P

∂ρ
+

(

k2ρ −
1

ρ2

)

P = 0,

where

kρ =

√

k2 −
(π

a

)2

.

This is the ordinary Bessel equation of order one. Its solutions

P (ρ) = AH
(2)
1 (kρρ) +BH

(1)
1 (kρρ)
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represent waves traveling in the ±ρ directions. With this we have the transverse fields
in the guide,

Ẽφ = [AH
(2)
1 (kρρ) +BH

(1)
1 (kρρ)] sin

(πz

a

)

and

H̃z = j
1

ωµ̃

1

ρ

∂

∂ρ

(

ρẼφ

)

= j
1

ωµ̃

1

ρ

∂

∂ρ
[AρH

(2)
1 (kρρ) +BρH

(1)
1 (kρρ)] sin

(πz

a

)

.

Using the derivative relationship

d

dz
[zH

(1,2)
1 (z)] = zH

(1,2)
0 (z)

we obtain

H̃z = j
kρ
ωµ̃

[AH
(2)
0 (kρρ) +BH

(1)
0 (kρρ)] sin

(πz

a

)

.

The wave propagating in the E-plane sectoral waveguide has properties similar to a
wave propagating in a rectangular guide. In a lossless guide where µ̃ = µ and ǫ̃c = ǫ, the
propagation constant kρ is real only when k > π/a = kc, so there is a cutoff effect. For
frequencies above cutoff we have kρ = β and the outward traveling wave behaves like

Ẽφ = AH
(2)
1 (βρ) sin

(πz

a

)

≈ jA

√

2j

πβρ
e−jβρ sin

(πz

a

)

for large ρ. Below cutoff we have kρ = jα and thus for large ρ

Ẽφ = AH
(2)
1 (jαρ) sin

(πz

a

)

≈ jA

√

2

παρ
e−αρ sin

(πz

a

)

;

the wave is evanescent. For large ρ we also have the phase velocity

vp =
ω

β
=

v
√

1− f2
c /f

2

where v = 1/
√
µǫ and where fc = v/(2a) is the cutoff frequency, exactly as in a rectan-

gular guide.
We can also define a transverse wave impedance as the ratio of the transverse fields

for an outward traveling wave. Let

Zh =
Ẽφ

H̃z

= −j ωµ̃
kρ

H
(2)
1 (kρρ)

H
(2)
0 (kρρ)

.

We see that, unlike the case of the rectangular guide, this transverse wave impedance is
dependent on position. But for large ρ

H
(2)
1 (kρρ)

H
(2)
0 (kρρ)

≈ j

and thus
Zh ≈ ωµ̃/kρ,

which is identical to the wave impedance of the TE10 mode in a rectangular guide.
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H-plane sectoral waveguide. The H-plane sectoral waveguide is similar to the E-
plane guide, except that the rectangular waveguide feeding the sectoral guide is rotated
by 90◦. See Figure 5.57. The guide has perfectly conducting walls and is filled with
a homogeneous material of permeability µ̃ and permittivity ǫ̃c. As with the E-plane
sectoral guide, the top walls are parallel perfect conductors, while the side walls are PEC
and form an angle α. We again seek solutions to Maxwell’s equations that represent
radially traveling waves. Let the sectoral guide be connected to a rectangular waveguide
at its mouth at ρ = ρ0 that is operating in the TE10 mode. However, in contrast
to the E-plane guide, the short axis of the rectangular waveguide is aligned with z.
Because the rectangular waveguide fields are independent of z, we expect the fields in
the sectoral waveguide to be independent of z. We also expect the field directions to
be maintained across the transition such that the sectoral guide fields have components
Ẽz(ρ, φ), H̃φ(ρ, φ), and H̃ρ(ρ, φ). Using these, we find that Faraday’s law requires

1

ρ

∂

∂φ

(

ρẼz

)

= −jωµ̃H̃ρ, (5.329)

− ∂Ẽz
∂ρ

= −jωµ̃H̃φ, (5.330)

while the source-free Ampere’s law requires

1

ρ

∂

∂ρ

(

ρH̃φ

)

− 1

ρ

∂H̃ρ

∂ρ
= jωǫ̃cẼz. (5.331)

An equation for Ẽz may be found by substituting (5.329) and (5.330) into (5.331):

∂2Ẽz
∂ρ2

+
1

ρ

∂Ẽz
∂ρ

+
1

ρ2
∂2Ẽz
∂φ2

+ k2Ẽz = 0. (5.332)

We seek a product solution to (5.332) satisfying Ẽz = 0 at φ = −α/2 and φ = α/2.
Let Ẽz = P (ρ)Φ(φ). Substitution gives

[

ρ2

P

∂2P

∂ρ2
+
ρ

P

∂P

∂ρ
+ k2ρ2

]

+

[

1

Φ

∂2Φ

∂φ2

]

= 0.

This equation can only be satisfied if the terms in brackets are equal to constants. Set
the first term equal to a constant k2φ and examine

1

Φ

∂2Φ

∂φ2
= −k2φ.

This has solutions
Φ(φ) = C1 sin(kφφ) + C2 cos(kφφ).

Setting Ẽz = 0 at φ = ±α/2 gives the system of equations

[

sin(kφα/2) cos(kφα/2)
− sin(kφα/2) cos(kφα/2)

] [

C1

C2

]

=

[

0
0

]

.

Setting the determinant to zero to force a nontrivial solution gives sin(kφα) = 0, and
thus

kφ = nπ/α (n = 1, 2, 3, . . .).
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FIGURE 5.57

H-plane sectoral waveguide.

Because the sectoral guide is fed by a rectangular waveguide operating in the TE10 mode,
we choose n = 1 to permit the fields to transition smoothly. Then, we see that C1 = 0
and

Φ(φ) = C cos
(π

α
φ
)

.

Next we have the equation for P :

∂2P

∂ρ2
+

1

ρ

∂P

∂ρ
+

(

k2 −
k2φ
ρ2

)

P = 0,

which is the ordinary Bessel equation of order kφ. Its solutions

P (ρ) = AH
(2)
kφ

(kρ) +BH
(1)
kφ

(kρ)

represent waves traveling in the ±ρ directions. With this we have the transverse fields
in the guide:

Ẽz =
[

AH
(2)
kφ

(kρ) +BH
(1)
kφ

(kρ)
]

cos
(π

α
φ
)

and

H̃φ = −j 1

ωµ̃

∂Ẽz
∂ρ

= −j k
ωµ̃

[

AH
(2)′
kφ

(kρ) +BH
(1)′
kφ

(kρ)
]

cos
(π

α
φ
)

.

Unlike a wave propagating in the E-plane sectoral waveguide, the wave in the H-
plane sectoral guide does not experience a cutoff effect and may propagate down to zero
frequency. For a lossless guide we have at large ρ the phase velocity vp = 1/

√
µǫ, which

is the velocity of a plane wave in the medium filling the guide.
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FIGURE 5.58

Conical transmission line.

As with the E-plane sectoral guide, we can define a transverse wave impedance for
outward traveling waves as the ratio of transverse fields,

Zh =
Ẽz

H̃φ

= j
ωµ̃

k

H
(2)
kφ

(kρ)

H
(2)′
kφ

(kρ)
,

which depends on position. However, for large ρ

H
(2)
kφ

(kρ)

H
(2)′
kφ

(kρ)
≈ −j

and, thus,
Zh ≈ ωµ̃/k,

which is the wave impedance of a TEM wave propagating with no cutoff.

5.6.5.2 Spherically guided waves: the biconical transmission line

It is possible to guide waves radially in spherical coordinates. The biconical transmission
line, consisting of nested conducting cones embedded in a medium of permittivity ǫ̃c and
permeability µ̃, is shown in Figure 5.58. The structure is excited at the apex of the cones,
and a radially directed TEM wave travels outward with the field confined between the
cones.

The TE-TM decomposition for spherical coordinates (§ 5.4.3) can be specialized to the
case where Ẽr = H̃r = 0. Either the TEr or the TMr decomposition can be used; here
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we use TM. From (5.137) we see that Ẽr = 0 when

(

∂2

∂r2
+ k2

)

Ãe = 0.

Symmetry requires Ãe(r, ω) = Ãe(r, θ, ω), so we seek a product solution of the form
Ãe = R(r)Θ(θ). Substitution gives

(

∂2

∂r2
+ k2

)

R(r) = 0,

hence R(r) = e−jkr for a wave propagating in the +r direction. We must also satisfy
(5.136) and so

Θ

r2
∂

∂r

[

r2
∂

∂r

(

R

r

)]

+
R

r2 sin θ

∂

∂θ

[

sin θ
∂

∂θ

(

Θ

r

)]

+ k2Θ
R

r
= 0.

Substituting for R(r) and performing the derivatives, we find that the first and third
terms cancel, giving

∂

∂θ

[

sin θ
∂Θ

∂θ

]

= 0.

Integration gives
∂Θ

∂θ
=

K

sin θ
,

where K is a constant. A second integration gives

Θ = K ln

(

cot
θ

2

)

.

By (5.138) and (5.141), we obtain

Ẽθ = −ω
k

e−jkr

r

K

sin θ
, H̃φ = − 1

µ̃

e−jkr

r

K

sin θ
.

The wave impedance is
Ẽθ

H̃φ

=
ωµ̃

k
= η

as expected for a TEM wave.
Since the transmission-line wave is traveling in the radial direction, we compute the

voltage difference between the two cones at a specified value of r:

V (r) = −
∫ θ1

θ2

Ẽθr dθ =
ω

k
e−jkr

∫ θ1

θ2

K

sin θ
dθ = K

ω

k
e−jkr ln

[

cot(θ1/2)

cot(θ2/2)

]

.

Since K is arbitrary, we can define

K = Ṽ0
k

ω ln
[

cot(θ1/2)
cot(θ2/2)

]

so that
V (r) = Ṽ0e

−jkr.
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The magnetic field is then

H̃φ = − Ṽ0

η ln
[

cot(θ1/2)
cot(θ2/2)

]

e−jkr

r

1

sin θ

so that the surface current on the cone at θ = θ2, where n̂ = −θ̂, is

J̃s = r̂
Ṽ0

η ln
[

cot(θ1/2)
cot(θ2/2)

]

e−jkr

r

1

sin θ2
.

The current flowing on the cone is

Ĩ(r) =

∫ 2π

0

J̃s · r̂r sin θ2 dφ = 2π
Ṽ0

η ln
[

cot(θ1/2)
cot(θ2/2)

]e−jkr.

We thus have the characteristic impedance of the biconical transmission line as the ratio
of voltage to current at radius r:

Zc =
Ṽ (r)

Ĩ(r)
=

η

2π
ln

[

cot(θ1/2)

cot(θ2/2)

]

.

◮ Example 5.40: Impedance of a bicone antenna

A classic application for a biconical transmission line is the bicone antenna. The cones are
made identical with θ2 = π − θ1 and are fed at the apex by a two-wire transmission line (or
a coaxial cable with a balun). Assuming the cones reside in free space, find the cone angle
that makes the characteristic impedance of the biconical transmission line 300 Ω.

Solution: Setting θ2 = π − θ1 gives

cot
θ2
2

= cot

(

π

2
− θ1

2

)

= tan
θ1
2

so that

Zc =
η0
2π

ln cot2
θ1
2

=
η0
π

ln cot
θ1
2

= 300 Ω.

Solving for θ1 we have

θ1 = 2 tan−1
[

e
− 300π

η0

]

= 9.37◦. ◭

◮ Example 5.41: Impedance of a discone antenna

Another antenna application for a biconical transmission line is the discone antenna. The
angle of the top cone is chosen to be θ1 = 90◦ so that the cone becomes a flat ground
plane below which the second cone extends. (Since the ground plane must in practice be
truncated, the top cone becomes a disc, giving the antenna its name.) The antenna is fed
using a coaxial cable passed up through the bottom cone. If the cones reside in free space,
find the angle of the bottom cone that makes the characteristic impedance of the conical
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transmission line 50 Ω.

Solution: Setting θ1 = π/2 gives the characteristic impedance

Zc =
η0
2π

ln tan
θ2
2

= 50 Ω.

Solving for θ2 we have

θ2 = 2 tan−1
[

e
100π
η0

]

= 133.0◦.

The bottom cone makes an angle of 47◦ with the ground plane. ◭

5.7 Problems

5.1 Verify that the fields and sources obeying even planar reflection symmetry obey the
component Maxwell’s equations (5.1)–(5.6). Repeat for fields and sources obeying odd
planar reflection symmetry.

5.2 Consider an electric Hertzian dipole located on the z-axis at z = h. Show that if the
dipole is parallel to the plane z = 0, then adding an oppositely directed dipole of the
same strength at z = −h produces zero electric field tangential to the plane. Also show
that if the dipole is z-directed, then adding another z-directed dipole at z = −h produces
zero electric field tangential to the z = 0 plane. Since the field for z > 0 is unaltered in
each case, if we place a PEC in the z = 0 plane, we establish that tangential components
of electric current image in the opposite direction, while vertical components image in
the same direction.

5.3 Consider a z-directed electric line source Ĩ0 located at y = h, x = 0 between con-
ducting plates at y = ±d, d > h. The material between the plates has permeability
µ̃(ω) and complex permittivity ǫ̃c(ω). Write the impressed and scattered fields in terms
of Fourier transforms and apply the boundary conditions at z = ±d to determine the
electric field between the plates. Show that the result is identical to the expression (5.8)
obtained using symmetry decomposition, which required the boundary condition to be
applied only on the top plate.

5.4 Consider an unbounded, homogeneous, isotropic medium described by permeability
µ̃(ω) and complex permittivity ǫ̃c(ω). Assuming there are magnetic sources present, but
no electric sources, show that the fields may be written as

H̃(r) = −jωǫ̃c
∫

V

Ḡe(r|r′;ω) · J̃im(r′, ω) dV ′,

Ẽ(r) =

∫

V

Ḡm(r|r′;ω) · J̃im(r′, ω) dV ′,

where Ḡe is given by (5.80) and Ḡm is given by (5.81).



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 646 — #670
✐

✐

✐

✐

✐

✐

646 Electromagnetics

5.5 Show that for a cubical excluding volume, the depolarizing dyadic is L̄ = Ī/3.

5.6 Consider the depolarizing dyadic for a cylindrical excluding volume with height and
diameter both 2a, and with the limit taken as a → 0. Let J̃ = J̃zẑ and show that
Lzz = 0.293.

5.7 Show that the spherical wave function

ψ̃(r, ω) =
e−jkr

4πr

obeys the radiation conditions (5.84) and (5.85).

5.8 Verify that the transverse component of the Laplacian of A is

(∇2A)t =

[

∇t(∇t ·At) +
∂2At

∂u2
−∇t ×∇t ×At

]

.

Verify that the longitudinal component of the Laplacian of A is

û
(

û · ∇2A
)

= û∇2Au.

5.9 Verify the identities (B.88)–(B.99).

5.10 Verify the identities (B.100)–(B.104).

5.11 Derive the formula (5.96) for the transverse component of the electric field.

5.12 The longitudinal/transverse decomposition can be performed beginning with the
time-domain Maxwell’s equations. Show that for a homogeneous, lossless, isotropic region
described by permittivity ǫ and permeability µ, the longitudinal fields obey the wave
equations

(

∂2

∂u2
− 1

v2
∂2

∂t2

)

Ht = ∇t
∂Hu

∂u
− ǫû×∇t

∂Eu
∂t

+ ǫ
∂Jmt
∂t

− û× ∂Jt
∂u

,

(

∂2

∂u2
− 1

v2
∂2

∂t2

)

Et = ∇t
∂Eu
∂u

+ µû×∇t
∂Hu

∂t
+ û× ∂Jmt

∂u
+ µ

∂Jt
∂t

.

Also show that the transverse fields may be found from the longitudinal fields by solving
(

∇2 − 1

v2
∂

∂t2

)

Eu =
1

ǫ

∂ρ

∂u
+ µ

∂Ju
∂t

+ û · (∇t × Jmt),

(

∇2 − 1

v2
∂

∂t2

)

Hu =
1

µ

∂ρm
∂u

+ ǫ
∂Jmu
∂t

− û · (∇t × Jt).

Here v = 1/
√
µǫ.

5.13 Consider a homogeneous, lossless, isotropic region of space described by permittivity
ǫ and permeability µ. Beginning with the source-free time-domain Maxwell equations
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in rectangular coordinates, choose z as the longitudinal direction and show that the
TE–TM decomposition is given by

(

∂2

∂z2
− 1

v2
∂2

∂t2

)

Ey =
∂2Ez
∂z∂y

+ µ
∂2Hz

∂x∂t
,

(

∂2

∂z2
− 1

v2
∂2

∂t2

)

Ex =
∂2Ez
∂x∂z

− µ
∂2Hz

∂y∂t
,

(

∂2

∂z2
− 1

v2
∂2

∂t2

)

Hy = −ǫ∂
2Ez
∂x∂t

+
∂2Hz

∂y∂z
,

(

∂2

∂z2
− 1

v2
∂2

∂t2

)

Hx = ǫ
∂2Ez
∂y∂t

+
∂2Hz

∂x∂z
,

with

(

∇2 − 1

v2
∂2

∂t2

)

Ez = 0,

(

∇2 − 1

v2
∂2

∂t2

)

Hz = 0.

Here v = 1/
√
µǫ.

5.14 Consider the case of TM fields in the time domain. Show that for a homogeneous,
isotropic, lossless medium with permittivity ǫ and permeability µ, the fields may be
derived from a single Hertzian potential Πe(r, t) = ûΠ̃e(r, t) that satisfies the wave
equation

(

∇2 − 1

v2
∂2

∂t2

)

Πe = 0

and that the fields are

E = ∇t
∂Πe
∂u

+ û

(

∂2

∂u2
− 1

v2
∂2

∂t2

)

Πe, H = −ǫû×∇t
∂Πe
∂t

.

5.15 Consider the case of TE fields in the time domain. Show that for a homogeneous,
isotropic, lossless medium with permittivity ǫ and permeability µ, the fields may be
derived from a single Hertzian potential Πh(r, t) = ûΠ̃h(r, t) that satisfies the wave
equation

(

∇2 − 1

v2
∂2

∂t2

)

Πh = 0

and that the fields are

E = µû×∇t
∂Πh
∂t

, H = ∇t
∂Πh
∂u

+ û

(

∂2

∂u2
− 1

v2
∂2

∂t2

)

Πh.

5.16 Show that in the time domain, TEM fields may be written for a homogeneous,
isotropic, lossless medium with permittivity ǫ and permeability µ in terms of a Hertzian
potential Πe = ûΠe that satisfies

∇2
tΠe = 0
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and that the fields are

E = ∇t
∂Πe
∂u

, H = −ǫû×∇t
∂Πe
∂t

.

5.17 Show that in the time domain, TEM fields may be written for a homogeneous,
isotropic, lossless medium with permittivity ǫ and permeability µ in terms of a Hertzian
potential Πh = ûΠh that satisfies

∇2
tΠh = 0

and that the fields are

E = µû×∇t
∂Πh
∂t

, H = ∇t
∂Πh
∂u

.

5.18 Consider a TEM plane-wave field of the form

Ẽ = x̂Ẽ0e
−jkz , H̃ = ŷ

Ẽ0

η
e−jkz ,

where k = ω
√
µǫ and η =

√

µ/ǫ. Show that:

(a) Ẽ may be obtained from H̃ using the equations for a field that is TEy;

(b) H̃ may be obtained from Ẽ using the equations for a field that is TMx;

(c) Ẽ and H̃ may be obtained from the potential Π̃h = ŷ(Ẽ0/k
2η)e−jkz ;

(d) Ẽ and H̃ may be obtained from the potential Π̃e = x̂(Ẽ0/k
2)e−jkz ;

(e) Ẽ and H̃ may be obtained from the potential Π̃e = ẑ(jẼ0x/k)e
−jkz ;

(f) Ẽ and H̃ may be obtained from the potential Π̃h = ẑ(jẼ0y/kη)e
−jkz.

5.19 Prove the orthogonality relationships (5.208) and (5.209) for the longitudinal fields
in a lossless waveguide. Hint : Use the surface version of Green’s second identity

∫

S

(a∇2b− b∇2a) dS =

∮

Γ

(

a
∂b

∂n
+ b

∂a

∂n

)

dl

and let a = ψ̌m, b = ψ̌n where ψ̌ = ψ̌e for TM modes and ψ̌ = ψ̌h for TE modes, with m
and n designating different modes.

5.20 Verify the waveguide orthogonality conditions (5.211)–(5.212) by substituting the
field expressions for a rectangular waveguide.

5.21 Show that the time-average power carried by a propagating TE mode in a lossless
waveguide is given by

Pav =
1

2
ω̌µβk2c

∫

CS

ψ̌hψ̌
∗
h dS.
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5.22 Show that the time-average stored energy per unit length for a propagating TE
mode in a lossless waveguide is

〈We〉/l = 〈Wm〉/l = ǫ

4
(ω̌µ)2k2c

∫

CS

ψ̌hψ̌
∗
h dS.

5.23 Consider a propagating TM mode in a lossless rectangular waveguide. Show that
the time-average power carried by the propagating wave is

Pavnm =
1

2
ω̌ǫβnmk

2
cnm |Anm|2 ab

4
.

5.24 Consider a propagating TE mode in a lossless rectangular waveguide. Show that
the time-average power carried by the propagating wave is

Pavnm =
1

2
ω̌µβnmk

2
cnm |Bnm|2 ab

4
.

5.25 Consider a homogeneous, lossless region of space characterized by permeability µ
and permittivity ǫ. Beginning with the time-domain Maxwell equations, show that the
θ and φ components of the electromagnetic fields can be written in terms of the radial
components. From this give the TEr–TMr field decomposition.

5.26 Consider the formula for the radar cross-section of a PEC sphere (5.167). Show
that for the monostatic case the RCS becomes

σ =
λ2

4π

∣

∣

∣

∣

∣

∞
∑

n=1

(−1)n(2n+ 1)

Ĥ
(2)′
n (ka)Ĥ

(2)
n (ka)

∣

∣

∣

∣

∣

2

.

5.27 Beginning with the monostatic formula for the RCS of a conducting sphere given in
Problem 5.26, use the small-argument approximation to the spherical Hankel functions
to show that the RCS is proportional to λ−4 when ka≪ 1.

5.28 Consider an inhomogeneous region with µ = µ(r) and ǫ = ǫ0. Only electric sources
exist, and the fields may be written in terms of the potentials as

E = −∂A
∂t

−∇φ, B = ∇×A.

Using the Lorenz condition, obtain a partial differential equation for A.

5.29 The vector potential in an unbounded space region has a Fourier spectrum given
by

Ã(r, ω) =
µ0

4π

∫

V

J̃(r′, ω)
e−jkR

R
dV ′

where k = ω/c. Compute the inverse temporal transform of Ã(r, ω) and explain why the
result is known as a retarded potential.
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5.30 The two-dimensional Green’s function for the Helmholtz equation is the solution of

∇2G̃(ρ|ρ′) + k2G̃(ρ|ρ′) = −δ(ρ− ρ′)

where ρ = x̂x + ŷy is the two-dimensional position vector. Using spatial Fourier trans-
forms, derive the following form of the Green’s function:

G̃(ρ|ρ′) =
1

4j
H

(2)
0 (k|ρ− ρ′|)

where H
(2)
0 (·) is the Hankel function of the second kind. (See § 7.4.1 for another ap-

proach.)

5.31 A dielectric slab of permittivity ǫ̃ and permeability µ̃ occupies the region −a/2 ≤
x ≤ a/2. Perfectly conducting plates are placed parallel to the slab at x = ±d/2, forming
a “covered” slab waveguide. Here d > a. Derive the characteristic equation for modes
TMz when the field Ẽz is odd about x = 0.
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Integral solutions of Maxwell’s equations

6.1 Vector Kirchhoff solution: method of Stratton and Chu

One of the most powerful tools in electromagnetics is the integral solution to Maxwell’s
equations formulated by Stratton and Chu [183, 184]. These authors used the vector
Green’s theorem to solve for Ẽ and H̃ in much the same way as is done in static fields
with the scalar Green’s theorem. An alternative approach is to use the Lorentz reci-
procity theorem of § 4.10.2, as done by Fradin [64]. The reciprocity approach allows the
identification of terms arising from surface discontinuities, which must be added to the
result obtained from the other approach [183].

6.1.1 The Stratton–Chu formula

Consider an isotropic, homogeneous medium occupying a bounded region V in space.
The medium is described by permeability µ̃(ω), permittivity ǫ̃(ω), and conductivity σ̃(ω).
The region V is bounded by a surface S, which can be multiply connected so that S is
the union of several surfaces S1, . . . , SN as shown in Figure 6.1; these are used to exclude
unknown sources and to formulate the vector Huygens principle. Impressed electric and
magnetic sources may thus reside both inside and outside V .
We wish to solve for the electric and magnetic fields at a point r within V . To do this we

employ the Lorentz reciprocity theorem (4.170), written here using the frequency-domain
fields as an integral over primed coordinates:

−
∮

S

[Ẽa(r
′, ω)× H̃b(r

′, ω)− Ẽb(r
′, ω)× H̃a(r

′, ω)] · n̂′dS′

=

∫

V

[Ẽb(r
′, ω) · J̃a(r′, ω)− Ẽa(r

′, ω) · J̃b(r′, ω)

− H̃b(r
′, ω) · J̃ma(r′, ω) + H̃a(r

′, ω) · J̃mb(r′, ω)] dV ′. (6.1)

Note that the negative sign on the left arises from the definition of n̂ as the inward normal
to V , as shown in Figure 6.1. We place an electric Hertzian dipole at the point r = rp
where we wish to compute the field, and set Ẽb = Ẽp and H̃b = H̃p in the reciprocity

theorem, where Ẽp and H̃p are the fields produced by the dipole (5.74)–(5.75):

H̃p(r, ω) = jω∇× [p̃G(r|rp;ω)], (6.2)

Ẽp(r, ω) =
1

ǫ̃c
∇× (∇× [p̃G(r|rp;ω)]) . (6.3)

We also let Ẽa = Ẽ and H̃a = H̃, where Ẽ and H̃ are the fields produced by the impressed
sources J̃a = J̃i and J̃ma = J̃im within V that we wish to find at r = rp. Since the dipole
fields are singular at r = rp, we must exclude the point rp with a small spherical surface

651
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FIGURE 6.1

Geometry used to derive the Stratton–Chu formula.

Sδ surrounding the volume Vδ as shown in Figure 6.1. Substituting these fields into (6.1),
we obtain

−
∮

S+Sδ

[Ẽ× H̃p − Ẽp × H̃] · n̂′ dS′ =

∫

V−Vδ
[Ẽp · J̃i − H̃p · J̃im] dV ′. (6.4)

A useful identity involves the spatially constant vector p̃ and the Green’s function
G̃(r′|rp):

∇′ × [∇′ × (G̃p̃)] = ∇′[∇′ · (G̃p̃)]−∇′2(G̃p̃)

= ∇′[∇′ · (G̃p̃)]− p̃∇′2G̃

= ∇′(p̃ · ∇′G̃) + p̃k2G̃, (6.5)

where we have used ∇′2G̃ = −k2G̃ for r′ 6= rp.
We begin by computing the terms on the left side of (6.4). We suppress the r′ depen-

dence of the fields and also the dependencies of G̃(r′|rp). Substituting from (6.2), we
have

∮

S+Sδ

[Ẽ× H̃p] · n̂′ dS′ = jω

∮

S+Sδ

[Ẽ×∇′ × (G̃p̃)] · n̂′ dS′.

Using n̂′ · [Ẽ×∇′ × (G̃p̃)] = n̂′ · [Ẽ× (∇′G̃× p̃)] = (n̂′ × Ẽ) · (∇′G̃× p̃) we can write
∮

S+Sδ

[Ẽ× H̃p] · n̂′ dS′ = jωp̃ ·
∮

S+Sδ

[n̂′ × Ẽ]×∇′G̃ dS′.

Next we examine
∮

S+Sδ

[Ẽp × H̃] · n̂′ dS′ = − 1

ǫ̃c

∮

S+Sδ

[H̃×∇′ ×∇′ × (G̃p̃)] · n̂′ dS′.
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FIGURE 6.2

Decomposition of surface Sn to isolate surface field discontinuity.

Use of (6.5) along with the identity (B.49) gives

∮

S+Sδ

[Ẽp × H̃] · n̂′ dS′ = − 1

ǫ̃c

∮

S+Sδ

{(H̃× p̃)k2G̃

−∇′ × [(p̃ · ∇′G̃)H̃] + (p̃ · ∇′G̃)(∇′ × H̃)} · n̂′ dS′.

We would like to use Stokes’s theorem on the second term of the right-hand side. Since
the theorem is not valid for surfaces on which H̃ has discontinuities, we break the closed
surfaces in Figure 6.1 into open surfaces whose boundary contours isolate the disconti-
nuities as shown in Figure 6.2. Then we may write

∮

Sn=Sna+Snb

n̂′ · ∇′ × [(p̃ · ∇′G̃)H̃] dS′ =

∮

Γna+Γnb

dl′ · H̃(p̃ · ∇′G̃).

For surfaces not containing discontinuities of H̃, the two contour integrals provide equal
and opposite contributions and this term vanishes. Thus the left side of (6.4) is

−
∮

S+Sδ

[Ẽ× H̃p − Ẽp × H̃] · n̂′ dS′ =

− 1

ǫ̃c
p̃ ·
∮

S+Sδ

[jωǫ̃c(n̂′ × Ẽ)×∇′G̃+ k2(n̂′ × H̃)G̃+ n̂′ · (J̃i + jωǫ̃cẼ)∇′G̃] dS′

where we have substituted J̃i + jωǫ̃cẼ for ∇′ × H̃ and used (H̃× p̃) · n̂′ = p̃ · (n̂′ × H̃).
Now consider the right side of (6.4). By (6.3) we have

∫

V−Vδ
Ẽp · J̃i dV ′ =

1

ǫ̃c

∫

V−Vδ
J̃i · ∇′ ×∇′ × (p̃G)] dV ′.

Using (6.5) and (B.48), we have

∫

V−Vδ
Ẽp · J̃i dV ′ =

1

ǫ̃c

∫

V−Vδ
{k2(p̃ · J̃i)G̃+∇′ · [J̃i(p̃ · ∇′G̃)]− (p̃ · ∇′G̃)∇′ · J̃i} dV ′.
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FIGURE 6.3

Geometry of surface integral used to extract E at rp.

Replacing ∇′ · J̃i with −jωρ̃i from the continuity equation and using the divergence
theorem on the second term on the right-hand side, we then have

∫

V−Vδ
Ẽp · J̃i dV ′ =

1

ǫ̃c
p̃ ·
[∫

V−Vδ
(k2J̃iG̃+ jωρ̃i∇′G̃) dV ′ −

∮

S+Sδ

(n̂′ · J̃i)∇′G̃ dS′
]

.

Lastly we examine

∫

V−Vδ
H̃p · J̃im dV ′ = jω

∫

V−Vδ
J̃im · ∇′ × (G̃p̃) dV ′.

Use of J̃im · ∇′ × (G̃p̃) = J̃im · (∇′G̃× p̃) = p̃ · (J̃im ×∇′G̃) gives

∫

V−Vδ
H̃p · J̃im dV ′ = jωp̃ ·

∫

V−Vδ
J̃im ×∇′G̃ dV ′.

We now substitute all terms into (6.4) and note that each term involves a dot product
with p̃. But p̃ is arbitrary so

−
∮

S+Sδ

[(n̂′ × Ẽ)×∇′G+ (n̂′ · Ẽ)∇′G̃− jωµ̃(n̂′ × H̃G̃] dS′

+
1

jωǫ̃c

∮

Γa+Γb

(dl′ · H̃)∇′G̃ =

∫

V−Vδ

[

−J̃im ×∇′G̃+
ρ̃i

ǫ̃c
∇′G̃− jωµ̃J̃iG̃

]

dV ′.

The electric field may be extracted from the above expression by letting the radius of
the excluding volume Vδ approach zero. We first consider the surface integral over Sδ.
Figure 6.3 shows that R = |rp − r′| = δ, n̂′ = −R̂, and

∇′G̃(r′|rp) =
d

dR

(

e−jkR

4πR

)

∇′R = R̂

(

1 + jkδ

4πδ2

)

e−jkδ ≈ R̂

δ2
as δ → 0.
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Assuming Ẽ is continuous at r′ = rp, we can write

− lim
δ→0

∮

Sδ

[(n̂′ × Ẽ)×∇′G̃+ (n̂′ · Ẽ)∇′G̃− jωµ̃(n̂′ × H̃)G̃] dS′

= lim
δ→0

∫

Ω

1

4π

[

(R̂× Ẽ)× R̂

δ2
+ (R̂ · Ẽ)

R̂

δ2
− jωµ̃(R̂× H̃)

1

δ

]

δ2 dΩ

= lim
δ→0

∫

Ω

1

4π

[

−(R̂ · Ẽ)R̂+ (R̂ · R̂)Ẽ+ (R̂ · Ẽ)R̂
]

dΩ = Ẽ(rp).

Here we have used
∫

Ω dΩ = 4π for the total solid angle subtending the sphere Sδ. Finally,
assuming that the volume sources are continuous, the volume integral over Vδ vanishes
and we have

Ẽ(r, ω) =

∫

V

(

−J̃im ×∇′G̃+
ρ̃i

ǫ̃c
∇′G̃− jωµ̃J̃iG̃

)

dV ′

+

N
∑

n=1

∮

Sn

[

(n̂′ × Ẽ)×∇′G̃+ (n̂′ · Ẽ)∇′G̃− jωµ̃(n̂′ × H̃)G̃
]

dS′

−
N
∑

n=1

1

jωǫ̃c

∮

Γna+Γnb

(dl′ · H̃)∇′G̃. (6.6)

A similar formula for H̃ can be derived by placing a magnetic dipole of moment p̃m at
r = rp and proceeding as above. This leads to

H̃(r, ω) =

∫

V

(

J̃i ×∇′G̃+
ρ̃im
µ̃

∇′G̃− jωǫ̃cJ̃imG̃

)

dV ′

+

N
∑

n=1

∮

Sn

[

(n̂′ × H̃)×∇′G̃+ (n̂′ · H̃)∇′G̃+ jωǫ̃c(n̂′ × Ẽ)G̃
]

dS′

+

N
∑

n=1

1

jωµ̃

∮

Γna+Γnb

(dl′ · Ẽ)∇′G̃. (6.7)

We can also obtain (6.7) by substituting (6.6) into Faraday’s law.

◮ Example 6.1: Specialization of the Stratton–Chu formulas for static fields

Specialize the Stratton–Chu formulas (6.6) and (6.7) for the case of static fields when the
sources are embedded in unbounded space. Show that for the case of electric sources in
unbounded space, the expected forms of Coulomb’s law and the Biot-Savart law are obtained.

Solution: The surface and line integrals in the Stratton–Chu formulas are not needed for
unbounded space. The specialization to statics may be obtained by setting ω = 0, which
also results in k = 0. Under these conditions (6.6) becomes

E(r) =

∫

V

(

−J
i
m ×∇′G+

ρi

ǫ
∇′G

)

dV ′, (6.8)
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while (6.7) becomes

H(r) =

∫

V

(

J
i ×∇′G+

ρim
µ

∇′G

)

dV ′. (6.9)

Here ρi and ρim are static charge densities, Ji and Jim are steady current densities, and G is
the static Green’s function

G(r|r′) = 1

4π|r− r′| .

When the magnetic sources are zero, the electric field is from (6.8)

E(r) =

∫

V

ρi

ǫ
∇′GdV ′.

Using

∇′G =
1

4π

r− r′

|r− r′|3

we recover Coulomb’s law (3.43):

E(r) =
1

4πǫ

∫

V

ρi(r′)
r− r′

|r− r′|3 dV
′.

When the magnetic sources are zero, the magnetic field is from (6.9)

H(r) =

∫

V

J
i ×∇′GdV ′.

Again substituting for ∇′G and using B = µH, we get

B(r) =
µ

4π

∫

V

J
i(r′)× r− r′

|r− r′|3 dV
′,

which is the Biot–Savart law (3.131). ◭

◮ Example 6.2: Static Ampere’s law from the Stratton–Chu formulas

Obtain from the static specialization for the magnetic field in unbounded space (6.9) the
point form of Ampere’s law.

Solution: Taking the curl of (6.9), we have

∇×H =

∫

V

∇×
[

ρim(r′)

µ
∇′G

]

dV ′ +

∫

V

∇× [Ji(r′)×∇′G] dV ′. (6.10)

But

∇×
[

ρim(r′)

µ
∇′G

]

=
ρim(r′)

µ
∇×∇′G−∇′G×∇

(

ρim(r′)

µ

)

=
ρim(r′)

µ
∇×∇′G

since ∇ρim(r′) = 0. We also have

∇×∇′G = −∇×∇G = 0,
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so the first integral in (6.10) is zero. Next, note that

∇×
[

J
i(r′)×∇′G

]

= −∇×
[

J
i(r′)×∇G

]

= −∇×
[

G∇× J
i(r′)−∇×

(

GJ
i(r′)

)]

= ∇×∇×
[

GJ
i(r′)

]

since ∇× Ji(r′) = 0. Expansion of the ∇×∇× operation gives

∇×H =

∫

V

(

∇
{

∇ · [GJ
i(r′)]

}

−∇2[GJ
i(r′)]

)

dV ′.

Use of

∇ · [GJ
i(r′)] = G∇ · Ji(r′) + J

i(r′) · ∇G
= −J

i(r′) · ∇′G

along with

∇2[GJ
i(r′)] = G∇2

J
i(r′) + J

i(r′)∇2G+ 2(∇G · ∇)Ji(r′) = J
i(r′)∇2G

where ∇2G = −4πδ(r− r′), gives

∇×H = −∇
∫

V

[Ji(r′) · ∇′G] dV ′ + J
i(r).

As a last step, we write the remaining integral as

∫

V

[Ji(r′) · ∇′G] dV ′ =

∫

V

(

−∇′ · [Ji(r′)G] +G∇′ · Ji(r′)
)

dV ′.

For steady currents, ∇′ · J(r′) = 0 and the divergence theorem gives

∫

V

[Ji(r′) · ∇′G] dV ′ = −
∮

S→∞

[Ji(r′)G] · n̂′ dS′.

But all sources are bounded so that this last integral is zero, and we have, finally, ∇×H = Ji

as desired. ◭

6.1.2 The Sommerfeld radiation condition

We saw (§ 5.2.9) that if the potentials are not to be influenced by effects that are infinitely
removed, they must obey a radiation condition. We can make the same argument about
the fields from (6.6) and (6.7). Let us allow one of the excluding surfaces, say SN , to
recede to infinity (enclosing all of the sources as it expands). Under this limit passage,
any contributions from the fields on this surface to the fields at r should vanish.
Letting SN be a sphere centered at the origin, we note that n̂′ = −r̂′ and that as

r′ → ∞

G̃(r|r′;ω) = e−jk|r−r
′|

4π|r− r′| ≈
e−jkr

′

4πr′
,

∇′G̃(r|r′;ω) = R̂

(

1 + jkR

4πR2

)

e−jkR ≈ −r̂′
(

1 + jkr′

r′

)

e−jkr
′

4πr′
.
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Substituting these expressions into (6.6) we find that

lim
SN→S∞

∮

SN

[(n̂′ × Ẽ)×∇′G̃+ (n̂′ · Ẽ)∇′G̃− jωµ̃(n̂′ × H̃)G̃] dS′

≈ lim
r′→∞

∫ 2π

0

∫ π

0

{

[(r̂′ × Ẽ)× r̂′ + (r̂′ · Ẽ)r̂′]

(

1 + jkr′

r′

)

+ jωµ̃(r̂′ × H̃)

}

e−jkr
′

4πr′
r′

2
sin θ′ dθ′ dφ′

≈ lim
r′→∞

∫ 2π

0

∫ π

0

{r′[jkẼ+ jωµ̃(r̂′ × H̃)] + Ẽ}e
−jkr′

4π
sin θ′ dθ′ dφ′.

Since this gives the contribution to the field in V from the fields on the surface receding to
infinity, we expect that this term should be zero. If the medium has loss, the exponential
term decays and drives the contribution to zero. For a lossless medium, the contributions
are zero if

lim
r→∞

rẼ(r, ω) <∞, (6.11)

lim
r→∞

r
[

r̂× ηH̃(r, ω) + Ẽ(r, ω)
]

= 0. (6.12)

To accompany (6.7) we also have

lim
r→∞

rH̃(r, ω) <∞, (6.13)

lim
r→∞

r
[

ηH̃(r, ω)− r̂× Ẽ(r, ω)
]

= 0. (6.14)

We refer to (6.11) and (6.13) as the finiteness conditions, and to (6.12) and (6.14) as the
Sommerfeld radiation condition, for the electromagnetic field. They show that far from
the sources, the fields must behave as a wave TEM to the r-direction. We shall see in
§ 6.2 that the waves are in fact spherical TEM waves.

6.1.3 Fields in the excluded region: the extinction theorem

The Stratton–Chu formula provides a solution for the field within V , external to the
excluded regions. As an interesting consequence, and one that helps us identify the
equivalence principle, it gives the null result H̃ = Ẽ = 0 when evaluated at points within
the excluded regions.

Let us consider two cases. In the first case we do not exclude the particular region
Vm, but do exclude the remaining regions Vn for n 6= m. The electric field everywhere
outside the remaining excluded regions (including at points within Vm) is, by (6.6),

Ẽ(r, ω) =

∫

V+Vm

(

−J̃im ×∇′G̃+
ρ̃i

ǫ̃c
∇′G̃− jωµ̃J̃iG̃

)

dV ′

+
∑

n6=m

∮

Sn

[(n̂′ × Ẽ)×∇′G̃+ (n̂′ · Ẽ)∇′G̃− jωµ̃(n̂′ × H̃)G̃] dS′

−
∑

n6=m

1

jωǫ̃c

∮

Γna+Γnb

(dl′ · H̃)∇′G̃ (r ∈ V + Vm).
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In the second case we apply the Stratton–Chu formula only to Vm, and exclude all other
regions. We incur a sign change on the surface and line integrals compared to the first
case because the normal is now directed oppositely. By (6.6) we have

Ẽ(r, ω) =

∫

Vm

(

−J̃im ×∇′G̃+
ρ̃i

ǫ̃c
∇′G̃− jωµ̃J̃iG̃

)

dV ′

−
∮

Sm

[(n̂′ × Ẽ)×∇′G̃+ (n̂′ · Ẽ)∇′G̃− jωµ̃(n̂′ × H̃)G̃] dS′

+
1

jωǫ̃c

∮

Γma+Γmb

(dl′ · H̃)∇′G̃ (r ∈ Vm).

Both expressions for Ẽ hold at points of Vm; subtraction gives

0 =

∫

V

(

−J̃im ×∇′G̃+
ρ̃i

ǫ̃c
∇′G̃− jωµ̃J̃iG̃

)

dV ′

+

N
∑

n=1

∮

Sn

[(n̂′ × Ẽ)×∇′G̃+ (n̂′ · Ẽ)∇′G̃− jωµ̃(n̂′ × H̃)G̃] dS′

−
N
∑

n=1

1

jωǫ̃c

∮

Γna+Γnb

(dl′ · H̃)∇′G̃ (r ∈ Vm).

This expression is exactly the Stratton–Chu formula (6.6) evaluated at points within the
excluded region Vm. The treatment of H̃ is analogous and is left as an exercise. Since we
may repeat this for any excluded region, we find that the Stratton–Chu formula returns
the null field when evaluated at points outside V . This is sometimes called the vector
Ewald–Oseen extinction theorem [91]. We emphasize that the fields within the excluded
regions are not generally zero; the Stratton–Chu formula merely returns this result when
evaluated there.

6.2 Fields in an unbounded medium

Two special cases of the Stratton–Chu formula are important because of their application
to antenna theory. The first is that of sources radiating into an unbounded region. The
second involves a bounded region with all sources excluded. We shall consider the former
here and the latter in § 6.3.
If there are no bounding surfaces in (6.6) and (6.7), except for one surface that has

been allowed to recede to infinity and therefore provides no surface contribution, we find
that the electromagnetic fields in unbounded space are given by

Ẽ =

∫

V

(

−J̃im ×∇′G̃+
ρ̃i

ǫ̃c
∇′G̃− jωµ̃J̃iG̃

)

dV ′,

H̃ =

∫

V

(

J̃i ×∇′G̃+
ρ̃im
µ̃

∇′G̃− jωǫ̃cJ̃imG̃

)

dV ′.
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We can view the right-hand sides as superpositions of the fields present in the cases
where (1) electric sources are present exclusively, and (2) magnetic sources are present
exclusively. With ρ̃im = 0 and J̃im = 0 we find that

Ẽ =

∫

V

(

ρ̃i

ǫ̃c
∇′G̃− jωµ̃J̃iG̃

)

dV ′, (6.15)

H̃ =

∫

V

J̃i ×∇′G̃ dV ′.

But ∇′G̃ = −∇G̃, so
Ẽ(r, ω) = −∇φ̃e(r, ω)− jωÃe(r, ω)

where

φ̃e(r, ω) =

∫

V

ρ̃i(r′, ω)

ǫ̃c(ω)
G̃(r|r′;ω) dV ′,

Ãe(r, ω) =

∫

V

µ̃(ω)J̃i(r′, ω)G̃(r|r′;ω) dV ′, (6.16)

are the electric scalar and vector potential functions introduced in § 5.2. Using

J̃i ×∇′G̃ = −J̃i ×∇G̃ = ∇× (J̃iG̃),

we have

H̃(r, ω) =
1

µ̃(ω)
∇×

∫

V

µ̃(ω)J̃i(r′, ω)G̃(r|r′;ω) dV ′ =
1

µ̃(ω)
∇× Ãe(r, ω). (6.17)

These expressions for the fields are identical to those of (5.50) and (5.51), hence the
integral formula for the electromagnetic fields produces a result identical to that obtained
using potential relations. Similarly, with ρ̃i = 0 and J̃i = 0, we have

Ẽ = −
∫

V

J̃im ×∇′G̃ dV ′,

H̃ =

∫

V

(

ρ̃im
µ̃

∇′G̃− jωǫ̃cJ̃imG̃

)

dV ′,

or

Ẽ(r, ω) = − 1

ǫ̃c(ω)
∇× Ãh(r, ω),

H̃(r, ω) = −∇φ̃h(r, ω)− jωÃh(r, ω),

where

φ̃h(r, ω) =

∫

V

ρ̃im(r′, ω)

µ̃(ω)
G̃(r|r′;ω) dV ′,

Ãh(r, ω) =

∫

V

ǫ̃c(ω)J̃im(r′, ω)G̃(r|r′;ω) dV ′,

are the magnetic scalar and vector potentials introduced in § 5.2.
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◮ Example 6.3: Fields of a dipole antenna

A dipole antenna consists of a thin wire of length 2l and radius a, fed at the center by
a voltage generator, as shown in Figure 6.4. The antenna is embedded in an unbounded,
lossless medium with parameters µ, ǫ. The generator induces an impressed current on the
surface of the wire, which in turn radiates an electromagnetic wave. For very thin wires
(a ≪ λ, a ≪ l) embedded in a lossless medium, the current may be approximated to
reasonable accuracy using a standing wave distribution:

J̃
i(r, ω) = ẑĨ(ω) sin [k(l − |z|)] δ(x)δ(y). (6.18)

Compute the field produced by the dipole antenna.

FIGURE 6.4
Dipole antenna in a lossless unbounded medium.

Solution: We use (6.16) to get the vector potential, (6.17) to get the magnetic field, and
Ampere’s law to get the electric field. Substituting the current expression into (6.16) and
integrating over x and y, we have

Ãe(r, ω) = ẑ
µĨ

4π

∫ l

−l

sin k(l − |z′|)e
−jkR

R
dz′ (6.19)

where R =
√

(z − z′)2 + ρ2 and ρ2 = x2 + y2. By (6.17),

H̃ = ∇× 1

µ
Ãe = −φ̂

1

µ

∂Ãez
∂ρ

.
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Writing the sine function in (6.19) in terms of exponentials, we then have

H̃φ = j
Ĩ

8π

[

ejkl
∫ 0

−l

∂

∂ρ

e−jk(R−z′)

R
dz′ − e−jkl

∫ 0

−l

∂

∂ρ

e−jk(R+z′)

R
dz′

+ ejkl
∫ l

0

∂

∂ρ

e−jk(R+z′)

R
dz′ − e−jkl

∫ l

0

∂

∂ρ

e−jk(R−z′)

R
dz′
]

.

Noting that

∂

∂ρ

e−jk(R±z′)

R
= ±ρ ∂

∂z′
e−jk(R±z′)

R [R ∓ (z − z′)]
= −ρ1 + jkR

R3
e−jk(R±z′)

we can write

H̃φ = j
Ĩρ

8π

[

−ejkl e−jk(R−z′)

R [R + (z − z′)]

∣

∣

∣

∣

0

−l

− e−jkl
e−jk(R+z′)

R [R − (z − z′)]

∣

∣

∣

∣

0

−l

+ ejkl
e−jk(R+z′)

R [R − (z − z′)]

∣

∣

∣

∣

l

0

+ e−jkl
e−jk(R−z′)

R [R + (z − z′)]

∣

∣

∣

∣

l

0

]

.

Collecting terms and simplifying, we get

H̃φ(r, ω) = j
Ĩ(ω)

4πρ

[

e−jkR1 + e−jkR2 − (2 cos kl)e−jkr
]

(6.20)

where R1 =
√

ρ2 + (z − l)2 and R2 =
√

ρ2 + (z + l)2. For points external to the dipole, the
source current is zero, and thus

Ẽ(r, ω) =
1

jωǫ
∇× H̃(r, ω) =

1

jωǫ

{

−ρ̂
∂

∂z
H̃φ(r, ω) + ẑ

1

ρ

∂

∂ρ
[ρH̃φ(r, ω)]

}

.

Performing the derivatives, we have

Ẽρ(r, ω) = j
ηĨ(ω)

4π

[

z − l

ρ

e−jkR1

R1
+
z + l

ρ

e−jkR2

R2
− z

ρ
(2 cos kl)

e−jkr

r

]

, (6.21)

Ẽz(r, ω) = −j ηĨ(ω)
4π

[

e−jkR1

R1
+
e−jkR2

R2
− (2 cos kl)

e−jkr

r

]

. (6.22)

These closed-form expressions for the near-zone fields will be used in § 6.4.4 to find an
approximate formula for the input impedance of a dipole antenna. ◭

6.2.1 The far-zone fields produced by sources in unbounded space

Many antennas may be analyzed in terms of electric currents and charges radiating in
unbounded space. Since antennas serve to transmit information over great distances, the
fields far from the sources are often sought. Assume the sources are contained within
a sphere of radius rs centered at the origin. We define the far zone of the sources to
consist of all observation points satisfying both r ≫ rs (and thus r ≫ r′) and kr ≫ 1.

At such points we may approximate the unit vector R̂ directed from the sources to the
observation point by the unit vector r̂ directed from the origin to the observation point.
Moreover,

∇′G̃ =
d

dR

(

e−jkR

4πR

)

∇′R = R̂

(

1 + jkR

R

)

e−jkR

4πR
≈ r̂jk

e−jkR

4πR
= r̂jkG. (6.23)



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 663 — #687
✐

✐

✐

✐

✐

✐

Integral solutions of Maxwell’s equations 663

Using this, we can obtain expressions for Ẽ and H̃ in the far zone of the sources. The
approximation (6.23) leads directly to

ρ̃i∇′G̃ ≈
[

j
∇′ · J̃i
ω

]

(

r̂jkG̃
)

= − k

ω
r̂[∇′ · (G̃J̃i)− J̃i · ∇′G̃].

Substituting this into (6.15), again using (6.23) and also using the divergence theorem,
we have

Ẽ(r, ω) ≈ −
∫

V

jωµ̃[J̃i − r̂(r̂ · J̃i)]G̃ dV ′ + r̂
k

ωǫ̃c

∮

S

(n̂′ · J̃i)G̃ dS′,

where the surface S surrounds the volume V that contains the impressed sources. If
we let this volume slightly exceed that needed to contain the sources, then we do not
change the value of the volume integral above; however, the surface integral vanishes
since n̂′ · J̃i = 0 everywhere on the surface. Using r̂ × (r̂ × J̃i) = r̂(r̂ · J̃i) − J̃i, we then
obtain the far-zone expression

Ẽ(r, ω) ≈ jωr̂×
[

r̂×
∫

V

µ̃(ω)J̃i(r′, ω)G̃(r|r′;ω) dV ′
]

= jωr̂× [r̂× Ãe(r, ω)],

where Ãe is the electric vector potential. The far-zone electric field has no r-component,
and it is often convenient to write

Ẽ(r, ω) ≈ −jωÃeT (r, ω) (6.24)

where ÃeT is the vector component of Ãe transverse to the r-direction:

ÃeT = −r̂× [r̂× Ãe] = Ãe − r̂(r̂ · Ãe) = θ̂Ãeθ + φ̂Ãeφ.

We can approximate the magnetic field similarly. Noting that J̃i×∇′G̃ = J̃i× (jkr̂G̃)
we have

H̃(r, ω) ≈ −j k

µ̃(ω)
r̂×

∫

V

µ̃(ω)J̃i(r′, ω)G̃(r|r′, ω) dV ′ ≈ −1

η
jωr̂× Ãe(r, ω).

Therefore

Ẽ(r, ω) = −ηr̂× H̃(r, ω), H̃(r, ω) =
r̂× Ẽ(r, ω)

η
,

in the far zone.
To simplify the computations, we often approximate the vector potential in the far

zone. Noting that

R =
√

(r− r′) · (r− r′) =
√

r2 + r′2 − 2(r · r′)

and remembering that r ≫ r′ for r in the far zone, we can use the leading terms of a
binomial expansion of the square root to get

R = r

√

1− 2(r̂ · r′)
r

+

(

r′

r

)2

≈ r

√

1− 2(r̂ · r′)
r

≈ r

[

1− r̂ · r′
r

]

≈ r − r̂ · r′ (6.25)

and hence

G̃(r|r′;ω) ≈ e−jkr

4πr
ejkr̂·r

′

. (6.26)
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Here we have kept the approximation (6.25) intact in the phase of G but have used
1/R ≈ 1/r in the amplitude of G. We must keep a more accurate approximation for
the phase since k(r̂ · r′) may be an appreciable fraction of a radian. We thus have the
far-zone approximation for the vector potential

Ãe(r, ω) ≈ µ̃(ω)
e−jkr

4πr

∫

V

J̃i(r′, ω)ejkr̂·r
′

dV ′, (6.27)

which we may use in computing (6.24).
Let us summarize the far-zone field expressions:

Ẽ(r, ω) = −jω[θ̂Ãeθ(r, ω) + φ̂Ãeφ(r, ω)], (6.28)

H̃(r, ω) =
r̂× Ẽ(r, ω)

η
, (6.29)

Ãe(r, ω) =
e−jkr

4πr
µ̃(ω)ãe(θ, φ, ω), (6.30)

ãe(θ, φ, ω) =

∫

V

J̃i(r′, ω)ejkr̂·r
′

dV ′, (6.31)

where the directional weighting function ãe is independent of r and describes the angular
variation, or pattern, of the fields.

In the far zone Ẽ, H̃, r̂ are mutually orthogonal. Because of this, and because the fields
vary as e−jkr/r, the electromagnetic field in the far zone takes the form of a spherical
TEM wave, which is consistent with the Sommerfeld radiation condition.

6.2.1.1 Power radiated by time-harmonic sources in unbounded space

In § 5.2.7 we defined the power radiated by a time-harmonic source in unbounded space
as the total time-average power passing through a sphere of large radius. We found
that for a Hertzian dipole the radiated power could be computed from the far-zone fields
through

Pav = lim
r→∞

∫ 2π

0

∫ π

0

Sav · r̂r2 sin θ dθ dφ (6.32)

where
Sav = 1

2 Re
{

Ě× Ȟ∗}

is the time-average Poynting vector. By superposition this holds for any localized source.
Assuming a lossless medium and using phasor notation to describe the time-harmonic
fields, we have, by (6.29),

Sav = 1
2 Re

{

Ě× (r̂× Ě∗)

η

}

= r̂
Ě · Ě∗

2η
.

Substituting from (6.28), we can also write Sav in terms of the directional weighting
function as

Sav = r̂
ω̌2

2η

(

ǍeθǍ
∗
eθ + ǍeφǍ

∗
eφ

)

= r̂
k2η

(4πr)2
(

1
2 ǎeθǎ

∗
eθ +

1
2 ǎeφǎ

∗
eφ

)

. (6.33)

As Sav describes the variation of the power density with θ, φ, it is sometimes used as a
descriptor of the power pattern of the sources.
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6.3 Fields in a bounded, source-free region

In § 6.2 we considered the first important special case of the Stratton–Chu formula:
sources in an unbounded medium. We now consider the second important special case of
a bounded, source-free region. This has applications to the study of microwave antennas
and, in its scalar form, to the study of the diffraction of light.

6.3.1 The vector Huygens principle

We may derive the formula for a bounded, source-free region of space by specializing the
general Stratton–Chu formulas. We assume that all sources of the fields are within the
excluded regions and thus set the sources to zero within V . From (6.6)–(6.7) we have

Ẽ(r, ω) =
N
∑

n=1

∮

Sn

[(n̂′ × Ẽ)×∇′G̃+ (n̂′ · Ẽ)∇′G̃− jωµ̃(n̂′ × H̃)G̃] dS′

−
N
∑

n=1

1

jωǫ̃c

∮

Γna+Γnb

(dl′ · H̃)∇′G̃, (6.34)

and

H̃(r, ω) =

N
∑

n=1

∮

Sn

[(n̂′ × H̃)×∇′G̃+ (n̂′ · H̃)∇′G̃+ jωǫ̃c(n̂′ × Ẽ)G̃] dS′

+
N
∑

n=1

1

jωµ̃

∮

Γna+Γnb

(dl′ · Ẽ)∇′G̃. (6.35)

This is known as the vector Huygens principle after the Dutch physicist C. Huygens, who
formulated his “secondary source concept” to explain the propagation of light. According
to his idea, published in Traité de la lumière in 1690, points on a propagating wavefront
are secondary sources of spherical waves that add together in just the right way to produce
the field on any successive wavefront. We can interpret (6.34)–(6.35) in much the same
way. The field at each point within V , where there are no sources, can be imagined to
arise from spherical waves emanated from every point on the surface bounding V . The
amplitudes of these waves are determined by the values of the fields on the boundaries.
Hence we may consider the boundary fields to be equivalent to secondary sources of the
fields within V . We will expand on this concept below by introducing the concept of
equivalence and identifying the specific form of the secondary sources.

6.3.2 The Franz formula

The vector Huygens principle as derived above requires secondary sources for the fields
within V that involve both the tangential and normal components of the fields on the
bounding surface. Since only tangential components are required to guarantee uniqueness
within V , we seek an expression involving only n̂× H̃ and n̂× Ẽ. Physically, the normal
component of the field is equivalent to a secondary charge source on the surface, while
the tangential component is equivalent to a secondary current source. Since charge and
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current are related by the continuity equation, specification of the normal component is
superfluous.

To derive a version of the vector Huygens principle that omits the normal fields, we
take the curl of (6.35) to get

∇× H̃(r, ω) =

N
∑

n=1

∇×
∮

Sn

(n̂′ × H̃)×∇′G̃ dS′ +
N
∑

n=1

∮

Sn

∇× [(n̂′ · H̃)∇′G̃] dS′

+

N
∑

n=1

∇×
∮

Sn

jωǫ̃c(n̂′ × Ẽ)G̃ dS′ +
N
∑

n=1

1

jωµ̃

∮

Γna+Γnb

∇× [(dl′ · Ẽ)∇′G̃] dS′. (6.36)

Now, using ∇′G = −∇G and employing (B.49), we can show that

∇×
[

f(r′)∇′G̃(r|r′)
]

= −f(r′)
{

∇×
[

∇G̃(r|r′)
]}

+
[

∇G̃(r|r′)
]

×∇f(r′) = 0,

since ∇ × ∇G̃ = 0 and ∇f(r′) = 0. This implies that the second and fourth terms of
(6.36) are zero. The first term can be modified using

∇× {[n̂′ × H̃(r′)]G̃(r|r′)} = G̃(r|r′)∇× [n̂′ × H̃(r′)]− [n̂′ × H̃(r′)]×∇G̃(r|r′)
= [n̂′ × H̃(r′)]×∇′G̃(r|r′),

giving

∇× H̃(r, ω) =

N
∑

n=1

∇×
∮

Sn

∇× [(n̂′ × H̃)G̃] dS′ +
N
∑

n=1

∇×
∮

Sn

jωǫ̃c(n̂′ × Ẽ)G̃ dS′.

Finally, using Ampere’s law ∇× H̃ = jωǫ̃cẼ in the source free region V , and taking the
curl in the first term outside the integral, we have

Ẽ(r, ω) =
N
∑

n=1

∇×∇×
∮

Sn

1

jωǫ̃c
(n̂′ × H̃)G̃ dS′ +

N
∑

n=1

∇×
∮

Sn

(n̂′ × Ẽ)G̃ dS′. (6.37)

Similarly

H̃(r, ω) = −
N
∑

n=1

∇×∇×
∮

Sn

1

jωµ̃
(n̂′ × Ẽ)G̃ dS′ +

N
∑

n=1

∇×
∮

Sn

(n̂′ × H̃)G̃ dS′. (6.38)

These expressions together constitute the Franz formula for the vector Huygens principle
[189].

6.3.3 Love’s equivalence principle

Love’s equivalence principle allows us to identify the equivalent Huygens sources for the
fields within a bounded, source-free region V . It then allows us to replace a problem in
the bounded region with an “equivalent” problem in unbounded space where the source-
excluding surfaces are replaced by equivalent sources. The field produced by both the
real and the equivalent sources gives a field in V identical to that of the original problem.
This is particularly useful since we know how to compute the fields within an unbounded
region via potential functions.
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We identify the equivalent sources by considering the electric and magnetic Hertzian
potentials produced by electric and magnetic current sources. Let an impressed electric
surface current J̃eqs and a magnetic surface current J̃eqms flow on the closed surface S in a
homogeneous, isotropic medium with permeability µ̃(ω) and complex permittivity ǫ̃c(ω).
These sources produce

Π̃e(r, ω) =

∮

S

J̃eqs (r′, ω)

jωǫ̃c(ω)
G̃(r|r′;ω) dS′, (6.39)

Π̃h(r, ω) =

∮

S

J̃eqms(r
′, ω)

jωµ̃(ω)
G̃(r|r′;ω) dS′, (6.40)

which in turn can be used to find

Ẽ = ∇× (∇× Π̃e)− jωµ̃∇× Π̃h,

H̃ = jωǫ̃c∇× Π̃e +∇× (∇× Π̃h).

Substitution yields

Ẽ(r, ω) = ∇×∇×
∮

S

1

jωǫ̃c
[J̃eqs G̃] dS

′ +∇×
∮

S

[−J̃eqms]G̃ dS
′,

H̃(r, ω) = −∇×∇×
∮

S

1

jωµ̃
[−J̃eqmsG̃] dS′ +∇×

∮

S

J̃eqs G̃ dS
′.

These are identical to the Franz equations (6.37)–(6.38) if we identify

J̃eqs = n̂× H̃, J̃eqms = −n̂× Ẽ. (6.41)

These are the equivalent source densities for the Huygens principle.
We now state Love’s equivalence principle [38]. Consider the fields within a homoge-

neous, source-free region V with parameters (ǫ̃c, µ̃) bounded by a surface S. We know
how to compute the fields using the Franz formula and the surface fields. Now consider
a second problem in which the same surface S exists in an unbounded medium with
identical parameters. If the surface carries the equivalent sources (6.41), then the elec-
tromagnetic fields within V calculated using the Hertzian potentials (6.39)–(6.40) are
identical to those of the first problem, while the fields calculated outside V are zero. We
see that this must be true since the Franz formulas and the field/potential formulas are
identical, and the Franz formula (since it was derived from the Stratton–Chu formula)
gives the null field outside V . The two problems are equivalent in the sense that they
produce identical fields within V .
The fields produced by the equivalent sources obey the appropriate boundary condi-

tions across S. From (2.158)–(2.159) we have the boundary conditions

n̂× (H̃1 − H̃2) = J̃s, n̂× (Ẽ1 − Ẽ2) = −J̃ms.

Here n̂ points inward to V , (Ẽ1, H̃1) are the fields within V , and (Ẽ2, H̃2) are the fields
within the excluded region. If the fields produced by the equivalent sources within the
excluded region are zero, then the fields must obey

n̂× H̃1 = J̃eqs , n̂× Ẽ1 = −J̃eqms,

which is true by the definition of (J̃eqs , J̃
eq
sm).
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Note that we can extend the equivalence principle to the case where the media are
different internal to V than external to V . See Chen [33].

With the equivalent sources identified, we may compute the electromagnetic field in
V using standard techniques. Specifically, we may use the Hertzian potentials as shown
above or, since the Hertzian potentials are a simple remapping of the vector potentials,
we may use (5.54)–(5.55) to write

Ẽ = −j ω
k2

[∇(∇ · Ãe) + k2Ãe]−
1

ǫ̃c
∇× Ãh, (6.42)

H̃ = −j ω
k2

[∇(∇ · Ãh) + k2Ãh] +
1

µ̃
∇× Ãe, (6.43)

where

Ãe(r, ω) =

∮

S

µ̃(ω)J̃eqs (r′, ω)G̃(r|r′;ω) dS′ (6.44)

=

∮

S

µ̃(ω)[n̂′ × H̃(r′, ω)]G̃(r|r′;ω) dS′, (6.45)

Ãh(r, ω) =

∮

S

ǫ̃c(ω)J̃eqms(r
′, ω)G̃(r|r′;ω) dS′ (6.46)

=

∮

S

ǫ̃c(ω)[−n̂′ × Ẽ(r′, ω)]G̃(r|r′;ω) dS′. (6.47)

At points where the source is zero we can write the fields in the alternative form

Ẽ = −j ω
k2

∇×∇× Ãe −
1

ǫ̃c
∇× Ãh, (6.48)

H̃ = −j ω
k2

∇×∇× Ãh +
1

µ̃
∇× Ã. (6.49)

By superposition, if there are volume sources within V , we merely add the fields due
to these sources as computed from the potential functions.

6.3.4 The Schelkunoff equivalence principle

With Love’s equivalence principle we create an equivalent problem by replacing an ex-
cluded region with equivalent electric and magnetic sources. These require knowledge of
both the tangential electric and magnetic fields over the bounding surface. However, the
uniqueness theorem says that only one of either the tangential electric or the tangential
magnetic fields need be specified to make the fields within V unique. Thus we may won-
der whether it is possible to formulate an equivalent problem involving only tangential
Ẽ or tangential H̃. It is indeed possible, as shown by Schelkunoff [38, 171].

When we use the equivalent sources to form the equivalent problem, we know that they
produce a null field within the excluded region. Thus we may form a different equivalent
problem by filling the excluded region with a perfect conductor, and keeping the same
equivalent sources. The boundary conditions across S are not changed, and thus by the
uniqueness theorem the fields within V are not altered. However, the manner in which
we must compute the fields within V is changed. We can no longer use formulas for
the fields produced by sources in free space, but must use formulas for fields produced
by sources in the vicinity of a conducting body. In general this can be difficult since it
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FIGURE 6.5

Geometry for problem of an aperture in a perfectly conducting ground screen illuminated
by an impressed source.

requires the formation of a new Green’s function that satisfies the boundary condition
over the conducting body (which could possess a peculiar shape). Fortunately, we showed
(§ 4.10.2.5) that an electric source adjacent and tangential to a perfect electric conductor
produces no field, hence we need not consider the equivalent electric sources (n̂ × H̃)
when computing the fields in V . Thus, in our new equivalent problem we need the single
tangential field −n̂× Ẽ. This is the Schelkunoff equivalence principle.
There is one situation in which it is relatively easy to use the Schelkunoff equivalence.

Consider a perfectly conducting ground screen with an aperture in it, as shown in Figure
6.5. We assume that the aperture has been illuminated in some way by an electromagnetic
wave produced by sources in region 1 so that there are both fields within the aperture
and electric current flowing on the region-2 side of the screen due to diffraction from
the edges of the aperture. We wish to compute the fields in region 2. We can create an
equivalent problem by placing a planar surface S0 adjacent to the screen, but slightly
offset into region 2, and then closing the surface at infinity so that all of the screen plus
region 1 is excluded. Then we replace region 1 with homogeneous space and place on S0

the equivalent currents J̃eqs = n̂ × H̃ and J̃eqms = −n̂× Ẽ, where H̃ and Ẽ are the fields
on S0 in the original problem. Over the portion of S0 adjacent to the screen, J̃eqms = 0,
since n̂ × Ẽ = 0, but J̃eqs 6= 0. From the equivalent currents we can compute the fields
in region 2 using the potential functions. However, it is often difficult to determine J̃eqs
over the conducting surface. If we apply Schelkunoff’s equivalence, we can formulate a
second equivalent problem in which we place into region 1 a perfect conductor. Then
we have the equivalent source currents J̃eqs and J̃eqms adjacent and tangential to a perfect
conductor. By the image theorem of § 5.1 we can replace this problem with yet another
equivalent problem in which the conductor is replaced by the images of J̃eqs and J̃eqms in
homogeneous space. Since the image of the tangential electric current J̃eqs is oppositely
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directed, the fields of the electric current and its image cancel. The image of the magnetic
current is co-directed with J̃eqms, so the fields produced by the magnetic current and its
image add. Note that J̃eqms is nonzero only over the aperture (since n̂ × Ẽ = 0 on the
screen), and thus the field in region 1 can be found from

Ẽ(r, ω) = − 1

ǫ̃c(ω)
∇× Ãh(r, ω),

where

Ãh(r, ω) =

∫

S0

ǫ̃c(ω)[−2n̂′ × Ẽap(r
′, ω)]G̃(r|r′;ω) dS′ (6.50)

and Ẽap is the electric field in the aperture in the original problem. We present examples
in § 6.4.5.

6.3.5 Far-zone fields produced by equivalent sources

The equivalence principle is useful for analyzing antennas with complicated source dis-
tributions. The sources may be excluded using a surface S, and then knowledge of the
fields over S (found, for example, by estimation or measurement) can be used to compute
the fields external to the antenna. Here we describe how to compute these fields in the
far zone.

Given that J̃eqs = n̂ × H̃ and J̃eqms = −n̂ × Ẽ are the equivalent sources on S, we
may compute the fields using the potentials (6.45) and (6.47). Using (6.26) these can be
approximated in the far zone (r ≫ r′, kr ≫ 1) as

Ãe(r, ω) = µ̃(ω)
e−jkr

4πr
ãe(θ, φ, ω), (6.51)

Ãh(r, ω) = ǫ̃c(ω)
e−jkr

4πr
ãh(θ, φ, ω), (6.52)

where

ãe(θ, φ, ω) =

∮

S

J̃eqs (r′, ω)ejkr̂·r
′

dS′, (6.53)

ãh(θ, φ, ω) =

∮

S

J̃eqms(r
′, ω)ejkr̂·r

′

dS′ (6.54)

are the directional weighting functions.
To compute the fields from the potentials we must apply the curl operator. So we

must evaluate

∇×
[

e−jkr

r
V(θ, φ)

]

=
e−jkr

r
∇×V(θ, φ) +∇

(

e−jkr

r

)

×V(θ, φ).

The curl of V is proportional to 1/r in spherical coordinates, hence the first term on the
right is proportional to 1/r2. Since we are interested in the far-zone fields, this term can
be discarded in favor of 1/r-type terms. Using

∇
(

e−jkr

r

)

= −r̂

(

1 + jkr

r

)

e−jkr

r
≈ −r̂jk

e−jkr

r
(kr ≫ 1)

we have

∇×
[

e−jkr

r
V(θ, φ)

]

≈ −jkr̂×
[

e−jkr

r
V(θ, φ)

]

.
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Under this approximation we also establish

∇×∇×
[

e−jkr

r
V(θ, φ)

]

≈ −k2r̂× r̂×
[

e−jkr

r
V(θ, φ)

]

= k2
e−jkr

r
VT (θ, φ)

where VT = V − r̂(r̂ ·V) is the vector component of V transverse to the r-direction.
With these formulas we can approximate (6.48)–(6.49) as

Ẽ(r, ω) = −jωÃeT (r, ω) +
jk

ǫ̃c(ω)
r̂× Ãh(r, ω), (6.55)

H̃(r, ω) = −jωÃhT (r, ω)−
jk

µ̃(ω)
r̂× Ãe(r, ω). (6.56)

Note that

r̂× Ẽ = −jωr̂× ÃeT +
jk

ǫ̃c
r̂× r̂× Ãh.

Since r̂× ÃeT = r̂× Ãe and r̂× r̂× Ãh = −ÃhT , we have

r̂× Ẽ = η

[

−jωÃhT − jk

µ̃
r̂× Ãe

]

= ηH̃.

Thus

H̃ =
r̂× Ẽ

η

and the electromagnetic field in the far zone is a TEM spherical wave as expected.
Finally, we can write the far-zone electric and magnetic fields in terms of the directional

weighting functions by substituting (6.51)–(6.52) into (6.55)–(6.56):

Ẽ(r, ω) = −jωµ̃e
−jkr

4πr
ãeT (r, ω) + jk

e−jkr

4πr
r̂× ãh(r, ω), (6.57)

H̃(r, ω) = −jωǫ̃c e
−jkr

4πr
ãhT (r, ω)− jk

e−jkr

4πr
r̂× ãe(r, ω). (6.58)

6.4 Application: antennas

Antennas constitute a ubiquitous, but often unobserved, technology. Essential to a so-
ciety predicated on wireless connectivity, they can be found not only in cell phones and
computers, but in appliances, cameras, clothing, and any object that can benefit from
information transfer. Wireless sensors are crucial for security applications and for moni-
toring the health of both people and physical structures. Automobiles may have a dozen
or more antennas for AM and FM radio, satellite radio and internet, GPS, cell phone,
keyless entry, Bluetooth connectivity, collision avoidance radar, and automatic parking
systems; autonomous vehicles will soon require new wireless systems for communication
and control.
Because the uses for wireless systems are so extensive and varied, antenna technology

is diverse and complex. But all antennas serve similar purposes, and a simple definition
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is tempting: an antenna is a device that is designed to create or receive electromagnetic
waves. This definition may have held in the early days of radio when antennas were pri-
marily used for communicating wirelessly over long distances, which could only be done
through the propagation of electromagnetic waves, but the definition is now inadequate.
Classic radio and television systems, radars, and modern cellular telephone networks uti-
lize antennas that are widely spaced and operate in the far zone of electromagnetic fields.
These antennas are designed as if they are operating in empty space, although interaction
with the ground or distant objects such as buildings may be factored in. In contrast,
many modern wireless systems transmit information over very short distances. These sys-
tems interact electromagnetically through the near-zone fields and do not depend on the
creation of traveling waves. Examples in the medical industry include implanted devices
such as pacemakers and wireless glucose sensors, radio-frequency cancer ablation, and
transcranial magnetic stimulation. Each of these applications requires a careful design
of an electromagnetic sensor or probe that interacts with nearby material objects, and
this interaction must be included in the design. Similarly, radio-frequency identification
systems (RFID) use transmitters and receivers in close proximity, and thus use near-zone
fields. The coils used to create and sense the electromagnetic fields in these applications
are often referred to as antennas, thus broadening the early view of antennas as creators
of electromagnetic waves.

In this section we give a brief overview of antennas in the original sense, as creators
and receivers of electromagnetic waves, and consider the electromagnetic aspects of the
technology. We include basic definitions and give some simple classic examples. Various
technical books cover the many specialized applications of antennas, and several excellent
textbooks cover the basic theory behind antennas to a much deeper extent than our basic
introduction (see, e.g., [11, 110, 186]). Note that in the discussion below, all time-varying
quantities are assumed time-harmonic and phasors are used throughout.

6.4.1 Types of antennas

Antennas are categorized in many ways, often based on their operational properties (high
gain, wideband, circularly polarized, receiving) or their physical attributes (dish, leaky-
wave, dielectric rod, patch). For emphasizing fundamental operating principles, we are
attracted to the simple dyad used by Elliott [57].

• Type I antennas have current distributions that are known or can be approxi-
mated. These include wire antennas such as dipoles, loops, and helices.

• Type II antennas have field distributions that are known or can be approximated.
These include aperture antennas such as slots, horns, and dishes, and also patches
and other integrated antennas.

The approach for computing various antenna properties depends on whether the antenna
is type I or type II. We will illustrate both types in later sections. The far-zone fields
produced by a type I antenna are determined from the known current using (6.28)–(6.31).
The far-zone fields of a type II antenna are determined from known fields over an enclosing
surface using equivalent sources and (6.51)–(6.54) and (6.57)–(6.58).

6.4.2 Basic antenna properties

Antenna properties fall into two broad categories: circuit properties and radiation prop-
erties. Each antenna is connected to a system by a transmission line or waveguide, and
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FIGURE 6.6

Transmitting antenna system, with the antenna acting as a circuit element.

thus may be viewed as a circuit element for the purpose of system design. A pair of
terminals or a terminal plane is defined for the antenna, and a terminal voltage V̌0 is
described either in terms of the transmission line voltage or the transverse electric field
amplitude. Similarly, a terminal current Ǐ0 is defined in terms of a transmission line cur-
rent or a transverse magnetic field. The frequency responses of the voltage and current
determine the circuit properties of the antenna as a one-port device. For transmitter
design it may only be necessary to know the impedance of the antenna, i.e., the ratio of
terminal voltage to current. In this sense an antenna behaves as any other load. The
circuit properties are determined by a knowledge of the fields near to the antenna. A
simple diagram of the antenna/transmitter system is shown in Figure 6.6.
In contrast, for communication system design a knowledge of radiation properties —

such as radiated power, pattern, and polarization — is essential. These are described us-
ing the far-zone electromagnetic fields. Other properties, such as receiving cross-section,
efficiency, and gain, depend on knowledge of both the near and far-zone fields, and thus
combine information about the circuit and radiation properties.
Most of the properties are defined for the antenna acting as a transmitting element.

Of course, antennas can also be used to intercept electromagnetic waves, and there are
important properties that describe the behavior of the antenna as a receiving element.
Fortunately, a concept called antenna reciprocity allows us to relate some of the trans-
mitting and receiving properties of a specific antenna.
A simple diagram of an antenna/receiver system is shown in Figure 6.7. An incident

electromagnetic wave induces a current in the receiving antenna, which in turn produces
a voltage drop (due to the near-zone electric field created by the induced charge) across
the input to a transmission line, which in turn is connected to a receiver. The induced
voltage is dropped across the impedance ZTL at the input to the transmission line, and
this voltage drop may be regarded as exciting the input of the antenna just as if the
antenna is transmitting (but with a reverse polarity due to the voltage drop, rather than
the voltage rise for a transmitting antenna). The net result is that some of the induced
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FIGURE 6.7

Receiving antenna system, and equivalent circuit.

voltage is dropped across ZTL and some across Zin. The simple equivalent circuit shown
in Figure 6.7 is the result, where the voltage generator describes the voltage induced by
the incident field. Note that maximum received power occurs when ZTL = Z∗

in. This
is usually achieved by matching the receiver to both the transmission line and to the
antenna.

Several important antenna properties are described below. Definitions are paraphrased
from the IEEE Standard for Definitions of Terms for Antennas [90]. All references to
power indicate time-average power unless otherwise indicated.

6.4.2.1 Radiation properties

Polarization. The polarization of a transmitting antenna is the polarization of the
electromagnetic wave produced by the antenna. This polarization is very similar to the
plane wave polarization (§ 4.11.4.3) since the far-zone field of an antenna is TEM, as is a
plane wave. So an antenna can be linearly polarized, elliptically polarized, or circularly
polarized.

Radiation intensity. The radiation intensity, U , of a transmitting antenna is the
power radiated from the antenna per unit solid angle. This can be found from the r-
component of the far-zone Poynting vector by compensating for the distance traveled
by the spherical wave, and is dependent on the angles θ and φ in spherical coordinates.
From (6.33) we have

U(θ, φ) = r2r̂ · Sav =
k2η

(4π)2
(12 ǎeθǎ

∗
eθ +

1
2 ǎeφǎ

∗
eφ). (6.59)

Radiated power. The radiated power PR produced by a transmitting antenna is that
power that is emitted by the antenna and does not return. It is thus the time-average
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Poynting flux that passes through a sphere of infinite radius. By (6.32),

PR =

∫ 2π

0

∫ π

0

U(θ, φ) sin θ dθ dφ.

Antenna pattern. The antenna pattern or radiation pattern of a transmitting an-
tenna is the spatial distribution of some property of the far-zone field. Usually either
the radiation intensity or the magnitude of the electric field is used to describe the pat-
tern, but other properties such as the phase or polarization of the field may be used.
When the radiation intensity is used, the pattern is called the power pattern. When the
magnitude of the electric field is used it is called the field pattern. The pattern is a three-
dimensional function of the angles θ and φ, but often two-dimensional cuts are made in
certain representative planes, which are often planes in which a certain field component
is dominant. Sometimes individual components of the electric field are plotted, and a
plot of the magnitude of the total electric field is then called the total field pattern.
A cut of a typical power pattern is shown in Figure 6.8. Several pattern characteristics

may be identified. A number of pattern minima or nulls are present. A null that defines
a direction where the radiation intensity vanishes is called a pattern zero. The angular
region between these nulls describes a pattern lobe. The lobe with the largest amplitude,
Umax, is called the main beam of the antenna. There may be more than one main beam,
since many antennas produce patterns that are periodic in angle. Lobes with smaller
amplitudes USL are called side lobes . The lobe opposite to the main beam with amplitude
UBL is called the back lobe. This gives rise to the side-lobe-level defined in terms of dB:

SLL = 10 log10
USL

Umax
dB.

There is a value of SLL associated with each side lobe, of which there may be many.
The reciprocal of the side lobe level associated specifically with the back lobe is called
the front-to-back ratio,

FBR = 10 log10
Umax

UBL
dB.

Note that FBR is a nonnegative number in dB.

Beamwidth. The antenna pattern beamwidth describes the angular extent of the an-
tenna main beam in a pattern cut that contains the maximum of the radiation intensity.
Usually this is the angle between half-power points (Umax/2), called the 3-dB beamwidth
or half-power beamwidth (HPBW). But in complex patterns that contain many nulls
(such as those produced by large aperture antennas) the beamwidth is often defined
as the angular distance between the nulls defining the main beam. See Figure 6.8.
In a field pattern, the 3-dB beamwidth is the angular distance between points where
|Ě| = Emax/

√
2. Here Emax is the amplitude of the maximum main-beam electric field.

Isotropic radiator. An isotropic radiator is a fictitious antenna that radiates equally
in all directions. Its radiation intensity is constant with angle:

U(θ, φ) =
PR
4π

.

Its three-dimensional antenna pattern is a sphere, and each pattern cut is a circle. There
are no nulls in the pattern.
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Typical power pattern cut.

Directivity. The directivity (formerly called directive gain) of a transmitting antenna
is the ratio of the radiation intensity in a given direction to the radiation intensity
averaged over all directions. Since the average radiation intensity is the radiated power
divided by 4π, the directivity is

D(θ, φ) = 4π
U(θ, φ)

PR
. (6.60)

The directivity of an isotropic radiator is thus unity. For angles where the directivity
exceeds unity, the antenna radiates with an intensity greater than that of an isotropic
radiator. All physical antennas have directivities that are greater than unity for some
ranges of angles and less than unity for others. Note that the maximum value of the
directivity is often written merely as D, with no angle dependence indicated, or as Dmax.

6.4.2.2 Circuit properties

Input impedance. The input impedance of a transmitting antenna is the ratio of
terminal voltage to terminal current:

Zin = V̌0/Ǐ0 = Rin + jXin.

The complex power accepted by the antenna is given by circuit theory as

Pacc =
1
2 V̌0Ǐ

∗
0 = 1

2 |Ǐ0|
2Rin + j 12 |Ǐ0|

2Xin.

The real part of the input impedance, the input resistance Rin, describes the transfer of
power to the antenna. Part of this power is dissipated by losses in the antenna, while the
rest is radiated by the antenna. The dissipated power is determined entirely by the fields
within the antenna (in the form of ohmic loss). The radiated power, although defined
above in terms of the far-zone fields, may be found from the near-zone fields that deter-
mine the input current and voltage. Note, however, that the expression for these fields
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involves the free-space Green’s function, which inherently includes the unbounded nature
of the region surrounding the antenna. The imaginary part of the input impedance, the
input reactance Xin, describes the transfer of reactive power to the antenna. The reac-
tance is produced by energy storage in the near field region surrounding the antenna,
just as the reactance of a circuit is produced by energy stored in circuit capacitance and
inductance.

Resonance frequency. A resonance frequency of a transmitting antenna is any fre-
quency at which the input reactance of the antenna vanishes. At this frequency the
electric and magnetic energies stored in the near-zone fields balance, and no reactive
power is accepted by the antenna.

Antenna mismatch factor. Figure 6.6 shows a circuit diagram for a transmitting
antenna. The transmission line is assumed lossless with characteristic resistance Rc.
The reflection coefficient for the transmission-line wave at the antenna is

Γ =
Zin −Rc
Zin +Rc

,

and the time-average power accepted by the antenna is

P0 = (1− |Γ|2)Pi,

where Pi is the time-average power incident on the antenna. The term

M = 1− |Γ|2

is the antenna mismatch factor . If the input impedance of the antenna equals the
characteristic resistance of the transmission line, the antenna is matched. A matched
antenna has a zero reflection coefficient and a unity antenna mismatch factor.
Two other terms are used to describe the quality of the antenna match. The return

loss RL is defined as

RL = −20 log10 |Γ| dB,

which has the range 0 ≤ RL < ∞ dB. Note that RL is a nonnegative number. The
standing wave ratio S is defined as

S =
1+ |Γ|
1− |Γ|

and satisfies 1 ≤ S <∞.

Impedance bandwidth. The impedance bandwidth (or merely bandwidth) of an an-
tenna is the range of frequencies over which the impedance of the antenna satisfies some
specified criterion. Two common definitions are the 10-dB bandwidth, which is the range
of frequencies for which RL ≥ 10 dB, and the S = 2 bandwidth, which is the range of
frequencies for which S ≤ 2. As these conditions may hold over more than one band,
an antenna may have multi-band properties. The absolute bandwidth is specified as the
absolute frequency range, while the fractional bandwidth is given as a fraction of the
resonance frequency. The percentage bandwidth is the fractional bandwidth measured in
per cent.
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Radiation resistance. The radiation resistance Rr of a transmitting antenna is that
portion of the input resistance that is associated with radiated power. The time-average
power accepted by the antenna is

P0 = RePacc =
1
2 |Ǐ0|

2Rin = 1
2 |Ǐ0|

2(Rr +RL) = PR + PL,

where PL is the power dissipated in the antenna due to ohmic losses as associated with
a resistance RL, and PR is the radiated power as associated with a resistance Rr. Thus,
the radiated power is

PR = 1
2 |Ǐ0|2Rr,

and the radiation resistance is

Rr = 2PR/|Ǐ0|2. (6.61)

Radiation efficiency. The radiation efficiency (or merely efficiency) ηR of a trans-
mitting antenna is the ratio of the radiated to the time-average accepted power:

ηR =
PR
P0

=
Rr

Rr +RL
≤ 1.

6.4.2.3 Properties combining both circuit and radiation effects

Gain. The gain (or total gain) G(θ, φ) of a transmitting antenna is the ratio of the
radiation intensity in a given direction to the radiation intensity of an isotropic radiator
that radiates the power accepted by the antenna. Since the power radiated by the antenna
is the radiation efficiency times the accepted power,

G(θ, φ) = ηRD(θ, φ).

The maximum value of the gain is written without angular indication:

G = ηRD.

Often the gain is expressed in dB. Then

G(θ, φ) = 10 log10 ηR + 10 log10D(θ, φ) dB.

The realized gain, RG, of a transmitting antenna is the gain reduced by the mismatch
loss:

RG(θ, φ) = (1− |Γ|2)ηRD(θ, φ),

which has a maximum value of

RG = (1− |Γ|2)ηRD.

Realized gain is often expressed in dB as

RG(θ, φ) = 10 log10D(θ, φ) + 10 log10 ηR + 10 log10(1 − |Γ|2) dB.

When the gain of an antenna is plotted as a function of angle, the gain pattern results;
this pattern is often plotted in polar coordinates on a dB scale.
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Effective area. The effective area (or effective cross-section) Ae(θ, φ) of a receiving
antenna is the ratio of the power available at the terminals of the receiving antenna to
the power density of a plane wave incident from a certain direction on the antenna:

Ae(θ, φ) =
PA

|Sav(θ, φ)|
. (6.62)

Here θ and φ are the arrival angles of the plane wave. Note that the units of Ae are m
2.

Note also that using available power in this definition implies that the antenna is polar-
ization matched to the plane wave and that the load and transmission line are impedance
matched. That is, the orientation of the antenna with respect to the polarization of the
incident wave and also the impedance of the transmission line and load are such that
maximum power is transferred to the load. There are modifications to the effective area
that take polarization and impedance mismatches into consideration.
Since the effective area describes the dependence of the received power on the orien-

tation of the receiving antenna, Ae(θ, φ) describes the receiving pattern of the receiving
antenna. If the receiving antenna is oriented to point the main beam of its receiving
pattern in the direction of the incident plane wave, the intercepted power is maximum
and the effective area is written as Ae.

Antenna reciprocity. For antennas embedded in isotropic media, certain antenna
reciprocity relationships follow from the reciprocity theorem. Chief among these is the
relation between effective area and directivity:

Ae(θ, φ) =
λ2

4π
D(θ, φ). (6.63)

See [57] for a derivation.
Since the power pattern of a transmitting antenna varies with angle in the same manner

as the directivity, the receiving pattern of an antenna when the antenna acts as a receiver
is identical to the power pattern of the antenna when that same antenna acts as a
transmitter.

Link budget equation. Consider now the transfer of power from a transmitting sys-
tem to a receiving system. The transmitting antenna has directivity

DT (θ, φ) = 4π
U(θ, φ)

PR
,

where the radiation intensity U is the power density of the outward propagating spherical
wave per unit solid angle. Now suppose the transmitting antenna is oriented so that the
receiving antenna lies along the main lobe of its pattern. In that direction, DT (θ, φ) =
DT . The spherical wave may be considered locally planar over the aperture of the
receiving antenna with power density |Sav| = Umax/r

2, since the antennas are assumed
to be separated by a large distance r. Thus

DT = 4πr2
|Sav|
PR

.

This and (6.62) give

Ae(θ, φ) = 4πr2
PA

PRDT
,
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where the angular dependence describes the orientation of the receiving antenna. Using
reciprocity relation (6.63), we can replace the effective area of the receiving antenna with
its directivity. If the receiving antenna is oriented to point its main beam toward the
transmitter, the effective area is

Ae =
λ2

4π
DR = 4πr2

PA
PRDT

.

The resulting link budget or Friis equation

PA = PR
λ2DTDR

(4πr)2

describes the relationship between the power radiated by the transmitting antenna and
the maximum power available to the receiver, and is important in wireless communication
system design. Note that improper orientation of the antennas, misalignment of the
polarization, mismatch of the receiver or transmitter impedances, and antenna losses all
reduce the amount of power delivered to the receiver. Modified link budget equations are
available to account for these effects by substituting gain or realized gain for directivity,
and by including a polarization mismatch factor.

6.4.3 Characteristics of some type-I antennas

In this section we present some examples of type-I antennas, investigating such radiation
properties as pattern, beamwidth, radiated power, radiation resistance, and directiv-
ity. Properties that involve circuit characteristics, such as impedance and bandwidth,
are difficult to investigate without resorting to numerical techniques. We will find the
impedances of dipole and loop antennas in Chapter 7 by numerically solving integral
equations, but also give later in the present chapter an approximate method for finding
input impedances of wire antennas.

6.4.3.1 The Hertzian dipole antenna

We presented the Hertzian dipole in Example 5.3 to demonstrate calculating fields from
potentials. Here we reconsider the Hertzian dipole as an actual antenna applicable in
situations where short antennas are needed. Consider the antenna shown in Figure 6.9.
A wire is connected between two conducting spheres, with a break in the center for the
antenna terminals. This is the structure of the transmitting antenna used by Heinrich
Hertz in many of his experiments to investigate the properties of electromagnetic waves.
He used two one-meter-long copper wires terminated by zinc spheres of diameter 30 cm,
and when he applied a voltage to the antenna input using an induction coil the antenna
resonated at approximately 100 MHz [5]. Since this dipole antenna is somewhat larger
than a half-wavelength long, its inherent input reactance is inductive; the spheres add
capacitance to bring the antenna into resonance.

We now know that if a dipole antenna is considerably shorter than a half-wavelength it
will have a nonuniform current distribution that is triangular in shape, tapering to zero
current at the ends to satisfy the continuity equation. The conducting spheres at the
ends provide places for charge storage, and the current no longer must taper to zero. In
fact, for very short antennas the current is very nearly uniform in phase and magnitude.
This is the antenna now often referred to as a Hertzian dipole antenna.

The antenna properties of a Hertzian dipole are easily calculated from its directional
weighting functions. Consider the antenna in free space (Figure 6.9). A filamentary
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FIGURE 6.9

A Hertzian dipole antenna.

current in free space flows on the z-axis from z = −ℓ/2 to z = ℓ/2. If ℓ ≪ λ, we can
take the current to be uniform with Ǐ(z) = Ǐ0. Neglecting radiation from the spheres,
the directional weighting function is by (6.31)

ǎe(θ, φ) = ẑǏ0

∫ ℓ/2

−ℓ/2
ejk0z

′ cos θ dz′.

Integration gives

ǎe(θ, φ) = ẑǏ0ℓ
sin
(

k0
ℓ
2 cos θ

)

k0
ℓ
2 cos θ

,

which, since k0ℓ = 2πℓ/λ≪ 1, can be simplified to

ǎe(θ) ≈ ẑǏ0ℓ = (r̂ cos θ − θ̂ sin θ)Ǐ0ℓ. (6.64)

By (6.30) the far-zone vector potential is

Ǎe =
e−jk0r

4πr
µ0(r̂ cos θ − θ̂ sin θ)Ǐ0ℓ

and (6.28)–(6.29) give

Ě = θ̂jη0Ǐ0k0ℓ
e−jk0r

4πr
sin θ, (6.65)

Ȟ = φ̂jǏ0k0ℓ
e−jk0r

4πr
sin θ.

Various antenna properties may be found from these expressions, as shown in the follow-
ing examples.
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◮ Example 6.4: Pattern of a Hertzian dipole antenna

Plot the field pattern of a Hertzian dipole antenna and find the 3-dB beamwidth.

Solution: The field pattern is a plot of the electric field magnitude. Field patterns are
usually plotted on linear scales, whereas power and gain patterns are often plotted in dB.
Both polar and rectangular plots of field pattern cuts may be used. Rectangular plots allow
easier identification of the angular positions of pattern characteristics such as nulls, while
polar plots give a better spatial sense of the behavior of the pattern. In addition, field
patterns are usually normalized to the amplitude of the maximum main beam electric field,
Emax. Recalling (6.65)

Ě = θ̂jη0Ǐ0k0ℓ
e−jk0r

4πr
sin θ,

the field pattern of a Hertzian dipole antenna is a plot of

|Ě(θ)|
Emax

= | sin θ|.

Figure 6.10 shows a three-dimensional plot of the field pattern. Clearly the pattern is
independent of the angle φ, and the main lobe lies along the direction θ = π/2. There is a
null along the z-axis. A polar plot of the field pattern cut of the xz-plane is shown in Figure
6.11. Here θ = 0 is indicated at the top of the plot, and increasing θ is counter-clockwise
from this point (as usual in spherical coordinates). Since 0 ≤ θ ≤ 180◦, the right side of the
pattern plot corresponds to x ≥ 0, while the left half corresponds to x ≤ 0. (Some authors
extend the range of θ to 0 ≤ θ ≤ 360◦, but this can be confusing.)

FIGURE 6.10
3-D field pattern of a Hertzian dipole antenna.
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FIGURE 6.11
xz-plane field pattern cut of a Hertzian dipole antenna.

The 3-dB beamwidth is the angular extent between points where

|Ě(θ)|
Emax

= | sin θ| = 1/
√
2.

Thus, HPBW = 2 sin−1(1/
√
2) = 90◦. The extent of the main beam is indicated in Figure

6.11. ◭

◮ Example 6.5: Gain of a Hertzian dipole antenna

Find the maximum directivity and radiation resistance of a Hertzian dipole antenna, and
plot the gain pattern.

Solution: To compute the directivity and radiation resistance we must first find the radiated
power. From (6.59) we obtain the radiation intensity

U(θ, φ) =
k20η0
(4π)2

1

2
ǎeθǎ

∗
eθ =

k20η0
(4π)2

1

2
|Ǐ0|2ℓ2 sin2 θ =

η0
8
|Ǐ0|2(ℓ/λ)2 sin2 θ.

Thus, the radiated power is

PR =

∫ 2π

0

∫ π

0

η0
8
|Ǐ0|2(ℓ/λ)2 sin3 θ dθ dφ = η0

π

3
|Ǐ0|2(ℓ/λ)2.

By (6.60) the directivity is

D(θ, φ) = 4π
U(θ, φ)

PR
= 4π

η0
8
|Ǐ0|2(ℓ/λ)2 sin2 θ

η0
π
3
|Ǐ0|2(ℓ/λ)2

= 3
2
sin2 θ,
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so the maximum directivity is D = 1.5. By (6.61) the radiation resistance is

Rr =
2PR

|Ǐ0|2
= η0

2π

3
(ℓ/λ)2. (6.66)

This important result states that for a short antenna the radiation resistance is small, hence
a large input current is required to radiate significant power. For instance, when ℓ/λ = 1/10,
the radiation resistance is a scant 7.9Ω.

If the Hertzian dipole is assumed lossless, then ηR = 1 and the gain is the same as
the directivity. We often specify the gain in dB, with the maximum gain given as G =
10 log10(3/2) = 1.76 dB. Figure 6.12 plots 10 log10G(θ) vs. θ. Here we have chosen a
rectangular plot. Note that the zeros of the antenna pattern at θ = 0 and θ = 180◦ are
truncated at convenient values so the dependence of the gain on angle may be clearly seen.
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FIGURE 6.12
Gain of a lossless Hertzian dipole antenna. ◭

6.4.3.2 The dipole antenna

The dipole antenna was introduced in § 6.2 as an example of a radiating current distri-
bution. See Figure 6.4. We found that the near-zone fields could be computed exactly
for a filamentary current with a sinusoidal distribution. Defining the phasor terminal
current as Ǐ0, we can write the sinusoidal current distribution for a dipole antenna in
free space as

Ǐ(z) = ẑǏ0
sin [k0(l − |z|)]

sin k0l
(−l/2 ≤ z ≤ l/2). (6.67)

Thus we see that at the terminals, where z = 0, Ǐz(0) = Ǐ0. To find the antenna
parameters, we use the general far-zone expressions (6.28)–(6.31). Substituting (6.67)
into (6.31) we have the directional weighting function

ǎe(θ, φ, ω) =

∫ l

−l
ẑ

Ǐ0
sin k0l

sin k0(l − |z′|)ejk0z′ cos θ dz′.
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Writing the sine functions in terms of exponentials, we have

ǎe(θ, φ, ω) =
ẑǏ0

2j sin k0l

[

ejk0l
∫ l

0

ejk0z
′(cos θ−1) dz′ − e−jk0l

∫ l

0

ejk0z
′(cos θ+1) dz′

+ ejk0l
∫ 0

−l
ejk0z

′(cos θ+1) − e−jk0l
∫ 0

−l
ejk0z

′(cos θ−1)

]

.

Carrying out the integrals and simplifying, we obtain

ǎe(θ, φ, ω) = ẑ
2Ǐ0
k0

F (θ, k0l)

sin θ
,

where

F (θ, k0l) =
cos(k0l cos θ)− cos k0l

sin k0l sin θ

is called the radiation function. Using ẑ = r̂ cos θ − θ̂ sin θ we find that

ǎeθ(θ, φ, ω) = −2Ǐ0
k0
F (θ, k0l), ǎeφ(θ, φ, ω) = 0. (6.68)

Thus we have from (6.30) and (6.28) the electric field

Ě = θ̂
jη0Ǐ0
2π

e−jk0r

r
F (θ, k0l) (6.69)

and from (6.29) the magnetic field

Ȟ = φ̂
jǏ0
2π

e−jk0r

r
F (θ, k0l). (6.70)

◮ Example 6.6: Pattern of a dipole antenna

Plot the field pattern of a dipole antenna for 2l = λ/2, 2l = λ, and 2l = 3λ/2. Find the
3-dB beamwidth for the first two of these cases.

Solution: The field pattern is a plot of the magnitude of the electric field, usually normalized
to the maximum main beam electric field, Emax. Thus, the field pattern of a dipole antenna
is a plot of

|Ě(θ)|
Emax

=
|F (θ, k0l)|

max |F (θ, k0l)|
.

Here max |F (θ, k0l)| is the maximum over 0 ≤ θ ≤ π for a given value of k0l. For a half-
wavelength antenna with 2l = λ/2, we have

F (θ, π/2) =
cos
(

π
2
cos θ

)

sin θ
, (6.71)

which attains the maximum value F (π/2, π/2) = 1. The half-power beamwidth is obtained
by solving

cos
(

π
2
cos θ

)

sin θ
=

1√
2
,

and finding θ = 129.04◦ and θ = 50.96◦. The resulting beamwidth is about 78◦, somewhat
smaller than the 90◦ beamwidth of the Hertzian dipole antenna found above. This is evident
from Figure 6.13, which shows a polar plot of the field pattern cut of the xz-plane for the
Hertzian and half-wave dipole antennas.
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For a full-wavelength antenna with 2l = λ we have the immediate concern that sin k0l =
sin π = 0, which drives F to infinity. This is a result of the postulated sinusoidal current
distribution for a filamentary full-wave dipole falling to zero at the input. In Chapter 7 we
will find that the actual current distribution for a dipole with nonzero wire radius has a
nonzero minimum at the input. Thus, for purposes of plotting the pattern, we suppress the
sin k0l term in the denominator of F and write, for 2l = λ,

F (θ, π) =
1 + cos (π cos θ)

sin θ
,

which has the value 2 at θ = π/2. The half-power beamwidth is found by solving

1 + cos (π cos θ)

2 sin θ
=

1√
2
,

which yields θ = 113.92◦ and θ = 66.08◦. The resulting beamwidth of about 47.8◦ is
considerably narrower than the 78◦ beamwidth of the half-wave dipole antenna found above.
This is evident from Figure 6.13, which shows a polar plot of the field pattern cut of the x-z
plane for both the half-wave and the full-wave dipole antennas.
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FIGURE 6.13
xz-plane field pattern cuts of half and full-wave dipole antennas, compared to a Hertzian
dipole antenna.

Dipole antennas of other lengths have their own distinctive patterns. In general, longer
antennas have more complex patterns since the cosine function in F (θ, k0l) goes through
more cycles as θ varies within [0, π]. An interesting pattern occurs when 2l = 3λ/2:

F (θ, 3π/2) = − cos
(

3π
2
cos θ

)

sin θ
.

The absolute value of this function is maximum at θ = 42.563◦ where |F (42.563◦, 3π/2)| =
1.399. In fact, the pattern repeats and an additional maximum appears at θ = 137.436◦ . A
3D pattern is shown in Figure 6.14, and a pattern cut in the x-z plane is shown in Figure
6.15. There is also a smaller lobe at θ = 90◦.
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FIGURE 6.14
3-D field pattern of a 3/2-wave dipole antenna.
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FIGURE 6.15
xz-plane field pattern cut of 3/2-wave dipole antenna.
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Identifying a “main beam” for repeating patterns is problematic, but often the beamwidth
of the largest repeating lobes is still identified. Solving

cos
(

3π
2
cos θ

)

1.399 sin θ
=

1√
2
,

we find θ = 24.4◦ and θ = 57.2◦ and hence a 32.8◦ half-power beamwidth (Figure 6.15). ◭

◮ Example 6.7: Gain of a half-wave dipole antenna

Find the maximum directivity and radiation resistance of a half-wave dipole antenna, and
plot the gain pattern.

Solution: To compute the directivity and radiation resistance, we must first find the radi-
ated power. Substituting (6.68) into (6.59), we have the radiation intensity

U(θ, φ) =
k20η0
(4π)2

1

2
ǎeθǎ

∗
eθ =

k20η0
(4π)2

1

2

4|Ǐ0|2
k20

F 2(θ, k0l) =
η0|Ǐ0|2
8π2

F 2(θ, k0l).

Thus, the radiated power is

PR =

∫ 2π

0

∫ π

0

η0|Ǐ0|2
8π2

F 2(θ, k0l) sin θ dθ dφ =
η0|Ǐ0|2
4π

∫ π

0

F 2(θ, k0l) sin θ dθ. (6.72)

Letting

C(k0l) =

∫ π

0

F 2(θ, k0l) sin θ dθ, (6.73)

we have the radiated power

PR =
η0|Ǐ0|2
4π

C(k0l),

and we obtain from (6.60) the directivity

D(θ, φ) = 4π
U(θ, φ)

PR
= 4π

η0|Ǐ0|
2

8π2 F 2(θ, k0l)
η0|Ǐ0|2

4π
C(k0l)

= 2
F 2(θ, k0l)

C(k0l)
. (6.74)

By (6.61) the radiation resistance is

Rr =
2PR

|Ǐ0|2
=
η0
2π
C(k0l).

For the case of a half-wave dipole, we substitute (6.71) into (6.73) to find

C(k0l) =

∫ π

0

cos2
(

π
2
cos θ

)

sin θ
dθ

= 1.22.

— Thus from (6.72) we have the radiated power

PR = 1.22
η0|Ǐ0|2
4π

= 36.6|Ǐ0|2 W

and so radiation resistance

Rr =
2PR

|Ǐ0|2
= 73.2 Ω.
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We also have from (6.74) the directivity

D(θ) =
2

1.22

cos2
(

π
2
cos θ

)

sin2 θ
.

The maximum value of the directivity is

D = D(π/2) = 2/1.22 = 1.64.

Thus, the dipole antenna has a slightly larger maximum directivity than the D = 1.5 of the
Hertzian dipole; this is reflected in the slightly narrower beamwidth of the half-wave dipole
antenna.

If the half-wave dipole is assumed lossless, then ηR = 1 and the gain is the same as the
directivity. We often specify the gain in dB, with the maximum gain given as

G = 10 log10 (1.64) = 2.15 dB,

which is slightly larger than the G = 1.76 dB for the Hertzian dipole. Figure 6.16 shows a
plot of 10 log10G(θ) as a function of θ. We see that the main beam is slightly narrower than
that of a Hertzian dipole seen in Figure 6.12.
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FIGURE 6.16
Gain of a lossless half-wave dipole antenna. ◭

◮ Example 6.8: Short dipole antenna

Consider a short dipole antenna (l ≪ λ). Find simple approximations for the current
distribution, directivity, and radiation resistance.

Solution: When l ≪ λ, we may approximate the current using the first term in the power
series for sin x: sin x ≈ x. This gives

Ǐz(z)

Ǐ0
=

sin [k0(l − |z|)]
sin k0l

≈ 1− |z|
l
,

which is a simple triangle function. To test the accuracy of this approximation, consider a
short dipole antenna with 2l = λ/5. A plot of the current distribution normalized to the
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input current is shown in Figure 6.17 using both the sinusoidal and triangular distributions.
Clearly for a dipole of this length the triangular distribution is an excellent approximation
for the current. Thus we expect the corresponding approximations for the pattern and
directivity to be equally accurate.
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FIGURE 6.17
Normalized magnitude of the current distribution on a dipole antenna with length 2l = λ/5.

When l ≪ λ we can approximate the radiation function using sin x ≈ x and cos x ≈
1− x2/2. This gives

F (θ, k0l) ≈
1− 1

2
(k0l cos θ)

2 − 1 + 1
2
(k0l)

2

(k0l) sin θ
= 1

2
k0l sin θ.

Since F (θ, k0l) determines the pattern of the dipole antenna, we see immediately that the
pattern of a short dipole antenna is identical to that of a Hertzian dipole antenna, and thus
so are the beamwidth, directivity and gain. To find the radiated power we compute from
(6.73)

C(k0l) =

∫ π

0

1
4
(k0l)

2 sin3 θ dθ = 4
3
π2(l/λ)2

and then

PR =
η0|Ǐ0|2
4π

C(k0l) =
η0π

3
(l/λ)2|Ǐ0|2.

We also have the radiation resistance

Rr =
2PR

|Ǐ0|2
= η0

2π

3
(l/λ)2.

Comparing this to (6.66) we see that the formula for the radiation resistance of a short dipole
antenna is the same as that for the Hertzian dipole antenna. However, we should be careful
to note that the variable ℓ in the formula for the Hertzian dipole antenna is the full length

of the antenna, whereas l for the short dipole antenna is the half length. So the radiation
resistance of a short dipole antenna is only one fourth that of a Hertzian dipole of the
same length. The reason for this is that the Hertzian dipole antenna has a uniform current
of strength Ǐ0, whereas the short dipole only achieves that value at the input. Thus, the
smaller amount of current over the majority of the length of the dipole antenna produces less
radiated power than the Hertzian dipole antenna, and thus a smaller radiation resistance. ◭
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FIGURE 6.18

Circular loop antenna.

6.4.3.3 The circular loop antenna

A circular loop antenna consists of a wire formed into a circular loop, fed at a gap
in the loop as shown in Figure 6.18. The loop has radius b and carries filamentary
current Ǐ(φ) = φ̂Ǐ0f(φ). Here the current distribution function f(φ) is normalized so
that f(0) = 1 and thus Ǐ0 is the input current at φ = 0. In Chapter 7 we solve an
integral equation to determine f(φ); we find that for a thin wire, the current distribution
is approximately sinusoidal, especially at frequencies near the first resonance. In essence,
the current acts as a traveling wave on a short-circuit terminated transmission line such
that the current has a maximum at φ = π. So a simple approximation for the current
distribution function is

f(φ) =
cos(k0b[π − |φ|])

cos(k0bπ)
(−π < φ ≤ π).

The directional weighting function is, from (6.31),

ǎe(θ, φ) = Ǐ0

∫ π

−π
φ̂

′
f(φ′)ejk0br̂·ρ̂

′

b dφ′.

Using r̂ · ρ̂′ = sin θ cos(φ−φ′), φ̂ · φ̂′
= cos(φ−φ′), and θ̂ · φ̂′

= cos θ sin(φ−φ′), we find

{

ǎeφ
ǎeθ

}

= Ǐ0b

{

1
cos θ

}∫ π

−π
f(φ′)

{

cos(φ − φ′)
sin(φ− φ′)

}

ejk0b sin θ cos(φ−φ
′) dφ′. (6.75)

Substituting for f(φ) and using the substitution u = φ− φ′, we obtain

{

ǎeφ
ǎeθ

}

=
Ǐ0b

cos(k0bπ)

{

1
cos θ

}∫ φ+π

φ−π
cos(k0b[π − |φ− u|])

{

cosu
sinu

}

ejk0b sin θ cosu du.
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The xz-plane is of particular interest as it contains the antenna feed. Setting φ = 0 for
the half-plane x < 0 gives

{

ǎeφ
ǎeθ

}

=
Ǐ0b

cos(k0bπ)

{

1
cos θ

}∫ π

−π
cos(k0b[π − |u|])

{

cosu
sinu

}

ejk0b sin θ cosu du.

Thus, ǎeθ = 0 and

ǎeφ =
Ǐ0b

cos(k0bπ)

∫ π

−π
cos(k0b[π − |u|]) cosuejk0b sin θ cosu du

= 2
Ǐ0b

cos(k0bπ)

∫ π

0

cos(k0b[π − u]) cosuejk0b sin θ cosu du.

The change of variable v = π − u yields

ǎeφ = −2
Ǐ0b

cos(k0bπ)

∫ π

0

cos(k0bv) cos ve
−jk0b sin θ cos v dv.

Setting φ = π for the half-plane x > 0 gives
{

ǎeφ
ǎeθ

}

=
Ǐ0b

cos(k0bπ)

{

1
cos θ

}∫ 2π

0

cos(k0b[π − |π − u|])
{

cosu
sinu

}

ejk0b sin θ cosu du.

Thus, ǎeθ = 0 and

ǎeφ = 2
Ǐ0b

cos(k0bπ)

∫ π

0

cos(k0bu) cosue
jk0b sin θ cosu du. (6.76)

Note that
|ǎeφ(θ, φ = 0)| = |ǎeφ(θ, φ = π)|,

and thus the pattern is symmetric in the xz-plane. Similarly we can show that ǎeφ = 0
in the yz-plane, while for φ = π/2

ǎeθ = −2
Ǐ0b

cos(k0bπ)
cos θ

∫ π

0

cos(k0bu) cosu cos(k0b sin θ sinu) du. (6.77)

Again, the pattern is symmetric in the plane.

◮ Example 6.9: Small loop antenna

Consider a loop antenna that is small compared to a wavelength (k0b ≪ 1). Find simple
approximations for the current distribution, directivity, beamwidth, and radiation resistance.

Solution: When k0b≪ 1, we may approximate the current distribution using the first term
in the power series for cosx,

f(φ) = 1,

and thus the current is constant with respect to position. Substitution into (6.75) gives

{

ǎeφ
ǎeθ

}

= Ǐ0b

{

1
cos θ

}∫ π

−π

{

cos(φ− φ′)
sin(φ− φ′)

}

ejk0b sin θ cos(φ−φ′) dφ′. (6.78)

Thus, ǎeθ = 0 and

ǎeφ = 2Ǐ0b

∫ π

0

cosuejk0b sin θ cos u du.
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Using (E.85) we can write
∫ π

0

cos uejx cos u du = jπJ1(x)

so that
ǎeφ = 2jπǏ0bJ1(k0b sin θ).

But since k0 ≪ 1, we can use the small argument approximation (E.50) of J1(x) ≈ x/2 for
x≪ 1:

ǎeφ = jk0πb
2Ǐ0 sin θ. (6.79)

Examining (6.64) we recall that the directional weighting function for a Hertzian dipole
antenna is

ǎeθ(θ) = − sin θǏ0ℓ.

Thus, the pattern of a small loop antenna is identical to that of a Hertzian dipole antenna
(although the polarizations are perpendicular). It follows that the directivity and beamwidth
are identical as well: D = 1.5, HPBW = 90◦. The deep null in the antenna pattern along
the loop axis is useful for radio direction finding, and small loops have been used on aircraft
since the early days of radio.

To find the radiation resistance for a small loop antenna, we first compute the radiated
power. From (6.59) we obtain the radiation intensity

U(θ, φ) =
k20η0
(4π)2

1

2
ǎeφǎ

∗
eφ =

k20η0
(4π)2

1

2
|Ǐ0|2k20(πb2)2 sin2 θ =

η0
32
π4|Ǐ0|2(d/λ)4 sin2 θ,

where d is the loop diameter. The radiated power is

PR =

∫ 2π

0

∫ π

0

η0
32
π4|Ǐ0|2(d/λ)4 sin3 θ dθ dφ = η0

π5

12
|Ǐ0|2(d/λ)4,

and the radiation resistance is

Rr = η0
π5

6
(d/λ)4.

Note that while the radiation resistance of the Hertzian dipole antenna diminishes with
length as (ℓ/λ)2, that of the small loop antenna diminishes with diameter much more quickly,
as (d/λ)4. This is because the current on opposite sides of the loop flow oppositely and the
radiation zone fields due to opposing currents tend to cancel. ◭

◮ Example 6.10: Patterns of a loop antenna

Plot the xz- and yz-plane patterns of a loop antenna carrying a sinusoidal standing wave
current.

Solution: We show in Chapter 7 that a circular loop made from thin wire is resonant when
the circumference of the loop is about a full wavelength, or

k0b = 2πb/λ ≈ 1.

Figure 6.19 shows the pattern of Ěφ in the xz-plane for a small loop found from (6.79), and
also for loops up to resonant size found by computing (6.76) numerically. The pattern of the
small loop shows a deep null along the loop axis (the z-axis). As the loop becomes electrically
larger, the null becomes shallower. When the loop is about 0.6 wavelengths in circumference,
the null has nearly disappeared. A resonant loop with k0b = 1 has a maximum value of Ěφ
in the xz-plane along the loop axis rather than off the side of the loop.
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FIGURE 6.19
xz-plane cut of the Ěφ field pattern of a circular loop antenna.

Figure 6.20 shows the pattern of Ěθ in the yz-plane for a loop of resonant size and for a
smaller loop, both found by computing (6.77) numerically. There is little difference between
the patterns; both show field maxima along the loop axis. However, recall that these patterns
are normalized. The field strength varies greatly with loop size, with a smaller loop having
a weaker field. As the loop radius tends to zero, Ěθ vanishes, as noted in Example 6.9 where
it is shown that a very small loop only has a significant φ component of electric field.
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FIGURE 6.20
yz-plane cut of the Ěθ field pattern of a circular loop antenna. ◭
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FIGURE 6.21

A generic wire antenna of circular cross-section.

6.4.4 Induced-emf formula for the input impedance of wire antennas

In the examples above we computed the radiation resistance of various antennas, but
said nothing about how to find the input reactance. Typically this must be done using a
numerical solution for the input current; we give examples for dipole and loop antennas
in Chapter 7. However, there are ways to approximate the input impedance of antennas,
including the induced-emf method [99], which is particularly useful for near-resonant
length dipole antennas.
Consider a perfectly conducting wire antenna of circular cross-section but arbitrary

shape, residing in free space (Figure 6.21). Distance along the wire axis is measured
using a variable u, with L being the total axial length of the wire. The surface tangent
in the axial direction is denoted by û. We assume that L ≫ a and that a ≪ λ. In
this case the current induced on the wire surface flows primarily axially rather than
circumferentially. We further assume that any bends in the wire are sufficiently smooth
that the induced current depends only on the axial position. Thus,

J̌s(r) ≈ û
Ǐ(u)

2πa
,

where Ǐ(u) is the total axially directed current carried on the wire surface. This surface
current supports a scattered field Ěs(r) everywhere external to the antenna. At the wire
surface this field is primarily directed axially. A more detailed discussion is provided in
§ 7.3.
The antenna feed is located at axial position u0 and consists of a voltage V̌0 applied

across a narrow gap in the wire. We can approximate the impressed field in the gap
region as

Ěiu(u) = V̌0δ(u− u0),
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such that when we integrate the field across the gap we get the voltage V̌0. The boundary
condition on the surface of the perfectly conducting wire requires that the total tangential
electric field be zero. Thus, for all points on the wire surface

V̌0δ(u− u0) = −û · Ěs(u).
Now, we choose a contour Γ along the surface of the wire in the axial direction, multiply
the equation by the current distribution Ǐ(u), and integrate:

V̌0

∫

Γ

δ(u − u0)Ǐ(u) du = −
∫

Γ

û · Ěs(u)Ǐ(u) du.

The integral on the left is Ǐ(u = u0) = Ǐ0 by the sifting property. Then, replacing V̌0 by
ZinǏ0, we have a formula for the input impedance:

Zin = − 1

Ǐ20

∫

Γ

û · Ěs(u)Ǐ(u)du. (6.80)

Equation (6.80) is the induced emf formula for the input impedance of a wire antenna.
To use it we must know, or have a good approximation for, the near-zone electric field
on the antenna surface. Unfortunately this field is readily estimated for only a few
geometries. The good news is that (6.80) is a stationary variational formula [57], and
only a rough approximation to the current is needed to produce useful values of the input
impedance. The dipole antenna is a case where we can determine the near-zone field for
an approximate current distribution, and apply the formula. See the following example.

◮ Example 6.11: Approximate input impedance of a dipole antenna

Consider the dipole antenna shown in Figure 6.4. Find an approximate formula for the input
impedance using the induced emf method.

Solution: The standing wave approximation for the current distribution on a thin dipole
antenna is from (6.18)

Ǐ(z) = Ǐm sin [k0(l − |z|)] , (6.81)

where Ǐm is the maximum current on the antenna, related to the input current through

Ǐm =
Ǐ0

sin(k0l)
.

Points on the dipole surface are described using the axial variable u = z and radial variable
ρ = a. The axial component of the surface field at axial position z is, by (6.22),

Ěz(z) = −j η0Ǐm
4π

[

e−jk0R1

R1
+
e−jk0R2

R2
− (2 cos k0l)

e−jk0r

r

]

where R1 =
√

a2 + (z − l)2, R2 =
√

a2 + (z + l)2, and r =
√
a2 + z2. Substitution into

(6.80) gives a formula for the input impedance:

Zin =
jη0

4π sin2(k0l)

∫ l

−l

sin[k0(l − |z|)]
[

e−jk0R1

R1
+
e−jk0R2

R2
− 2 cos k0l

e−jk0r

r

]

dz.

It is possible to write this in terms of standard functions; Elliott [57] expresses the final
result as

Zin = j
η0

2π sin2(k0l)

{

(4 cos2 k0l)S1 − (cos 2k0l)S2 − (sin 2k0l)[2C1 − C2]
}

.
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Here

S1 = −k0a− jF (2k0l),

S2 = −k0a− jF (4k0l),

C1 = ln(2l/a)− F (2k0l),

C2 = ln(2l/a)− F (4k0l),

with
F (x) = 1

2
[Cin(x) + jSi(x)].

In this expression Si(x) is the sine integral

Si(x) =

∫ x

0

sin u

u
du,

and Cin(x) is the modified cosine integral

Cin(x) =

∫ x

0

1− cosu

u
du.

Figure 6.22 shows a plot of Zin = Rin + jXin for l = 0.25 m and a = 0.005 m. Compare
this to Figure 7.16, showing the impedance for the same antenna found by solving an integral
equation. The results compare reasonably well near the first and third resonances, but the
induced-emf method fails near the second resonance, which is actually an antiresonance.
This is because the simple formula for the current (6.81) is zero at the input when k0l = π,
which corresponds to the length of a full-wave antenna, 2l = λ. So the computed impedance
diverges at f = 600 MHz. The current is actually small but nonzero at the antiresonance.
However, the results at the first resonance are fairly consistent. The induced-emf formula
returns a 283-MHz resonance frequency with a 62-Ω input resistance there, while the integral
equation approach returns values of 278 MHz and 73 Ω. The third resonance also matches
reasonably well, with the induced-emf method returning values of 876 MHz and 95 Ω as
compared with 883 MHz and 119 Ω from the integral equation approach.
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FIGURE 6.22
Input impedance of a dipole antenna found using the induced-emf method. l = 0.25 m,
a = 0.005 m. ◭
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◮ Example 6.12: Bandwidth of a dipole antenna

Consider a dipole antenna with length l = 0.25 m and radius a = 0.005 m. Find the
bandwidth relative to 75 Ω for the first two true resonances.

Solution: To find the 10-dB bandwidth, we compute the reflection coefficient for the dipole
antenna terminating a transmission line. Dipole antennas are often fed using coaxial cables
with 75 Ω characteristic resistance. The reflection coefficient is then

Γ =
Zin − 75

Zin + 75
.

The input impedance of this antenna was computed in Example 6.11. Figure 6.23 shows
|Γ| in dB, with the RL = 10 dB line marked. The first resonance occurs at 283 MHz, with
a return loss of 20.5 dB. At this frequency the antenna is approximately a half wavelength
long. The RL = 10 dB points are 269 and 302 MHz, giving a bandwidth of 33 MHz, which
is about 12% of the resonance frequency. The second true resonance (ignoring the first
antiresonance) occurs at 876 MHz, with RL = 10 dB frequencies of 850 and 899 MHz. This
gives a bandwidth of 49 MHz, or about 6%. Note that although the absolute bandwidth of
the second resonance is greater than that of the first, the fractional bandwidth is less.
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FIGURE 6.23
Reflection coefficient relative to 75 Ω for a dipole antenna of length l = 0.25 m and radius
a = 0.005 m. ◭

6.4.5 Characteristics of some type-II antennas

Let us turn to some radiation properties of typical type-II antennas, also known as
aperture antennas . We concentrate on computing the pattern and determining the
beamwidth. Determination of circuit properties is complicated by the variety of methods
used to feed these antennas. For instance, a large reflecting dish is fed using a primary
radiator, which could be dipole, patch, horn, or other antenna type. Each of these pri-
mary antennas might have different terminal characteristics, but if they illuminate the
aperture of the reflector identically, they will give rise to the same far-field pattern.
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FIGURE 6.24

Aperture antenna consisting of a rectangular waveguide opening into a conducting ground
screen of infinite extent.

6.4.5.1 Rectangular waveguide opening into a ground plane

A waveguide left open to free space cannot be considered an “open circuit” in the sense
of circuits or transmission lines. The tangential electromagnetic fields at the aperture of
the guide may be interpreted as equivalent sources radiating into the region surrounding
the guide and sending power away from the structure. In addition, some current flowing
on the inner surface of the guide will leak around to the outside surface and produce
radiation. Thus, the wave reflected from the mouth of the guide must have a smaller
amplitude than the incident wave. If the desire is to produce radiation, then an open-
ended waveguide may be considered a useful antenna for microwave applications. In fact,
by flaring the ends of the guide outward to form a horn, the radiation may be increased,
and such horn antennas form an important part of the pantheon of microwave antennas.
One difficulty in calculating the fields produced by an open-ended waveguide is lack of

knowledge about leakage current mentioned above. Sometimes this current is ignored in a
desire to produce an approximate but useful result; see the example of a reflector antenna
below. However, if the waveguide opens into a large (assumed infinite) conducting ground
plane, we may use the Schelkunoff equivalence principle without need for knowledge of
the currents on the screen.
Consider the case of a rectangular waveguide opening into a perfectly conducting

ground screen of infinite extent (Figure 6.24). For simplicity, assume the waveguide
propagates a pure TE10 mode, and that all higher-order modes excited by aperture
reflections can be ignored (see [176] for confirmation that this assumption is reasonable).
The electric field in the aperture S0 is

Ěa(x, y) = ŷE0 cos
(π

a
x
)

.

We may compute the far-zone field using the Schelkunoff equivalence principle (§ 6.3.4).
We exclude the region z < 0+ using a planar surface S, which we close at infinity, then
fill the region z < 0 with a perfect conductor. By image theory the equivalent electric
sources on S cancel while the equivalent magnetic sources double. Since the only nonzero
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magnetic sources are on S0 (n̂ × Ẽ = 0 on the screen), we have the equivalent problem
of the source

J̌eqms = −2n̂× Ěa = 2x̂E0 cos
(π

a
x
)

on S0 in free space, where the equivalence holds for z > 0.
We may find the far-zone field created by this equivalent current by first computing

the directional weighting function (6.54). Since

r̂ · r′ = r̂ · (x′x̂+ y′ŷ) = x′ sin θ cosφ+ y′ sin θ sinφ,

we find that

ǎh(θ, φ) =

∫ b/2

−b/2

∫ a/2

−a/2
x̂2E0 cos

(π

a
x′
)

ejkx
′ sin θ cosφejky

′ sin θ sinφ dx′ dy′

= x̂4πE0ab
cosπX

π2 − 4(πX)2
sinπY

πY

where

X =
a

λ
sin θ cosφ, Y =

b

λ
sin θ sinφ.

Here λ is the free-space wavelength. By (6.55) the electric field is

Ě =
jk0
ǫ0

r̂× Ǎh

where Ǎh is given in (6.52). Using r̂× x̂ = φ̂ cos θ cosφ+ θ̂ sinφ, we find that

Ě = jk0abE0
e−jkr

r
(θ̂ sinφ+ φ̂ cos θ cosφ)

cos(πX)

π2 − 4(πX)2
sin(πY )

πY
. (6.82)

The magnetic field is merely Ȟ = (r̂× Ě)/η0.

◮ Example 6.13: Pattern of a rectangular waveguide opening into a ground plane

Consider a WR-90 X-band waveguide opening into an infinite ground plane. Plot the antenna
pattern and find the beamwidth at center band, f = 10 GHz.

Solution: The WR-90 waveguide has dimensions a = 0.9 inches by b = 0.4 inches (22.86
by 10.16 mm). The field is typically plotted in the xz and yz planes. In the yz-plane we
have φ = π/2 or φ = 3π/2, and by (6.82) the electric field has only a θ-component, while
the magnetic field has only a φ-component. Since the electric field is tangent to the yz-
plane, this plane is called the E-plane. The magnitude of the electric field in this plane is
proportional to

F (θ) =

∣

∣

∣

∣

∣

sin
(

π b
λ
sin θ

)

π b
λ
sin θ

∣

∣

∣

∣

∣

,

and thus a plot of this function is the E-plane cut of the antenna pattern. Note that F (θ)
attains a maximum value of unity at θ = 0. The pattern appears in Figure 6.25. Note that
the field is zero in the half-space z < 0 because of the ground plane, so the field is only
shown in the upper half of the figure. Note also that the field is nonzero on the surface of
the ground plane, since the direction of Ě is perpendicular there. As the field is never less
than 1/

√
2 of the maximum field, the half-power beamwidth is undefined (alternatively, we

may say that the beam extends over the full 180◦ range of possible angles).
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FIGURE 6.25
Pattern of an X-band rectangular waveguide opening into an infinite ground plane. f =
10 GHz.

In the xz-plane we have φ = 0 or φ = π, and by (6.82) the electric field has only a
φ-component, while the magnetic field has only a θ-component. Since the magnetic field is
tangent to the yz-plane, this plane is called the H-plane. The magnitude of the electric field
in this plane is proportional to

F (θ) =

∣

∣

∣

∣

∣

cos θ
cos
(

π a
λ
cos θ

)

π2 − 4
(

π a
λ
cos θ

)2

∣

∣

∣

∣

∣

,

so a plot of this function is the H-plane cut of the antenna pattern. Note that the maximum
value of F (θ) does not occur at θ = 0, but rather at θmax = 26.30◦, where it takes on the
value Fmax = 0.056987. Thus, to plot the pattern we normalize to this value, with the result
shown in Figure 6.25. Although the maximum is not along θ = 0, there is still a main beam
oriented in this direction, and we can find the beamwidth by solving

∣

∣

∣
cos θ cos

(

π
a

λ
cos θ

)∣

∣

∣
=

0.056987√
2

∣

∣

∣

∣

π2 − 4
(

π
a

λ
cos θ

)2
∣

∣

∣

∣

.

The solution is θ = 63.69◦, so the half-power beamwidth is 127.38◦. ◭

6.4.5.2 Dish antenna with uniform plane-wave illumination

Practical aperture antennas normally do not have large flanges or ground planes for their
radiating openings, but rather radiate directly from the antenna structures. An example
is a reflector or dish antenna (Figure 6.26). A conducting reflector is illuminated by a
primary radiator (a smaller antenna) and the reflected electromagnetic fields form an
aperture field distribution over the mouth of the dish, which is a circular disk of radius
a. Although the majority of the surface current on the dish flows on the illuminated
side, some current leaks to the outer surface. We will ignore the radiated field due to
this contribution in order to simplify the analysis. To compute the radiated field, we
surround the dish with a surface S composed of S0, which is congruent to the conducting
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FIGURE 6.26

Dish antenna.

surface of the dish, and Sa, which describes the aperture of the dish. We can then find
the radiated field by replacing the dish with equivalent sources over the closed surface S.
Because the surface S0 lies against a perfect conductor, the tangential electric field is zero
and there are no equivalent magnetic currents on this surface. Also, as we have neglected
current leakage to the outside of the dish, there is no tangential magnetic current on the
surface S0. So all equivalent sources lie on the aperture surface Sa.

The aperture fields are determined by the shape of the reflector and the pattern of the
primary source. Often these are chosen to produce a specific aperture field distribution
and consequent far-field pattern. The simplest aperture illumination is that of a plane
wave, such as would be produced by a point source located at the focus of a parabolic
reflector. Ignoring diffraction from the dish edge, the spherical wave emanating from the
point source is collimated into a planar wave that appears at the mouth of the dish. We
define the planar surface of the dish aperture as the zero-phase reference, and choose the
electric field polarization along y to obtain the simple aperture field expressions

Ě = ŷE0, Ȟ = −x̂E0/η0.

So the aperture hosts both equivalent electric and magnetic sources. The equivalent
magnetic source is

J̌eqms = −n̂× Ěa = x̂E0,

which produces a directional weighting function given by (6.54). Since

r̂ · r′ = (x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ) · (x̂ρ′ cosφ′ + ŷρ′ sinφ′) = ρ′ sin θ cos(φ− φ′)

we have

ǎh(θ, φ) = x̂E0

∫ a

0

∫ 2π

0

ejk0ρ
′ sin θ cos(φ−φ′) dφ′ρ′ dρ′.

Using (E.85) to show that

∫ 2π

0

ejk0ρ
′ sin θ cos(φ−φ′) dφ′ = 2

∫ π

0

ejk0ρ
′ sin θ cosu du = 2πJ0(k0ρ

′ sin θ),
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we obtain

ǎh(θ, φ, ω) = x̂2πE0

∫ a

0

J0(k0ρ
′ sin θ)ρ′ dρ′.

Using the integral (E.106) with n = 0,
∫

xJ0(x) dx = xJ1(x) + C,

gives directional weighting function

ǎh(θ, φ) = x̂
2πaE0

k0 sin θ
J1(k0a sin θ)

= (r̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sinφ)
2πaE0

k0 sin θ
J1(k0a sin θ).

Similarly, the equivalent electric source is

J̌eqs = n̂× Ȟa = −ŷE0/η0,

which by (6.53) produces a directional weighting function

ǎe(θ, φ) = −ŷ
2πaE0

η0k0 sin θ
J1(k0a sin θ)

= −(r̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cosφ)
2πaE0

η0k0 sin θ
J1(k0a sin θ).

Lastly, we substitute the directional weighting functions into (6.57) to get the expression
for the far-zone electric field

Ě = (θ̂ sinφ+ φ̂ cosφ)
jk0
2

e−jk0r

r
E0a

1 + cos θ

sin θ
J1(k0a sin θ). (6.83)

◮ Example 6.14: Pattern of a circular dish antenna

Consider a circular dish antenna with plane-wave aperture illumination. If the radius of the
dish is a = 5λ, plot the total field pattern.

Solution: The total field pattern is a plot of the electric field magnitude. From (6.83) we
see that this quantity is proportional to

F (θ) =

∣

∣

∣

∣

1 + cos θ

sin θ
J1(k0a sin θ)

∣

∣

∣

∣

, (6.84)

which is independent of φ. When a = 5λ we have k0a = 10π, and plotting (6.84) produces
Figure 6.27. There is one large main beam along the dish axis (z-axis) and several sidelobes.
Note that the aspect ratio of the 3D pattern has been exaggerated to better visualize the
pattern shape. The main beam is actually much narrower than pictured. Figure 6.28 shows
a polar plot of the xz-plane cut of total field pattern. Note that the pattern has been
normalized to the maximum value of F (θ), which is

Fmax = F (0) = k0a = 10π.

The narrow main beam is characteristic of large dish antennas. Reflector antennas are used
to create radiation patterns with narrow beamwidths and corresponding high gains.
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FIGURE 6.27
3D total field pattern of a dish antenna with aperture size a = 5λ.
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FIGURE 6.28
xz-plane cut of total field pattern of a dish antenna with aperture size a = 5λ. ◭
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◮ Example 6.15: Beamwidth and sidelobes of a circular dish antenna

Consider a circular dish antenna with plane-wave aperture illumination. If the radius of the
dish is a = 5λ, determine the beamwidth. Find the position of the pattern nulls and the
sidelobe level for each of the first five sidelobes.

Solution: The main beam and sidelobes are easiest to visualize using a rectangular plot
with a log scale. Figure 6.29 shows a plot of

F (θ) = 20 log10

{

1

k0a

∣

∣

∣

∣

1 + cos θ

sin θ
J1(k0a sin θ)

∣

∣

∣

∣

}

dB.

The field pattern is 3 dB below its maximum value at an angle of 2.947◦, and thus the half-
power beamwidth is twice this, or about 5.89◦. Often with patterns that have many sidelobes
the beamwidth is defined in terms of the pattern nulls. There are true zeros in the pattern
when J1(k0a sin θ) = 0. Since J1(x) has zeros at 3.83171, 7.01559, 10.17347, 13.32369, . . . ,
the pattern has zeros at sin−1(3.83171/10π) = 7.006◦, 12.904◦, 18.895◦ , 25.094◦, . . .. Thus,
the main beam beamwidth as measured between the first pattern nulls is 14.01◦. When
a/λ is large, the first null occurs for a small θ value, and thus the beamwidth may be
approximated using the simple formula

BW = 2 sin−1 3.83171

k0a

≈ 7.66342

k0a
rad

or

BW ≈ 69.882

a/λ
deg.

Using a/λ = 5 gives BW = 13.98◦, which is quite close to the value of 14.01◦ found above.
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FIGURE 6.29
xz-plane cut of total field pattern of a dish antenna with aperture size a = 5λ.

Because of the additional term (1+cos θ)/ sin θ, the sidelobes do not appear at the maxima
of J1(k0a sin θ). Instead, their positions and the values of the sidelobe levels must be found
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numerically. Values for the first five sidelobes are shown in the table below.

n θ (deg) SLL (dB)

1 9.404 -17.63
2 15.53 -23.97
3 21.70 -28.27
4 28.08 -31.61
5 34.84 -34.41

◭

6.5 Problems

6.1 Beginning with the Lorentz reciprocity theorem, derive (6.7).

6.2 Obtain (6.7) by substitution of (6.6) into Faraday’s law.

6.3 Show that (6.7) returns the null result when evaluated within the excluded regions.

6.4 Consider the specialization of the Stratton-Chu formula for the static electric field
given by (6.8). By taking the divergence of E, show that the point form of Gauss’ law
may be obtained.

6.5 Show that under the condition kr ≫ 1 the formula for the magnetic field of a dipole
antenna (6.20) reduces to (6.70), while the formulas for the electric fields (6.21) and
(6.22) reduce to (6.69).

6.6 Consider the dipole antenna shown in Figure 6.4. Instead of a standing-wave current
distribution, assume the antenna carries a traveling-wave current distribution

J̃i(r, ω) = ẑĨ(ω)e−jk|z|δ(x)δ(y), −l ≤ z ≤ l.

Find the electric and magnetic fields at all points away from the current distribution.
Specialize the result for kr ≫ 1.

6.7 A circular loop of thin wire has radius a and lies in the z = 0 plane in free space. The
loop is fed at φ = 0 and is terminated by a load at φ = π such that the current behaves
as a traveling wave. Assume the phasor current induced on the wire has the density

J̌(r) = φ̂Ǐ0e
−jk0a|φ|δ(r − a)

δ(θ − π/2)

r
, |φ| ≤ π.

Determine formulas for the directional weighting functions. Plot the radiation resistance
of the loop antenna as a function of k0a.
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6.8 A circular loop of thin wire has radius a and lies in the z = 0 plane in free space.
Assume the loop is small so that k0a≪ 1. The loop is fed at φ = 0 and is open-circuited
at φ = π such that the phasor current induced on the wire has the density

J̌(r) = φ̂Ǐ0 cos

(

φ

2

)

δ(r − a)
δ(θ − π/2)

r
, |φ| ≤ π.

Determine the radiation resistance and compare it to that for a small short-circuited loop
antenna. Explain the difference.

6.9 Consider a plane wave with the fields

Ẽ = Ẽ0x̂e
−jkz , H̃ =

Ẽ0

η
ŷe−jkz ,

normally incident from z < 0 on a square aperture of side a in a PEC ground screen
at z = 0. Assume that the field in the aperture is identical to the field of the plane
wave with the screen absent (this is called the Kirchhoff approximation). Compute the
far-zone electromagnetic fields for z > 0.

6.10 Consider a coaxial cable of inner radius a and outer radius b, opening into a PEC
ground plane at z = 0. Assume that only the TEM wave exists in the line and that no
higher-order modes are created when the wave reflects from the aperture. Compute the
far-zone electric and magnetic fields of this aperture antenna.

6.11 A linear dipole antenna has its ends terminated by loads in order to create the
traveling-wave current

Ĩ(z) = Ĩ0e
−jk|z|.

Find the vector potential in the far zone of the antenna.

6.12 A thin, perfectly conducting sheet occupies the entire z = 0 plane. There is a square
aperture cut in the plane of width 2a centered at the origin. A source of frequency ω is
placed in the region z < 0 so that the electric field within the aperture is Ẽ = x̂Ẽ0 where
Ẽ0 is a constant. Find Ẽφ in the far zone of the aperture (z > 0).
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Integral equations in electromagnetics

7.1 A brief overview of integral equations

In much of this book, we formulate our mathematical description of electromagnetics in
terms of differential equations — the wave equation in particular. Sometimes, however,
the quantity of interest resides within an integral, and to determine it we must solve
an integral equation. Such equations often arise via the integral solutions to Maxwell’s
equations described in Chapter 6. Typically the desired current, voltage, or impedance
is embedded within a spatial integral describing the interaction of fields with material
bodies, either penetrable or perfectly conducting. In this chapter we examine several
interesting and pertinent problems in electromagnetics, each formulated as an integral
equation. We seek numerical solutions and interpret them physically. We also address
some difficulties and challenges inherent in the solution process.
Since our aim is introductory, we restrict ourselves to simple (but relevant) canoni-

cal problems. Modern practical problems typically involve complex material bodies of
complicated shape. Many require “tricks of the trade” that can only be learned after
mastering more elementary methods. We therefore focus on one- and two-dimensional
problems, leaving three-dimensional problems for later study by the reader.

A note on numerical computation. Each numerical solution shown in this book is
carried out using Fortran 77 with single-precision arithmetic (unless otherwise noted).
Simple routines are used for integration, matrix solution, and the generation of special
functions; see, e.g., [154, 216, 139].

7.1.1 Classification of integral equations

Remember that in an integral equation, the unknown function occurs under the inte-
gral sign. We restrict ourselves to the linear integral equations that commonly arise in
electromagnetics. These can be classified as follows [138].

1. If the integration limits are constant, the equation is of Fredholm type. An equation
of the form

αf(x) = F (x) + λ

∫ b

a

K(x|x′)f(x′) dx′, (7.1)

holding for all x in the interval [a, b], is a Fredholm integral equation in one space
dimension. Here f(x) is the unknown function and a and b are constants. We call
[a, b] the domain of the integral equation. The remaining quantities F (x), K(x|x′),
λ, and α are discussed below.

709



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 710 — #734
✐

✐

✐

✐

✐

✐

710 Electromagnetics

2. If the upper limit is variable, the equation is of Volterra type:

αf(x) = F (x) + λ

∫ x

a

K(x|x′)f(x′) dx′ (a ≤ x ≤ b). (7.2)

In each case the function F (x) is assumed given and λ is a constant parameter. If F (x)
happens to be zero, the equation is homogeneous.

The function K(x|x′), depending on two variables, is also known a priori. It is called
the kernel of the integral equation. The kernel is termed symmetric if

K(x|x′) = K(x′|x)

for all x, x′ in [a, b]. It is convolutional if

K(x|x′) = K(x− x′).

A kernel that can be written in the form

K(x|x′) =
∑

n

Gn(x)Hn(x
′)

is said to be separable. If K(x|x′) has singularities or discontinuities within the range of
integration, or if the integration limits are infinite, the kernel is singular [138]. Kernels
can be real or complex. They can be hermitian, positive definite, etc. — all properties
important in the mathematical study of integral equations.

The constant α in (7.1)–(7.2) is either zero or unity. If α = 0, the equation is of
the first kind and f(x) appears only within the integral. If α = 1, we have an integral
equation of the second kind.

Integral equations can involve functions of more than one variable. For instance,

f(x, y) = F (x, y) + λ

∫ b

a

∫ d

c

K(x, y|x′, y′)f(x′, y′) dx′ dy′

is a Fredholm equation of the second kind in the two space dimensions x, y. Its domain
is the rectangle a ≤ x ≤ b, c ≤ y ≤ d.

Linear operator notation. In a linear integral equation, we may regard the integral
as a linear operator acting on the unknown function. Such an operator L must satisfy

L[αf(x) + βg(x)] = αL[f(x)] + β L[g(x)]

for any two operand functions f(x), g(x) and any two constants α, β. With this notation
we may cast an integral equation in linear operator form. By setting

L[f(x)] = f(x)− λ

∫ x

a

K(x|x′)f(x′) dx′,

for example, we may write the second-kind Volterra equation (7.2) as

L[f(x)] = F (x).
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7.1.2 Analytic solution of integral equations

A number of techniques can be used to solve integral equations analytically. Fredholm
equations with separable kernels are amenable to so-called direct solutions (see [87] for
details). Eigenfunction expansion techniques result in series solutions. Consider, for
example, a second-kind homogeneous Fredholm equation

f(x) = λ

∫ b

a

K(x|x′)f(x′) dx′

with a real symmetric kernel. This equation has solutions only for real discrete values
of λ known as eigenvalues. The solutions themselves are termed eigenfunctions for the
equation. It turns out that a solution to the corresponding nonhomogeneous problem
may be constructed as a weighted superposition of the eigenfunctions. See [87] for further
details on this method. Through the use of transform techniques (involving the Fourier
or Laplace transform) we may be able to convert an integral equation into an algebraic
equation. This can be particularly effective for equations having convolutional kernels.
Finally, many second-kind equations may be solved by successive substitution, resulting
in Neumann series expressions.
Unfortunately, however, most of the integral equations encountered in electromagnet-

ics will not yield to these elegant classical techniques. We therefore turn to numerical
approaches.

7.1.3 Numerical solution of integral equations

When integral equations cannot be solved analytically, either in an exact or an approxi-
mate manner, a numerical solution may be sought.
The method of successive substitution, mentioned above as an analytical approach,

can also be used as a numerical approach. Let us describe the method in a bit more
detail. Given a Fredholm equation of the second kind, we write it in the form

f(x) = F (x) + λ

∫ b

a

K(x|x′)f(x′) dx′,

i.e., with the two occurrences of the unknown function f(x) separated by the equals sign.
We use this to set up a recursion relation:

fn+1(x) = F (x) + λ

∫ b

a

K(x|x′)fn(x′) dx′ (n = 0, 1, 2, . . .). (7.3)

We begin by selecting a function f0(x), of relatively simple form, which we expect to
approximate f(x) in some manner. We set n = 0 in (7.3), substitute f0(x) into the
right-hand side, and use the equation to generate a function f1(x):

f1(x) = F (x) + λ

∫ b

a

K(x|x′)f0(x′) dx′.

Depending on the properties of F (x), K(x|x′), and so on, it may happen that f1(x) is
closer to f(x) than f0(x) is. If so, we can set n = 1 in (7.3) and use f1(x) to generate
an even better estimate f2(x). Such an iteration process may lead to a sequence of
approximations fn(x) that converges to f(x). Conditions for convergence are discussed,
e.g., in [198].
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A very different approach is to expand the unknown function as a linear combination
of basis functions. The numerical expansion coefficients are determined by applying
weighting functions to the resulting equation. This procedure, commonly called the
method of moments [81], is discussed in the following section.

7.1.4 The method of moments (MoM)

Consider a linear integral equation

L[f(x)] = F (x) (a ≤ x ≤ b). (7.4)

Let us choose a set of N basis functions φn(x) and expand the unknown function f(x)
as a linear combination of these:

f(x) ≈ f̄(x) =

N
∑

n=1

anφn(x). (7.5)

Here the an are expansion coefficients to be determined. If f(x) is well-behaved and
the φn(x) form a complete set, then the representation (7.5) becomes exact as N → ∞.
Substitution of (7.5) into (7.4) gives

r(x) =
N
∑

n=1

an L[φn(x)]− F (x) ≈ 0 (a ≤ x ≤ b) (7.6)

in view of the linearity of L. Here r(x) is called the residual. If we can find coefficients
an that make the residual small for all x such that a ≤ x ≤ b, then we take f̄(x) to be a
good approximation for f(x). To determine an, one of two routes is generally taken.

7.1.4.1 Method of collocation

Rather than seeking an that require the residual to be small for all x in [a, b], we force
the residual to vanish at N discrete match points xm that lie within this interval:

r(x = xm) = 0 (m = 1, . . . , N).

This yields N simultaneous algebraic equations in the N unknowns a1, . . . , aN ,

N
∑

n=1

anL[φn(x)]x=xm = F (xm) (m = 1, . . . , N),

which can be written in matrix form as

[Amn][an] = [bm]. (7.7)

Here

Amn = L[φn(x)]x=xm (m,n = 1, . . . , N),

bm = F (xm) (m = 1, . . . , N).

Once the an have been determined, they can be used in (7.5) to obtain the approximation
f̄(x) to f(x).
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7.1.4.2 Method of weighting functions

An alternative to collocation (or point matching) is to set N weighted averages of the
residual to zero:

∫ b

a

wm(x)r(x) dx = 0 (m = 1, . . . , N).

Here wm(x) are called weighting functions. This produces the set of equations

N
∑

n=1

an

∫ b

a

{L[φn(x)]}wm(x) dx =

∫ b

a

F (x)wm(x) dx (m = 1, . . . , N), (7.8)

which takes the form (7.7) with

Amn =

∫ b

a

{L[φn(x)]}wm(x) dx, bm =

∫ b

a

F (x)wm(x) dx.

For instance, a Volterra equation has

Amn =

∫ b

a

{∫ x

a

K(x|x′)φn(x′) dx′
}

wm(x) dx.

It is clear that collocation is a special case of the weighting function method, with

wm(x) = δ(x− xm) (m = 1, . . . , N).

By choosing

wm(x) = xm−1 (m = 1, . . . , N)

we require equality of the first m−1 moments of Equation (7.6). This is the origin of the
term method of moments (or moment method, abbreviated MoM). However, the term is
now used (at least in the electromagnetics community) in the broader sense presented
above. The MoM was pioneered by Harrington [81, 80], and has been extended by many
researchers over the years.

7.1.4.3 Choice of basis and weighting functions

We mentioned that if the φn form a complete set, then (7.5) becomes an exact repre-
sentation for f(x). We will never achieve N → ∞ in a numerical solution, however, and
must be satisfied with an approximation in any case. Hence we may abandon the com-
pleteness requirement and choose a basis set that is numerically convenient and provides
an acceptable level of accuracy.
Basis and weighting functions can be broadly classed as follows.

1. Subdomain functions are defined only over part of the domain of the unknown
function. Included in this category are rectangular pulses, triangle functions, and
piecewise sinusoidal functions.

2. Entire domain functions are defined on the whole domain of the unknown function.
Included here are power series, orthogonal polynomials (e.g., Chebyshev polynomi-
als), and various forms of Fourier series.
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How does one select the “best” weighting functions for a given choice of basis functions?
One method is to require the basis functions to be orthogonal to the residual in the sense
[44]

∫ b

a

φm(x)r(x) dx = 0 (m = 1, . . . , N).

This produces the set of equations

N
∑

n=1

an

∫ b

a

{L[φn(x)]}φm(x) dx =

∫ b

a

F (x)φm(x) dx (m = 1, . . . , N).

Comparing to (7.8), we see that this is identical to choosing wm(x) = φm(x). This
special case of the MoM in which the basis and weighting functions are identical is called
Galerkin’s method.

Galerkin’s method is very close in principle to the method of least squares [87]. In this
approach we seek the coefficients an that minimize the average of the squared residual

ǫ =

∫ b

a

r2(x) dx =

∫ b

a

[

N
∑

n=1

an L[φn(x)] − F (x)

]2

dx.

Differentiating with respect to am and setting the result to zero, we obtain the system
of equations

∫ b

a
L[φm(x)]

[

N
∑

n=1

an L[φn(x)]− F (x)

]

dx = 0 (m = 1, . . . , N)

or

N
∑

n=1

an

∫ b

a

{L[φn(x)]L[φm(x)]} dx =

∫ b

a

F (x)φm(x) dx (m = 1, . . . , N).

This is simply (7.8) with wm(x) = L[φm(x)].
We should emphasize that MoM does not always yield accurate solutions to integral

equations. For first-kind equations having smooth kernels, it leads to ill-conditioned
systems of linear equations and associated difficulties with propagation of roundoff error
[44]. Suppose, for instance, that f(t) and g(t) are smooth functions defined on [0, Tf ]
and [0, Tg], respectively. Their convolution is given by

c(t) =

∫ t

0

f(t′)g(t− t′) dt′ (0 ≤ t ≤ Tf + Tg).

If c(t) and g(t) are known (e.g., measured), then f(t) satisfies a Volterra equation of the
first kind; the problem of finding f(t) is referred to as deconvolution. In this case MoM
yields a linear system of algebraic equations that is notoriously ill-conditioned [163]. This
becomes apparent when we realize that convolution is a smoothing operation; since c(t)
carries less “information” than either f(t) or g(t), the recovery of f(t) from c(t) is highly
sensitive to numerical or experimental errors in the data.

7.1.5 Writing a boundary value problem as an integral equation

A boundary value problem (BVP) consisting of a linear differential equation and a set of
boundary values can often be represented as an integral equation by directly integrating
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FIGURE 7.1

Transmission line with steady-state excitation.

the differential equation. (Not all integral equations have a differential equation counter-
part, however.) An example is the Sturm–Liouville problem discussed in § A.5. Because
the resulting integral equation incorporates the boundary conditions, the problem state-
ment may be simpler and its solution more convenient.
As an example of this approach, let us consider the simple problem of a transmission

line with AC excitation (Figure 7.1). The voltage and current waves on the line are given
by the telegraphist’s equations (5.305) and (5.308)

dṼ (z)

dz
= −ZĨ(z), (7.9)

dĨ(z)

dz
= −YṼ (z), (7.10)

where Z = R+ jωL is the series impedance per unit length and Y = G+ jωC is the shunt
admittance per unit length. Differentiating (7.9) and substituting into (7.10), we obtain

d2Ṽ (z)

dz2
− γ2Ṽ (z) = 0 (7.11)

where γ2 = ZY. Reference to the figure shows that the required boundary conditions are

Ṽg = Zg Ĩ(−l) + Ṽ (−l) (7.12)

and
Ṽ (0) = ZLĨ(0). (7.13)

To convert (7.11) into an integral equation, we integrate twice. The first integration
gives

dṼ (z)

dz
= γ2

∫ z

−l
Ṽ (t) dt+ C1, (7.14)

where C1 is a constant. Note that the lower limit is arbitrary; we choose −l for later
convenience. A second integration gives

Ṽ (z) = γ2
∫ z

−l

∫ u

−l
Ṽ (t) dt du+ C1z + C2. (7.15)

The identity [6]
∫ z

a

∫ u

a

F (t) dt du =

∫ z

a

(z − t)F (t) dt (7.16)
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permits us to write (7.15) as

Ṽ (z) = γ2
∫ z

−l
(z − t)Ṽ (t) dt+ C1z + C2. (7.17)

To determine C1 and C2 we apply the boundary conditions. Taking Zg = 0 for simplicity,

we have Ṽ (−l) = Ṽg. At z = −l, (7.17) reduces to

Ṽg = −C1l + C2. (7.18)

To enforce (7.13), we obtain Ĩ(z) from (7.9) and apply (7.14) to get

−γ2
∫ 0

−l
tṼ (t) dt+ C2 = −γ2ZL

Z

∫ 0

−l
Ṽ (t) dt− C1

ZL
Z
. (7.19)

Solving (7.18) and (7.19) for C1 and C2, and substituting back into (7.17), we obtain the
integral equation for Ṽ (z):

Ṽ (z) = γ2
∫ z

−l
(z − t)Ṽ (t) dt+ γ2(l + z)

∫ 0

−l

Zt− ZL
Zl+ ZL

Ṽ (t) dt− Ṽg
Zz − ZL
Zl+ ZL

, (7.20)

valid for −l ≤ z ≤ 0. Note that Ṽ (z) appears both inside and outside the integrals.
Furthermore, both constant and variable integration limits are present. By rewriting the
kernel of the first integral in terms of a step function, one can combine the integrals into
a single integral over the range [−l, 0]. The result is a Fredholm equation of the second
kind, with a discontinuous kernel.

Let us apply the MoM to (7.20). We choose pulse function expansion of Ṽ (z) and
collocation. The voltage is expressed as

Ṽ (z) =

N
∑

n=1

anPn(z) (7.21)

where Pn(z) is a rectangular pulse function of unit amplitude:

Pn(z) =

{

1, −l+ (n− 1)∆ ≤ z ≤ −l+ n∆,

0, elsewhere,

with ∆ = l/N . This amounts to partitioning the transmission line into N segments and
treating Ṽ (z) as a constant an over the nth segment. The resulting staircase approxima-
tion to Ṽ (z) is indicated in Figure 7.2; it is reasonable to expect this approximation to
improve as N is increased.

Substituting (7.21) into (7.20) and point matching at N discrete points {zm}, we
obtain

N
∑

n=1

anPn(zm) =

N
∑

n=1

anγ
2

∫ zm

−l
(zm − t)Pn(t) dt

+
N
∑

n=1

anγ
2(l + zm)

∫ 0

−l

Zt− ZL
Zl + ZL

Pn(t) dt− Ṽg
Zzm − ZL
Zl+ ZL
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FIGURE 7.2

Representation of transmission-line voltage using rectangular-pulse basis functions.

for m = 1, . . . , N . We can rewrite this as

N
∑

n=1

an [δmn + Umn + Vmn] = bm, (7.22)

where δmn is the Kronecker delta function,

Umn = γ2
∫ zm

−l
(t− zm)Pn(t) dt =











0, m < n,

− 1
8γ

2∆2, m = n,

γ2∆(zn − zm), m > n,

Vmn = −γ2(l + zm)
1

Zl + ZL

∫ 0

−l
[Zt− ZL]Pn(t) dt = −γ2(l + zm)∆

Zzn − ZL
Zl + ZL

,

and

bm = −Ṽg
Zzm − ZL
Zl + ZL

.

Here we have placed the match points at the centers of the segments so that

zm = −l+ (m− 1
2 )∆.

◮ Example 7.1: Voltage on a lossless transmission line

Consider a lossless transmission line (R = G = 0). Assume Z0 = 50Ω, ZL = 100 − j100Ω,
and l = 2.3λ. Plot the voltage on the line as a solution to the integral equation, and compare
to the analytic result. Determine the standing wave ratio on the line.

Solution: Assume time-harmonic excitation at frequency ω̌. Since the line is lossless,
Z = jω̌L and Y = jω̌C, hence γ = j2π/λ where λ = 1/f

√
LC. Defining the characteristic

impedance as Z0 =
√

Z/Y, we have Z = γZ0. Figure 7.3 shows the real and imaginary
parts of the transmission line voltage, computed from (7.22) using N = 500. Note that
V̌ (−l) = V̌g. Also shown is the voltage found analytically (see, e.g., [34]):

V̌ (z) = V̌g
e−γz + Γeγz

eγl + Γe−γl
,
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where

Γ =
ZL − Z0

ZL + Z0

is the load reflection coefficient. The standing wave ratio S, defined as the ratio of the largest
to smallest voltage magnitudes, is S = 4.266 from the MoM solution. This closely matches
the analytic result

S =
1 + |Γ|
1− |Γ| ,

which is, to six significant digits, S = 4.26556.
Because the matrix equation is well conditioned, we can improve our approximation to

V̌ (z) by increasing N . A study of the approximation error is left to the reader (a similar
study will be carried out in § 7.2).
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FIGURE 7.3
Voltage on a lossless transmission line. Integral equation solved numerically using 500 pulse
functions. To avoid clutter, every tenth point of the integral equation solution is plotted. ◭

7.1.6 How integral equations arise in electromagnetics

Integral equations occur in areas such as antennas, radar, guided waves, and microwave
systems. In a scattering problem, an impressed electromagnetic field arising from an
immutable source interacts with some structure, inducing currents and charges on and
within the structure. These induced sources create a secondary or scattered electromag-
netic field. When a radar target is illuminated by a wave produced by a transmitter, for
example, the wave “reflects” or “scatters” from the target, and this scattered field can
be analyzed to determine the distance, speed, and trajectory of the target.

7.1.6.1 Integral equation for scattering from a penetrable body

Suppose an impressed electric field Ẽi interacts with an inhomogeneous penetrable body
having medium parameters µ0, ǫ(r), and σ(r). The body occupies region V and is
immersed in free space (Figure 7.4). The impressed field induces both polarization and
conduction currents within the body, and these in turn maintain a scattered field Ẽs.
The total field (Ẽ, H̃), consisting of the sum of the impressed and scattered fields, must
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FIGURE 7.4

Scattering from a penetrable body.

obey Maxwell’s equations. Ampere’s law requires that

∇× H̃ = J̃+ jωD̃,

where J̃ = σẼ and D̃ = ǫẼ. Hence

∇× H̃(r) = σ(r)Ẽ(r) + jωǫ(r)Ẽ(r)

= {σ(r) + jω [ǫ(r)− ǫ0]} Ẽ(r) + jωǫ0Ẽ(r)

= J̃eq(r) + jωǫ0Ẽ(r).

So the total electric and magnetic fields satisfy Maxwell’s equations when an equivalent
current given by

J̃eq(r) = {σ(r) + jω [ǫ(r)− ǫ0]} Ẽ(r) = f(r)Ẽ(r) (7.23)

is embedded in free space.
If we can determine J̃eq(r), we can use the formulas for potentials due to sources in

free space (§ 5.2) to compute the scattered field. In the absence of magnetic sources,
(5.50) reads

Ẽs = −jωÃs
e −∇φ̃se, (7.24)

where

Ãs
e(r) = µ0

∫

V

J̃eq(r′)G̃(r|r′) dV ′, φ̃se(r) =
1

ǫ0

∫

V

ρ̃eq(r′)G̃(r|r′) dV ′,

are the “scattered” potentials produced by the equivalent current. The equivalent charge
density ρ̃eq is related to the equivalent current through the continuity equation

∇ · J̃eq(r) = −jωρ̃eq(r),
and G̃(r|r′) is the free-space Green’s function (5.70). Substitution into (7.24) yields

Ẽs(r) = −jωµ0

∫

V

J̃eq(r′)G̃(r|r′) dV ′ − j

ωǫ0
∇
∫

V

∇′ · J̃eq(r′)G̃(r|r′) dV ′ (7.25)

= − jη0
k0

∫

V

[∇′ · J̃eq(r′)∇+ k20J̃
eq(r′)]

e−jk0R

4πR
dV ′. (7.26)
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FIGURE 7.5

Scattering from a perfect electrical conductor body.

Recall that the total field is the sum of the impressed and scattered fields:

Ẽ = Ẽs + Ẽi. (7.27)

By (7.26) and (7.23) we have

Ẽ(r) +
jη0
k0

∫

V

{

∇′ · [f(r′)Ẽ(r′)]∇+ k20f(r
′)Ẽ(r′)

} e−jk0R

4πR
dV ′ = Ẽi(r). (7.28)

This result, holding for all r ∈ V , is a volume electric field integral equation (EFIE) for
the total electric field Ẽ within V . Note that it is a second-kind Fredholm equation. If
Ẽ can be determined from (7.28), then J̃eq(r) can be determined from (7.23) and Ẽs(r)
from (7.26).

7.1.6.2 Integral equation for scattering from a perfectly conducting body

Now suppose Ẽi interacts with a PEC body (Figure 7.5). The impressed field induces
a conduction current J̃s on the surface S, which in turn generates a scattered field Ẽs.
Equation (7.27) continues to hold in this case. The boundary condition that the total
tangential electric field be zero on the surface of the body requires

n̂× [Ẽi(r) + Ẽs(r)] = 0 (r ∈ S).

Substitution for the scattered field gives

jη0
k0

n̂×
∫

S

[∇′ · J̃s(r′)∇+ k20J̃s(r
′)]
e−jk0R

4πR
dS′ = n̂× Ẽi(r) (r ∈ S).

This is a surface EFIE for the unknown J̃s. It is a Fredholm equation of the first kind.

7.2 Plane-wave reflection from an inhomogeneous region

Integral equations arise naturally in the study of the scattering and radiation of electro-
magnetic waves, but can also replace more conventional formulations involving differen-
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tial equations. A simple example of this is given in § 7.1.5. In this section we apply the
approach to a problem in plane-wave reflection; we show how the differential equation for
the field within a layered medium may be converted to an integral equation and treated
by the MoM technique.

7.2.1 Reflection from a medium inhomogeneous in the z-direction

In § 4.11.5 we analyze the reflection of plane waves by planarly layered materials, with
each layer assumed homogeneous. An interesting extension is to consider a planar
medium with inhomogeneous material properties. If the properties vary only in the
direction perpendicular to the interfaces, the problem can be formulated as a boundary-
value problem and the field found as a solution to a differential equation. Here we will
consider the differential equation arising from a simple inhomogeneous medium, convert
to an integral equation, and solve using MoM.
Consider a y-polarized plane wave (TE polarization), incident from free space onto

an interface presented by a conductor-backed material layer (Figure 7.6). The layer has
thickness d, inhomogeneous conductivity σ̃(z, ω), and complex inhomogeneous permit-
tivity

ǫ̃c(z, ω) = ǫ̃(z, ω)− jσ̃(z, ω)/ω.

We assume µ̃ is spatially constant. The electric field in region 0 (z < 0) or in region 1
(d > z > 0) may be written as Ẽ(x, z, ω) = ŷẼy(x, z, ω), while the magnetic field is by
Faraday’s law

H̃(x, z, ω) =
j

ωµ̃(ω)

[

−x̂
∂Ẽy(x, z, ω)

∂z
+ ẑ

∂Ẽy(x, z, ω)

∂x

]

. (7.29)

To obtain a differential equation for Ẽy, we substitute (7.29) into Ampere’s law and get

(

∂2

∂x2
+

∂2

∂z2
+ k2(z, ω)

)

Ẽy(x, z, ω) = 0 (7.30)

where k(z, ω) = ω
√

µ̃(ω)ǫ̃c(z, ω) is the wavenumber.

We may solve (7.30) using separation of variables (Appendix A). Writing Ẽy(x, z, ω) =
f(x, ω)g(z, ω), we obtain from (7.30) the separated ordinary differential equations

d2f(x, ω)

dx2
+ k2x(ω)f(x, ω) = 0, (7.31)

d2g(z, ω)

dz2
+ k2z(z, ω)g(z, ω) = 0, (7.32)

where k2z(z, ω) = k2(z, ω)− k2x(ω). Equation (7.31) has solution

f(x, ω) = e−jkx(ω)x,

hence
Ẽy(x, z, ω) = e−jkx(ω)xg(z, ω)

in both regions. In region 0 there are both incident and reflected waves. Based on
our experience with reflection from a homogeneous medium, we expect these waves to
share the same value of kx, i.e., kx(ω) = kx0(ω) = k0(ω) sinφ0, where φ0 is the angle of
incidence and k0(ω) = ω

√
µ0ǫ0.
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FIGURE 7.6

Reflection of a TE-polarized plane wave from a conductor-backed, inhomogeneous dielec-
tric layer.

In region 0, where k does not depend on z, (7.32) is also the harmonic differential
equation. The incident wave is given by

g(z, ω) = Ẽ0(ω)e
−jkz0z

where kz0(ω) = [k20(ω)− k2x(ω)]
1/2 = k0(ω) cosφ0, and the reflected wave by

g(z, ω) = Ẽr(ω)e
jkz0z.

Hence the total electric field in region 0 is

Ẽy(x, z, ω) = Ẽ0(ω)e
−jkx0(ω)xe−jkz0(ω)z + Ẽr(ω)e

−jkx0(ω)xejkz0(ω)z.

To determine the magnetic field in region 0 we use (7.29):

H̃x(x, z, ω) = −cosφ0
η0

Ẽ0(ω)e
−jkx0(ω)xe−jkz0(ω)z +

cosφ0
η0

Ẽr(ω)e
−jkx0(ω)xejkz0(ω)z.

To satisfy the boundary conditions at z = 0, the wave vector component kx must have
the same value in regions 0 and 1. Hence the fields in region 1 are

Ẽy(x, z, ω) = g(z, ω)e−jkx0(ω)x,

H̃x(x, z, ω) =
−j

ωµ̃(ω)
e−jkx0(ω)x

∂g(z, ω)

∂z
.

These represent superpositions of forward and backward traveling waves.
The jump conditions on the tangential fields are required to provide a unique solution

to (7.32). Setting Ey = 0 on the surface of the conductor, we get

g(d, ω) = 0. (7.33)
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The conditions for continuity of tangential Ẽ and H̃ at z = 0 are

Ẽ0(ω) + Ẽr(ω) = g(0, ω), (7.34)

−Ẽ0(ω) + Ẽr(ω) = −j η0
cosφ0

1

ωµ̃(ω)

∂g(z, ω)

∂z

∣

∣

∣

∣

z=0

, (7.35)

respectively; subtraction yields

2Ẽ0(ω) = g(0, ω) + a(ω)
∂g(z, ω)

∂z

∣

∣

∣

∣

z=0

(7.36)

where a(ω) = jη0/[ωµ̃(ω) cosφ0].
Once g(z) has been determined either analytically or numerically, the reflection coef-

ficient may be found from (7.34) as

Γ̃(ω) =
Ẽr(ω)

Ẽ0(ω)
= −1 +

g(0, ω)

Ẽ0

. (7.37)

7.2.2 Conversion to an integral equation

To determine the field inside the inhomogeneous layer and hence the reflection coefficient
for this problem, we must solve (7.32). Analytic solutions are available only for certain
permittivity and conductivity profiles (see, e.g., [208, 164, 102]). As an alternative to
solving the differential equation numerically, we may convert it to an integral equation.
Let us suppress the dependence on ω and write (7.32) in the form

g′′(z) + k2z(z)g(z) = 0 (7.38)

and integrate twice. We get

g′(z) +

∫ z

0

k2z(t)g(t) dt = C1 (7.39)

and then, by (7.16),

g(z) = −
∫ z

0

(z − t)k2z(t)g(t) dt+ C1z + C2. (7.40)

It is worth checking that (7.40) satisfies (7.38). See Problem 7.3.
The constants C1 and C2 must satisfy (7.36) and (7.33). Substitution of (7.40) and

(7.39) into (7.36) gives
2Ẽ0 = C2 + aC1,

while substitution of (7.40) into (7.33) gives

−
∫ d

0

(d− t)k2z(t)g(t) dt + C1d+ C2 = 0.

Solving simultaneously, we obtain

C1 =
1

a− d

[

2Ẽ0 −
∫ d

0

(d− t)k2z(t)g(t) dt

]

,

C2 = 2Ẽ0
d

a− d
+

a

a− d

∫ d

0

(d− t)k2z(t)g(t) dt.
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Substitution into (7.40) yields the integral equation for g(z):

g(z) = −
∫ z

0

(z − t)k2z(t)g(t) dt+
a− z

a− d

∫ d

0

(d− t)k2z(t)g(t) dt+ 2Ẽ0
z − d

a− d
. (7.41)

This Fredholm equation of the second kind can be rewritten in terms of the unit step
function (A.6) as

g(z) =

∫ d

0

[

a− z

a− d
(d− t)− (z − t)U(z − t)

]

k2z(t)g(t) dt+ 2Ẽ0
z − d

a− d
. (7.42)

We can solve (7.41) for arbitrary permittivity and conductivity profiles, including
piecewise continuous functions describing a sequence of homogeneous layers. As a simple
example, consider a single homogeneous layer with parameters ǫ̃(ω) and σ̃(ω). In this
case we may solve (7.32) analytically for comparison. Since kz is independent of z, the
solution of (7.32) is

g(z, ω) = C1 sin kzz + C2 cos kzz.

An application of (7.34) and (7.35) will determine C1 and C2; the result is that

g(z, ω) = 2Ẽ0
sin kz(d− z)

sin kzd− akz cos kzd
. (7.43)

By (7.37), the reflection coefficient is

Γ̃(ω) =
sin kzd+ akz cos kzd

sin kzd− akz cos kzd
. (7.44)

With a bit of manipulation, (7.44) may be put into the form

Γ̃(ω) =
Γ̃0(ω)− P̃ 2(ω)

1− Γ̃0(ω)P̃ 2(ω)
(7.45)

where P̃ (ω) = e−jkzd and

Γ̃0(ω) =
1 + ja(ω)kz(ω)

1− ja(ω)kz(ω)
=
µ̃r(ω) cosφ0 −

√

µ̃r(ω)ǫ̃cr(ω)− sin2 φ0

µ̃r(ω) cosφ0 +
√

µ̃r(ω)ǫ̃cr(ω)− sin2 φ0

.

See Problem 7.9. Here ǫ̃cr = ǫ̃c/ǫ0 and Γ̃0 is the interfacial reflection coefficient. The
same result was obtained in § 4.11.5.

7.2.3 Solution to the integral equation

We may solve (7.41) using MoM. Collocation yields excellent results. We expand g(z) in
a set of pulse functions

g(z) =

N
∑

n=1

anPn(z) (7.46)

where

Pn(z) =

{

1, (n− 1)∆ ≤ z ≤ n∆,

0 elsewhere,
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with ∆ = d/N . This effectively partitions the slab into N regions with g(z) a constant
an in the nth region. Substituting (7.46) into (7.41) and matching the equation at the
points z = zm = (m− 1/2)∆, we obtain

N
∑

n=1

anPn(zm)− k2z

N
∑

n=1

an

∫ d

0

[

a− zm
a− d

(d− t)

]

Pn(t) dt

+ k2z

N
∑

n=1

an

∫ zm

0

(zm − t)Pn(t) dt = 2Ẽ0
zm − d

a− d
.

This simultaneous system can be written as

N
∑

n=1

an[δmn + Umn + Vmn] = bm (m = 1, . . . , N) (7.47)

where δmn is the Kronecker delta,

Vmn = −k2z
∫ d

0

[

a− zm
a− d

(d− t)

]

Pn(t) dt

= −k2z
[

a− zm
a− d

] ∫ n∆

(n−1)∆

(d− t) dt

= −k2z
[

a− zm
a− d

]

∆(d− zn),

Umn = k2z

∫ zm

0

(zm − t)Pn(t) dt =















0, m < n,

k2z
8 ∆2, m = n,

k2z∆(zm − zn), m > n,

and

bm = 2Ẽ0
zm − d

a− d
.

◮ Example 7.2: Accuracy of moment-method solution for a time-harmonic plane wave incident
on a conductor-backed medium

Consider a conductor-backed slab with d = 0.025 m, ǫr = 8, µr = 4, σ = 0.3 S/m, φ0 = 30◦,
and time-harmonic excitation at f = 10 GHz. Explore the dependence of the solution
accuracy on the number of basis functions used.

Solution: To determine how the solution accuracy depends on N , we compute the reflection
coefficient from the numerical solution to (7.37) and compare the result with the analytic
solution (7.44). Note that (7.37) requires knowledge of g(z) at z = 0. Unfortunately, a1
itself is a rather poor approximation to this. Instead we use an extrapolation technique,
passing a second-order polynomial through the first three pulse-function amplitudes and
then evaluating it at z = 0 (see Problem 7.24). The result is

g(0) ≈ 1
8
(15a1 − 10a2 + 3a3). (7.48)

Figure 7.7 shows how the fractional error in the reflection coefficient, defined as

ǫΓ(N) =
|Γnumerical − Γanalytic|

|Γanalytic|
,
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depends on N . As N increases beyond 50 or so, ǫΓ begins to decrease. In fact, a tenfold
increase in N yields about two digits of improvement. For N = 2000, the reflection coefficient
agrees with the analytic result Γ = −0.1340 + j 0.09345 to four significant digits.

 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000

ε Γ

N

FIGURE 7.7
Fractional error in the reflection coefficient computed by solving the integral equation with
N pulse functions. ◭

◮ Example 7.3: Field profile for a plane wave incident on a conductor-backed medium

Consider the conductor-backed slab of Example 7.2. Plot the electric field profile g(z).

Solution: Figure 7.8 shows the magnitude of g(z) obtained from (7.41) with N = 2000. The
an values appear as circles plotted at the points zn, and the analytic solution (7.43) is shown
for comparison. Note the expected standing-wave field in the slab, and the attenuation with
distance into the slab (an effect of nonzero conductivity).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.005  0.01  0.015  0.02  0.025

|g
(z

)|

z (m)

analytic
integral equation

FIGURE 7.8
Magnitude of g(z) within slab region. Integral equation solved numerically using 2000
pulse functions. To avoid clutter, every twentieth point of the integral equation solution
is plotted. ◭
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FIGURE 7.9

Excitation of a straight circular wire by an impressed electric field.

7.3 Solution to problems involving thin wires

Thin wires arise often in the study of electromagnetic fields. Many antennas are con-
structed from wires; these include simple dipoles and loops, and more complicated log-
periodic and Yagi-Uda arrays, bowties, rhombics, bicones, and helices. Reflectors and
shields often consist of wire screens, and conducting surfaces are sometimes simulated
using wire meshes. In all of these cases, the electromagnetic interactions between the
structures and the fields exciting them can be described using integral equations. In this
section we examine some simple situations in both the time and frequency domains.

7.3.1 The straight wire

Consider a straight segment having length 2L and circular cross-section of radius a,
immersed in free space as shown in Figure 7.9. When an impressed static electric field
interacts with the wire, such as from an applied voltage, a charge is induced on its
surface, and this charge creates a secondary electric field. The arrangement of the charge
is such that the total tangential electric field, consisting of the superposition of the
impressed and secondary fields, must be zero at the wire surface. Although the static
problem provides an introduction to the use of integral equations in electromagnetics,
the dynamic problem is more illuminating. In the dynamic problem, an impressed field
Ẽi(r, ω) excites a current on the wire surface, and this current creates a secondary, or
scattered, field Ẽs(r, ω). By applying the boundary condition on the tangential electric
field on the wire surface, we can obtain an integral equation governing the behavior of
the surface current.



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 728 — #752
✐

✐

✐

✐

✐

✐

728 Electromagnetics

7.3.1.1 Derivation of the electric-field integral equation

Because the structure is finite, it is actually a right circular cylinder. When the wire is
thin, however, as defined by the two conditions

a/λ≪ 1, a/L≪ 1,

we can ignore the influence of the wire ends on the surface current. Hence we shall only
enforce the boundary condition on tangential electric field over the remaining surface:

n̂× Ẽ(r) = ρ̂× [Ẽi(r) + Ẽs(r)] = 0 (r ∈ S),

where S is the surface ρ = a, 0 ≤ φ < 2π, −L ≤ z ≤ L, and we have suppressed the
dependence on ω. Thus

ρ̂× [ẑẼsz + φ̂Ẽsφ + ẑẼiz + φ̂Ẽiφ]
∣

∣

ρ=a
= 0. (7.49)

Now let us assume that either (a) Ẽiφ = 0 so that Ẽsφ = 0, or (b) Ẽiz ≫ Ẽiφ so that Ẽsφ
can be ignored in favor of Ẽsz . The first condition occurs when the wire is symmetrically
excited as in the case of a linear antenna. The second occurs when an impressed field
(such as an incident plane wave) is polarized primarily along the wire axis. In either
case, (7.49) becomes simply

Ẽsz(r) + Ẽiz(r) = 0 (ρ = a, 0 ≤ φ < 2π, −L ≤ z ≤ L). (7.50)

The desired integral equation is obtained when the scattered field in (7.50) is repre-
sented as a superposition integral. Since the impressed field is predominantly axial, so
are the induced surface current and resulting vector potential Ãs. Thus, the scattered
electric field is

Ẽs(r) = −j ω
k20

[∇(∇ · Ãs) + k20Ã
s] (7.51)

or

Ẽsz(r) = −j ω
k20

[

∂2Ãsz
∂z2

+ k20Ã
s
z

]

.

Substitution into (7.50) gives

−j ω
k20

(

∂2

∂z2
+ k20

)

Ãsz(a, φ, z) = −Ẽiz(a, φ, z) (0 ≤ φ < 2π, −L ≤ z ≤ L), (7.52)

where the vector potential on the surface of the wire is

Ãsz(a, φ, z) =
µ0

4π

∫ L

−L

∫ 2π

0

J̃sz (φ
′, z′)

e−jk0R

R
adφ′ dz′. (7.53)

Here, R = |r− r′| is the distance from a source point (a, φ′, z′) on the surface to a field
point (a, φ, z) on the surface (Figure 7.10):

R = R(φ− φ′, z − z′) =

√

4a2 sin2
1

2
(φ− φ′) + (z − z′)2.

To proceed further, we assume that either (a) Ẽiz is independent of φ and hence by
(7.52) so is Ãsz, or (b) the wire is thin so that Ẽiz depends only weakly on φ and hence
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FIGURE 7.10

Geometry of a circular wire showing distance between a source point on the surface of
the wire at r′ and an observation point on the surface at r.

so does Ãsz . Then, instead of requiring (7.52) to hold for all φ, we equate the average
values of the two sides:

−j ω
k20

(

∂2

∂z2
+ k20

)[

1

2π

∫ 2π

0

Ãsz(a, φ, z)dφ

]

= − 1

2π

∫ 2π

0

Ẽiz(a, φ, z)dφ (−L ≤ z ≤ L).

(7.54)
The term in brackets is the average value of the scattered vector potential, which we
refer to as Ãs. By (7.53) this is

Ãs(z) =
1

2π

µ0

4π

∫ L

−L

{

∫ 2π

0

J̃sz (φ
′, z′)

[

∫ 2π

0

e−jk0R(φ−φ′,z−z′)

R(φ− φ′, z − z′)
dφ

]

a dφ′
}

dz′.

Setting ξ = φ− φ′ and noting that R is periodic with period 2π, we obtain

Ãs(z) =
1

2π

µ0

4π

∫ L

−L

{

∫ 2π

0

J̃sz (φ
′, z′)

[

∫ 2π

0

e−jk0R(ξ,z−z′)

R(ξ, z − z′)
dξ

]

a dφ′
}

dz′.

Interchanging the order of integration, we have

Ãs(z) =
1

2π

µ0

4π

∫ L

−L

{

∫ 2π

0

J̃sz (φ
′, z′)a dφ′

∫ 2π

0

e−jk0R(ξ,z−z′)

R(ξ, z − z′)
dξ

}

dz′.

We recognize

Ĩ(z) =

∫ 2π

0

J̃sz (φ
′, z)a dφ′

as the current on the wire surface at axial point z, and define the average Green’s function
as

G̃(z − z′) =

∫ 2π

0

e−jk0R(ξ,z−z′)

R(ξ, z − z′)
dξ.
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The average vector potential can then be written as

Ãs(z) =
1

2π

µ0

4π

∫ L

−L
Ĩ(z′)G̃(z − z′) dz′. (7.55)

In terms of Ãs, the boundary condition equation (7.54) becomes
(

d2

dz2
+ k20

)

Ãs(z) = −j k
2
0

ω
Ẽi(z) (−L ≤ z ≤ L), (7.56)

where we designate the average value of the impressed field as

Ẽi(z) =
1

2π

∫ 2π

0

Ẽiz(a, φ, z) dφ. (7.57)

Equation (7.56) is an ordinary differential equation for the average vector potential Ãs.
Its solution consists of a superposition of particular and complementary components:

Ãs(z) = fp(z) + fc(z), (7.58)

where [23]

fp(z) =
1

k0

∫ z

z0

[

−j k
2
0

ω
Ẽi(u)

]

sin k0(z − u) du (7.59)

and
fc(z) = C̄1 sin k0z + C̄2 cos k0z.

Here z0 is an arbitrary constant chosen for convenience, and constants C̄1 and C̄2 must
satisfy the boundary conditions on the current at the ends of the wire. Upon substitution
of (7.55) for Ãs, (7.58) becomes

∫ L

−L
Ĩ(z′)G(z−z′) dz′+C1 sin k0z+C2 cos k0z = −j 8π

2

η0

∫ z

−L
Ẽi(u) sin k0(z−u) du (7.60)

where C1 and C2 are two new constants to be determined. We have chosen z0 = −L in
(7.59) and have used ωµ0/k0 = η0.

Equation (7.60) is the EFIE for Ĩ(z), since the boundary condition employed in its
derivation involves tangential electric field. It is also called the Hallén integral equa-
tion after Erik Hallén, the Swedish researcher who first sought solutions to this type of
equation [77, 78]. We note that this is a Fredholm equation of the first kind, because
the limits on the integral involving Ĩ(z) are constant, and the unknown function only
appears within the integral.

7.3.1.2 Solution to the electric-field integral equation

Equation (7.60) may be solved by the MoM. The simplest approach is to use collocation
with pulse-function expansion of Ĩ(z). Let

Ĩ(z) =

N
∑

n=1

anPn(z) (7.61)

where Pn(z) is the nth pulse function given by

Pn(z) =

{

1, (n− 1)∆ ≤ z ≤ n∆,

0, elsewhere,
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with ∆ = 2L/N . In essence we partition the wire into N segments carrying constant
current values an. Substituting (7.61) into (7.60) and matching the equation at the points
z = zm = −L+ (m− 1/2)∆, we obtain a system of N equations in N + 2 unknowns:

N
∑

n=1

anAmn + C1 sin k0zm + C2 cos k0zm = bm, (7.62)

where

Amn =

∫ zn+∆/2

zn−∆/2

G̃(zm − z′) dz′,

bm = −j 8π
2

η0

∫ zm

−L
Ẽi(u) sin k0(zm − u) du. (7.63)

Two more equations are obtained by imposing the conditions on the current at the wire
ends. Since the wire is thin, there is little surface area at the end for charge to accumulate.
Hence the continuity equation implies that the current must be very weak there. For
simplicity we assume the current vanishes at the ends:

Ĩ(−L) = Ĩ(L) = 0.

Since the currents are assumed constant within the partitions, these conditions are most
easily invoked by requiring that a1 = aN = 0. However, a1 and aN more accurately
approximate the current at the centers of the partitions. With little additional effort, we
can implement the quadratic extrapolation (7.48) to estimate the currents at the actual
wire ends:

Ĩ(−L) ≈ 1

8
[15a1 − 10a2 + 3a3] = 0,

Ĩ(L) ≈ 1

8
[3aN−2 − 10aN−1 + 15aN ] = 0.

Using these, we can write (7.62) in the matrix form



















A11 A12 A13 A14 · · · A1,N−3 A1,N−2 A1,N−1 A1,N sin k0z1 cos k0z1
A21 A22 A23 A24 · · · A2,N−3 A2,N−2 A2,N−1 A2,N sin k0z2 cos k0z2
...

...
...

...
...

...
...

...
...

...
AN1 AN2 AN3 AN4 · · · AN,N−3 AN,N−2 AN,N−1 AN,N sin k0zN cos k0zN
15
8

− 10
8

3
8

0 · · · 0 0 0 0 0 0
0 0 0 0 · · · 0 3

8
− 10

8
15
8

0 0





































a1
a2
...
aN
C1

C2



















=



















b1
b2
...
bN
0
0



















.

(7.64)

We can establish two important properties of the entries Amn through a simple change
of variables. Let u = zm − z′. Then

Amn =

∫ (m−n+1/2)∆

(m−n−1/2)∆

G̃(u) du, (7.65)

where

G̃(u) =

∫ 2π

0

e−jk0R(ξ,u)

R(ξ, u)
dξ with R(ξ, u) =

√

4a2 sin2
ξ

2
+ u2.

Note that Amn depends on the indices m and n only through the difference m − n.
Another change of variables v = −u quickly establishes that Amn = Anm, which is a
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result of the reciprocity of sources and fields in free space. Together, these conditions
significantly reduce the computational expense of filling the matrix. A vector may be
filled with the distinct values of Amn for all allowed differences m − n, and the matrix
filled by selection from this vector.

Most of the Amn may be computed easily using numerical integration. However,
the m = n “self” terms involve a singularity in the Green’s function; the integrand of
G̃(z − z′) becomes infinite when the source and observation points coincide. Although
this singularity is integrable, it might cause difficulties with numerical integration. Let
us “extract” the singularity by isolating a singular term and integrating it analytically.
From (7.65) we have

Amm = 4

∫ ∆/2

−∆/2

∫ π/2

0

e−jk0R(ψ,u)

R(ψ, u)
dψ du,

where we have defined ψ = ξ/2. Next, we split the integrand into two pieces:

Amm = 4

∫ ∆/2

−∆/2

∫ π/2

0

e−jk0R(ψ,u) − 1

R(ψ, u)
dψ du+ 8

∫ ∆/2

0

∫ π/2

0

dψ du

R(ψ, u)
. (7.66)

The first term has no singularity at R = 0 (the singularity can be removed by defining
the integrand to be −jk0 at ψ = u = 0. The second term can be computed partially in
closed form. Noting that

∫ ∆/2

0

du
√

4a2 sin2 ψ + u2
= ln





∆

2a
+

√

4 sin2 ψ +

(

∆

2a

)2


 − ln 2− ln(| sinψ|),

and using [74]
∫ π/2

0

ln(sinψ) dψ = −π
2
ln 2,

we rewrite (7.66) as

Amm = 8

∫ ∆/2

0

∫ π/2

0

e−jk0R(ψ,u) − 1

R(ψ, u)
dψ du+8

∫ π/2

0

ln





∆

2a
+

√

4 sin2 ψ +

(

∆

2a

)2


 dψ.

Neither of the above integrals has a singularity, hence both can be done efficiently using
numerical integration.

7.3.1.3 The thin-wire approximation

Since the computation of Amn entails double numerical integration, suitable approxima-
tions have been sought to promote computational efficiency. One example is the thin wire
approximation. Through numerical experimentation [57], it is found that when ∆/a & 4,
the Amn may be approximated using

G̃(z − z′) ≈ G̃t(z − z′) = 2π
e−jk0R0(z−z′)

R0(z − z′)
,

where
R0(z − z′) =

√

a2 + (z − z′)2.
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FIGURE 7.11

Geometry of a circular wire showing distance between a source point on the axis of the
wire at r′ and an observation point on the surface at r.

Here G̃t(z−z′) is called the thin wire kernel, and R0 represents the distance from a source
point on the axis of the wire to a field point on the surface of the wire (Figure 7.11).
Intuitively, the surface current is regarded as a concentrated line current on the wire
axis, and the boundary condition on the tangential field is employed on the wire surface.
This approximation is often applied to thin curved wires (§ 7.3.2).
Because the distance R0 never becomes zero, G̃t(z− z′) does not have a singularity at

z = z′. Thus, computational efficiency is improved by reducing Amn to a single integral,
and by eliminating the singularity. The matrix elements are now

Amn = 2π

∫ zn+∆/2

zn−∆/2

e−jk0
√
a2+(zm−z′)2

√

a2 + (zm − z′)2
dz′.

Although there is no singularity, when z′ = zm the denominator of the integrand be-
comes small and the integrand peaks sharply. This can cause difficulties in numerical
integration. Thus, for the self term we can do an extraction much like for the singular
integrand. Let

Amm = 2π

∫ ∆/2

−∆/2

e−jk0
√
a2+u2 − e−jk0a√
a2 + u2

du + 2πe−jk0a
∫ ∆/2

−∆/2

du√
a2 + u2

.

The second integral is integrated in closed form to give

Amm = 4π

∫ ∆/2

0

e−jk0
√
a2+u2 − e−jk0a√
a2 + u2

+ 4πe−jk0a ln





∆

2a
+

√

(

∆

2a

)2

+ 1



 .

7.3.1.4 Impressed field models for antennas

It remains to specify the impressed field Ẽi in (7.60). The form of this expression depends
on what it represents. If the wire acts as a transmitting antenna, Ẽi should represent
the field in a source region near the attachment point of the feed cable.
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Slice gap model. The simplest way to represent the impressed field for an antenna is
with a slice gap generator. We assume the wire has a very thin slice of material removed
at z = z0, leaving a gap of width 2δ where a feed cable would be attached to impress
a voltage between the two legs of the antenna, which is appropriately called a dipole
antenna (Figure 7.12). Since the gap is assumed narrow compared to the radius of the
wire, the field within the gap is parallel to the wire axis:

Ẽi =

{

f(z)ẑ, z0 − δ ≤ z ≤ z0 + δ,

0, elsewhere.

Moreover, the line integral of the electric field is equal to the voltage difference Ṽ0 between
the antenna legs:

∫ z0+δ

z0−δ
Ẽi · dl =

∫ z0+δ

z0−δ
f(z) dz = Ṽ0. (7.67)

Since the gap is narrow, f(z) may be assumed constant. Then (7.67) implies

f(z) =
Ṽ0
2δ
.

For simplicity the gap width is often taken as infinitesimal. Then

lim
δ→0

∫ z0+δ

z0−δ
f(z)dz = Ṽ0

is satisfied by
Ẽiz(z) = f(z) = Ṽ0δ(z − z0). (7.68)

Equation (7.68) is the classic slice-gap impressed field. Using this in (7.63), we obtain

bm =

{

−j 8π2

η0
Ṽ0 sin k0(zm − z0), z0 < zm,

0, z0 ≥ zm.

In practice z0 is taken at the junction between two segments, say p and p+1. The input
impedance of the antenna, Zin, is defined as the ratio of the applied voltage Ṽ0 to the
input current Ĩ0 at the junction. This can be approximated rather inaccurately by using
the current on segment p or p+ 1 as the input current. More accurate is the quadratic
extrapolation

Ĩ0 ≈ 1
8 [15ap+1 − 10ap+2 + 3ap+3].

Then
Zin = Ṽ0/Ĩ0. (7.69)

Often the generator is located at the center of the dipole; this leads to a balanced antenna
with a symmetric current.

Magnetic frill model. It is important to note that (7.68) can lead to computational
problems since the source region has infinite capacitance [105]. Even so, numerical solu-
tions to the EFIE using the slice-gap generator model are useful approximations to the
currents produced by practical generators. An alternative generator model is the frill
model. This accurately models the case of a monopole antenna formed by extending the
center conductor of a coaxial cable through a ground plane (Figure 7.13). The radial
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FIGURE 7.12

Dipole antenna fed by a slice-gap generator located at z = z0.

electric field in the aperture at the junction of the cable and the ground plane is taken
to be that of an unterminated cable, and is replaced by an equivalent magnetic current
using the equivalence principle of § 6.3.4. The resulting equivalent current is imaged
into the ground plane, as is the current on the wire, to form a center-fed dipole antenna.
Unfortunately, the form of the impressed field Ẽiz on the wire surface produced by the
aperture field is complicated [200]. Electrostatic approximations [38, 89] are available
but inconvenient. A simpler approach is to use the field on the wire axis and assume this
holds for points on the wire surface. The result, as given in [186], is

Ẽiz(a, z) = Ẽi(z) =
Ṽ0

2 ln(b/a)

[

e−jk0R1(z)

R1(z)
− e−jk0R2(z)

R2(z)

]

(7.70)

where R1 =
√
z2 + a2, R2 =

√
z2 + b2, and b is the coaxial cable outer conductor radius

(Figure 7.13). Note that this expression has a strong peak near z = 0, hence the strongest
impressed field is near the generator. However, unlike the available expressions for the
field on the wire surface, there is no singularity. When computing bm via (7.63), the
peaking nature of the integrand can be extracted to make the integral easier to compute.

◮ Example 7.4: Impedance of a thin dipole antenna

Consider a very thin dipole antenna of half length L = 0.25 m and radius a = 0.0001 m. The
wire is excited at its center by a time-harmonic source of frequency f = 300 MHz (λ ≈ 1 m)
with unit voltage applied using either a gap model or a frill model with b/a = 2.3 (this value
of b/a produces a characteristic impedance of 50 Ω in an air-filled cable). Compute the input
impedance of the dipole using both the full kernel and the thin-wire approximation.

Solution: We compute the input impedance by solving the integral equation (7.60). The
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FIGURE 7.13

Monopole antenna fed by a coaxial cable through a ground plane.

matrix equation (7.64) is solved both with and without the thin-wire approximation for the
matrix elements, and Zin is computed using (7.69) with extrapolation to the center of the
dipole. Figure 7.14 shows how the input resistance and reactance depend on the number of
pulse functions used to represent the current. Here, identical results are obtained to three
decimal places when using the slice-gap and frill models, and with or without the thin-wire
kernel. Thus, the curves represent any of the four possible combinations. It can be seen
that for this wire, which is quite thin (L/a = 2500), the impedance converges quickly, with
stable results reached within N = 50 pulses. Recall that the thin-wire approximation holds
for partitions satisfying ∆/a & 4. For this wire, ∆/a = 16.7 when N = 300, so even at
the finest partitioning used, the thin-wire kernel gives results comparable to using the full
kernel.
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FIGURE 7.14
Input impedance of a dipole antenna with half-length L = 0.25 m and radius a = 0.0001 m. ◭
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◮ Example 7.5: Impedance of a thick dipole antenna

Consider a thick dipole antenna of half length L = 0.25 m and radius a = 0.01 m (L/a = 25).
As in Example 7.4, the wire is excited at its center at f = 300 MHz (λ ≈ 1 m) with unit
voltage applied using either a gap model or a frill model with b/a = 2.3. Compute the input
impedance of the dipole using both the full kernel and the thin-wire approximation.

Solution: Once again we compute the input impedance by solving the integral equation
(7.60). The matrix equation (7.64) is solved both with and without the thin-wire approx-
imation for the matrix elements, and Zin is computed using (7.69) with extrapolation to
the center of the dipole. Figure 7.15 shows Zin as a function of the number of pulses used
to represent the current. Here the input impedance is seen to converge more slowly than
for the thin dipole. For a frill generator with the full kernel, the impedance has settled
down fairly well by N = 100. However, for a slice-gap generator the reactance is changing
appreciably even when N = 300 partitions is reached. This is a consequence of the infinite
capacitance of the gap region. Note that with this antenna, the thin wire approximation is
violated with a partitioning of as little as N = 12. Hence we do not expect the results found
using the thin-wire kernel to duplicate those found from the full kernel. This is apparent in
Figure 7.15, where the thin-wire results begin to diverge from the full kernel results as N is
increased. When N ≈ 100 is reached, the thin wire approximation breaks down.

Figure 7.15 shows that when the dipole radius is appreciable, the input impedance ob-
tained from the integral equation is highly dependent on the model used to describe the
feed region. This limits the usefulness of the simple slice-gap and frill feed models for de-
scribing more complicated and realistic feed structures. The impedance results obtained in
this manner must be regarded as only useful approximations. An accurate calculation of the
impedance of a realistic antenna requires a highly realistic model of the feed.
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FIGURE 7.15
Input impedance of a dipole antenna with half-length L = 0.25 m and radius a = 0.01 m.
TWK indicates the use of the thin-wire kernel. ◭

◮ Example 7.6: Resonances of a dipole antenna

Consider a dipole antenna of length L = 0.25 m and radius a = 0.005 m. Compute and
plot the input impedance as a function of frequency using a slice-gap generator with the full



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 738 — #762
✐

✐

✐

✐

✐

✐

738 Electromagnetics

kernel and N = 200. Identify the resonance frequencies of the antenna.

Solution: A dipole antenna exhibits resonance properties similar to that of an electric
circuit. When viewed over a wide frequency range, the input impedance shows points of
resonance where the reactance is zero; these are generally taken as the operating points of
the antenna. Figure 7.16 shows the input impedance as a function of frequency. At low
frequencies the gap capacitance dominates, and Zin is predominantly capacitive. As the
frequency increases, the resistance and reactance increase until the first resonance is reached
at 278 MHz, where the input resistance is Rin = 73 Ω. This frequency corresponds to
a dipole length of 2L/λ = 0.463; thus the antenna is slightly less than a half-wavelength
long at its first resonance. The resistance continues to increase with frequency, while the
reactance peaks and then decreases rapidly back to zero at 444 MHz. This is the second
resonance of the antenna, at which Rin = 622 Ω and 2L/λ = 0.74. This resonance is often
referred to as an “antiresonance” in analogy with electric circuits. Because the reactance
shows a strong dependence on frequency at the antiresonance, and because Rin is so large
there, the antenna is generally not operated at this frequency. The next two resonances
occur at 883 MHz (2L/λ = 1.47, Rin = 119 Ω) and 963 MHz (2L/λ = 1.61, Rin = 264 Ω).
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FIGURE 7.16
Input impedance of a dipole antenna with half-length L = 0.25 m and radius a = 0.005 m
found using N = 200 pulse functions. ◭

◮ Example 7.7: Current distribution on a dipole antenna

For the dipole antenna of Example 7.6, plot the current distributions at the first three
resonant frequencies.

Solution: We plot Ĩ(z) from the solution of the matrix equation (7.64). Figures 7.17 and
7.18 show the magnitude and phase of the antenna current; each point on the curve is the
value of the current at the center of a given partition. At the first resonance, the current
distribution is nearly sinusoidal, with the phase varying only a few degrees over the length of
the antenna. At the second resonance, the current magnitude shows nearly a full period of
sinusoidal variation, but since the length of the antenna at resonance is significantly shorter
than one full wavelength, the current does not approach zero at the input. At the third
resonance, the current shows three half-periods of variation. At both the second and third
resonances, the phase of the current varies significantly over the length of the wire.
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FIGURE 7.17
Magnitude of the current distribution on a dipole antenna with half-length L = 0.25 m and
radius a = 0.005 m found using N = 200 pulse functions. Applied voltage is 1 V.
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FIGURE 7.18
Phase of the current distribution on a dipole antenna with half-length L = 0.25 m and radius
a = 0.005 m found using N = 200 pulse functions. Applied voltage is 1 V. ◭

7.3.1.5 Impressed field models for scatterers

When the scattering properties of a thin wire are sought, we model the impressed field
as arising from some far source. Consider a plane wave incident obliquely upon a wire
located in free space (Figure 7.19). Our assumption (§ 7.3.1.1) is that Ẽi is polarized so
that its axial component dominates over the component perpendicular to the wire. So
we assume the incident electric field is

Ẽi(r) = Ẽ0e
−jki·r

with Ẽ0 = Ẽ0ẑ sin θi + Ẽ0x̂ cos θi and ki = k0x̂ sin θi − k0ẑ cos θi, with θi the incidence
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FIGURE 7.19

Circular wire excited by an incident plane wave.

angle measured from the wire axis. The average impressed field defined by (7.57) is

Ẽi(z) =
1

2π
Ẽ0e

jk0z cos θi sin θi

∫ 2π

0

e−jk0a cosφ sin θi dφ

=
1

2π
Ẽ0e

jk0z cos θi sin θi

∫ 2π

0

ejk0a sinu sin θi du

= Ẽ0e
jk0z cos θi sin θiJ0(k0a sin θi). (7.71)

For a thin wire with k0a≪ 1, we have J0(k0a sin θi) ≈ 1.
The bm terms in (7.64) may be found by substituting (7.71) into (7.63). This gives

bm = −j 8π
2

η0
Ẽ0 sin θiJ0(k0a sin θi)

∫ zm

−L
ejk0u cos θi sin k0(zm − u) du.

Integrating and simplifying, we obtain

bm = −j 8π
2

η0
Ẽ0

J0(k0a sin θi)

k0 sin θi

[

ejk0zm cos θi − j cos θi sin k0(zm + L)− cos k0(zm + L)
]

.

(7.72)
The details are left as an exercise.

◮ Example 7.8: Current induced on a wire scatterer

A wire of half-length L = 0.25 m and radius a = 0.0025 m is illuminated by a plane wave
(Figure 7.19). The incidence angle is θi = 30◦ and the amplitude of the incident electric
field is Ẽ0 = 1 V/m. Compute the current at the center of the wire (z = 0) as function of
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frequency using the thin-wire kernel.

Solution: Figure 7.20 shows the current magnitude at the center of the wire (z = 0)
computed with N = 200 pulse functions by solving (7.64). Several peaks are seen in this
spectrum of the current, representing resonances of the wire. These suggest that the temporal
response of the antenna should consist of natural oscillations due to interfering current waves
traveling along the antenna. This is considered in the next example.
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FIGURE 7.20
Magnitude of current at the center of a wire with half-length L = 0.25 m and radius a =
0.0025 m. Incident field has angle θi = 30◦ and amplitude Ẽ0 = 1 V/m. ◭

◮ Example 7.9: Transient scattering by a thin wire

A transient plane wave with a Gaussian temporal waveform is incident at angle θi = 30◦ on
a wire of half-length L = 0.25 m and radius a = 0.0025 m. Plot the current at the center of
the wire as a function of time.

Solution: The temporal response of the wire may be found by computing the inverse FFT of
the current spectrum of Figure 7.20. Figure 7.21 shows the time-dependent current found by
windowing the spectrum with a Gaussian function and transforming into the time domain.
Such windowing is equivalent to interrogating the wire with a transient plane wave having
a Gaussian time waveform. Here, the width of the Gaussian is chosen to be 0.3 ns at 50%
amplitude. The current waveform consists of several peaks representing the current waves
induced on the wire. The time origin is referred to the center of the wire, so the first peak
occurs at t = 0 ns when the incident wave first reaches the observation point at the wire
center. Subsequent peaks occur at intervals of approximately 1.67 ns, which is the one-way
transit time of the wire for a wave traveling at the free-space speed of light. Thus, after
the transient excitation field has passed over the wire, a current wave remains on the wire,
traveling back and forth between its ends. Each time the current pulse passes the observation
point, another peak is seen. Interestingly, the pulse shape changes as it propagates along the
wire, broadening due to radiative dispersion. That is, since different frequency components in
the pulse radiate with different efficiencies, the pulse shape changes with time. After several
transit times have elapsed, the pulse has broadened into a waveform that closely resembles a
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damped sinusoid. This is the dominant resonance of the wire, which radiates least effectively.
It is important to note that this complicated temporal response may be represented precisely
using a finite sum of damped sinusoidal waveforms representing the natural resonances of
the wire excited by the frequency content in the incident Gaussian pulse. The technique
used to describe the natural response of a body is called the “singularity expansion method”
and is considered in § 7.3.3.
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FIGURE 7.21
Temporal current at the center of a wire with half-length L = 0.25 m and radius a =
0.0025 m found by performing the inverse FFT of the current spectrum. The Gaussian
window function produces the incident field waveform shown. ◭

Once the matrix equation is solved and the current amplitudes an determined, the
field scattered by the wire may be computed in the far zone using the expressions (6.27).
Thus

Ẽθ(r, θ) = jω
µ0

4π

e−jk0r

r
sin θ

∫ L

−L
Ĩ(z′)ejk0 r̂·r

′

dz′. (7.73)

Using (7.61), we obtain

Ẽθ(r, θ) = jω
µ0

4π

e−jk0r

r
sin θ

N
∑

n=1

an

∫ zn+∆/2

zn−∆/2

ejk0z
′ cos θ dz′

= jη0
e−jk0r

2πr
tan θ sin

(

k0
∆

2
cos θ

) N
∑

n=1

ane
jk0zn cos θ. (7.74)

For the special case of broadside observation (θ = π/2) this simplifies to

Ẽθ(r, θ = π/2) = j
k0η0
4π

e−jk0r

r
∆

N
∑

n=1

an.

In scattering problems we must often compute the radar cross-section (RCS) of the
object. This is defined in (5.167) as

σ = lim
r→∞

(

4πr2
|Ẽs|2
|Ẽi|2

)

. (7.75)
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Substitution of (7.74) gives

σ(θ) =
η20
π

tan2 θ sin2
(

k0
∆

2
cos θ

)

∣

∣

∣

∣

∣

N
∑

n=1

an

Ẽ0

ejk0zn cos θ

∣

∣

∣

∣

∣

2

.

This is the bistatic radar cross-section, where the illumination and observation angles
may differ. When observed at broadside, the RCS becomes the simple expression

σ(π/2) = πη20

(

∆

λ

)2
∣

∣

∣

∣

∣

N
∑

n=1

an

Ẽ0

∣

∣

∣

∣

∣

2

.

This is still a bistatic RCS, since the incidence angle may vary.

◮ Example 7.10: RCS of a wire scatterer

Compute the bistatic radar cross-section of a wire of radius a/λ = 0.005 as a function of
wire length for various incidence angles.

Solution: Figure 7.22 shows the bistatic RCS found using N = 200 pulse functions with
the full kernel. The angle of the incident wave is varied, while the observation is taken to be
at broadside (θ = 90◦). As the wire is lengthened, the RCS increases until reaching a peak
at 2L = 0.46λ. This is the same length at which the input impedance of a center-fed dipole
achieves resonance.
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FIGURE 7.22
Bistatic RCS of a wire of radius a/λ = 0.005 for various angles of incidence. Observation
angle is θ = 90◦ (broadside). ◭

7.3.2 Curved wires

7.3.2.1 Pocklington equation for curved wires

We can extend the analysis of the straight thin wire to obtain an integral equation for the
current on a curved thin wire. Consider a curved wire of circular cross-sectional radius
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FIGURE 7.23

Geometry of a curved thin wire of circular cross-section.

a located in free space (Figure 7.23). Distance is reckoned along the antenna axis by the
arc-length variable u, with coordinate origin at u0. The position of a point on the wire
periphery is described using u along with an angular variable ψ measured in the plane
of the wire cross-section at u (Figure 7.23). At the point (u, ψ) on the wire surface, the
tangential unit vector can be decomposed into a component û parallel to the wire axis,
and a component t̂ such that n̂ × û = t̂, where n̂ is the outward unit normal at that
point.

We continue to assume that the axial component of surface current, J̃u = û · J̃s, is
much larger than the transverse component J̃t = t̂ · J̃s. Hence the axial component of
the scattered field on the surface of the wire produced by the induced current dominates
the transverse component. The boundary condition on the tangential total field on the
wire surface is

Ẽsu(r) + Ẽiu(r) = 0 (r ∈ S) (7.76)

where Ẽu = û · Ẽ. This equation leads to an EFIE for the induced current, as follows.
Using (7.51), we can write the scattered electric field in terms of the scattered vector

potential as

Ẽsu = −j ω
k20

[

∂

∂u
(∇ · Ãs) + k20Ã

s
u

]

where Ãsu = û · Ãs. The scattered vector potential, produced by the induced axially
directed current, is

Ãs(r) =
µ0

4π

∫

Γ

∫ 2π

0

û′J̃su(ψ
′, u′)

e−jk0R

R
dS′

where Γ denotes the axial path of the wire and R = R(ψ, ψ′, u, u′) is the distance from
a source point on the wire surface at (ψ′, u′) to an observation point at (ψ, u). The
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divergence of the scattered potential is

∇ · Ãs(r) =
µ0

4π

∫

Γ

∫ 2π

0

∇ ·
[

û′J̃su(ψ
′, u′)

e−jk0R

R

]

dS′.

Using (B.48), we rewrite this as

∇ · Ãs(r) =
µ0

4π

∫

Γ

∫ 2π

0

J̃su(ψ
′, u′)û′ · ∇

[

e−jk0R

R

]

dS′.

Use of the identity

∇{exp(−jk0R)/R} = −∇′ {exp(−jk0R)/R}

gives

∇ · Ãs(r) = −µ0

4π

∫

Γ

∫ 2π

0

J̃su(ψ
′, u′)

∂

∂u′

[

e−jk0R

R

]

dS′,

hence

Ẽsu(r) = j
ω

k20

µ0

4π

∫

Γ

∫ 2π

0

J̃su(ψ
′, u′)

{

∂2

∂u∂u′
− k20(û · û′)

}

e−jk0R

R
dS′.

Substituting this into the boundary condition (7.76), we obtain

∫

Γ

∫ 2π

0

J̃su(ψ
′, u′)

{

∂2

∂u∂u′
− k20(û · û′)

}

e−jk0R

R
du′a dψ′

= j
4πk0
η0

Ẽiu(ψ, u) (0 ≤ ψ < 2π, u ∈ Γ). (7.77)

Instead of requiring (7.77) to hold for all ψ, we equate the average values of the two
sides:

1

2π

∫ 2π

0

[∫

Γ

∫ 2π

0

J̃su(ψ
′, u′)

{

∂2

∂u∂u′
− k20(û · û′)

}

e−jk0R

R
du′a dψ′

]

dψ

= j
4πk0
η0

1

2π

∫ 2π

0

Ẽiu(ψ, u) dψ (u ∈ Γ).

Rearrangement gives

∫

Γ

∫ 2π

0

J̃su(ψ
′, u′)

{

∂2

∂u∂u′
− k20(û · û′)

}[∫ 2π

0

e−jk0R

R
dψ

]

du′a dψ′

= j
8π2k0
η0

1

2π

∫ 2π

0

Ẽiu(ψ, u) dψ (u ∈ Γ).

In general, R(ψ, ψ′, u, u′) 6= R(ψ−ψ′, u, u′). However, the following hold if the radius of
curvature of the wire is much less than the wire radius.

1. When |u − u′| is small, R ≈ R(ψ − ψ′), since that portion of the wire is nearly
straight.

2. When |u− u′| is large, R is approximately the distance between points on the axis
and hence independent of ψ and ψ′.
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Thus, we use the approximation R(ψ, ψ′, u, u′) ≈ R̄(ψ − ψ′, u, u′), where R̄ is chosen to
satisfy the above criteria. Then

∫

Γ

[∫ 2π

0

J̃su(ψ
′, u′)a dψ′

]{

∂2

∂u∂u′
− k20(û · û′)

}

[

∫ 2π

0

e−jk0R̄(ξ,u,u′)

R̄(ξ, u, u′)
dξ

]

du′

= j
8π2k0
η0

Ẽi(u) (u ∈ Γ), (7.78)

where

Ẽi(u) =
1

2π

∫ 2π

0

Ẽiu(ψ, u) dψ

is the average value of the impressed field over the wire periphery. We recognize

Ĩ(u) =

∫ 2π

0

J̃su(ψ
′, u)a dψ′

as the total current flowing on the wire surface at axial point u, and define the average
Green’s function as

G̃(u, u′) =

∫ 2π

0

e−jk0R̄(ξ,u,u′)

R̄(ξ, u, u′)
dξ. (7.79)

Then (7.78) becomes
∫

Γ

Ĩ(u′)

{

∂2

∂u∂u′
− k20(û · û′)

}

G̃(u, u′) du′ = j
8π2k0
η0

Ẽi(u) (u ∈ Γ). (7.80)

This is the desired EFIE for the unknown current Ĩ(u) induced on the curved wire. It is
known as Pocklington’s integral equation after Henry Cabourn Pocklington, who derived
a form of the equation in 1897 [153]. Its specialization for a straight wire, and solution
using MoM, is left as an exercise.

As in the case of the straight wire, the thin wire approximation may be used to
approximate G̃(u, u′) as

G̃(u, u′) = 2π
e−jk0R̄0(u,u

′)

R̄0(u, u′)
.

Here R̄0(u, u
′) = R̄(0, u, u′) is the distance from a point on the axis at u′ to a point on

the wire surface at u.

7.3.2.2 Hallén equation for curved wires

The integral equation (7.80) is less convenient numerically than an equation of Hallén
form, such as (7.60), because the two derivatives on the Green’s function G̃(u, u′) increase
its singularity at u = u′. K.K. Mei [128] devised a method for converting Pocklington’s
equation to a Hallén-type equation with fewer derivatives, at the expense of introducing
an additional integral.

Define the kernel of Pocklington’s equation as

K(u, u′) =

{

∂2

∂u∂u′
− k20(û · û′)

}

G̃(u, u′).

Then (7.80) becomes
∫

Γ

Ĩ(u′)K(u, u′) du′ = j
8π2k0
η0

Ẽi(u) (u ∈ Γ). (7.81)
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We wish to transform this into an equation of the form

(

d2

du2
+ k20

)∫

Γ

Ĩ(u′)Π(u, u′) du′ = −j 8π
2k0
η0

Ẽi(u) (u ∈ Γ). (7.82)

Since this is an ordinary differential equation of the same form as (7.56), we have

∫

Γ

Ĩ(u′)Π(u, u′) du′ = A sin k0u+B cos k0u− j
8π2

η0

∫ u

u1

Ẽi(ζ) sin k0(u− ζ) dζ (u ∈ Γ)

(7.83)
where A, B, and u1 are constants. This is the desired Hallén integral equation.
It remains to identify the kernel Π(u, u′) of Hallén’s equation. Comparing (7.81) with

(7.82), we see that
(

d2

du2
+ k20

)

Π(u, u′) = −K(u, u′).

Solution of this differential equation gives

Π(u, u′) = − 1

k0

∫ u

u2

K(χ, u′) sin k0(u − χ) dχ, (7.84)

where u2 is a constant. The homogeneous solution, when substituted into (7.83), pro-
duces a term that augments the homogeneous solution on the right-hand-side of (7.83).
Substituting K(u, u′) into (7.84) we get

Π(u, u′) = −
∫ u

u2

{[

∂2

∂χ∂u′
− k20(χ̂ · û′)

]

G̃(χ, u′)

}

sin k0(u− χ)

k0
dχ.

One of the derivatives on G may be removed using integration by parts. Write

−
∫ u

u2

∂2G̃(χ, u′)

∂χ∂u′
sin k0(u− χ)

k0
dχ = − sin k0(u − χ)

k0

∂G̃(χ, u′)

∂u′

∣

∣

∣

∣

u

u2

−
∫ u

u2

∂G̃(χ, u′)

∂u′
cos k0(u − χ) dχ.

Since the first term merely contributes to the homogeneous solution in (7.83), it is not
considered further. Next use integration by parts to write

∫ u

u2

k20(χ̂ · û′)G̃(χ, u′)
sin k0(u− χ)

k0
= (χ̂ · û′)G̃(χ, u′) cos k0(u− χ)|uu2

−
∫ u

u2

∂

∂χ
[(χ̂ · û′)G̃(χ, u′)] cos k0(u− χ) dχ.

The lower limit of the first term on the right-hand side again contributes to the homo-
geneous solution in (7.83). Finally then,

Π(u, u′) = (û · û′)G̃(u, u′)−
∫ u

u2

{

∂

∂χ
[(χ̂ · û′)G̃(χ, u′)] +

∂G̃(χ, u′)

∂u′

}

cos k0(u − χ) dχ.

Depending on the geometry of the wire, it may be possible to remove the remaining
derivatives by using integration by parts once more. This holds for a circular loop
(Problem 7.15).
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FIGURE 7.24

Circular loop.

7.3.2.3 Example: the circular loop antenna

Consider a circular wire loop of radius b (Figure 7.24). The arc length along the wire
axis is given by u = bφ, and the distance between points at u and u′ on the axis is

D(φ, φ′) = 2b sin

( |φ− φ′|
2

)

.

Similarly, the distance between points (ψ, u) and (ψ′, u) on the surface is

d(ψ, ψ′) = 2a sin

( |ψ − ψ′|
2

)

.

Thus, a good choice for R̄ in the Green’s function (7.79) is R̄ =
√
D2 + d2, or

R̄(ξ, u, u′) =

√

4b2 sin2
(

φ− φ′

2

)

+ 4a2 sin2
(

ξ

2

)

.

Importantly, this choice of R̄ produces G̃(φ, φ′) = G̃(φ− φ′).
The kernel of Pocklington equation (7.81) can be specialized to the wire loop by using

u = bφ, û = φ̂,
∂

∂u
=

1

b

∂

∂φ
, û · û′ = cos(φ− φ′).

Noting that
∂G̃(φ − φ′)

∂φ′
= −∂G̃(φ− φ′)

∂φ

we obtain

K(φ, φ′) = K(φ− φ′) = −
[

1

b2
∂2

∂φ2
+ k20 cos(φ− φ′)

]

G̃(φ− φ′). (7.85)

Hence, (7.81) becomes
∫ π

−π
Ĩ(φ′)K(φ− φ′)b dφ′ = j

8π2k0
η0

Ẽi(φ) (−π < φ ≤ π). (7.86)
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Since Ĩ(ζ) and K(ζ) are periodic in ζ, (7.86) can be solved using Fourier series. This
approach was first taken by Hallén [77] and implemented by Storer in 1956 [181]. We
begin by expanding the Green’s function in a Fourier series:

G̃(ζ) =
∞
∑

n=−∞
Kne

jnζ (−π < ζ ≤ π),

where

Kn =
1

2π

∫ π

−π
G̃(ζ)e−jnζ dζ. (7.87)

Using this, we rewrite (7.85) as

K(φ− φ′) = −
∞
∑

n=−∞
Kn

[

1

b2
∂2

∂φ2
+ k20 cos(φ − φ′)

]

ejn(φ−φ
′).

Computing the derivatives and writing the cosine function in terms of exponentials, we
get

K(φ− φ′) =
∞
∑

n=−∞

[

n2

b2
Kn − k20

2
(Kn−1 +Kn+1)

]

ejn(φ−φ
′)

=

∞
∑

n=−∞
αne

jn(φ−φ′).

So the αn are the Fourier coefficients of the kernel function. Note that since G(ξ) is even,
K−n = Kn and thus α−n = αn. Putting the Fourier expansion for K(φ− φ′) back into
the integral equation (7.86) and rearranging, we get

∞
∑

n=−∞
αne

jnφ

[∫ π

−π
Ĩ(φ′)e−jnφ

′

dφ′
]

= j
8π2k0
η0

Ẽi(φ).

The term in brackets is 2π times the Fourier coefficient for the current:

In =
1

2π

∫ π

−π
Ĩ(φ′)e−jnφ

′

dφ′.

So ∞
∑

n=−∞
[αn2πIn] e

jnφ = j
8π2k0
η0

Ẽi(φ). (7.88)

This is a Fourier series for the term on the right-hand side. Letting

En =
1

2π

∫ π

−π
Ẽi(φ)e−jnφ dφ

be the Fourier coefficients of the impressed field, from (7.88) we have the Fourier coeffi-
cients of the current:

In = j
4πk0
η0

En
αn

.

So Pocklington’s integral equation has solution

Ĩ(φ) =
∞
∑

n=−∞
j
4πk0
η0

En
αn

ejnφ. (7.89)
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In computing Kn, a singularity of G(ξ) at ξ = 0 is encountered. This may be extracted
by the technique used for the straight wire. Substituting (7.79) into (7.87), we have

Kn =
1

2π

∫ π

−π
e−jnφ

[

1

2π

∫ π

−π

e−jk0R̄

R̄
dξ

]

dφ.

Since the singularity occurs at R̄ = 0, we add and subtract the singular term 1/R′ within
the integral:

Kn =
1

4π2

∫ π

−π

{

∫ π

−π

[

e−jnφ
e−jk0R̄

R̄
− 1

R′

]

dξ

}

dφ+
1

4π2

∫ π

−π

∫ π

−π

dξ dφ

R′ . (7.90)

Here R′ may be any function having similar behavior to R̄ as R̄ → 0. For simplicity we
choose

R′(ξ, φ) =
√

b2φ2 + a2ξ2.

This allows the second integral in (7.90) to be done in closed form. Employing (F.1), we
get

1

4π2

∫ π

−π

∫ π

−π

dξ dφ

R′ =
1

πa

[

Q ln

(

1

Q
+

√

1 +
1

Q2

)

+ ln
(

Q+
√

1 +Q2
)

]

where Q = a/b.
Let us apply the Fourier series solution to a wire loop antenna with a gap generator

at φ = 0. Assume the generator occupies a gap in the wire from φ = −δ to φ = δ. The
impressed field is

Ẽiφ =

{

Ṽ0

2bδ , −δ ≤ φ ≤ δ,

0, elsewhere,

and so

En =
1

2π

∫ δ

−δ
Ẽi(φ)e−jnφ dφ

= j
Ṽ0
2πb

sin(nδ)

nδ
. (7.91)

As δ → 0 we obtain a slice-gap generator and

En = j
Ṽ0
2πb

.

This generator has the same problem of infinite capacitance as with the straight wire, so
δ > 0 is often used to improve the behavior of the series (7.89).

The input admittance of the loop antenna is easily found from (7.89). The input
current is

Ĩin = Ĩ(φ = 0)

=

∞
∑

n=−∞
j
4πk0
η0

En
αn

, (7.92)

and the admittance is Yin = Ĩin/Ṽ0.
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◮ Example 7.11: Input admittance of a circular loop antenna

Compute the input admittance of a circular loop antenna of radius b = 0.2 m at frequency
300 MHz, as a function of the number of terms N used in the series (7.92).

Solution: As N increases, the input conductance converges rapidly, but the input suscep-
tance changes in a more complicated manner. Figure 7.25 shows the input susceptance for
a = 0.002 m (b/a = 100) and a = 0.01 m (b/a = 20). When the slice gap generator is used
(δ = 0 in (7.91)), the susceptance continues to increase as N increases, with the result for
the larger wire radius varying more dramatically. When a narrow gap of δ = 1◦ is used
for the generator region, the susceptance converges relatively quickly, with stable results by
N = 100 for b/a = 100, and N = 200 for b/a = 20.
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FIGURE 7.25
Input susceptance of a circular loop antenna. f = 300 MHz, b = 0.2 m. ◭

◮ Example 7.12: Resonances of a circular loop antenna

Compute the input admittance of a circular loop antenna of radius b = 0.2 m for wire radii
of a = 0.002 m and a = 0.01 m. Identify the resonance frequencies of the antenna.

Solution: Figures 7.26 and 7.27 show the input conductance and susceptance, respectively.
The admittances are computed using δ = 1◦, and N = 100 terms for a = 0.002 m and
N = 200 terms for a = 0.01 m. For the loop with the thinner wire, several resonance
points are seen where the input susceptance is zero. The first three are located at 111 MHz,
256 MHz, and 346 MHz. The first and third resonances are actually antiresonances with
small input conductances and low input currents. This is explored further in the next
example.

Interestingly, for the thicker wire, there is only one actual resonance, since, although it
oscillates with frequency, the susceptance passes through zero only at one frequency.
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FIGURE 7.26
Input conductance of a circular loop antenna. b = 0.2 m, δ = 1◦.
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FIGURE 7.27
Input susceptance of a circular loop antenna. b = 0.2 m, δ = 1◦. ◭

◮ Example 7.13: Current distribution on a circular loop antenna

Consider the circular loop antenna of Example 7.12. Plot the current distributions at the
first three resonant frequencies.

Solution: Figure 7.28 shows the magnitude of the current on a circular loop of radius
b = 0.2 and wire radius a = 0.002 m, computed at the first three resonant frequencies. The
first resonance at 111 MHz is actually an antiresonance. The conductance at this frequency
is very small (G = 0.000030 S); thus the input current is small and the antenna is difficult
to drive. Note that the current is nearly zero at the input, and that the magnitude goes
through approximately one half cycle around the loop (which has a circumference of 0.46λ at
111 MHz). The next resonance, at 256 MHz, is a true resonance, with an input conductance
of G = 0.0069 S. In this case, the current is maximum at the input and varies through
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one full cycle around the loop (circumference 1.07λ at 256 MHz). The third resonance, at
346 MHz, is again an antiresonance, with input conductance G = 0.00084 S. The current
has a minimum at the input, and goes through not quite one and a half cycles around the
loop (circumference 1.45λ at 346 MHz).
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FIGURE 7.28
Magnitude of current on a circular loop antenna. Ṽ0 = 1 V, a = 0.002 m, b = 0.2 m,
N = 100, δ = 1◦.

Figure 7.29 shows the phase of the current. At the primary resonance frequency of 256 MHz,
the phase is fairly constant, with a sign change near φ = ±90◦. At the two antiresonances,
the phase changes rapidly near the source where the current magnitude is small.
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FIGURE 7.29
Phase of current on a circular loop antenna. Ṽ0 = 1 V, a = 0.002 m, b = 0.2 m, N = 100,
δ = 1◦. ◭
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7.3.3 Singularity expansion method for time-domain current on a
straight wire

When a mechanical object is subjected to a distributed transient force, the object os-
cillates, or “rings,” at its natural frequencies. (Consider a bell struck by a hammer as
an example.) This effect is also called a natural resonance. Due to losses, the ampli-
tudes of the oscillations die exponentially with time, and we say that the resonances are
“damped.” A similar effect can be observed in scattering and radiation problems. In
§ 7.3.1.5, we see that the time-domain current on a wire illuminated by a plane wave
demonstrates an oscillatory behavior, and that the oscillations dampen with time as the
current radiates away its energy. In the 1970’s, Carl Baum proposed using this effect
to describe the behavior of the current in a number of transient problems [13, 14]. He
hypothesized that if a conducting object is subjected to a distributed transient electro-
magnetic field, the induced current will oscillate in the natural modes of the object, and
that this oscillation will begin after the transient excitation has passed. The ensuing pe-
riod of natural oscillation is called the “late time” of the response, while the time during
which the object is under excitation is called the “early time.” Thus, an antenna with
a transient voltage applied at its terminals will oscillate freely after the exciting field
has spread across the extent of the antenna. Similarly, a radar target illuminated by a
transient plane wave will oscillate freely after the excitation field has passed completely
over the object.

Baum developed a fairly complete technique for analyzing the natural response of
objects. The Singularity Expansion Method (SEM) has been applied to many different
types of objects, including both conducting and material bodies. We will consider a
simple application to a straight thin wire.

Consider a straight wire (Figure 7.9) excited by some transient event. The event may
be local, such as a voltage applied to terminals on the wire, or distributed, as in the case
of excitation by a time-domain plane wave sweeping across the wire. We assume that the
temporal waveform of the excitation is time-limited, and model the current at any point
on the wire as a sum of damped sinusoidal functions (natural oscillations) in the late-time
period. The onset of the late-time period occurs at a time TL(z) that depends on the
observation position of the current and the duration of the excitation. Prior to this time,
the current behaves in a more complicated fashion, which is difficult to describe. If T0(z)
is the first time at which a nonzero current is induced at position z, then we write the
current as

I(z, t) = U (t− TL(z))

2N
∑

n=1

anIn(z)e
snt + [U (t− T0(z))− U (t− TL(z))]w(z, t)

= IL(z, t) + IE(z, t). (7.93)

Here IL(z, t) is a natural-mode expansion of the late-time current, while IE(z, t) is the
early-time current. Each term in the natural-mode series has a complex natural frequency
sn = σn + jωn, a complex modal amplitude an, and a modal current distribution In(z).
Unless ωn = 0, the natural frequencies and modal amplitudes must occur in conjugate
pairs so that I(z, t) is real. Hence N represents the number of modes of the wire that are
excited by the incident field. Also, we assume all modes decay with time due to radiation
damping, and thus σn < 0.

Since our study of integral equations has concentrated on frequency-domain represen-
tations of the induced current, let us explore the behavior of the current expression (7.93)
in the frequency domain. As in systems theory, it is customary to employ the Laplace
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frequency variable s. Substituting (7.93) into the two-sided Laplace transform integral,
we get

I(z, s) =

∫ ∞

−∞
[IL(z, t) + IE(z, t)] e

−st dt

=

2N
∑

n=1

anIn(z)

∫ ∞

TL(z)

e(sn−s)t dt+

∫ TL(z)

T0(z)

w(z, t)e−st dt = IL(z, s) + IE(z, s).

The first integral may be easily computed, giving

IL(z, s) =

2N
∑

n=1

anIn(z)e
(sn−s)TL(z)

s− sn
. (7.94)

Thus, the late-time natural mode series becomes a pole series in the s-domain, with all
poles in the left-half plane. Since the integral converges only when Re{s} > σn, any
inversion contour used to obtain a time-domain expression involving the late time must
be taken to the right of maxn{σn}. Note that since the early-time current w(z, t) is
time-limited, its Laplace spectrum IE(z, s) is an entire function of s.

7.3.3.1 Integral equation for natural frequencies and modal current
distributions

An integral equation for the modal current distribution In(z) may be found by using the
results from § 7.3.1.1. Consider a transient plane wave incident on a straight thin wire,
with the same geometry as shown in Figure 7.19 for frequency-domain excitation. The
s-domain vector potential produced by the current I(z, s) induced on the wire may be
found by substituting ω = s/j into (7.55):

As(z, s) =
1

2π

µ0

4π

∫ L

−L
I(z′, s)G̃(z − z′, s) dz′, (7.95)

where

G̃(z − z′, s) =

∫ 2π

0

e−(s/c)R(ξ,z−z′)

R(ξ, z − z′)
dξ.

The equation (7.56) generated from the boundary condition on the tangential electric
field at the wire surface becomes the s-domain equation

(

d2

dz2
− s2

c2

)

As(z, s) = − s

c2
Ei(z, s) (−L ≤ z ≤ L),

where Ei(z, s) is the Laplace spectrum of the transient excitation field. Substituting
(7.95) and using the plane-wave field (7.71), we get

∫ L

−L
I(z′, s)K(z − z′, s) dz′ = −8π2sǫ0E

i(z, s) (−L ≤ z ≤ L), (7.96)

where

K(z − z′, s) =

(

d2

dz2
− γ2

)

G̃(z − z′, s).

Here we use the abbreviation γ = s/c to represent a quantity akin to a wavenumber.
Since the excitation is assumed to be time-limited, Ei(z, s) is an entire function. Also
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note that we have moved the spatial derivatives into the vector potential integral to form
a new kernel function K(z − z′, s).

Equation (7.96) represents an s-domain integral equation for the current I(z, s) on
the wire. But since we already have a model for this current, we can use the integral
equation to determine the modal current distribution functions In(z). With I(z, s) =
IL(z, s) + IE(z, s) and (7.94) we get

∫ L

−L

2N
∑

n=1

an
In(z

′)e(sn−s)TL(z
′)

s− sn
K(z − z′, s) dz′ +

∫ L

−L
IE(z

′, s)K(z − z′, s) dz′

= −8π2sǫ0E
i(z, s) (−L ≤ z ≤ L). (7.97)

Now we multiply through by (s− sm) and let s→ sm. Only the n = m term in the sum
survives the limit; the other two terms vanish because IE(z, s) and Ei(s, z) are entire
functions of s. The result is

∫ L

−L
In(z

′)K(z − z′, sn) dz
′ = 0 (−L ≤ z ≤ L). (7.98)

This is the desired integral equation for In(z). Since it is homogeneous (independent
of the excitation function), In(z) must describe a natural mode. Furthermore, it has
solutions only for certain discrete values of sn; these are the natural frequencies of the
wire.

Once the modal currents are found, the modal amplitudes an, which Baum [13] calls the
coupling coefficients, are determined as follows. Multiply (7.97) by Im(z) and integrate:

2N
∑

n=1

an
s− sn

∫ L

−L
Im(z)

∫ L

−L
e(sn−s)TL(z

′)In(z
′)K(z − z′, s) dz′

+

∫ L

−L
Im(z)

∫ L

−L
IE(s, z

′)K(z − z′, s) dz′ dz = −8π2sǫ0

∫ L

−L
Im(z)Ei(z, s) dz.

Now use the fact that K(z − z′, s) = K(z′ − z, s) and rearrange to get

2N
∑

n=1

an
s− sn

∫ L

−L
e(sn−s)TL(z

′)In(z
′)

[

∫ L

−L
Im(z)K(z′ − z, s) dz

]

dz′

+

∫ L

−L
IE(s, z

′)

[

∫ L

−L
Im(z)K(z′ − z, s) dz

]

dz′ = −8π2sǫ0

∫ L

−L
Im(z)Ei(z, s) dz.

As s → sm, the bracketed terms approach zero by (7.98). Hence the term involving
IE(s, z) vanishes, as do all terms in the sum except the n = m term, which produces an
indeterminate form requiring

lim
s→sm

am
s− sm

∫ L

−L
Im(z′)

[

∫ L

−L
Im(z)K(z′ − z, s) dz

]

dz′ = Rm

where

Rm = −8π2smǫ0

∫ L

−L
Im(z)Ei(z, sm) dz.
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By L’Hopital’s rule we obtain

am lim
s→sm

∂
∂s

{

∫ L

−L Im(z′)
∫ L

−L Im(z)K(z′ − z, s) dz dz′
}

∂
∂s (s− sm)

= Rm.

So the modal amplitude is simply

am = Rm/Cm (7.99)

where Cm is a normalization constant:

Cm =

∫ L

−L
Im(z′)

∫ L

−L
Im(z)K ′(z′ − z, sm) dz dz

′.

Here

K ′(z − z′, s) =
∂K(z − z′, s)

∂s
.

The s-domain excitation field can be found by using (7.71) with ω = s/j:

Ei(z, s) = sin θiE0(s)J0(−jsa sin θi/c)e−(s/c)z cos θi ,

where E0(s) is the Laplace spectrum of the time-limited excitation waveform. Thus

Rm = −8π2smǫ0 sin θiE0(sm)J0(−jsma sin θi/c)
∫ L

−L
Im(z)e−(sm/c)z cos θi dz. (7.100)

7.3.3.2 Numerical solution for natural-mode current

The natural frequencies of the wire are the values of sm for which (7.98) has nontrivial
solutions. The current distributions In(z) associated with the sn are the modal currents
for the wire. We can write (7.98) as

(

d2

dz2
− γ2n

)∫ L

−L
In(z

′)G̃(z − z′, sn) dz
′ = 0 (−L ≤ z ≤ L), (7.101)

where γn = sn/c. Solution of this differential equation gives the Hallén form of the
integral equation
∫ L

−L
In(z

′)G̃(z−z′, sn) dz′+C1 sinh(γnz)+C2 cosh(γnz) = 0 (−L ≤ z ≤ L). (7.102)

This is identical to the Hallén equation for the current on a wire scatterer, (7.60), except
that (7.102) is homogeneous and uses the parameter γ in place of jk. Thus, if we solve
(7.102) using pulse functions and point matching, we may use the same matrix equation
(7.64) with the substitutions k → −jγ and ω → −js. However, we must set the right-
hand side to zero to obtain the required homogeneous equation

[Q(s)][x] = 0,

where Q is an (N +2)× (N +2) matrix (with N the number of pulses used to represent
the current). Nontrivial solutions are only possible when the determinant of the matrix
is zero:

det[Q(s)] = 0. (7.103)

Since the entries in the MoM matrix [Q] depend on the complex frequency s, (7.103)
is a transcendental equation for the natural frequencies. For each value of sn satisfying
(7.103), there is a nontrivial solution [x] in the nullspace of [Q] [182]. The first N entries
of [x] are the amplitudes of the pulses describing the natural-mode current In(z).
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◮ Example 7.14: Natural resonance frequencies of a thin straight wire

Compute the first 10 natural resonance frequencies of a thin wire of half length L = 0.25 m
and radius a = 0.0025 m.

Solution: The natural frequencies are found by computing the MoM matrix and search-
ing for zeros of its determinant. The zeros can be determined by a simple secant method
root search [67]. Initial guesses for the search may be obtained from the simple approxima-
tion that the natural mode current distributions are integer multiples of a half-wavelength
standing wave along the wire, i.e., that 2L = nλ/2. Using c = λf , we find

ωn ≈ ±n πc
2L

. (7.104)

With this as the initial guess, the first ten natural frequencies found to satisfy (7.103) are
shown in the following table. (Only the poles with positive ωn are shown since the poles
form conjugate pairs.)

n 2L
πc
σn

2L
πc
σn

1 -0.08176 0.9131
2 -0.1206 1.885
3 -0.1486 2.865
4 -0.1714 3.849
5 -0.1911 4.835
6 -0.2087 5.824
7 -0.2247 6.811
8 -0.2396 7.799
9 -0.2536 8.792
10 -0.2668 9.779

To obtain these results, the full kernel was used to compute the MoM matrix entries,
with N = 200 partitions in each case. The natural frequencies are normalized such that if
(7.104) was an accurate representation of ωn, its normalized value would simply be n. Note
that the normalized values of ωn are somewhat smaller than the integer values predicted
by (7.104). Also note that the damping coefficients σn are negative so that the current
decreases exponentially with time as the traveling current wave radiates its energy. Since
|σn| is significantly smaller than |ωn|, we call the wire a high-Q structure. Not all structures
that exhibit natural resonances are high-Q; structures that have a higher volume to surface
area ratio, such as spheres, have a much lower Q [32]. Interestingly, the normalized natural
frequencies of the wire depend only on the ratio 2L/a. So the values in the table hold for
any wire with ratio 2L/a = 200.

The natural frequencies of the table above occupy a “layer” in the complex plane near
the imaginary axis. This is shown more clearly in Figure 7.30. However, these poles are
not the only solutions to (7.103). Infinitely many pole layers are present, each successive
layer having a larger damping coefficient than the previous one [194]. It is found that for
thin wires, the second layer has much larger damping coefficients than the first. Since these
natural frequencies correspond to modes that decay quite rapidly, they do not manifest
themselves significantly in the late-time response. This is demonstrated clearly in Example
7.16 below, where we show that the first layer of poles produces a natural response closely
matching that predicted by the inverse Fourier transform of the frequency-domain response.
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FIGURE 7.30
Normalized natural frequencies sn = σn + jωn of a thin wire with 2L/a = 200. ◭

◮ Example 7.15: Natural resonance currents of a thin straight wire

Plot the current distribution for the n = 1 and n = 4 natural resonance modes of a thin
wire of half length L = 0.25 m and radius a = 0.0025 m. Compare to simple sinusoidal
distributions.

Solution: Figure 7.31 shows the current functions found by solving for the nullspace of
the MoM matrix, for n = 1 and n = 4. Here the functions have been normalized by their
maximum complex values. Also plotted are the sinusoidal functions

In(z) = sin
(nπ

2L
[z − L]

)

. (7.105)

Note that the real part of the natural mode current is nearly sinusoidal, while the imagi-
nary part is small in comparison. Hence we are justified in using (7.104) to estimate the
natural frequencies. This simple behavior of the current forms a convenient method for
approximating the natural-mode response of thin wires of arbitrary shape [162].
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FIGURE 7.31
Natural mode current distributions on a thin wire for n = 1 and n = 4, compared to
sinusoidal functions. L/a = 200. ◭
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Once the natural frequencies and modal currents are known, the coupling coefficients
can be determined from (7.99). To evaluate Cm we need the derivative of the kernel

K ′(z − z′, s) =
∂

∂s

{(

∂2

∂z2
− γ2

)∫ 2π

0

e−γR

R
dξ

}

.

Since γ = s/c, we have

K ′(z − z′, s) = −1

c

∂2

∂z2
g(z − z′, s)− 2

cγ

[

γ2G̃(z − z′, s)
]

+
γ2

c
g(z − z′, s)

where

g(z − z′, s) =

∫ 2π

0

e−γR dξ.

Thus,

Cm =

∫ L

−L
Im(z)

{

∫ L

−L
Im(z′)

[

−1

c

∂2

∂z2
g(z − z′, sm)

]

dz′
}

dz

− 2

cγm

∫ L

−L
Im(z)

{

γ2m

∫ L

−L
Im(z′)G̃(z − z′, sm) dz′

}

dz

+
γ2m
c

∫ L

−L
Im(z)

{

∫ L

−L
Im(z′)g(z − z′, sm) dz′

}

dz.

The second integral may be replaced using (7.101):

Cm = −
∫ L

−L
Im(z)

{

∫ L

−L
Im(z′)

∂2

∂z2
F (z − z′, s) dz′

}

dz

+
γ2m
c

∫ L

−L
Im(z)

{

∫ L

−L
Im(z′)g(z − z′, sm) dz′

}

dz, (7.106)

where

F (z − z′, s) =
1

c
g(z − z′, s) +

2

cγ
G̃(z − z′, s).

Noting that
∂F (z − z′, s)

∂z
= −∂F (z − z′, s)

∂z′
,

we can write the first integral in (7.106) as

∫ L

−L
Im(z)

{

∫ L

−L
Im(z′)

∂

∂z′
∂F (z − z′, s)

∂z
dz′
}

dz

= −
∫ L

−L
Im(z)

[

∫ L

−L

∂Im(z′)

∂z′
∂F (z − z′, s)

∂z
dz′
]

dz

= −
∫ L

−L

∂Im(z′)

∂z′

[

∫ L

−L
Im(z)

∂F (z − z′, s)

∂z
dz

]

dz′.
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Here we have used integration by parts along with the condition I(−L) = I(L) = 0.
Integrating by parts once more, we get the final formula for Cm:

Cm = Cm1 + Cm2

where

Cm1 =

∫ L

−L

∫ L

−L

∂Im(z)

∂z

∂Im(z′)

∂z′
F (z − z′, sm) dz′ dz, (7.107)

Cm2 =

∫ L

−L

∫ L

−L
Im(z)Im(z′)

γ2m
c
g(z − z′, sm) dz

′ dz. (7.108)

For pulse function expansion of the current, a numerically convenient formula for Cm
may be developed. Differentiating (7.61), we obtain

∂Im(z)

∂z
=

N
∑

n=1

an

[

δ

(

z −
[

zn − ∆

2

])

− δ

(

z −
[

zn +
∆

2

])]

.

Substituting this into (7.107) and computing the integrals using the sifting property of
the impulse, we get

Cm1 =

N
∑

i=1

N
∑

j=1

aiaj [2F (zij)− F (zij −∆)− F (zij +∆)] , (7.109)

where zij = zi − zj = (i − j)∆. Using the pulse function representation for the current
in (7.108), we obtain

Cm2 =
γ2m
c

N
∑

i=1

N
∑

j=1

aiaj

∫ zi+
∆
2

zi−∆
2

[

∫ zj+
∆
2

zj−∆
2

g(z − z′, sm) dz
′
]

dz.

Although these integrals may be computed numerically, the integrand is smooth and a
simple approximation may be developed by using trapezoidal-rule integration. For the
inner integral, this gives

∫ zj+
∆
2

zj−∆
2

g(z − z′, sm) dz′ ≈ ∆

2

[

g

(

z −
[

zj −
∆

2

])

+ g

(

z −
[

zj +
∆

2

])]

.

Applying the trapezoidal rule to the outer integration, we have

Cm2 =
γ2m
c

∆2

4

N
∑

i=1

N
∑

j=1

aiaj [2g(zij) + g(zij −∆) + g(zij +∆)] . (7.110)

We can also evaluate Rm for the case of pulse function expansion of the current and
plane-wave incidence. Substituting (7.61) into (7.100), we get

Rm = −16π2E0(sm)

η0
tan θiJ0(−jsma sin θi/c) sinh

(

γm
∆

2
cos θi

) N
∑

n=1

ane
−γmzn cos θi .

(7.111)
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◮ Example 7.16: Temporal behavior of current at the center of a thin straight wire

Consider a plane wave incident at θi = 30◦ on a wire of half-length L = 0.25 m and radius
a = 0.0025 m. Compute the time-domain current at the center of the wire using SEM and
compare to the result fund using the inverse FFT. From this comparison, determine the
onset of the late-time period.

Solution: In § 7.3.1.5 we determined the time-domain response of the current at the center
of the wire by computing the inverse FFT of the frequency-domain current. The results are
shown in Figure 7.21. To compute the equivalent current distribution using SEM, Equation
(7.93) is used. Since we have not developed a method for determining the early-time current
ĨE, we concentrate on the late-time current

IL(z, t) = U (t− TL(z))
2N
∑

n=1

anIn(z)e
snt. (7.112)

We also do not know exactly when the late time begins, but we can explore this by comparing
to results found using the inverse FFT. Hence we compute (7.112) without using the unit
step function, and see how far back in time we can extend the formula and still have it match
the inverse FFT of the frequency-domain result. The quantities an, In(z), and sn all occur
in conjugate pairs, so

IL(z, t) =
N
∑

n=1

eσnt2Re
{

anIn(z)e
jωnt

}

. (7.113)

The natural frequencies and modal currents are found by solving (7.103) as discussed earlier,
while the amplitude constants are found from (7.99) with Cm computed using (7.109) and
(7.110), and Rm computed using (7.111). To keep the computations simple, Cm is found
using the thin-wire approximation, while Rm is computed with the Bessel function set to
unity (again, the thin wire assumption).
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FIGURE 7.32
Temporal current at the center of a wire with half-length L = 0.25 m and radius a = 0.0025 m
for a plane wave of amplitude E0 = 1 V/m incident at θi = 30◦. Current found using
inverse FFT of current spectrum is compared to current from SEM. The window function is
equivalent to a Gaussian incident pulse of half-width 0.3 ns.
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Figure 7.32 shows the result of computing the current at the center of the wire using (7.113)
with the first ten natural modes whose frequencies are shown in the table from Example 7.14.
To compare directly with the result found using the inverse FFT of the frequency-domain
results, the time series is transformed into the frequency domain using the FFT, windowed
in the same manner as the frequency-domain results, and transformed back into the time
domain. This procedure produces an effect identical to having an incident plane-wave field
with a Gaussian waveform. Here the temporal width of the Gaussian is chosen as 0.3 ns at
half amplitude. Figure 7.32 shows that the first event in the current waveform is a pulse at
t = 0. Since the coordinate origin is at the center of the wire, t = 0 is when the incident
wave first arrives at the wire center. The next event occurs at t = 1.66 ns. Since the one-way
transit time of the wire for a wave propagating at the speed of light is t = 2L/c = 1.66 ns,
the second event occurs when the current wave excited on the wire travels to the end of the
wire, reflects, and returns to the center. Note that before this time, the waveform found
using SEM does not match well with the inverse FFT of the frequency-domain results. But
subsequently the match is excellent. Thus, we take the onset of late-time at the center of the
wire to be TL = 1.66 ns. This is physically reasonable, since the natural oscillations depend
on the size of the wire, and t = 1.66 ns is the first time that the observer at the center of the
wire has information about the extent of the wire (provided by the returning current wave
reflected from the end). ◭

7.3.4 Time-domain integral equations for a straight wire

Options for obtaining the time-domain current on a straight wire include inverse Fourier
transformation of the frequency-domain current (§ 7.3.1.5) and the singularity expansion
method (§ 7.3.3). An alternative is to solve an integral equation derived directly in
the time domain. Time-domain integral equations have received less attention than
frequency-domain equations, but they provide a viable technique for determining the
transient response of a wire scatterer or antenna.
Consider a straight wire of length 2L and radius a (Figure 7.9). The wire is illuminated

by a transient excitation field Ei(r, t) that could arise from a generator located on the
wire (when used as an antenna) or an external source (in a scattering problem). The
excitation field induces a temporal current on the wire surface of such value that the total
tangential electric field vanishes for all points on the wire surface at all times. Assuming
the wire is thin, we have

Esz(r, t) = −Eiz(r, t) (r ∈ S), (7.114)

where Esz(r, t) is the scattered field produced by the induced current.
The scattered electric field produced by the current induced on the wire surface can

be written in terms of the potential functions. By (5.44) we have

Es = −∂A
s
e

∂t
−∇φse,

where the vector potential is given in (5.66). Differentiating with respect to time and
substituting (7.114), we obtain

−∂
2Asz(r, t)

∂t2
− ẑ · ∇∂φse(r, t)

∂t
= −∂E

i
z(r, t)

∂t
(r ∈ S),

where Asz = ẑ ·As
e. By the Lorenz condition (5.47),

−∂
2Asz(r, t)

∂t2
+ c2

∂2Asz(r, t)

∂z2
= −∂E

i
z(r, t)

∂t
(r ∈ S). (7.115)
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If we employ a thin wire assumption as we did in the frequency domain, we can assume
the current supporting Asz is a line current on the wire axis. Then (7.115) becomes

(

∂2

∂z2
− 1

c2
∂2

∂t2

)

Asz(z, t) = − 1

c2
∂Eiz(z, t)

∂t
(−L ≤ z ≤ L), (7.116)

where

Asz(z, t) =
µ0

4π

∫ L

0

I(z′, t−R/c)

R
dz′ (7.117)

and R =
√

(z − z′)2 + a2.
Equation (7.116) is a spatio-temporal integro-differential equation for the time-domain

current on the wire. It can be solved numerically using the marching on in time tech-
nique. This approach is fairly complicated, and we will not attempt a full description
of its implementation (see, e.g., [95, 135, 195]). Alternatively, it may be viewed as a
one-dimensional partial differential equation for the temporal vector potential. Upon so-
lution, the result is a pure spatio-temporal integral equation for the current on the wire.
This approach was developed by Hallén [195], and the resulting equation was solved
numerically by Liu and Mei [121] using marching-on-in-time.

7.3.4.1 Time-domain Hallén equation

To develop the Hallén equation we may use the solution to the one-dimensional wave
equation derived in Appendix A. Use of (A.29) allows the solution of (7.116) to be
written as

Asz(z, t) = − 1

2c

∫ z

0

∫ t+ z−z′

c

t− z−z′

c

∂Eiz(z
′, τ)

∂τ
dτ dz′

+ f(t− z/c) + g(t+ z/c).

Computing the temporal integral, we get

Asz(z, t) = − 1

2c

∫ z

0

Eiz

(

z′, t+
z − z′

c

)

dz′

+
1

2c

∫ z

0

Eiz

(

z′, t− z − z′

c

)

dz′

+ f(t− z/c) + g(t+ z/c).

We may change the lower limits in these integrals, since this only augments the homo-
geneous solutions f(t− z/c) and g(t+ z/c). Thus

Asz(z, t) =
1

2c

∫ L

z

Eiz

(

z′, t− |z − z′|
c

)

dz′

+
1

2c

∫ z

−L
Eiz

(

z′, t− z − z′

c

)

dz′

+ f(t− z/c) + g(t+ z/c),

or

Asz(z, t) =
1

2c

∫ L

−L
Eiz

(

z′, t− |z − z′|
c

)

dz′ + f(t− z/c) + g(t+ z/c).
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Substituting (7.117), we finally have

∫ L

−L

I(z′, t−R/c)

4πR
dz′ =

1

2η0

∫ L

−L
Eiz

(

z′, t− |z − z′|
c

)

dz′

+ f(t− z/c) + g(t+ z/c) (−L ≤ z ≤ L), (7.118)

where µ0 has been absorbed into f(t) and g(t).
As an example, consider a wire illuminated by a transient plane-wave field (Fig-

ure 7.19). From (7.71), we know that the axial component of the excitation field in
the frequency domain is

Ẽiz(z, ω) = Ẽ0(ω) sin θ0e
jk0z cos θ0 .

Here we have assumed that the wire is electrically thin over the frequency band of interest,
so that the Bessel function is unity. Computation of the inverse Fourier transform gives
the time-domain field

Eiz(z, t) = sin θ0
1

2π

∫ ∞

−∞
Ẽ0(ω)e

j ωc z cos θ0ejωt dω

= sin θ0
1

2π

∫ ∞

−∞
Ẽ0(ω)e

jω(t+ z
c cos θ0) dω

= sin θ0E0

(

t+
z

c
cos θ0

)

where E0(t) is the inverse transform of Ẽ0(ω). Substituting this into (7.118), we have

∫ L

−L

I(z′, t−R/c)

4πR
dz′ =

sin θ0
2η0

∫ L

−L
E0

(

z′, t− |z − z′|
c

+
z′

c
cos θ0

)

dz′

+ f(t− z/c) + g(t+ z/c) (−L ≤ z ≤ L). (7.119)

7.3.4.2 Approximate solution for the early-time current

As mentioned above, (7.119) may be solved using the marching-on-in-time technique.
Here we instead consider a very simple approximate solution to this equation — one
that will provide some insight into the mechanism creating the early-time portion of
the response. When the wire is thin, the quantity 1/4πR is highly peaked, and thus
a majority of the integral on the left-hand side of (7.119) will arise from values of the
current near z = z′. So a rough approximation for the left-hand side results in

I(z, t)

∫ L

−L

1

4πR
dz′ =

sin θ0
2η0

∫ L

−L
E0

(

z′, t− |z − z′|
c

+
z′

c
cos θ0

)

dz′

+ f(t− z/c) + g(t+ z/c), (7.120)
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which provides a simple solution for the current I(z, t). The remaining integral on the
left-hand side may be computed in closed form as

Q(z) =

∫ L

−L

1

4πR
dz′

=
1

4π

∫ L

−L

dz′
√

a2 + (z − z′)2

=
1

4π
ln

(

z + L+
√

(z + L)2 + a2

z − L+
√

(z − L)2 + a2

)

.

The solution for I(z, t) given by (7.120) has an interesting interpretation. The current
consists of a term describing the interaction of the incident field with the wire as it
propagates along the wire, augmented by the two homogeneous solutions f(t − z/c)
and g(t+ z/c). The latter terms represent waves propagating along the wire in the ±z
directions, respectively. Note that these waves must be present to satisfy the boundary
conditions that the current must vanish at the ends of the wire, since the term involving
the impressed field does not itself vanish. Also, after the impressed field has passed
completely over the wire, these terms will continue the response into the late time, and
thus are a major component of the natural response of the wire. Of course, it is important
to remember that this solution is only a rough approximation to the true solution of the
integral equation.

To estimate the homogeneous solutions during the early time period, let us assume the
dominant contribution to g(t+z/c) arises from the first interaction of the impressed field
with the wire end at z = L. The requirement that the current vanish at this end excites
a downward propagating wave. There is as yet no upward propagating wave f(t− z/c),
because we assume this term arises from the interaction of the impressed field with the
wire end at z = −L. Setting the current in (7.120) to zero at z = L results in

0 =
sin θ0
2η0

∫ L

−L
E0

(

z′, t− L− z′

c
+
z′

c
cos θ0

)

dz′ + g

(

t+
L

c

)

.

Letting τ = t+ L/c, we have

g(τ) = − sin θ0
2η0

∫ L

−L
E0

(

z′, τ − 2L

c
+
z′

c
+
z′

c
cos θ0

)

dz′,

so that

g
(

t+
z

c

)

= − sin θ0
2η0

∫ L

−L
E0

(

z′, t− 2L

c
+
z + z′

c
+
z′

c
cos θ0

)

dz′.

Using this, the current becomes from (7.120)

I(z, t)Q(z) =
sin θ0
2η0

∫ L

−L

{

E0

(

z′, t− |z − z′|
c

+
z′

c
cos θ0

)

− E0

(

z′, t− 2L

c
+
z + z′

c
+
z′

c
cos θ0

)}

dz′. (7.121)

This current will travel down the wire until reaching the bottom, where the upward
traveling wave f(t − z/c) will be excited. To determine the form of this wave, the
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boundary condition of zero current at z = −L is enforced. Augmenting (7.121) with
f(t− z/c) and applying the boundary condition, we obtain

f

(

t+
L

c

)

= − sin θ0
2η0

∫ L

−L

{

E0

(

z′, t− L+ z′

c
+
z′

c
cos θ0

)

− E0

(

z′, t− 3L

c
+
z′

c
+
z′

c
cos θ0

)}

dz′,

and so

f
(

t− z

c

)

= − sin θ0
2η0

∫ L

−L

{

E0

(

z′, t− 2L

c
− z + z′

c
+
z′

c
cos θ0

)

− E0

(

z′, t− 4L

c
− z − z′

c
+
z′

c
cos θ0

)}

dz′.

With this, the final approximation for the current in the early time is

I(z, t) =
1

Q(z)

sin θ0
2η0

∫ L

−L

{

E0

(

z′, t− |z − z′|
c

+
z′

c
cos θ0

)

− E0

(

z′, t− 2L

c
+
z + z′

c
+
z′

c
cos θ0

)

− E0

(

z′, t− 2L

c
− z + z′

c
+
z′

c
cos θ0

)

+ E0

(

z′, t− 4L

c
− z − z′

c
+
z′

c
cos θ0

)}

dz′. (7.122)

◮ Example 7.17: Approximation of the early-time current on a wire

A transient plane wave with a Gaussian waveform is incident at an angle θi = 30◦ on a wire
of half-length L = 0.25 m and radius a = 0.0025 m. Compute the early-time current at the
center of the wire as a function of time. Compare the approximation (7.122) to the current
obtained via the inverse FFT.

Solution: To compute the early-time current using the inverse FFT of Ĩ(z, ω), as found
in § 7.3.1.5, it is necessary to window the frequency domain data generated by evaluating
Ĩ(z, ω) before performing the inverse FFT. The inverse transform of the window function
is thus equivalent to the time-domain excitation waveform of the incident field in the time-
domain solution. As in § 7.3.1.5 we use a Gaussian window, which inverse transforms to a

Gaussian excitation function of the form E0(t) = E0e
−(ln 16)(t/T )2 where T is the temporal

width of the Gaussian at half height. Figure 7.33 shows the approximate early-time current
computed using a Gaussian incident field with a pulse width T = 0.3 ns. Plotted are both
(7.121), which includes just the downward propagating homogeneous solution, and (7.122),
which includes both the downward and upward homogeneous solutions. Also plotted is
the inverse FFT of the frequency domain result obtained in § 7.3.1.5. It can be seen that
the initial pulse of current is directly induced by the incident field passing over the wire,
augmented by the downward traveling homogeneous solution. When the upward-traveling
homogeneous solution is added in, the second pulse is produced, and thus we attribute this
pulse to the wave reflected from the bottom end of the wire. At this point, the incident field
has passed, and the natural response of the current may begin because the extent of the
wire has been determined. Of course, due to the approximate nature of the solution, the
pulses are not reproduced exactly.
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FIGURE 7.33
Temporal current at the center of a wire with half-length L = 0.25 m and radius a = 0.0025 m
for a plane wave of amplitude E0 = 1 V/m incident at θi = 30◦. Current found using inverse
FFT of current spectrum is compared to approximate early-time current. The Gaussian
incident pulse has a half-width of 0.3 ns. ◭

7.4 Solution to problems involving two-dimensional conductors

A two-dimensional electromagnetics problem is one in which the physical structure is
invariant along a given direction, usually taken as a coordinate axis. An infinitely long
cylinder of circular or square cross-section is an example of a two-dimensional problem.
If the structure is invariant with respect to one of the remaining coordinate variables
(e.g., with φ in the case of a circular cylinder), then the problem may yield to separation
of variables. For instance, we address scattering from a circular dielectric cylinder as a
boundary-value problem in § 4.11.8.4. In contrast, scattering from a cylinder of rectan-
gular cross-section cannot be treated using separation of variables, and we must resort
to numerical techniques. One approach is to write an integral equation for the induced
current and solve it by MoM.

The form of the excitation also influences the complexity of an electromagnetics prob-
lem. Although the geometry of a structure may be two-dimensional, the excitation may
be such that the induced current depends on all three coordinate variables. For instance,
a finite-length dipole antenna adjacent to an infinitely long dielectric circular cylinder
aligned along the z-axis induces a polarization current dependent on ρ, φ, and z. If the
cylinder is PEC, the current depends on the two variables φ and z. If the excitation is a
normally incident plane wave, then the dependence of the current is determined by the
incident wave polarization. If the electric field is TE to z, the current depends only on
φ; if TM to z, then only on z. Thus, the simplest problems involve PEC bodies, with
the excitation polarized either along the direction of invariance or perpendicular to it. In
this section we restrict ourselves to these simple problems, decomposing the excitation
field into components TE and TM to the direction of invariance.
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7.4.1 The two-dimensional Green’s function

Integral equations for two-dimensional problems involve superposition of a current that
is independent of one variable. Thus, the integral over this variable only involves the
Green’s function, which may be computed analytically to produce a two-dimensional
Green’s function. Consider a current J̃(r) that is independent of some direction, say z,
and immersed in free space. It produces an electric vector potential given by

Ãe(r) = µ0

∫

V

J̃(ρ′)
e−jk0R

4πR
dV ′ = µ0

∫

V

J̃(ρ′)G̃(r|r′) dV ′,

where G̃(r|r′) is the three-dimensional Green’s function and ρ is the two-dimensional
position vector. The distance between the source and observation points is given in
terms of the position vectors r = zẑ+ ρρ̂ and r′ = z′ẑ+ ρ′ρ̂′:

R2 = (r − r′) · (r− r′) = (z − z′)2 + (ρ− ρ′) · (ρ− ρ′) = (z − z′)2 + P 2

where
P = |ρ− ρ′| =

√

ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′).

Writing the volume integral as an integral along z and an integral over the cross-section
of the current, we express the vector potential as

Ãe(ρ) = µ0

∫ ∞

−∞

∫

CS

J̃(ρ′)
e−jk0

√
(z−z′)2+P 2

4π
√

(z − z′)2 + P 2
dS′ dz′

= µ0

∫

CS

J̃(ρ′)

[

∫ ∞

−∞

e−jk0
√
u2+P 2

4π
√
u2 + P 2

du

]

dS′

= µ0

∫

CS

J̃(ρ′)G̃2D(ρ|ρ′) dS′, (7.123)

where G̃2D is the two-dimensional Green’s function.
To obtain a formula for G̃2D, we write

G̃2D(ρ|ρ′) = 2

∫ ∞

0

e−jk0P
√

(u/P )2+1

4πP
√

(u/P )2 + 1
du

and apply the change of variables w =
√

(u/P )2 + 1 to get

G̃2D(ρ|ρ′) = 2

∫ ∞

1

e−j(k0P )w

4π
√
w2 − 1

dw.

Finally, using the integral representation of the Hankel function [74]

H
(2)
0 (x) =

2j

π

∫ ∞

1

e−jxt√
t2 − 1

dt (x > 0)

we arrive at

G̃2D(ρ|ρ′) =
1

4j
H

(2)
0 (k0|ρ− ρ′|). (7.124)

Thus we have the following formula for the vector potential produced by a z-invariant
current:

Ãe(ρ) = µ0

∫

CS

J̃(ρ′)
1

4j
H

(2)
0 (k0|ρ− ρ′|) dS′.
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If the current flows on the surface of a perfect conductor, then

Ãe(ρ) = µ0

∫

Γ

J̃s(ρ
′)

1

4j
H

(2)
0 (k0|ρ− ρ′|) dl′, (7.125)

where Γ describes the contour of the perfect conductor in the cross-sectional plane.
As a simple example, consider the electric field at a position ρ produced by an electric

line source of amplitude Ĩ0 located at ρ0. From (7.123), we see that Ãe(ρ) has only a
z-component. Hence

Ẽ = − jω
k20

∇(∇ · Ãe)− jωÃe.

Since

∇ · Ãe =
∂Ãez
∂z

= 0,

we have

Ẽ(ρ) = −jωµ0

∫

CS

Ĩ0δ(ρ
′ − ρ0)G̃2D(ρ|ρ′) dS′ = −jωµ0Ĩ0G̃2D(ρ|ρ0),

which matches (4.343).

7.4.2 Scattering by a conducting strip

Consider an infinitely long, perfectly conducting strip of width 2w, immersed in free space
(Figure 7.34). A plane wave incident on the strip is polarized either with its electric field
along the z-axis (TMz polarization) or with its magnetic field along the z-axis (TEz
polarization). The incident field induces a surface current on the strip, either along the
z-direction (for TMz polarization) or transverse to the z-direction (for TEz polarization).
Current is induced on both the top and bottom surfaces of the strip, but we assume the
strip is infinitesimally thin, and that the currents on the top and bottom surfaces are
nearly adjacent so that their sum may be treated as the source of the scattered field.
Using (7.125), we can write the scattered vector potential in terms of the two-dimensional
Green’s function:

Ãs
e(x, y) =

µ0

4j

∫ w

−w
J̃s(x

′)H(2)
0

(

k0
√

(x− x′)2 + y2
)

dx′. (7.126)

The scattered electric field is then

Ẽs = − jω
k20

∇(∇ · Ãs
e)− jωÃs

e. (7.127)

The direction of the induced current depends on the polarization of the incident field,
so each case will be considered separately.

7.4.2.1 TM polarization

A TMz-polarized incident plane wave is indicated in Figure 7.34. Its electric field,

Ẽi = ẑẼ0(ω)e
jk0(x cosφ0+y sinφ0), (7.128)

induces a z-directed current on the strip, which in turn produces a z-directed scattered
vector potential through (7.126). The scattered electric field is determined from (7.127).
Since the vector potential is independent of z, its divergence is zero and thus

Ẽs = −ẑ
ωµ0

4

∫ w

−w
J̃z(x

′)H
(2)
0

(

k0
√

(x − x′)2 + y2
)

dx′. (7.129)
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FIGURE 7.34

Scattering of a TM-polarized plane wave from a perfectly conducting strip.

Here J̃z is the sum of the z-directed surface currents on the top and bottom surfaces
of the strip. The boundary condition on the surface of the perfect conductor at y = 0
requires the total tangential electric field there to be zero. Since the field has only a
z-component, substitution from (7.128) and (7.129) produces the equation

4

ωµ0
Ẽ0(ω)e

jk0x cosφ0 =

∫ w

−w
J̃z(x

′)H
(2)
0 (k0|x− x′|) dx′ (−w ≤ x ≤ w). (7.130)

This is an EFIE for the current J̃z(x) on the strip.
The integral equation can be solved using MoM. We expand J̃z(x) in terms of pulse

functions:

J̃z(x) =
N
∑

n=1

anPn(x), (7.131)

where

Pn(x) =

{

1, xn −∆/2 ≤ x ≤ xn +∆/2,

0, elsewhere,

with xn = −w+ (n− 1/2)∆ and ∆ = 2w/N . This is equivalent to partitioning the strip
into narrower strips, each with constant current. Substituting the expansion into (7.130)
and point matching at x = xm, we obtain the set of linear equations

N
∑

n=1

an

∫ xn+∆/2

xn−∆/2

H
(2)
0 (k0|xm − x′|) dx′ = 4

ωµ0
Ẽ0(ω)e

jk0xm cosφ0 (m = 1, . . . , N),

or
N
∑

n=1

anAmn = bm.

To better understand the matrix entries, we use the change of variables u = k0(x
′−xm)

and get

Amn =
1

k0

∫ k0∆(m−n+1/2)

k0∆(m−n−1/2)

H
(2)
0 (|u|) du. (7.132)

A second change of variables of v = −u shows that Amn = Anm. We also see that Amn
depends on m and n only through the difference m − n. As with the wire, these two
conditions significantly reduce the computational costs of filling the MoM matrix.
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Most of the Amn can be computed easily using numerical integration. However, the
Hankel function has a singularity for small argument, so the “self term” Amm requires
caution. As with the wire, we may extract the singularity by subtracting a function whose
limiting behavior matches that of the integrand as the integration variable approaches
zero. We integrate the extracted term in closed form. Using the small argument approx-
imation of the Bessel functions (E.50) and (E.52), we find

H
(2)
0 (x) = J0(x) − jN0(x) ≈ 1− j

2

π
(lnx+ γ − ln 2)

where γ = 0.5772157 . . .. We therefore write

Amm =
1

k0

∫ k0∆/2

−k0∆/2
H

(2)
0 (|u|) du

=
2

k0

∫ k0∆/2

0

H
(2)
0 (u) du

=
2

k0

∫ k0∆/2

0

[H
(2)
0 (u)− f0(u)] du+

2

k0

∫ k0∆/2

0

f0(u) du,

where

f0(u) = 1− j
2

π
(lnu+ γ − ln 2) . (7.133)

Integrating f0(u) in closed form, we obtain

Amm =
2

k0

∫ k0∆/2

0

[H
(2)
0 (u)− f0(u)] du +∆− j

2∆

π

[

γ − ln 2 + ln

(

k0
∆

2

)

− 1

]

.

Since the integrand no longer has a singularity at u = 0 (it may be removed by defining
the integrand to be zero at u = 0), the integral may be computed efficiently using numer-
ical integration. Note that we can use this same trick when the source and observation
partitions are adjacent. Although there is no singularity in this case, the integrand may
still vary rapidly. See Problem 7.22.

Calculation of far-zone scattered field and RCS. Having determined the current,
we may find the electric field using (7.129):

Ẽs(ρ, φ) = −ẑ
ωµ0

4

∫ w

−w
J̃z(x

′)H(2)
0 (k0R) dx

′,

where R =
√

ρ2 − 2ρx′ cosφ. When ρ≫ w, the binomial approximation yields

H
(2)
0 (k0R) ≈ H

(2)
0

(

k0ρ

[

1− x′

ρ
cosφ

])

.

In the far zone where both ρ≫ w and kρ≫ 1, we may use the large argument approxi-
mation for the Hankel function (E.64) to show that

H
(2)
0 (k0R) ≈

√

2j

πk0ρ
e−jk0ρejk0x

′ cosφ.
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Thus

Ẽsz(ρ, φ) = −ωµ0

4

√

2j

πk0

e−jk0ρ√
ρ

∫ w

−w
J̃z(x

′)ejk0x
′ cosφ dx′. (7.134)

Substitution of (7.131) gives

Ẽsz(ρ, φ) = −ωµ0

4

√

2j

πk0

e−jk0ρ√
ρ

N
∑

n=1

an

∫ xn+∆/2

xn−∆/2

ejk0x
′ cosφ dx′. (7.135)

Carrying out the integral and simplifying, we obtain the desired approximation for the
scattered field:

Ẽsz(ρ, φ) = −η0
2

√

2j

πk0

e−jk0ρ√
ρ

k0∆

2

sin
(

k0
∆
2 cosφ

)

k0
∆
2 cosφ

N
∑

n=1

ane
jk0xn cosφ. (7.136)

Since the strip is infinitely long, the RCS defined by (7.75) is infinite. But we can
compute an RCS per unit length, called the radar cross-sectional width or scattering
width:

σ2D = lim
ρ→∞

[

2πρ
|Ẽs(ρ, φ)|2
|Ẽi(φ0)|2

]

. (7.137)

This is a bistatic quantity since it depends on both the incidence and observation angles
φ0 and φ; a monostatic quantity may be obtained by setting φ = φ0. We may compute
σ2D for the strip by substituting (7.136) into (7.137). This gives the normalized width

σ2D
λ

= η20
π

2

(

∆

λ

)2
∣

∣

∣

∣

∣

sin
(

k0
∆
2 cosφ

)

k0
∆
2 cosφ

∣

∣

∣

∣

∣

2 ∣
∣

∣

∣

∣

N
∑

n=1

an

Ẽ0

ejk0xn cosφ

∣

∣

∣

∣

∣

2

. (7.138)

Note that the φ0 dependence of σ2D is carried by the amplitudes an.

Physical optics approximation for the current and RCS of a strip — TM
case. The solution to the integral equation gives an accurate value for the current
induced on a conducting strip by an incident plane wave. Although straightforward, the
numerical solution does require significant computational effort. We may obtain a simple
approximation to the current from the principle of physical optics (PO). Since the upper
surface of the strip is completely illuminated by the incident plane wave, while the lower
surface is completely in shadow, the total PO current in the y = 0 plane is given by

J̃POs (x) = 2n̂× H̃i|y=0 (−w ≤ x ≤ w).

Here n̂ = ŷ and

H̃i(x, y) =
k̂i × Ẽi(x, y)

η0
=
Ẽ0

η0
(ŷ cosφ0 − x̂ sinφ0) e

jk0(x cosφ0+y sinφ0)

is the magnetic field of the incident plane wave. Thus

J̃POs (x) = ẑ
2Ẽ0

η0
sinφ0e

jk0x cosφ0 . (7.139)
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The far-zone field produced by the PO current may be computed by substituting
(7.139) into (7.134):

ẼPOz (ρ, φ) = −ωµ0

4

√

2j

πk0

e−jk0ρ√
ρ

∫ w

−w

2Ẽ0

η0
sinφ0e

jk0x
′ cosφ0ejk0x

′ cosφ dx′.

Integration gives

ẼPOz (ρ, φ) = −(k0w)

√

2j

πk0

e−jk0ρ√
ρ

Ẽ0 sinφ0
sin [k0w(cosφ+ cosφ0)]

k0w(cosφ+ cosφ0)
. (7.140)

The PO scattering width can be computed by substituting (7.140) into (7.137). This
results in the normalized scattering width

σPO2D

λ
=
(w

λ

)2

8π sin2 φ0

[

sin [k0w(cosφ+ cosφ0)]

k0w(cosφ+ cosφ0)

]2

. (7.141)

◮ Example 7.18: Current induced on a conducting strip by a plane wave — TM case

Consider a 300 MHz TM-polarized plane wave of amplitude Ẽ0 = 1 V/m that illuminates a
strip of width 2w = 2 m (electrical width 2λ at 300 MHz). Plot the magnitude and phase
of the current induced on the strip.

Solution: Figure 7.35 shows the magnitude of the current induced on the strip for two
different incidence angles, found using both the MoM and the PO approximation (7.139).
Note that the current diverges near the strip edge as expected (§ 4.11.8.6). Except near
the edge, the current converges quickly as the number of partitions is increased. Shown are
results for both N = 201 and N = 11 partitions. Near the center of the strip, accurate
results are obtained even for small N . However, a small number of partitions cannot ac-
curately describe the rapid variation of current near the edge. Note that near the center,
the current predicted by PO is very close to that determined from the MoM. However, the
PO approximation does not predict the edge singularity. Figure 7.36 shows the phase of the
current on the strip. Again, good results may be obtained with as few as 11 basis functions.
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FIGURE 7.35
Magnitude of current induced on a conducting strip of width 2w = 2 m at 300 MHz. TM
polarization. Ẽ0 = 1 V/m.
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FIGURE 7.36
Phase of current induced on a conducting strip of width 2w = 2 m at 300 MHz. TM
polarization. Ẽ0 = 1 V/m. ◭

◮ Example 7.19: Scattering width of a conducting strip — TM case

Plot the scattering width of a strip of width 2w = 2 m at 300 MHz with TM illumination.

Solution: The monostatic (φ = φ0) radar scattering width of the strip, calculated using
(7.138), is shown in Figure 7.37. The width is greatest near broadside (φ = 90◦) and
decreases rapidly away from broadside. The PO result obtained using (7.141) compares well
to the MoM result near broadside, but decreases in accuracy away from broadside, with
several non-physical nulls seen.
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FIGURE 7.37
Normalized monostatic scattering width for a conducting strip of width 2w = 2 m at
300 MHz. TM polarization. N = 201 partitions used for MoM solution. ◭
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FIGURE 7.38

Scattering of a TE-polarized plane wave from a perfectly conducting strip.

7.4.2.2 TE polarization

Obtaining the field scattered by a strip conductor under TEz polarization is somewhat
more involved than for the TM case. A TE-polarized incident plane wave is indicated in
Figure 7.38. Its fields are given by

H̃i = ẑ
Ẽ0(ω)

η0
ejk0(x cosφ0+y sinφ0), (7.142)

Ẽi = −η0k̂i × H̃i = Ẽ0(ω) [−ŷ cosφ0 + x̂ sinφ0] e
jk0(x cosφ0+y sinφ0). (7.143)

The incident electric field induces an x-directed current J̃s(x) = x̂J̃x(x) on the strip,
which produces an x-directed scattered vector potential through (7.126). The scattered
electric field is found using (7.127):

Ẽs = − jω
k20

∇
(

∂Ãsex
∂x

)

− jωx̂Ãsex.

Thus, the x-component of the scattered electric field is

Ẽsx = − jω
k20

∂2Ãsex
∂x2

− jωÃsex.

The boundary condition on the surface of the strip (i.e., that the total tangential electric
field must vanish) produces

(

∂2

∂x2
+ k20

)

Ãsex(x) = −j k
2
0

ω
sinφ0Ẽ0e

jk0x cosφ0 (−w ≤ x ≤ w). (7.144)

Here the potential on the strip is

Ãsex(x) =
µ0

4j

∫ w

−w
J̃x(x

′)H(2)
0 (k0|x− x′|) dx′. (7.145)

As in the TM case, J̃s is the sum of the currents on the top and bottom strip surfaces.
The ordinary differential equation (7.144) has the same form as (7.56) for the thin

wire, hence has solution

Ãsex(x) = fp(x) + fc(x) (7.146)



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 777 — #801
✐

✐

✐

✐

✐

✐

Integral equations in electromagnetics 777

where the particular and complementary solutions are, respectively,

fp(x) =
1

k0

∫ z

x0

[

−j k
2
0

ω
sinφ0Ẽ0e

jk0u cosφ0 sin k0(x− u)

]

du

and
fc(x) = C1 sin k0x+ C2 cos k0x.

The choice of x0 is arbitrary and affects only the constants in the complementary solution.
Choosing x0 = 0 and computing the integral, we get the particular solution

fp(x) = −j Ẽ0

ω

1

sinφ0
(ejk0x cosφ0 − cos k0x− j cosφ0 sin k0x).

The last two bracketed terms merely contribute to the complementary solution, hence
we may take

fp(x) = −j Ẽ0

ω

1

sinφ0
ejk0x cosφ0 .

Equating (7.146) and (7.145), we get

∫ w

−w
J̃x(x

′)H(2)
0 (k0|x−x′|) dx′+C1 sin k0x+C2 cos k0x =

4Ẽ0

k0η0

1

sinφ0
ejk0x cosφ0 . (7.147)

Equation (7.147) is a Hallén-type EFIE for the current on the strip. The constants C1

and C2 may be found by applying the edge condition on J̃s at x = ±w. In § 4.11.8.6 we
show that the current normal to a sharp edge vanishes at the edge. Hence we have the
additional conditions

J̃x(−w) = J̃x(w) = 0.

Expanding the current J̃x(x) in pulse functions as in (7.131) and point matching at xm,
we get a matrix equation identical in form to (7.64) for a thin wire. In the present
expression, the Amn are given by (7.132), which are the entries for the TM case, while
the bm are those of the TM case divided by sinφ0:

bm =
4Ẽ0

k0η0

1

sinφ0
ejk0xm cosφ0 .

Calculation of far-zone scattered field and RCS. To compute the radar scattering
width, we need the scattered field in the far zone. It is easiest to find the scattered
magnetic field, given by

H̃s =
1

µ0
∇× Ãs

e = −ẑ
1

µ0

∂Ãsex
∂y

.

The derivative of the vector potential (7.145) is

∂Ãsex
∂y

=
µ0

4j

∫ w

−w
J̃x(x

′)
∂

∂u
[H

(2)
0 (u)]

∂u

∂y
dx′

where u = k0R = k0
√

(x − x′)2 + y2. Computing the derivatives and remembering that

∂

∂u
H

(2)
0 (u) = −H(2)

1 (u),
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we obtain

H̃s(x, y) = ẑy
k20
4j

∫ w

−w
J̃x(x

′)
H

(2)
1

(

k0
√

(x− x′)2 + y2
)

k0
√

(x− x′)2 + y2
dx′. (7.148)

A far-zone expression for the scattered magnetic field can be found using R ≈ ρ −
x′ cosφ along with (E.64). We get

H
(2)
1 (k0R) ≈ j

√

2j

πk0

e−jk0ρ√
ρ

ejk0x
′ cosφ.

Substituting this into (7.148) and using y = ρ sinφ, we arrive at the far-zone field

H̃s(ρ, φ) = ẑ
k0
4

sinφ

√

2j

πk0

e−jk0ρ√
ρ

∫ w

−w
J̃x(x

′)ejk0x
′ cosφ dx′. (7.149)

The pulse function expansion (7.131) yields

H̃s(ρ, φ) = ẑ
k0
4

sinφ

√

2j

πk0

e−jk0ρ√
ρ

N
∑

n=1

an

∫ xn+∆/2

xn−∆/2

ejk0x
′ cosφ dx′

= ẑ
k0∆

4
sinφ

√

2j

πk0

e−jk0ρ√
ρ

sin
(

k0
∆
2 cosφ

)

k0
∆
2 cosφ

N
∑

n=1

ane
jk0xn cosφ. (7.150)

With the scattered field determined, the radar cross-sectional width may be found
from

σ2D = lim
ρ→∞

[

2πρ
|H̃s(ρ, φ)|2
|H̃i(φ0)|2

]

. (7.151)

Use of (7.142) and (7.150) gives the normalized result

σ2D
λ

= η20
π

2

(

∆

λ

)2

sin2 φ

∣

∣

∣

∣

∣

sin
(

k0
∆
2 cosφ

)

k0
∆
2 cosφ

∣

∣

∣

∣

∣

2 ∣
∣

∣

∣

∣

N
∑

n=1

an

Ẽ0

ejk0xn cosφ

∣

∣

∣

∣

∣

2

. (7.152)

This is the bistatic width. The monostatic width may be obtained by setting φ = φ0.

Physical optics approximation for the current and RCS of a strip — TE case.
The PO approximation for the strip current under TE illumination is, from (7.142),

J̃POs (x) = 2n̂× H̃i|y=0 = x̂
2Ẽ0

η0
ejk0x cosφ0 . (7.153)

Inserting this into (7.149) and integrating, we obtain

H̃PO
z (ρ, φ) = (k0w)

√

2j

πk0

e−jk0ρ√
ρ

Ẽ0

η0
sinφ

sin [k0w(cosφ+ cosφ0)]

k0w(cosφ+ cosφ0)
. (7.154)

The PO scattering width can be computed by substituting (7.154) into (7.151). The
result is the normalized scattering width

σPO2D

λ
=
(w

λ

)2

8π sin2 φ

[

sin [k0w(cosφ+ cosφ0)]

k0w(cosφ+ cosφ0)

]2

. (7.155)

This is identical to (7.141) for the TM case, except that sin2 φ0 is replaced by sin2 φ.
Under monostatic conditions when φ = φ0, the results coincide.
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◮ Example 7.20: Current induced on a conducting strip by a plane wave — TE case

Repeat Example 7.18 for the case of TE polarization.

Solution: Figure 7.39 shows the magnitude of the current induced on the strip for two
different incidence angles, found using both the MoM and the PO approximation (7.153).
The current converges very quickly as the number of partitions is increased, with results
for N = 11 matching fairly closely those for N = 201. Figure 7.40 shows the phase of the
current on the strip. Again, good results may be obtained with as few as 11 basis functions.
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FIGURE 7.39
Magnitude of current induced on a conducting strip of width 2w = 2 m at 300 MHz. TE
polarization. Ẽ0 = 1 V/m.
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◮ Example 7.21: Scattering width of a conducting strip — TE case

Repeat Example 7.19 for TE polarization.

Solution: The monostatic radar scattering width of the strip calculated using (7.152) is
shown in Figure 7.41. As in the TM case, the width is greatest near broadside and decreases
rapidly away from broadside. Moreover, the PO result obtained using (7.155) compares well
to the MoM result near broadside, but decreases in accuracy away from broadside. ◭
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FIGURE 7.41
Normalized monostatic scattering width for a conducting strip of width 2w = 2 m at
300 MHz. TE polarization. N = 201 partitions used for MoM solution. ◭

7.4.3 Scattering by a resistive strip

The solutions described above are easily modified to determine the current induced in
a resistive strip (a conducting strip with finite conductivity). For example, consider a
TM-polarized plane wave incident on a conducting strip as shown in Figure 7.34. Instead
of taking the strip to be infinitesimally thin as in § 7.4.2, we assume a finite thickness t
such that t≪ λ and t≪ w. Since the strip is penetrable, the EFIE (7.28) describes the
total field within the strip. However, it is more convenient to deal with the z-directed
equivalent current:

J̃eqz (ρ) = f(ρ)Ẽz(ρ), (7.156)

where f(ρ) is given in (7.23). Since the strip is very thin, the scattered field is computed
by replacing the volume current with a surface current obeying

J̃z(x) ≈ [J̃eqz (x)]t.

With this, (7.156) becomes

J̃z(x)

t
= f(x)[Ẽiz(x) + Ẽsz(x)],

or
Ẽsz(x)− J̃z(x)Z

i(x) = −Ẽiz(x).
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Here

Zi(x) =
1

[σ(x) + jω (ǫ(x)− ǫ0)] t

is called the internal impedance of the strip. Substituting for the scattered field from
(7.129), we get

−ωµ0

4

∫ w

−w
J̃z(x

′)H
(2)
0 (k0|x− x′|) dx′ − J̃z(x)Z

i(x) = −Ẽiz(x) (−w ≤ x ≤ w),

(7.157)
which is an integral equation for the equivalent surface current on the strip. Once the
current has been obtained, the scattered field and radar scattering width may be found
as with the PEC strip.
To solve (7.157), we use (7.131) and point match at zm:

N
∑

n=1

an

∫ xn+∆/2

xn−∆/2

H
(2)
0 (k0|xm − x′|) dx′ + 4

ωµ0
Zi(xm)

N
∑

n=1

anPn(xm)

=
4

ωµ0
Ẽ0(ω)e

jk0xm cosφ0 (m = 1, . . . , N).

But Pn(xm) is nonzero only when n = m, so

N
∑

n=1

an

[

Amn + δmn
4

k0η0
Zi(xm)

]

= bm

where Amn is given in (7.132) and δmn is the Kronecker delta. Thus we have a matrix
equation nearly identical to that for the PEC strip. The only difference is that the
diagonal matrix entries have an additional term that depends on the material properties
of the strip. Note that if σ → ∞, these additional terms reduce to zero, and the result
for the PEC strip is recovered.
A similar approach can be used to find the current and field under TE illumination

(Problem 7.23).

◮ Example 7.22: Current induced on a resistive strip by a plane wave — TM case

Consider a 300 MHz TM-polarized plane wave of amplitude Ẽ0 = 1 V/m that illuminates
a resistive strip of width 2w = 2 m and surface resistance 1000 ohms per square. Plot the
magnitude and phase of the current induced on the strip.

Solution: The strip loss is described in terms of the surface resistance

Rs = 1/(σt),

where σ is the conductivity and t is the strip thickness. For this example we compare the
case of a perfectly conducting strip (Rs = 0) to that of a resistive strip with uniform surface
resistance Rs = 1000 ohms per square. We also take the permittivity of the strip to be that
of free space so that Zi = Rs.

Figure 7.42 shows the magnitude of the current induced on the strip for the two cases of
surface resistance. Two things are evident. First, the amplitude of the current is smaller
when the strip is resistive. Second, there is no edge singularity when the strip is resistive.
Also plotted is the current obtained using a PO approximation. For a resistive strip, the
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PO current can be approximated using the simple formula [53]

J̃
PO
s (x) = 2n̂ × H̃

iP (φ0) (7.158)

where

P (φ0) =
1

1 + 2Rs
Z0

with Z0 = η0/ sin φ0 for TM polarization and Z0 = η0 sinφ0 for TE polarization. We see
that the PO current is very close to that found using MoM.

Figure 7.43 shows the phase of the current on the strip. The lossy strip displays less phase
variation than the PEC strip.
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FIGURE 7.42
Magnitude of current induced on a resistive strip of width 2w = 2 m at 300 MHz with
φ0 = 90◦. TM polarization. Ẽ0 = 1 V/m.

-50

-40

-30

-20

-10

 0

 10

-1 -0.5  0  0.5  1

Rs=0 Ω/square

Rs=1000 Ω/square

∠
J~

z
 (

d
e

g
)

x-position (m)

MoM N=201
PO

FIGURE 7.43
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◮ Example 7.23: Scattering width of a resistive strip — TM case

Consider a resistive strip of width 2w = 2 m and a surface resistance 1000 ohms per square.
Plot the scattering width at 300 MHz with TM illumination.

Solution: The monostatic radar scattering width of the strip calculated using (7.152) is
shown in Figure 7.44. The scattering width of the resistive strip is significantly smaller than
that of the PEC strip, due to the smaller induced current. In addition, the scattering width
of the resistive strip shows stronger nulls. Also shown is the PO scattering width computed
using the PO current (7.158). The PO approximation of the scattering width matches the
result obtained using MoM quite accurately, except as φ→ 0 or φ→ 180◦.
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FIGURE 7.44
Normalized monostatic scattering width for a resistive strip of width 2w = 2 m at 300 MHz.
TM polarization. N = 201 partitions used for MoM solution. ◭

7.4.4 Cutoff wavenumbers of hollow-pipe waveguides

In § 5.6 we compute the cutoff wavenumbers kc of certain hollow-pipe waveguides with
PEC walls. Once the cutoff frequencies are known, the propagation constants can be
found for the various modes through the expression

kz =
√

k2 − k2c .

For guides with simple contours, the cutoff frequencies arise from the separation-of-
variables solution to a boundary-value problem. Otherwise a numerical technique is
needed to find the cutoff wavenumber.
Consider an empty waveguide with perfectly conducting walls (Figure 7.45). The

cross-sectional shape is z-invariant, and its boundary is described by the contour Γ. A
primary source exists somewhere within the guide, creating an impressed field Ẽi. This
field induces a current on the guide’s inner wall, which produces a scattered field Ẽs.
The boundary condition on the electric field at the waveguide wall is

n̂× (Ẽi + Ẽs) = 0 (r ∈ S),

where n̂ is the interior unit normal to the wall. When the source is extinguished, the
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FIGURE 7.45

Conducting, hollow-pipe waveguide.

solution to the resulting homogeneous equation gives the normal mode fields of the guide.
This equation,

n̂× Ẽs = 0, (7.159)

has nontrivial solutions only for certain values of the wavenumber k. If the current
induced on the guide wall is assumed z-invariant, then these eigenvalues are the cutoff
wavenumbers of the guide, since only at cutoff is the field in the guide z-invariant.

7.4.4.1 Solution for TMz modes

As described in § 5.6, a TMz waveguide mode has only a z-component of electric field,
hence is associated with a z-directed current J̃sz on the guide wall. Assuming this current
is z-invariant, the associated z-directed vector potential is

Ãsez(ρ) =
µ0

4j

∮

Γ

J̃z(ρ
′)H(2)

0 (k0|ρ− ρ′|) dl′. (7.160)

Since the electric field is Ẽz = −jωÃs
ez, the equation describing the normal-mode current,

which also determines the allowed values of the cutoff wavenumber, is obtained from
(7.159):

∮

Γ

J̃z(ρ
′)H

(2)
0 (k0|ρ− ρ′|) dl′ = 0 (ρ ∈ Γ). (7.161)

We may solve (7.161) using MoM. For a waveguide of arbitrary shape, the usual
approach is to approximate the boundary using flat strips (see, e.g., [187]). As a simpler
example, consider a circular waveguide of radius a. Then

ρ = a(x̂ cosφ+ ŷ sinφ), ρ′ = a(x̂ cosφ′ + ŷ sinφ′),

so that

|ρ− ρ′| = a
√
2
√

1− cos(φ− φ′) = 2a sin

( |φ− φ′|
2

)

.
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Relation (7.161) becomes

∫ 2π

0

J̃z(φ
′)H

(2)
0

(

2k0a sin
|φ− φ′|

2

)

dφ′ = 0 (0 ≤ φ ≤ 2π). (7.162)

To solve (7.162), we expand the current as

J̃z(φ) =
N
∑

n=1

anPn(φ) (7.163)

where

Pn(φ) =

{

1, φn − δ/2 ≤ φ ≤ φn + δ/2,

0, elsewhere,

with φn = (n− 1/2)δ and δ = 2π/N . Point matching at the angles φm (1 ≤ m ≤ N), we
get a matrix equation

N
∑

n=1

Amnan = 0 (m = 1, . . . , N). (7.164)

This homogeneous equation has nontrivial solutions for the eigenvalues k0a under the
condition

det {Amn(k0a)} = 0. (7.165)

The matrix entries in (7.164) are given by

Amn =

∫ φn+δ/2

φn−δ/2
H

(2)
0

(

2k0a sin
|φm − φ′|

2

)

dφ′

or, after a simple change of variables,

Amn =

∫ φm−φn+δ/2

φm−φn−δ/2
H

(2)
0

(

2k0a sin
|u|
2

)

du. (7.166)

Note that the matrix is symmetric and its elements depend on m and n only through
the difference m− n.
The Amn may be computed using numerical integration. The self (m = n) terms are

singular at u = 0. We can extract the singularity using the technique of § 7.3.1.2. Write

Amm = 2

∫ δ/2

0

[

H
(2)
0

(

2k0a sin
u

2

)

− f0(u)
]

du+ 2

∫ δ/2

0

f0(u) du.

Here f0(u) must share the singular behavior of the original integrand as u → 0. Based
on the small argument approximation for the Hankel function, we choose

f0(u) = 1− j
2

π
[ln(k0au) + γ] .

The integral of f0(u) may be done in closed form, giving

2

∫ δ/2

0

f0(u) du = δ − j
2δ

π

[

γ − 1 + ln

(

k0aδ

2

)]

.
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After the cutoff wavenumbers have been found from (7.165), the amplitudes an may
be determined by finding the nullspace of the matrix Amn [182]. Then the guide field Ẽz
may be determined from the potential function (7.160). Substitution of (7.163) gives

Ẽsz(ρ, φ) = −η0
k0a

4

N
∑

n=1

an

∫ φ−φn+δ/2

φ−φn−δ/2
H

(2)
0

(

k0a
√

1 + ρ̄2 − 2ρ̄ cosu
)

du (7.167)

where ρ̄ = ρ/a is the normalized radial distance. Note that since the an were found as
the solution to a homogeneous equation, only their relative values are meaningful.

◮ Example 7.24: Cutoff wavenumbers of a circular waveguide — TM modes

Determine the cutoff wavenumbers of several TMz modes in a circular waveguide. How does
the error depend on the number of basis functions used?

Solution: The following table gives results for the normalized cutoff wavenumbers kca of
several TM modes found by solving the eigenvalue equation (7.165) using 50 pulse functions
in the expansion (7.163).

mode numerical result theoretical value

TM01 2.404905 2.404826
TM02 5.520261 5.520078
TM03 8.654015 8.653728
TM11 3.831776 3.831706
TM21 5.135492 5.135623
TM22 8.416518 8.417244

The secant method [67] produced complex values for kca, and the real parts of those values
are given in the table. The imaginary parts of kca were six to seven orders of magnitude
smaller than the real parts. The theoretical values of kca for mode TMnm are given by the
mth root of the transcendental equation (§ 5.6)

Jn(kca) = 0,

where Jn(x) is the ordinary Bessel function of order n. The table reveals that for the modes
shown, the computed values of the wavenumber are accurate to four digits in comparison with
the theoretical values. Figure 7.46 shows the error between the computed and theoretical
values of the cutoff wavenumbers, as defined by

ǫkc(N) =
|kcnumerical

− kcanalytic |
|kcanalytic |

. (7.168)

For the TM01 mode, good results are obtained even for N = 5 partitions (kca = 2.4056
versus a theoretical result of kca = 2.4048). This result improves slowly as N is increased.
For the TM22 mode, low values of N result in a poor solution for kca, but increasing N
increases the accuracy of the result. For the TM11 mode, low values of N again produce
poor results for kca, but increasing N rapidly improves the accuracy of the result. However,
in this case the error reaches a minimum at N = 33 and then increases somewhat. Note
that for larger values of N , any meaningful attempt at estimating the error is hampered
by the use of single-precision arithmetic (with 7 significant digits) in all of the numerical
calculations.
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FIGURE 7.46
Error between computed and theoretical cutoff wavenumbers for a circular waveguide. ◭

◮ Example 7.25: Axial electric field in a circular waveguide — TM modes

Determine the dependence of the axial electric field on ρ for the TM01 and the TM22 modes in
a circular waveguide. Compare the fields found using the moment method with the analytic
values.

Solution: Because the theoretical values of the cutoff wavenumbers for a circular guide are
known a priori, it is easy to associate a particular solution for an with a corresponding mode.
This is not the case for an irregularly shaped guide that may have no analytic solution. In
that case, to understand the type of mode considered, it is useful to examine the spatial
variation of the field in the guide. For example, a mode showing one cycle of the field along
a cut line may be termed mode TM1, while another mode showing two variations might be
termed TM2. In our present example, we can compute the z-component of the electric field
within the guide via (7.167) and compare it with the theoretical field. At a particular value
of φ, the radial dependence of the theoretical field is (§ 5.6)

Ẽz(ρ) = Ẽ0Jn
(

kca
ρ

a

)

, (7.169)

where Ẽ0 is a complex constant. Figure 7.47 shows the numerical electric field computed from
(7.167) using N = 50 partitions, compared to the theoretical formula (7.169) for two modes.
Because the fields satisfy a homogeneous equation, their amplitudes are indeterminate; hence
the maximum values of the fields are set to unity for comparison. Note that although (7.167)
returns a complex value, when the maximum value of the complex field is normalized to unity,
the imaginary part is six to seven orders of magnitude below the real part. Figure 7.47
compares the real part of the normalized field with (7.169), and excellent agreement is seen.
The clear difference in the number of oscillations between the two modes is a distinguishing
characteristic.
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FIGURE 7.47
Relative electric field Ẽz in an empty circular guide computed using N = 50 partitions, and
compared to theory. ◭

7.4.4.2 Solution for TEz modes

Waveguide modes that are TEz have no z-component of electric field, and thus are
associated with a transverse current J̃s on the guide wall. This current produces both a
scattered vector potential

Ãs
e(ρ) = µ0

∮

Γ

J̃s(ρ
′)G̃2D(ρ|ρ′) dl′ (7.170)

and a scattered scalar potential

Φ̃se(ρ) =
1

4jǫ0

∮

Γ

ρ̃s(ρ
′)G̃2D(ρ|ρ′) dl′. (7.171)

Here G̃2D(ρ|ρ′) is the Green’s function (7.124). The surface charge density is related to
the surface current density by the continuity equation

∇ · J̃s = −jωρ̃s.

The scattered electric field is given in terms of the potentials as

Ẽs = −jωÃs
e −∇Φ̃se.

Substituting this into (7.159), and using (7.170) and (7.171), we obtain the characteristic
equation for the eigenvalues kc for TEz modes:

k20

∮

Γ

t̂ · J̃s(ρ′)G̃2D(ρ|ρ′) dl′ + t̂ · ∇
∮

Γ

∇′ · J̃s(ρ′)G̃2D(ρ|ρ′) dl′ = 0 (ρ ∈ Γ) (7.172)

where t̂ = n̂× ẑ is a unit vector tangent to the surface of the guide in the cross-sectional
plane (Figure 7.45).
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For the circular guide we have J̃s(ρ) = φ̂J̃φ(φ) and t̂ = φ̂, and use

φ̂ · φ̂′
= cos(φ− φ′),

t̂ · ∇ =
1

a

∂

∂φ
,

∇ · J̃s =
1

a

∂J̃φ
∂φ

in (7.172) to get

k20

∫ 2π

0

cos(φ− φ′)J̃φ(φ
′)G̃2D(φ − φ′)a dφ′

+
1

a

∂

∂φ

∫ 2π

0

∂J̃φ(φ
′)

∂φ′
G̃2D(φ− φ′) dφ′ = 0 (0 ≤ φ ≤ 2π). (7.173)

Here

G̃2D(φ− φ′) =
1

4j
H

(2)
0 (k0R), R = 2a sin

( |φ− φ′|
2

)

.

Equation (7.173) can be solved for the cutoff wavenumbers using MoM. Substituting
the pulse expansion (7.163) and noting that

∂J̃φ(φ)

∂φ
=

N
∑

n=1

an
∂Pn(φ)

∂φ
=

N
∑

n=1

an

[

δ

(

φ−
[

φn − δ

2

])

− δ

(

φ−
[

φn +
δ

2

])]

(7.174)

we obtain

(k0a)
2
N
∑

n=1

an

∫ φn+δ/2

φn−δ/2
cos(φ− φ′)G̃2D(φ− φ′) dφ′

+

N
∑

n=1

an
∂

∂φ

[

G̃2D

(

φ− φn +
δ

2

)

− G̃2D

(

φ− φn − δ

2

)]

= 0 (0 ≤ φ ≤ 2π),

(7.175)

where

G̃2D(u) =
1

4j
H

(2)
0 (k0R),

R(u) = 2a sin
|u|
2
.

Differentiating, we have

∂G̃2D(φ− φ′)

∂φ
= (k0a)G1(φ − φ′)

where

G1(u) = − 1

4j
H

(2)
1 (k0R) sgn(u) cos(u/2).
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The signum function sgnx arises from the derivative of |u|. With this, (7.175) becomes

(k0a)
2
N
∑

n=1

an

∫ φn+δ/2

φn−δ/2
cos(φ− φ′)G̃2D(φ− φ′) dφ′

+ k0a

N
∑

n=1

an

[

G1

(

φ− φn +
δ

2

)

−G1

(

φ− φn − δ

2

)]

= 0 (0 ≤ φ ≤ 2π).

Finally, point matching at φ = φm and using a change of variables, we can cast the
resulting matrix equation into the form (7.164), where

Amn = (k0a)
2

∫ φm−φn+δ/2

φm−φn−δ/2
cosu G̃2D(u) du

+ k0a

[

G1

(

φm − φn +
δ

2

)

−G1

(

φm − φn − δ

2

)]

. (7.176)

Note that these matrix entries depend on m and n only through the difference m − n,
hence Amn may be computed efficiently. Also, the matrix is symmetric: Amn = Anm.

When m = n, the integrand in (7.176) has a singularity, which can be extracted using
the same approach used with the TM modes.

Once the cutoff wavenumbers have been found using (7.165), the amplitudes an may
be determined by finding the nullspace of the matrix Amn [182]. With these, the fields
within the guide may be found using the potential functions (7.170) and (7.171). As an
example, the φ component of the electric field is

Ẽsφ = −jωφ̂ · Ãs
e − φ̂ · ∇Φ̃se,

or

Ẽsφ = −jωµ0

∫ 2π

0

(φ̂ · φ̂′
)J̃φ(φ

′)G̃2D(ρ, φ− φ′)a dφ′

− 1

ρ

∂

∂φ

1

ǫ0

∫ 2π

0

ρ̃s(φ
′)G̃2D(ρ, φ− φ′)a dφ′, (7.177)

where

G̃2D(ρ, φ− φ′) =
1

4j
H

(2)
0 (k0R)

with
k0R = k0a

√

1 + ρ̄2 − 2ρ̄ cos(φ− φ′).

Here ρ̄ = ρ/a. Noting that

ρ̃s(φ
′) =

j

ω

1

a

∂J̃φ(φ
′)

∂φ′

we can write (7.177) as

Ẽsφ
−jη0(k0a)

=

∫ 2π

0

cos(φ− φ′)J̃φ(φ
′)G̃2D(ρ, φ− φ′) dφ′

+
1

ρ̄

1

(k0a)2

∫ 2π

0

∂J̃φ(φ
′)

∂φ′
∂G̃2D(ρ, φ− φ′)

∂φ
dφ′. (7.178)
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Computing the derivative, we get

∂G̃2D(ρ, φ− φ′)

∂φ
= (ka)G1(ρ, φ− φ′),

where

G1(ρ, φ− φ′) = − 1

4j
H

(2)
1 (k0R)

ρ̄ sin(φ − φ′)

R
.

Relation (7.178) becomes

Ẽsφ
−jη0(k0a)

=

∫ 2π

0

cos(φ− φ′)J̃φ(φ
′)G̃2D(ρ, φ− φ′) dφ′

+
1

ρ̄

1

(ka)

∫ 2π

0

∂J̃φ(φ
′)

∂φ′
G1(ρ, φ− φ′) dφ′.

Finally, by (7.163) and (7.174) we obtain

Ẽsφ
−jη0(k0a)

=

N
∑

n=1

an

∫ φ−φn+δ/2

φ−φn−δ/2
cos(u)G̃2D(ρ, u) du

+
1

ρ̄

1

(k0a)

N
∑

n=1

an

[

G1

(

ρ, φ− φn +
δ

2

)

−G1

(

ρ, φ− φn − δ

2

)]

.

(7.179)

◮ Example 7.26: Cutoff wavenumbers of a circular waveguide – TE modes

Determine the cutoff wavenumbers of several TEz modes in a circular waveguide. Explore
the dependence of the error on the number of basis functions used.

Solution: The following table gives results for the normalized cutoff wavenumbers kca of
several TE modes found by solving the eigenvalue equation (7.165) with 50 pulse functions.

mode numerical result theoretical value

TE01 3.831833 3.831706
TE02 7.015819 7.015587
TE03 10.17380 10.17347
TE11 1.841250 1.841184
TE21 3.054258 3.054237
TE22 6.706162 6.706133

The theoretical values of kca for mode TEnm are given by the mth root of the transcen-
dental equation (§ 5.6)

J ′
n(kca) = 0,

where J ′
n(x) is the derivative of the ordinary Bessel function with respect to its argument.

As with the results for the TM modes, the computed values of the wavenumber are accurate
to about four digits when compared with the theoretical values. Figure 7.48 shows the
error between the computed and theoretical values of the cutoff wavenumbers, as defined by
(7.168). Convergence is similar to the TM modes.
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FIGURE 7.48
Error between computed and theoretical cutoff wavenumbers for a circular waveguide. ◭

◮ Example 7.27: Azimuthal electric field in a circular waveguide — TE modes

Determine the dependence of the azimuthal electric field on ρ for the TE01 and the TE22

modes in a circular waveguide. Compare the fields found using the moment method with
the analytic values.

Solution: We can compute the φ-component of the electric field within the guide using
(7.179) and compare it with the theoretical field. At a particular value of φ the radial
dependence of the theoretical field is (§ 5.6)

Ẽφ(ρ) = Ẽ0J
′
n

(

kca
ρ

a

)

, (7.180)

where Ẽ0 is a complex constant. Figure 7.49 shows the numerical electric field computed
from (7.179) using N = 50 partitions, compared to the theoretical formula (7.180) for two
modes. As with the field plots for the TM modes, the field amplitudes are normalized to a
maximum value of unity for comparison. Note that, as expected, Ẽφ is zero at ρ = a since
it is tangential to the waveguide wall there.
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FIGURE 7.49
Relative electric field Ẽφ in an empty circular guide computed using N = 50 partitions, and
compared to theory . ◭
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FIGURE 7.50

Conducting cylinder illuminated by normally incident plane wave.

7.4.5 Scattering by a conducting cylinder

Somewhat more involved than the problem of scattering by a strip is scattering by a
conducting cylinder. This problem is interesting because it is possible to form an integral
equation for the current induced on the surface of the cylinder by applying a boundary
condition on the magnetic field. The result is a magnetic field integral equation or MFIE.
This is in contrast to the preceding sections, in which only EFIEs were considered. We
shall compare the results for the MFIE with those for the EFIE, and discuss the benefits
and limitations of each equation.
Consider an infinitely long, perfectly conducting cylinder, of arbitrary cross-section

and immersed in free space (Figure 7.50). A normally incident plane wave is polarized
either with its electric field along the z-axis (TMz polarization), or with its magnetic
field along the z-axis (TEz polarization). A surface current is induced on the cylinder,
flowing either in the z-direction (for TMz polarization) or transverse to the z-direction
(for TEz polarization). The cylinder is assumed solid with no internal field. The induced
current maintains a scattered vector potential

Ãs
e(ρ) = µ0

∮

Γ

J̃s(ρ
′)G̃2D(ρ|ρ′) dl′, (7.181)

where G̃2D(ρ|ρ′) is the two-dimensional Green’s function (7.124) and Γ describes the
contour of the cylinder in the cross-sectional plane. In the case of TE polarization, there
is also a scattered scalar potential

Φ̃se(ρ) =
1

4jǫ0

∮

Γ

ρ̃s(ρ
′)G̃2D(ρ|ρ′) dl′, (7.182)



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 794 — #818
✐

✐

✐

✐

✐

✐

794 Electromagnetics

where the surface charge density is related to the surface current density by the continuity
equation

∇ · J̃s = −jωρ̃s.
In terms of the potentials, the scattered electric field is

Ẽs = −jωÃs
e −∇Φ̃se. (7.183)

Alternatively, the Lorenz condition can be used:

Ẽs = − jω
k20

∇(∇ · Ãs
e)− jωÃs

e. (7.184)

The boundary condition for the electric field on the cylinder surface requires the total
field to vanish:

n̂× [Ẽi(ρ) + Ẽs(ρ)] = 0 (ρ ∈ Γ). (7.185)

This leads to the EFIE for the surface current J̃s(ρ). As noted above, the direction
of the induced current depends on the polarization of the incident field, so each case is
considered separately.

7.4.5.1 TM polarization — EFIE

The electric field of the TM-polarized incident plane wave indicated in Figure 7.50 is
given by

Ẽi = ẑẼ0(ω)e
jk0(x cosφ0+y sin φ0) = ẑẼ0(ω)e

jk0ρ cos(φ−φ0).

This field induces a z-directed surface current J̃s = ẑJ̃z on the cylinder, which in turn
produces a z-directed scattered vector potential through (7.181). The scattered electric
field is found using (7.184). Since the vector potential is independent of z, its divergence
is zero and

Ẽsz(ρ) = −ωµ0

4

∮

Γ

J̃z(ρ
′)H(2)

0 (k0|ρ− ρ′|) dl′. (7.186)

The boundary condition on the tangential electric field at the surface of the cylinder
yields the desired integral equation. Equating the total z-directed electric field (incident
plus scattered) to zero, we obtain

∮

Γ

J̃z(ρ
′)H(2)

0 (k0|ρ− ρ′|) dl′ = 4Ẽ0

k0η0
ejk0ρ cos(φ−φ0) (ρ ∈ Γ).

This is the EFIE for the current J̃z.
As an example, consider a cylinder with a circular cross-section. The EFIE can be

solved for the current using MoM, exactly as was done in § 7.4.4 for the circular wave-
guide. Expanding the current in pulse functions as in (7.163), and point matching at
angles φm, we obtain the matrix equation

N
∑

n=1

anAmn = bm, (7.187)

where Amn is given in (7.166), and

bm =
4Ẽ0

η0k0a
ejk0a cos(φm−φ0).
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This equation may be solved using any values of ka except those that cause the matrix
to be singular.
Once the current has been found, the scattered electric field may be computed from

(7.186). When the observation point is far from the cylinder, we can use the approxima-
tion

R = |ρ− ρ′| =
√

ρ2 + a2 − 2aρ cos(φ− φ′) ≈ ρ− a cos(φ− φ′)

along with (E.64) to get

Ẽsz = −η0k0a4
√

2j

πk0a

e−jk0a(ρ/a)
√

ρ/a

∫ 2π

0

ejk0a cos(φ−φ′)J̃z(φ
′) dφ′.

The current expansion (7.163) then gives

Ẽsz = −η0
4
k0a

√

2j

πk0a

e−jk0a(ρ/a)
√

ρ/a

N
∑

n=1

an

∫ φ−φn+δ/2

φ−φn−δ/2
ejk0a cosu du. (7.188)

This can be used with (7.137) to obtain the bistatic scattering width

σ2D(φ)

λ
= η20

π

2

(a

λ

)2
∣

∣

∣

∣

∣

N
∑

n=1

an

Ẽ0

∫ φ−φn+δ/2

φ−φn−δ/2
ejk0a cosu du

∣

∣

∣

∣

∣

2

. (7.189)

PO approximations for the current and scattering width may also be obtained. The
current is simply

J̃POs = 2n̂× H̃i,

where n̂ = ρ̂ and H̃i = k̂i × Ẽi/η0. This gives

J̃POs (φ) =

{

2ẑ cos(φ− φ0)
Ẽ0

η0
ejk0a cos(φ−φ0), −π

2 + φ0 ≤ φ ≤ π
2 + φ0,

0, elsewhere.
(7.190)

Note that the PO current is nonzero only in the region illuminated by the incident wave.
Substituting (7.190) into (7.188), we obtain the far-zone PO scattered field

Ẽsz = Ẽ0
k0a

2

√

2j

πk0a

e−jk0a(ρ/a)
√

ρ/a

∫ π/2

−π/2
cosu ejk0a[cosu+cos(u+φ0−φ)] du.

Because of the circular symmetry of the cylinder, Ẽsz depends only on the difference of
the angles φ and φ0. The expression for the far-zone scattered field can be combined
with (7.137) to produce the bistatic radar scattering width

σPO2D (φ)

λ
= 2π

(a

λ

)2
∣

∣

∣

∣

∣

∫ π/2

−π/2
cosu ejk0a[cosu+cos(u+φ0−φ)] du

∣

∣

∣

∣

∣

2

. (7.191)

◮ Example 7.28: Current induced on a conducting circular cylinder by a plane wave — TM
case

Consider a conducting circular cylinder of radius a/λ = 2 and a TM plane wave incident
at φ0 = 180◦ with amplitude Ẽ0 = 1 V/m. Plot the magnitude and phase of the current
induced on the cylinder. Compare them to those obtained using the series solution, and to
those obtained using PO.

Solution: Figure 7.51 compares the amplitude of the current found by solving the MoM
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matrix equation (7.187) with the series solution from § 4.11.8, found by summing (4.363).
Approximately 100 terms of the series are required to give 5 digits of accuracy in the sum,
with N = 200 pulse functions in the MoM giving about 3 digits of accuracy. Similar
agreement between the MoM and series solution is seen in Figure 7.52, which shows the
phase of the current. Also shown is the PO current (7.190). The amplitude and phase of the
PO current agree well with the MoM solution near the specular reflection point (φ = 180◦),
but PO is incapable of computing the current that extends into the shadow zone on the
cylinder (−90◦ < φ < 90◦).
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FIGURE 7.51
Magnitude of current induced on a circular cylinder of radius a/λ = 2 by a TM plane wave
incident at φ0 = 180◦. Ẽ0 = 1 V/m. N = 200 partitions used for MoM solution.
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Phase of current induced on a circular cylinder of radius a/λ = 2 by a TM plane wave
incident at φ0 = 180◦. Ẽ0 = 1 V/m. N = 200 partitions used for MoM solution. ◭
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◮ Example 7.29: Scattering width of a conducting circular cylinder — TM case

Plot the scattering width of a conducting circular cylinder of radius a/λ = 2 with TM
illumination.

Solution: Figure 7.53 shows the bistatic radar scattering width of the cylinder found by
computing (7.189), and also by using the PO result (7.191). The PO result compares well in
the forward scatter (φ = 0◦) and backscatter (φ = 180◦) directions, but fails to accurately
estimate the scattering width away from these points.

Also shown is the scattering width obtained using the series solution for the scattered
field. From (4.361) we have

Ẽsz(ρ, φ) = −Ẽ0

∞
∑

n=0

ǫnj
−n Jn(ka)

H
(2)
n (ka)

H(2)
n (kρ) cosnφ.

Using the large argument approximation for the Hankel function (E.64), we obtain in the
far zone

Ẽsz(ρ, φ) ≈ −Ẽ0

√

2j

πk

e−jkρ√
ρ

∞
∑

n=0

ǫn
Jn(ka)

H
(2)
n (ka)

cosnφ (kρ≫ 1).

Substituting this into (7.137), we get the scattering width

σ2D(φ)

λ
=

2

π

∣

∣

∣

∣

∣

∞
∑

n=0

ǫn
Jn(ka)

H
(2)
n (ka)

cosnφ

∣

∣

∣

∣

∣

2

.

The results for σ2D found using the series and the MoM solutions are close enough to appear
as a single line in Figure 7.53.
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FIGURE 7.53
Bistatic scattering width of a circular cylinder of radius a/λ = 2 for a TM plane wave
incident at φ0 = 180◦. N = 200 partitions used for MoM solution. ◭

7.4.5.2 TE polarization — EFIE

A TE-polarized incident plane wave has a z-directed magnetic field, and an electric field
given by (7.143), which can also be written as

Ẽi = Ẽ0 [−ŷ cosφ0 + x̂ sinφ0] e
jkρ cos(φ−φ0).
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This field induces a current on the cylinder transverse to the z-direction, which produces
both scattered vector and scalar potentials (7.181) and (7.182). The scattered electric
field is found using (7.183). Substituting this expression into the boundary condition
(7.185) we find that

jωµ0

∮

Γ

t̂·J̃s(ρ′)G̃2D(ρ|ρ′) dl′+t̂·∇ j

ωǫ0

∮

Γ

∇′ ·J̃s(ρ′)G̃2D(ρ|ρ′) dl′ = t̂·Ẽi(ρ) (ρ ∈ Γ)

where t̂ = ẑ × n̂ is the unit tangent to the cylinder in the cross-sectional plane (Fig-
ure 7.50). This is the EFIE for the current induced on the cylinder.

As a specific example, let the cylinder have a circular cross-section. The EFIE can be
solved for the current using MoM just as in § 7.4.4 for the circular waveguide. Expanding
the current in pulse functions as in (7.163), and point matching at angles φm, we obtain
the matrix equation

N
∑

n=1

anAmn = bm, (7.192)

where Amn is given in (7.176), and

bm = jẼ0
k0a

η0
cos(φm − φ0)e

jk0a cos(φm−φ0).

This may be solved using any value of k0a that does not render the matrix singular.
To compute the radar scattering width of the cylinder, we must find the far-zone

scattered field. It is easier to compute the scattered magnetic field than the scattered
electric field. We begin with

H̃s =
1

µ0
∇× Ãs

e = ∇×
∮

Γ

J̃s(ρ
′)G̃2D(ρ|ρ′) dl′.

Moving the curl operation inside the integral and employing (B.49), we get

H̃s = −
∮

Γ

J̃s(ρ
′)×∇G̃2D(ρ|ρ′) dl′

since ∇ × J̃s(ρ
′) = 0. Recalling that G̃2D(ρ|ρ′) = H

(2)
0 (k0R)/(4j) where R = |ρ − ρ′|,

we find that

∇G̃2D = −k0
4j
H

(2)
1 (k0R)∇R

where

∇R =
ρ− ρ′

|ρ− ρ′| = R̂.

So

H̃s =
k0
4j

∮

Γ

H
(2)
1 (k0R)J̃s(ρ

′)× R̂ dl′. (7.193)

In the far zone of the circular cylinder where ρ ≫ a, we may write R̂ ≈ ρ̂ and R ≈
ρ− a cos(φ − φ′). Then, using (E.64) and noting that φ̂

′ × ρ̂ = −ẑ cos(φ− φ′), we have

H̃s ≈ −ẑ
k0a

4

√

2j

πk0

e−jk0ρ√
ρ

∫ 2π

0

J̃φ(φ
′)ejk0a cos(φ−φ′) cos(φ− φ′) dφ′.
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This is the desired far-zone expression. By (7.163) we obtain

H̃s
z = −k0a

4

√

2j

πk0a

e−jk0a(ρ/a)
√

ρ/a

N
∑

n=1

an

∫ φ−φn+δ/2

φ−φn−δ/2
ejk0a cosu cosu du. (7.194)

This and (7.151) yield

σ2D(φ)

λ
= η20

π

2

(a

λ

)2
∣

∣

∣

∣

∣

N
∑

n=1

an

Ẽ0

∫ φ−φn+δ/2

φ−φn−δ/2
ejk0a cosu cosudu

∣

∣

∣

∣

∣

2

, (7.195)

where we have used

H̃i = ẑ
Ẽ0

η0
ejk0a cos(φ−φ0). (7.196)

Note that (7.195) is the bistatic scattering width, since it depends on the observation
angle φ.
A PO approximation for the current and scattering width may also be obtained. The

current is simply
J̃s = 2n̂× H̃i,

where n̂ = ρ̂ and H̃i is given in (7.196). Thus,

J̃s(φ) =

{

−2φ̂ Ẽ0

η0
ejk0a cos(φ−φ0), −π

2 + φ0 ≤ φ ≤ π
2 + φ0,

0, elsewhere.
(7.197)

The PO current is nonzero only in the region illuminated by the incident wave: −π/2+
φ0 ≤ φ ≤ π/2 + φ0. Substitution of (7.197) into (7.194) gives the far-zone PO scattered
field

H̃s
z =

Ẽ0

η0

k0a

2

√

2j

πk0a

e−jk0a(ρ/a)
√

ρ/a

∫ π/2

−π/2
cos(u + φ0 − φ)ejk0a[cosu+cos(u+φ0−φ)] du.

Because of the circular symmetry of the cylinder, H̃s
z depends only on φ − φ0. The

expression for the far-zone scattered field can be substituted into the expression (7.151)
to yield the bistatic radar scattering width

σPO2D (φ)

λ
= 2π

(a

λ

)2
∣

∣

∣

∣

∣

∫ π/2

−π/2
cos(u+ φ− φ0)e

jk0a[cosu+cos(u+φ0−φ)] du

∣

∣

∣

∣

∣

2

. (7.198)

◮ Example 7.30: Current induced on a conducting circular cylinder by a plane wave — TE
case

Consider a conducting circular cylinder of radius a/λ = 2 and a TE plane wave incident
at φ0 = 180◦ with amplitude Ẽ0 = 1 V/m. This case was considered in Example 7.28 for
TM polarization. Plot the magnitude and phase of the current induced on the cylinder.
Compare to the series solution and to PO.

Solution: Figure 7.54 compares the amplitude of the current found by solving the MoM ma-
trix equation (7.192) with the series solution. Using J̃s = ρ̂× ẑH̃z = −φ̂H̃z and substituting
the total magnetic field (4.365), we have the series expression for the surface current

J̃φ(φ) = − Ẽ0

η0

∞
∑

n=0

ǫnj
−n

H
(2)′
n (k0a)

[

Jn(k0a)H
(2)′
n (k0a)− J ′

n(k0a)H
(2)
n (k0a)

]

cosnφ.
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In view of (E.95),

J̃φ(φ) = j
Ẽ0

η0

2

πk0a

∞
∑

n=0

ǫnj
−n

H
(2)′
n (k0a)

cosnφ.

Approximately 100 terms in the series are needed for 5-digit accuracy in the sum, with
N = 200 pulse functions in the MoM giving about 3-digit accuracy. Similar agreement
between the MoM and series solution is seen in Figure 7.55, which shows the phase of the
current. Also shown is the PO current (7.197). Note that the amplitude of the PO current
is constant in the illuminated zone, and matches the MoM solution at the specular point.
However, PO does not predict how the current rolls off as the observation point is moved
away from the specular point. In contrast, the phase of the PO current agrees well with the
MoM solution throughout the illuminated zone.
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FIGURE 7.54
Magnitude of current induced on a circular cylinder of radius a/λ = 2 by a TE plane wave
incident at φ0 = 180◦. Ẽ0 = 1 V/m. N = 200 partitions used for MoM solution.
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◮ Example 7.31: Scattering width of a conducting circular cylinder — TE case

Plot the scattering width of a conducting circular cylinder of radius a/λ = 2 with TE
illumination.

Solution: Figure 7.56 shows the bistatic radar scattering width of the cylinder obtained
from both (7.195) and (7.198). The PO result compares well in the forward-scatter (φ = 0◦)
and backscatter (φ = 180◦) directions, but becomes less accurate away from these points.
However, the PO approximation does a good job predicting the strong null in the scattering
width near φ = 30◦. Note that this null is absent from the TM scattering width (Figure 7.53).

Also shown is the scattering width obtained from the series solution for the scattered field.
From (4.365) we find the scattered field

H̃s
z (ρ, φ) = − Ẽ0

η0

∞
∑

n=0

ǫnj
−n J ′

n(k0a)

H
(2)′
n (k0a)

H(2)
n (k0ρ) cosnφ.

Using (E.64) we obtain in the far zone

H̃s
z (ρ, φ) ≈ − Ẽ0

η0

√

2j

πk0

e−jk0ρ√
ρ

∞
∑

n=0

ǫn
J ′
n(k0a)

H
(2)′
n (k0a)

cosnφ (k0ρ≫ 1).

This and (7.151) give

σ2D(φ)

λ
= lim
ρ→∞

[

2πρ
|H̃s(ρ, φ)|2

|H̃i(φ0)|2

]

=
2

π

∣

∣

∣

∣

∣

∞
∑

n=0

ǫn
J ′
n(k0a)

H
(2)′
n (k0a)

cosnφ

∣

∣

∣

∣

∣

2

.

The results for σ2D found using the series and the MoM solutions appear as a single line in
Figure 7.56.
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FIGURE 7.56
Bistatic scattering width of a circular cylinder having radius a/λ = 2 for a TE plane wave
incident at φ0 = 180◦. N = 200 partitions used for MoM solution. ◭
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◮ Example 7.32: Dependence of cylinder scattering width on cylinder radius

Compare the dependence of the radar scattering width of a cylinder as a function of radius
for TE and TM incident waves.

Solution: Figure 7.57 shows the radar scattering width as a function of cylinder radius
for both TE and TM incident waves. The results are obtained in the backscatter direction
(φ = φ0 = 180◦) using the MoM with N = 200 partitions, and compared to the PO scattering
width (which, in the backscatter direction, is identical for TE and TM polarizations). For
small cylinder radii, the results for TE and TM polarization are quite different, and the
PO approximation provides a poor estimate of either scattering width. But with increasing
cylinder radius the TE and TM results merge and the PO result becomes quite accurate. In
fact it is true in general that the PO approximation provides useful results only when the
radii of curvature of all surfaces are reasonable fractions of a wavelength.
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FIGURE 7.57
Scattering width of a circular cylinder vs. cylinder radius, in the backscatter direction:
φ = φ0. MoM solution with N = 200 partitions. ◭

7.4.5.3 TE polarization — MFIE

The integral equations examined in the previous two sections are derived from the bound-
ary condition on the electric field at the surface of the PEC cylinder, and are thus EFIEs.
We can obtain another integral equation for the current by imposing the boundary con-
dition on the magnetic field; the result is a magnetic field integral equation (MFIE).

An important structural difference between the MFIE and EFIE arises from the fact
that the boundary condition on the magnetic field involves a discontinuous function —
the magnetic field has a discontinuity at the surface of the PEC cylinder equal to the
surface current induced by the impressed field. We must be careful to properly treat this
discontinuity by approaching the surface from the outside of the cylinder.

Although the MFIE can be derived for both TM and TE polarizations, it is typically
applied to the TE case. The MFIE is more convenient than the EFIE for this case, while
the EFIE is more convenient for the TM case.

Consider a PEC cylinder illuminated by a TE-polarized plane wave. The impressed
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field induces a surface current transverse to the z-direction, and this current in turn
creates a z-directed scattered magnetic field. The boundary condition at the cylinder
surface is that the total magnetic field (incident plus scattered) has a discontinuity equal
to the current induced on the cylinder. Consider Figure 7.58. The observation point for
the field outside the cylinder is at ρ. This point is a distance h above the surface, and
we apply the boundary condition by bringing the observation point down to the point
ρ0 on the surface by moving along the outward normal n̂. Since the total magnetic field
inside the cylinder is zero, the boundary condition is

lim
h→0

n̂× [H̃i(ρ) + H̃s(ρ)] = J̃s(ρ0).

Here H̃i is the incident field and H̃s is the scattered field produced by the induced
current. The limit of the incident field may be evaluated by allowing ρ → ρ0, but we
must be careful with the scattered field because of the singularity in the Green’s function
used for its computation. We write

lim
h→0

n̂× H̃s(ρ) + n̂× H̃i(ρ0) = J̃s(ρ0). (7.199)

Now define the unit tangent to the cylinder in the cross-sectional plane as

t̂ = ẑ× n̂, (7.200)

which coincides with φ̂ in cylindrical coordinates. We write (7.199) as

lim
h→0

n̂× [n̂× H̃s(ρ)] + n̂× [n̂× H̃i(ρ0)] = n̂× [t̂J̃s(ρ0)].

Using (7.200), employing (B.7), and noting that n̂ · ẑ = 0, we obtain

−ẑ lim
h→0

H̃s
z (ρ)− ẑH̃i

z(ρ0) = ẑJ̃s(ρ0),

or
J̃s(ρ0) + lim

h→0
H̃s
z (ρ) = −H̃i

z(ρ0) (ρ0 ∈ Γ). (7.201)

Note that the boundary condition must hold at each point ρ0 on the cylinder surface.
To transform (7.201) into an MFIE, we use (7.193):

H̃s =
k0
4j

∮

Γ

H
(2)
1 (k0R)J̃s(ρ

′)× R̂ dl′. (7.202)

Here
J̃s(ρ

′)× R̂ = J̃s(ρ
′)t̂′ × R̂.

Substituting t̂′ = ẑ× n̂′ and employing (B.7) we see that

J̃s(ρ
′)× R̂ = −ẑJ̃s(ρ

′)R̂ · n̂′. (7.203)

Substituting (7.202) into (7.201) and using (7.203), we obtain

J̃s(ρ0) + lim
h→0

j
k0
4

∮

Γ

(n̂′ · R̂)J̃s(ρ
′)H(2)

1 (k0R) dl
′ = −H̃i

z(ρ0) (ρ0 ∈ Γ). (7.204)

This is the MFIE for the induced current J̃s.
The MFIE (7.204) was derived using the boundary condition involving the discontinu-

ity of H̃ across the interface between the region external to the cylinder, and the region
internal, where the field is zero. Hence it does not apply to an open surface such as
the strip studied in § 7.4.2, as this structure has no internal region where the field is
zero. Also note that while the equation does hold for structures having thin but nonzero
cross-sectional areas, the numerical solution to the MFIE tends to be inaccurate.
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FIGURE 7.58

Geometry for obtaining MFIE from boundary condition for magnetic field.

Alternative form of the MFIE. The limit in (7.204) may be evaluated as needed
in each particular application. Typically, the Green’s function singularity is extracted
as discussed elsewhere in this chapter. Alternatively, we may attempt to extract the
singularity in a more general manner, obtaining a form of the MFIE particularly amenable
to an MoM solution.

Let us split the contour Γ into a small segment Γ0 immediately below the observation
point (Figure 7.59) and its complement Γ−Γ0. We choose Γ0 so that the limiting point
ρ0 resides at the “center” of the segment (in the sense that Γ0 always contains ρ0 as the
length of the segment decreases). The integral in (7.204) becomes

lim
h→0

j
k0
4

∮

Γ

(n̂′ · R̂)J̃s(ρ
′)H

(2)
1 (k0R) dl

′ = lim
h→0

j
k0
4

∫

Γ−Γ0

(n̂′ · R̂)J̃s(ρ
′)H

(2)
1 (k0R) dl

′

+ lim
h→0

j
k0
4

∫

Γ0

(n̂′ · R̂)J̃s(ρ
′)H(2)

1 (k0R) dl
′. (7.205)

In the first integral on the right, we may substitute ρ for ρ0 since the singular point is
excluded from the domain of integration. To compute the second integral we take Γ0 so
small that the segment is approximately flat. Then the integral represents the scattered
magnetic field just above the center of a flat strip, and we are interested in the value of
the field as the observation point approaches the strip.

To compute the magnetic field just above the center of the strip, consider Figure 7.60.
We seek H̃s as h→ 0. From (7.148) we see that

H̃s
z = −hk

2
0

4j

∫ w

−w
J̃s(x

′)
H

(2)
1

(

k0
√

(x′)2 + h2
)

k0
√

(x′)2 + h2
dx′.

To compute the integral we extract the singularity at x′ = 0 that occurs when h → 0.
We use the small argument approximation

H
(2)
1 (z) ≈ z

2
+ j

1

π

2

z
to write

H
(2)
1 (z)

z
≈ 1

2
+ j

1

π

2

z2
.
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FIGURE 7.59

Geometry for deriving the alternative form of the MFIE. A small segment of the surface
contour is removed beneath the observation point.

Then we form

H̃s
z = −hk

2
0

4j

∫ w

−w
J̃s(x

′)





H
(2)
1

(

k0
√

(x′)2 + h2
)

k0
√

(x′)2 + h2
− 1

2
− j

1

k20π

2

(x′)2 + h2



 dx′

− h
k20
4j

∫ w

−w

1

2
J̃s(x

′) dx′ − h
k20
4j

∫ w

−w
J̃s(x

′)j
1

k20π

2

(x′)2 + h2
dx′.

The first two of these integrals are well-behaved and make no contributions to H̃s
z as

h → 0. Without the expression for J̃s we cannot directly compute the third integral.
However, we can invoke the mean value theorem to write

H̃s
z = −h 1

2π
J̃s(x0)

∫ w

−w

dx′

(x′)2 + h2
,

where x0 lies somewhere in the interval [−w,w]. Computing the integral, we obtain

H̃s
z = − J̃s(x0)

π
tan−1 w

h

and the limit passage is now possible:

lim
h→0

H̃s
z = − J̃s(x0)

π
lim
h→0

tan−1 w

h
= − J̃s(x0)

π

(π

2

)

= − J̃s(x0)
2

. (7.206)

Although x0 is unknown, we know that x0 → 0 as w → 0. Thus, when the segment
length becomes small, the field immediately above and at the center of the segment is
one-half the negative of the current at the center of the segment.
Using this in (7.205) we find that

lim
h→0

j
k0
4

∮

Γ

(n̂′ · R̂)J̃s(ρ
′)H(2)

1 (k0R) dl
′

= lim
Γ0→0

j
k0
4

∫

Γ−Γ0

(n̂′ · R̂)J̃s(ρ
′)H(2)

1 (k0R) dl
′ − J̃s(ρ0)

2
.
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FIGURE 7.60

Geometry for calculating the magnetic field produced by the current flowing on the
removed surface segment, which is assumed flat.

Finally, substitution into (7.204) gives the alternative form of the MFIE. For notational
convenience we let ρ0 become ρ, where ρ now lies on Γ. This gives

J̃s(ρ)

2
+ lim

Γ0→0
j
k0
4

∮

Γ−Γ0

(n̂′ · R̂)J̃s(ρ
′)H(2)

1 (k0R) dl
′ = −H̃i

z(ρ) (ρ ∈ Γ). (7.207)

Note that we have replaced the limit on h by a limit on the contour segment Γ0; we will
find that the result is particularly amenable to MoM solution.

Example: circular cylinder. Let us specialize the alternative form of the MFIE
(7.207) for a circular cylinder, so that we may compare the results to those obtained
from the EFIE. Noting that n̂ = ρ̂ and

ρ = a(x̂ cosφ+ ŷ sinφ), ρ′ = a(x̂ cosφ′ + ŷ sinφ′),

we find

R = |ρ− ρ′| =
√
2a
√

1− cos(φ− φ′) = 2a sin
|φ− φ′|

2

and
n̂′ ·R = a(ρ̂′ · ρ̂− 1) = −a[1− cos(φ− φ′)]

so that

n̂′ · R̂ = − 1√
2

√

1− cos(φ− φ′) = − sin
|φ− φ′|

2
.

Substituting these into (7.207), we have

J̃s(φ)

2
− j

k0
4
−
∫ 2π

0

sin
|φ− φ′|

2
J̃s(φ

′)H(2)
1

(

2k0a sin
|φ− φ′|

2

)

a dφ′

= − Ẽ0

η0
ejk0a cos(φ−φ0) (0 ≤ φ ≤ 2π). (7.208)

The dash on the integral sign denotes a principal-value integral in which the interval
[φ − δ/2, φ + δ/2] is excluded from the domain of integration and the limit as δ → 0 is
taken.

The MFIE (7.208) may be solved using MoM. We expand the current in the pulse
basis set (7.163) and point match at φm. To implement the principal-value integral, we



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 807 — #831
✐

✐

✐

✐

✐

✐

Integral equations in electromagnetics 807

merely exclude the n = m term from the sum and implement the limit by increasing
the value of N . Since the current in each partition is constant, the question of where to
evaluate x0 in (7.206) is moot. The resulting system of equations is

1

2

N
∑

n=1

anPn(φm) −
N
∑

n = 1
n 6= m

∫ φn+δ/2

φn−δ/2
sin

|φm − φ′|
2

H
(2)
1

(

2k0a sin
|φm − φ′|

2

)

a dφ′

= − Ẽ0

η0
ejk0a cos(φm−φ0) (m = 1, . . . , N).

Using the change of variables u = φm − φ′, we can put this into the form of a matrix
equation (7.187), where bm = −(Ẽ0/η0)e

jk0z cos(φm−φ0) and

Amn =











1
2 , m = n,

−j k0a
4

∫ φm−φn+δ/2

φm−φn−δ/2
sin

|u|
2
H

(2)
1

(

2k0a sin
|u|
2

)

du, m 6= n.

Note that the matrix entries depend on m and n only through the difference m − n,
allowing for efficient computation.

◮ Example 7.33: Current induced on a conducting circular cylinder by a plane wave found
using the MFIE

Consider a conducting circular cylinder of radius a/λ = 2 and a TE plane wave incident at
φ0 = 180◦ with amplitude Ẽ0 = 1 V/m. Compute the magnitude and phase of the current
induced on the cylinder by solving the MFIE. Compare to the results from the EFIE.

Solution: Figure 7.61 compares the amplitude of the current found by solving the EFIE and
the MFIE, both with N = 200 partitions. The methods are in excellent agreement. However,
the matrix entries for the MFIE solution are considerably simpler. Similar agreement is seen
in Figure 7.62 for the phase of the current.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0  40  80  120  160  200  240  280  320  360

C
u
rr

e
n
t 
m

a
g
n
it
u
d
e
 (

A
)

φ (deg)

EFIE
MFIE

FIGURE 7.61
Magnitude of current induced on a circular cylinder of radius a/λ = 2 by a TE plane wave
incident at φ0 = 180◦. Ẽ0 = 1 V/m. N = 200 partitions used.
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FIGURE 7.62
Phase of current induced on a circular cylinder of radius a/λ = 2 by a TE plane wave
incident at φ0 = 180◦. Ẽ0 = 1 V/m. N = 200 partitions used. ◭

7.5 Scattering by a penetrable cylinder

As an example of solving an integral equation for a penetrable object, consider a material
cylinder of arbitrary cross-sectional shape, excited by a TM-polarized incident plane wave
(Figure 7.63). The cylinder has uniform permeability µ0, nonuniform conductivity σ(r),
and nonuniform permittivity ǫ(r) = ǫ0ǫr(r). The incident field excites polarization and
conduction currents within the cylinder. To determine the resulting scattered field, we
use the volume EFIE derived in § 7.1.6.

We can adapt (7.25) to the two-dimensional geometry of Figure 7.63 by using the
two-dimensional Green’s function (7.124). The z-directed incident electric field excites a
z-directed equivalent current J̃eq which, being z-invariant, has zero divergence. Hence

Ẽz(ρ) = −jωµ0

∫

S

J̃eqz (ρ′)G̃2D(ρ|ρ′) dS′ + Ẽiz(ρ) (ρ ∈ S).

By (7.23) we obtain

Ẽz(ρ) = −jωµ0

∫

S

f(ρ′)Ẽz(ρ
′)G̃2D(ρ|ρ′) dS′ + Ẽiz(ρ) (ρ ∈ S), (7.209)

where
f(ρ) = σ(ρ) + jω[ǫ(ρ)− ǫ0].

The integral equations describing scattering from a PEC object, considered earlier in
this chapter, are surface integral equations. In a two-dimensional situation they require
the current to be found on a contour that bounds the cross-section of the object. Since
(7.209) arises from a volume integral equation, in this two-dimensional situation we must
determine the equivalent current over the cross-sectional surface of the cylinder. A simple
approach is to partition the cross-section into small subregions, such as rectangles or
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FIGURE 7.63

TM plane wave incident on a penetrable cylinder.

triangles, within which both the material properties and total field are assumed constant.
By point-matching the integral equation at some point within each subregion, we create
a system of linear equations

Ẽz(ρm) = −jωµ0

N
∑

n=1

f(ρn)Ẽz(ρn)

∫

Sn

G̃2D(ρm|ρ′) dS′ + Ẽiz(ρm) (m = 1, . . . , N).

(7.210)
Here ρn is the transverse position vector locating a point of Sn, the domain of the nth
partition. Write an = Ẽz(ρn) and fn = f(ρn). Then (7.210) can be written as a matrix
equation

N
∑

n=1

Amnan = bm, (7.211)

where

bm = Ẽ0e
jk0(xm cosφ0+ym sin φ0)

by (7.128), and where

Amn = δmn + jωµ0fnWmn, Wmn =

∫

Sn

G̃2D(ρm|ρ′) dS′.

For simplicity, let us consider the case where each subregion is a square of side ∆.
An arbitrary shape may be approximately decomposed into many squares as shown in
Figure 7.64. It is clear that squares do not form a smooth boundary when representing
cylinders with curved bounding contours (staircasing effect). Other subregion shapes,
such as triangles, usually conform to the boundary better. But squares are easier to
use, and as their number increases we get a reasonably accurate representation of the
boundary.
With squares we have

Wmn =

∫ yn+∆/2

yn−∆/2

∫ xn+∆/2

xn−∆/2

1

4j
H

(2)
0

(

k0
√

(xm − x′)2 + (ym − y′)2
)

dx′ dy′, (7.212)

where (xm, ym) is the center of the mth partition. Note the use of the wavenumber
k0 in the Green’s function, since the equivalent current is assumed to be embedded in
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FIGURE 7.64

Gridding a cylindrical object into squares.

free space. The integrals in (7.212) may be computed numerically, but Richmond [159]
suggests a method for approximating them in closed form. If the partitions are circular
instead of square, the integrals in (7.212) may be computed analytically. If we take the
area of the circle to be the same as that of the square, the analytic result for the circle
may be used to approximate the integral over the square. To this end the radius a∆ of
the circle must be a∆ = ∆/

√
π.

For a circular partition centered at (xn, yn) we can write

x′ = xn + p′ cos ξ′, y′ = yn + p′ cos ξ′,

where (p, ξ) describes a point within the circle in a polar coordinate system with its
origin at the center of the circle. Then

xm − x′ = xmn − p′ cos ξ′, ym − x′ = ymn − p′ sin ξ′,

where xmn = xm − xn and ymn = ym − yn. Thus

(xm − x′)2 + (ym − y′)2 = ρ2mn + p′2 − 2p′ρmn cos(φmn − ξ′),

where xmn = ρmn cosφmn and ymn = ρmn sinφmn, such that

ρmn =
√

(xm − xn)2 + (ym − yn)2.

With this we have

Wmn =
1

4j

∫ 2π

0

∫ a∆

0

H
(2)
0

(

k0
√

ρ2mn + p′2 − 2p′ρmn cos(φmn − ξ′)
)

p′ dp′ dξ′,

or

Wmn =
1

4j

∫ 2π

0

∫ a∆

0

H
(2)
0

(

k0
√

ρ2mn + p′2 − 2p′ρmn cos ξ′
)

p′ dp′ dξ′, (7.213)
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since the integrand is periodic in ξ′ with period 2π.
To compute Wmn, we start with (E.101) and write

H
(2)
0

(

k0
√

ρ2mn + p′2 − 2p′ρmn cos ξ′
)

= J0(k0p
′)H(2)

0 (k0ρmn)

+ 2

∞
∑

ℓ=1

Jℓ(k0p
′)H(2)

ℓ (k0ρmn) cos ℓξ
′.

Substituting this into (7.213), we find that the integral over ξ′ for each term ℓ ≥ 1 in the
series is zero, leaving just a contribution from the leading term. When m 6= n the result
is

Wmn =
1

4j
(2π)H

(2)
0 (k0ρmn)

∫ a∆

0

J0(k0p
′)p′ dp′ =

πa∆
2jk0

H
(2)
0 (k0ρmn)J1(k0a∆)

where (E.106) was used to compute the integral. When m = n we employ (7.213) directly
to obtain

Wmm =
1

4j
(2π)

∫ a

0

H
(2)
0 (k0p

′)p′ dp′ =
πa∆
2jk0

H
(2)
1 (k0a∆)−

1

k20
.

Here we have used the fact that

lim
u→0

uH
(2)
1 (u) = j2/π.

For a nonconducting, homogeneous body of permittivity ǫ = ǫrǫ0, the matrix elements
reduce to

Amn =

{
(

j
2

)

πk0a∆(ǫr − 1)H
(2)
0 (k0ρmn)J1(k0a∆), m 6= n,

1 + (ǫr − 1) j2 [πk0a∆H
(2)
1 (k0a∆)− 2j], m = n.

(7.214)

Once the equivalent current has been determined from (7.211), the scattered electric
field may be obtained from

Ẽsz(ρ) = −jωµ0

∫

S

f(ρ′)G̃2D(ρ|ρ′)Ẽz(ρ
′) dS′,

which becomes

Ẽsz(ρ, φ) = −jωµ0

N
∑

n=1

anfn

∫

Sn

1

4j
H

(2)
0 (k0R) dx

′ dy′ (7.215)

where
R2 = (x − x′)2 + (y − y′)2 = ρ2 + ρ′2 − 2x′ρ cosφ− 2y′ρ sinφ.

In the far zone where ρ ≫ ρ′, we have R ≈ ρ− x′ cosφ − y′ sinφ. Substituting this into
(7.215) and using (E.64), we get

Ẽsz(ρ, φ) = −k0η0
4

√

2j

πk0

e−jk0ρ√
ρ

N
∑

n=1

anfn

∫ xn+∆/2

xn−∆/2

ejk0x
′ cosφ dx′

∫ yn+∆/2

yn−∆/2

ejk0y
′ sinφ dy′.

Integration gives

Ẽsz(ρ, φ) = −k0η0
4

√

2j

πk0

e−jk0ρ√
ρ

∆2

[

sin
(

1
2k0∆cosφ

)

1
2k0∆cosφ

] [

sin
(

1
2k0∆sinφ

)

1
2k0∆sinφ

]

·

·
N
∑

n=1

anfne
jk0(xn cosφ+yn sinφ). (7.216)
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To find the radar cross-sectional width of the penetrable cylinder, we merely substitute
(7.216) into (7.137):

σ2D
λ0

= 2π3

(

∆

λ0

)4
[

sin
(

1
2k0∆cosφ

)

1
2k0∆cosφ

]2 [

sin
(

1
2k0∆sinφ

)

1
2k0∆sinφ

]2

·

·
∣

∣

∣

∣

∣

N
∑

n=1

an

Ẽ0

(

fn
η0
k0

)

ejk0(xn cosφ+yn sinφ)

∣

∣

∣

∣

∣

2

. (7.217)

◮ Example 7.34: Equivalent current induced within a circular dielectric cylinder by a plane
wave — TM case

Consider a dielectric cylinder having ǫr = 4 and a = 0.25 m, illuminated from φ0 = 180◦

at 300 MHz with Ẽ0 = 1 V/m. The electrical diameter of the cylinder is 2a/λ0 = 0.5, or
2a/λ = 1, where λ is the wavelength in the material medium. Compute the magnitude of
the equivalent current induced in the cylinder.

Solution: Figure 4.37 shows a lossless, homogeneous circular material cylinder with radius
a and material properties µ = µ0, ǫ = ǫrǫ0, and σ = 0, illuminated by a TM-polarized plane
wave. The cylinder is inscribed in a square of side 2a as shown in Figure 7.65, and the square
is partitioned into N2

e smaller squares of side ∆ = 2a/Ne. The center of each partition is
computed; if it lies within the circle, the partition is taken as part of the material body and
included in the computation. Otherwise it is not included. Hence we have N ≤ N2

e where
N is the number of partitions used to represent the cylinder.

FIGURE 7.65
Gridding of a circular cylinder into squares.

Since the cylinder is lossless and homogeneous, the MoM matrix entries are given by
(7.214). Solution of (7.211) yields values for the total field at the partition center. From
(7.23), the equivalent current is easily computed. Figure 7.66 shows the equivalent current
within the cylinder found using Ne = 50.
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FIGURE 7.66
Magnitude of equivalent current induced within a circular dielectric cylinder of permittivity
ǫr = 4 and radius a = 0.25 m at 300 MHz by a TM plane wave incident at φ0 = 180◦.
Ẽ0 = 1 V/m. A grid size of Ne = 50 partitions is used for the MoM calculation. ◭

◮ Example 7.35: Scattering width of a circular dielectric cylinder — TM case

Consider a dielectric cylinder having ǫr = 4 and a = 0.25 m, illuminated from φ0 = 180◦

at 300 MHz with Ẽ0 = 1 V/m. The electrical diameter of the cylinder is 2a/λ0 = 0.5,
or 2a/λ = 1, where λ is the wavelength in the material medium. Compute the scattering
width of the cylinder using MoM and compare to the result from the series solution for the
scattered field.

Solution: The scattering width of the cylinder is obtained from (7.217). Figure 7.67 shows
the bistatic scattering width found by illuminating the cylinder from φ0 = 180◦ and varying
the scatter angle φ. A partitioning of Ne = 40 is used. Also shown is the series solution. By
(4.353) we have the scattered field external to the cylinder:

Ẽsz = −Ẽ0

∞
∑

n=0

ǫnj
−nD̄n cosnφH

(2)
n (k0ρ),

where

D̄n =

√
ǫrJ

′
n(ka)Jn(k0a)− J ′

n(k0a)Jn(ka)
√
ǫrJ ′

n(ka)H
(2)
n (k0a)−H

(2)′
n (k0a)Jn(ka)

.

Note the use of the wavenumber for the cylinder medium:

k = k0
√
ǫr.

In the far zone (ρ≫ a) we have by (E.64)

Ẽsz ≈ −Ẽ0

√

2j

πk0

e−jk0ρ√
ρ

∞
∑

n=0

ǫnD̄n cosnφ.
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Substitution into (7.137) gives the scattering width

σ2D

λ0
=

2

π

∣

∣

∣

∣

∣

∞
∑

n=0

ǫnD̄n cosnφ

∣

∣

∣

∣

∣

2

.

Figure 7.67 shows excellent agreement between the scattering width computed using the
MoM and the series, except at the bottom of the deep null near φ = 115◦.
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FIGURE 7.67
Bistatic scattering width of a circular dielectric cylinder of permittivity ǫr = 4 and radius
a = 0.25 m at 300 MHz illuminated by a TM plane wave incident at φ0 = 180◦. A grid size
of Ne = 40 partitions was used for the MoM calculation, while N = 60 terms were used in
the series computation. ◭

◮ Example 7.36: Convergence of the scattering width of a circular dielectric cylinder — TM
case

Consider a dielectric cylinder having ǫr = 4 and a = 0.25 m, illuminated from φ0 = 180◦

at 300 MHz with Ẽ0 = 1 V/m. Explore how the scattering width of the cylinder computed
using MoM depends on the partition size.

Solution: To study how the partition density affects the MoM solution, we compute the
backscattering radar width (φ = φ0) for various values of Ne (Figure 7.68). As the grid
density increases, the scattering width approaches the series solution. However, the values
of σ2D show considerable oscillation as Ne is changed incrementally. This is due to the
staircasing effect. When Ne is changed by just one, the geometry of the partitioning changes
significantly. This effect can be compensated somewhat by computing the total area of the
partitions compared to the area of the circular cylinder, and adjusting σ2D appropriately.
However, this does not eliminate the oscillations.
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FIGURE 7.68
Backscattering width of a circular dielectric cylinder of permittivity ǫr = 4 and radius
a = 0.25 m at 300 MHz computed using various grid densities. ◭

◮ Example 7.37: Equivalent current induced within a square dielectric cylinder by a plane wave
— TM case

Consider a square dielectric cylinder with the material properties of the circular dielectric
cylinder in Example 7.35. The side length is chosen to be 2a so that the circular cylinder of
that example may be inscribed within it. Compute the magnitude of the equivalent current
induced in the cylinder.

Solution: Figure 7.69 shows the equivalent current induced within the cylinder. Due to the
similarity in size, the current distribution within the square cylinder is similar to that seen
in the circular cylinder.
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FIGURE 7.69
Magnitude of equivalent current induced within a square dielectric cylinder of permittivity
ǫr = 4 and side length 2a = 0.5 m at 300 MHz by a TM plane wave incident at φ0 = 180◦.
Ẽ0 = 1 V/m. Ne = 50 was used for the MoM calculation. ◭
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◮ Example 7.38: Scattering width of a square dielectric cylinder — TM case

Compute the scattering width of the square dielectric cylinder considered in Example 7.37.
Compare to the scattering width of the circular cylinder.

Solution: Figure 7.70 shows the bistatic scattering width of the square cylinder vs. ob-
servation angle. With no series solution available, comparison to an analytic scattering
width is not possible. Instead, comparison is made to the circular cylinder from Example
7.37. The scattering widths are similar except for the depth and position of the null. Note
that the square cylinder has a larger cross-sectional area but a smaller backscattering width
(φ = 180◦) than the circular cylinder. In contrast, its forward scattering width (φ = 0◦) is
larger.
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FIGURE 7.70
Bistatic scattering width of a square dielectric cylinder of permittivity ǫr = 4 and side length
2a = 0.5 m at 300 MHz illuminated by a TM plane wave incident at φ0 = 180◦. A grid size
of Ne = 40 partitions was used. Comparison is to a circular cylinder of identical material
parameters inscribed within the square cylinder. ◭

◮ Example 7.39: Convergence of the scattering width of a square dielectric cylinder — TM
case

Consider the square dielectric cylinder of Example 7.37. Explore how the scattering width
of the cylinder computed using MoM depends on the partition size.

Solution: To study the effect of the partitioning density, the backscattering width at φ0 =
180◦ was computed using various values of Ne (Figure 7.71). For a square cylinder there
is no staircasing effect; the scattering width converges rapidly and monotonically as Ne is
increased.
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FIGURE 7.71
Backscattering width of a square dielectric cylinder of permittivity ǫr = 4 and side length
2a = 0.5 m at 300 MHz computed at angle φ = 180◦ using various grid densities. ◭

◮ Example 7.40: Monostatic scattering width of a square dielectric cylinder — TM case

Consider the square dielectric cylinder of Example 7.37. Plot the monostatic scattering
width as a function of incidence angle.

Solution: The monostatic scattering width is the same as the backscattering width com-
puted using φ = φ0, and is the quantity measured by rotating the cylinder with the mea-
surement antennas coincident and fixed. For a circular cylinder, this is a single number by
azimuthal symmetry. For a square cylinder, Figure 7.72 is obtained. A variation of about
5 dB is seen, with the expected periodicity of 90◦ due to the square symmetry of the cylinder.
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FIGURE 7.72
Monostatic scattering width of a square dielectric cylinder of permittivity ǫr = 4 and side
length 2a = 0.5 m at 300 MHz illuminated by a TM plane wave. Ne = 40 was used. ◭
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FIGURE 7.73

Aperture in a conducting ground plane.

7.6 Apertures in ground planes

Computing the interaction of electromagnetic waves with apertures in conducting screens
is necessary in the solution to a number of radiation and scattering problems. The pene-
tration of plane waves through an aperture in a screen is important in scattering theory as
a fundamental problem of diffraction. It is also an important concept in electromagnetic
shielding, and is addressed later in this chapter. Radiation from apertures in ground
planes is important to antenna theory, as discussed in § 6.4.5. A particularly interesting
problem is that of a slot antenna, where the aperture is excited using a current source
placed directly in the aperture. When the aperture is present in a thin, infinite, perfectly
conducting ground plane, both the scattering and radiation problems may be solved using
a magnetic-field integral equation formulated in terms of the unknown aperture electric
field.

7.6.1 MFIE for the unknown aperture electric field

Consider an aperture of general shape cut into a thin, infinite, perfectly conducting
ground plane (Figure 7.73). The conductor occupies the z = 0 plane and is immersed
in free space. An impressed surface current J̃is(x, y, ω) lies on the aperture surface SA,
and an impressed electromagnetic field Ẽi(r, ω), H̃i(r, ω) exists in the region z > 0. The
radiation problem is formulated assuming Ẽi = 0 and H̃i = 0, while the scattering
problem assumes J̃is = 0. It is assumed that the impressed field satisfies the boundary
conditions on the perfectly conducting screen everywhere in the z = 0 plane, and thus
consists of an incident and a reflected field. (Alternatively, the total impressed field may
be viewed as arising from sources above the ground plane, and by images of sources below
the ground plane).

The presence of the impressed field or the aperture current will induce currents on the
conducting surface SC , which will in turn produce a scattered field Ẽs(r, ω), H̃s(r, ω).
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(For expediency, we suppress the functional dependence on ω in the expressions below.)
By symmetry, the horizontal (x, y) components of the scattered electric fields are even
about z = 0, while the horizontal components of the scattered magnetic fields are odd.
The boundary condition on SC thus requires Ẽ(x, y, z = 0+) = Ẽ(x, y, z = 0−) = 0, while
on SA the electric field must be continuous. The tangential electric field is unknown in
the aperture; designating it as ẼA(x, y), we have

Ẽ(x, y, 0+) = Ẽ(x, y, 0−) = ẼA(x, y) ((x, y) ∈ SA).

To complete the specification of the field over SA we apply the boundary condition on
tangential magnetic field:

ẑ× [H̃i(x, y, 0) + H̃s(x, y, 0+)− H̃s(x, y, 0−)] = J̃is(x, y) ((x, y) ∈ SA).

Since ẑ× H̃s is odd about z = 0, this reduces to

ẑ× [H̃i(x, y, 0) + 2H̃s(x, y, 0+)] = J̃is(x, y) ((x, y) ∈ SA). (7.218)

To find the scattered magnetic field, we use Schelkunoff’s equivalence principle (Section
6.3.4). The vector potential produced by the unknown aperture field is by (6.50)

Ãh(r) =

∫

SA

ǫ0[−2ẑ× ẼA(x′, y′)]G̃(r|x′, y′, 0) dS′,

and, by (6.43), the scattered magnetic field is

H̃s(r) = −j ω
k20

[∇(∇ · Ãh(r)) + k20Ãh(r)].

The divergence of the vector potential may be written as

∇ · Ãh(r) = ǫ0

∫

SA

[−2ẑ× ẼA(x′, y′)] · ∇G̃(r|x′, y′, 0) dS′,

where we have used (B.48). Thus, the scattered field is

H̃s(r) = j
2

ωµ0

∫

SA

{

∇
(

[ẑ× ẼA(x′, y′)] · ∇G̃(r|x′, y′, 0)
)

+ k20 [ẑ× ẼA(x′, y′)]G̃(r|x′, y′, 0)
}

dS′. (7.219)

Finally, substitution of (7.219) into (7.218) gives

4j

ωµ0

∫

SA

{

ẑ×∇
(

[ẑ× ẼA(x′, y′)] · ∇G̃(r|x′, y′, 0)
)

− k20Ẽ
A(x′, y′)G̃(r|x′, y′, 0)

}

dS′

= J̃is(x, y)− ẑ× H̃i(x, y, 0) ((x, y) ∈ SA). (7.220)

This is the MFIE for the aperture electric field ẼA.

7.6.2 MFIE for a narrow slot

A classic problem is scattering from a narrow slot in a ground plane, or radiation by
a narrow slot in a ground plane. Consider the slot shown in Figure 7.74. When the
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FIGURE 7.74

Narrow slot aperture.

slot is narrow (w ≪ L), the aperture electric field is primarily y-directed. Assuming the
impressed aperture current is y-directed and the impressed magnetic field is x-directed,
the aperture magnetic field will be predominantly x-directed, and each of the terms in
the MFIE will be y-directed. Writing ẼA = ŷẼAy and dotting (7.220) with ŷ, we get

4j

ωµ0

∫

SA

ŷ ·
{

ẑ×∇
(

[−x̂ẼAy (x
′, y′)] · ∇G̃(r|x′, y′, 0)

)

− k20ŷẼ
A
y (x

′, y′)G̃(r|x′, y′, 0)
}

dS′

= J̃ isy(x, y)− ŷ · [ẑ× x̂H̃i
x(x, y, 0)] ((x, y) ∈ SA).

Use of

ŷ · [ẑ×∇f ] = (ŷ × ẑ) · ∇f = x̂ · ∇f =
∂f

∂x

gives

4j

ωµ0

∫

SA

[

−ẼAy (x′, y′)
∂2G̃(x, y, 0|x′, y′, 0)

∂x2
− k20Ẽ

A
y (x

′, y′)G̃(x, y, 0|x′, y′, 0)
]

dS′

= J̃ isy(x, y)− H̃i
x(x, y, 0) ((x, y) ∈ SA)

or

4j

ωµ0

(

∂2

∂x2
+ k20

)∫

SA

ẼAy (x
′, y′)G̃(x, y, 0|x′, y′, 0) dS′

= −J̃ isy(x, y) + H̃i
x(x, y, 0) ((x, y) ∈ SA). (7.221)

For a narrow slot, the aperture field dependence may be separated into the product of
two functions,

ẼAy (x, y) = Ṽ (x)f(y), (7.222)

where Ṽ (x) is the slot voltage defined by

Ṽ (x) =

∫ w/2

−w/2
ẼAy (x, y) dy.

This implies

Ṽ (x) = Ṽ (x)

∫ w/2

−w/2
f(y) dy
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or
∫ w/2

−w/2
f(y) dy = 1. (7.223)

Substituting (7.222) into (7.221), multiplying both sides by a weighting function g(y),
and integrating across the slot then gives

4j

ωµ0

(

∂2

∂x2
+ k20

)∫ L/2

−L/2
Ṽ (x′)

[

∫ w/2

−w/2

∫ w/2

−w/2
f(y′)g(y)G̃(x, y, 0|x′, y′, 0) dy dy′

]

dx′

= −
∫ w/2

−w/2
g(y)J̃ isy(x, y) dy +

∫ w/2

−w/2
g(y)H̃i

x(x, y, 0) dy (−L/2 ≤ x ≤ L/2). (7.224)

The choice of g(y) will be discussed later. Now, define

K(x− x′) =

∫ w/2

−w/2

∫ w/2

−w/2
f(y′)g(y)G̃(x, y, 0|x′, y′, 0) dy dy′ (7.225)

and

H̃(x) =
jωµ0

4

∫ w/2

−w/2
g(y)J̃ isy(x, y) dy −

jωµ0

4

∫ w/2

−w/2
g(y)H̃i

x(x, y, 0) dy. (7.226)

With these, (7.224) becomes

(

∂2

∂x2
+ k20

)∫ L/2

−L/2
Ṽ (x′)K(x− x′) dx′ = H̃(x) (−L/2 ≤ x ≤ L/2).

Finally, solving the differential equation (as was done in Section 7.3.1.1 for the dipole
antenna) gives

∫ L/2

−L/2
Ṽ (x′)K(x− x′) dx′ = C1 sin k0z + C2 cos k0z

+
1

k0

∫ x

−L/2
H̃(u) sin k0(x− u) du (−L/2 ≤ x ≤ L/2), (7.227)

which is a Hallén-type integral equation for the slot voltage.

7.6.2.1 Computing the kernel K(x− x′)

To compute the kernel of the integral equation (7.227) we must specify the aperture field
function f(y) and the weighting function g(y). Because the slot is narrow, it is sufficient
to point match at the center of the slot by choosing g(y) = δ(y). The kernel (7.225)
becomes

K(x− x′) =

∫ w/2

−w/2
f(y′)G̃(x, 0, 0|x′, y′, 0) dy′.

The choice of f(y) must reflect the physical behavior of the aperture field. The current
on the ground plane near the edge of the slot obeys a square-root-type edge singularity
(§ 4.11.8.6), and thus the electric field in the slot also obeys this condition near the edge.
A typical choice to model this behavior is

f(y) =
2

πw

√

1−
(

y
w/2

)2
,
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which obeys (7.223). Using this, the kernel becomes

K(x− x′) =
2

πw

∫ w/2

−w/2

1
√

1−
(

y′

w/2

)2
G̃(x, 0, 0|x′, y′, 0) dy′. (7.228)

If the free-space Green’s function (5.70) is used to evaluate the kernel, both the spatial
integral over x′ in (7.228) and the integral over x that arises when applying the method of
moments must be computed numerically. This can be troublesome because of the inherent
singularities in the Green’s function and in f(y). Through the spectral representation of
G̃ given by (A.56), all of the spatial integrals may be computed in closed form, leaving
a single spectral integral to calculate.

Evaluation of the Green’s function (A.56) at z = z′ = y = 0 gives

G̃(x, 0, 0|x′, y′, 0) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

1

2p
ejkx(x−x

′)ejkyy
′

dkx dky,

where p2 = k2x + k2y − k20 . Substitution into (7.228) then gives

K(x− x′) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ejkx(x−x

′)









4

πw

∫ w/2

0

cos(kyy
′)

√

1−
(

y′

w/2

)2
dy′









dkx dky
2p

.

With the substitution u = y′/(w/2), the inner integral becomes

4

πw

∫ w/2

0

cos(kyy
′)

√

1−
(

y′

w/2

)2
dy′ =

2

π

∫ 1

0

cos
(

ky
w
2 u
)

√
1− u2

du.

But [74]
∫ 1

0

cos (ax)√
1− x2

dx =
π

2
J0(a)

where J0(x) is the ordinary Bessel function of the first kind and order zero. Thus, the
kernel of the integral equation is

K(x− x′) =
1

(2π)2

∫ ∞

−∞
ejkx(x−x

′)





∫ ∞

0

J0
(

ky
w
2

)

√

k2y + (k2x − k20)
dky



 dkx.

Finally, use of [74]
∫ ∞

0

J0(xy)√
x2 + a2

dx = I0

(ay

2

)

K0

(ay

2

)

,

where I0(x) is the modified Bessel function of the first kind and K0(x) is the modified
Bessel function of the second kind, gives

K(x− x′) =
1

2π2

∫ ∞

0

cos[kx(x− x′)]I(kx) dkx (7.229)

where

I(kx) = I0

(

w

4

√

k2x − k20

)

K0

(

w

4

√

k2x − k20

)

. (7.230)
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7.6.3 Solution for the slot voltage using the method of moments

To solve (7.227) using the method of moments, we expand the slot voltage using pulse
basis functions and point match at the center of the partitions, just as we did to solve
Hallén’s equation for a dipole antenna in Section 7.3.1.2. Let

Ṽ (x) =

N
∑

n=1

anPn(x) (7.231)

where Pn(x) is the nth pulse function given by

Pn(x) =

{

1, (n− 1)∆ ≤ x ≤ n∆,

0, elsewhere,

with ∆ = L/N . That is, we partition the slot into N regions, each with constant
voltage an. Substituting (7.231) into (7.227) and matching the equation at the points
xm = −L/2 + (m− 1/2)∆, we obtain a system of N equations in N + 2 unknowns:

N
∑

n=1

anAmn + C1 sin k0zm + C2 cos k0zm = bm, (7.232)

where

Amn =

∫ xn+∆/2

xn−∆/2

K(xm − x′) dx′, (7.233)

bm =
1

k0

∫ xm

−L/2
H̃(u) sin k0(xm − u) du. (7.234)

Two more equations are obtained by imposing the conditions on the voltage at the slot
ends. Since the electric field is tangential to the metal edge, the voltage must vanish at
the ends:

Ṽ (−L/2) = Ṽ (L/2) = 0.

Since the voltages are assumed constant within the partitions, these conditions are most
easily invoked by requiring that a1 = aN = 0. However, a1 and aN more accurately
approximate the voltages at the centers of the partitions. With little additional effort,
we can implement the quadratic extrapolation (7.48) to estimate the voltage at the slot
ends:

Ṽ (−L/2) ≈ 1
8 [15a1 − 10a2 + 3a3] = 0,

Ṽ (L/2) ≈ 1
8 [3aN−2 − 10aN−1 + 15aN ] = 0.

Using these, we obtain a matrix equation of a form identical to (7.64).

7.6.3.1 MoM matrix entries

Substituting the kernel expression (7.229) into (7.233), we find

Amn =
1

2π2

∫ ∞

0

[

∫ zn+∆/2

xn−∆/2

cos[kx(xm − x′)] dx′
]

I(kx) dkx.
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Computing the inner integral then gives

Amn =
1

2π2
F (n−m),

where

F (q) =

∫ ∞

0

Sq(kx)I(kx) dkx (7.235)

and

Sq(kx) =
sin[kx(q +

1
2 )∆]

kx
− sin[kx(q − 1

2 )∆]

kx
.

It is convenient to consider the two cases k2x < k20 and k2x > k20 when evaluating the
expression (7.230) for I(kx). Using

I0(jx) = J0(x), K0(jx) = −j π
2
H

(2)
0 (x)

in (7.230), and substituting into (7.235), we obtain

F (q) = −j π
2

∫ k0

0

Sq(kx)J0

(

w

4

√

k20 − k2x

)

H
(2)
0

(

w

4

√

k20 − k2x

)

dkx

+

∫ ∞

k0

Sq(kx)I0

(

w

4

√

k2x − k20

)

K0

(

w

4

√

k2x − k20

)

dkx. (7.236)

These integrals may be calculated numerically, but the latter integral can be slow to
converge. Its computation may be accelerated by adding and subtracting an asymptotic
form that can be integrated analytically. Note that [1]

I0(x)K0(x) ∼
1

2x
(x≫ 1)

and so

Sq(kx)I0

(

w

4

√

k2x − k20

)

K0

(

w

4

√

k2x − k20

)

∼ 2

w

sin[kx(q +
1
2 )∆]− sin[kx(q − 1

2 )∆]

k2x
.

Using
∫ ∞

1

sin(ax)

x2
= sin(a)− aCi(a),

where

Ci(x) = −
∫ ∞

x

cos t

t
dt

is the cosine integral, we get

2

w

∫ ∞

k0

sin[kx(q +
1
2 )∆]− sin[kx(q − 1

2 )∆]

k2x

=
2

w

{

Sq(k0)− (q + 1
2 )∆Ci

[

k0(q +
1
2 )∆

]

+ (q − 1
2 )∆Ci

[

k0(q − 1
2 )∆

]}

.
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So (7.236) can be written as

F (q) = −j π
2

∫ k0

0

Sq(kx)J0

(

w

4

√

k20 − k2x

)

H
(2)
0

(

w

4

√

k20 − k2x

)

+

∫ ∞

k0

[

Sq(kx)I0

(

w

4

√

k2x − k20

)

K0

(

w

4

√

k2x − k20

)

− 2

wkx

]

+
2

w

{

Sq(k0)− (q + 1
2 )∆Ci

[

k0(q +
1
2 )∆

]

+ (q − 1
2 )∆Ci

[

k0(q − 1
2 )∆

]}

.

It is useful when computing the integrals to note that the product I0(x)K0(x) has an
asymptotic form [1]

I0(x)K0(x) ∼
1

2x

{

1− 1

2

(−1)

(2x)2
+

[

1

2

(−1)

(2x)2

] [

3

4

(−9)

(2x)2

]

− · · ·
}

.

Its implementation prevents overflow or underflow when evaluating the Bessel functions
with large arguments.
Note that Amn depends on m and n only through the difference n − m. This fact

significantly reduces the computational expense of filling the matrix. A vector may be
filled with the distinct values of Amn for all allowed differences n −m, and the matrix
filled by selection from this vector.

7.6.3.2 Fields produced by slot voltage — far zone

Once the slot voltage has been found using the MoM, the fields external to the slot may
be computed. If the observation point is in the far-zone of the slot, the fields may be
computed from the directional weighting function (6.54). We use the equivalent current

J̃eqms(x, y) = −2n̂× ẼA(x, y) = −2ẑ× ŷṼ (x)f(y) = 2x̂Ṽ (x)f(y)

which is valid for observation points with z > 0. We also use

r̂ · r′ = r̂ · (x′x̂+ y′ŷ) = x′ sin θ cosφ+ y′ sin θ sinφ

to get

ãh(θ, φ) = 2x̂

∫ L/2

−L/2
Ṽ (x′)ejk0x

′ sin θ cosφ dx′
∫ w/2

−w/2
f(y′)ejk0y

′ sin θ sinφ dy′.

Since k0w ≪ 1, the exponential in the second integral can be approximated by unity.
The integral of f(y) is also unity, giving

ãh(θ, φ) = 2x̂

∫ L/2

−L/2
Ṽ (x′)ejk0x

′ sin θ cosφ dx′.

Next, substituting (7.231) for Ṽ (x) and integrating we have

ãh(θ, φ) = 4x̂
sin
(

k0
∆
2 sin θ cosφ

)

k0 sin θ cosφ

N
∑

n=1

ane
jk0xn sin θ cosφ.

This can be used to find the potential from (6.52). Finally, using

r̂× x̂ = φ̂ cos θ cosφ+ θ̂ sinφ
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in (6.55), we have the far-zone electric field

Ẽ = jk0
e−jk0r

r

(

φ̂ cos θ cosφ+ θ̂ sinφ
) sin

(

k0
∆
2 sin θ cosφ

)

k0 sin θ cosφ

N
∑

n=1

ane
jk0xn sin θ cosφ.

(7.237)

7.6.3.3 Fields produced by slot voltage — near zone

For points in the near zone we can substitute (6.47) into (6.48) to get

Ẽ(r) = −
∫

SA

∇× [−2n̂′ × ẼA(r
′)]G̃(r|r′) dS′.

Expanding the curl and using ∇G̃ = −∇′G̃, we have

Ẽ(r) =

∫

SA

[2n̂′ × ẼA(r′)]×∇′G̃(r|r′) dS′.

Next we substitute ẼA(x, y) = ŷṼ (x)f(y) and use

∇′G̃ = R̂
1 + jk0R

4πR2
e−jk0R

to get

Ẽ =
1

2π

∫ w/2

−w/2

∫ L/2

−L/2
[±ẑ× ŷṼ (x′)f(y′)]× R̂

1 + jk0R

4πR2
e−jk0R dx′ dy′,

where +ẑ is used for z > 0 and −ẑ for z < 0. Now, if k0w ≪ 1 and R ≫ w we can
approximate

R ≈ x̂(x− x′) + ŷy + ẑz, R ≈
√

(x− x′)2 + y2 + z2

so that

Ẽ = ± 1

2π

∫ w/2

−w/2
f(y′) dy′

∫ L/2

−L/2
[−x̂× (ŷy + ẑz)] Ṽ (x′)

1 + jk0R

4πR3
e−jk0R dx′.

Lastly, substitution of (7.231) gives

Ẽ = ± 1

2π
(ŷz − ẑy)

N
∑

n=1

an

∫ xn+∆/2

xn−∆/2

1 + jk0R

4πR3
e−jk0R dx′, (7.238)

which can be computed by numerical integration.

7.6.4 Radiation by a slot antenna

Radiation from a slot antenna may be computed by setting the incident field to zero in
(7.226) and adopting an appropriate model for the impressed aperture current J̃ isy(x, y).
A simple method for feeding a slot antenna involves a coaxial cable with its center
conductor extended across the slot. The current on the center conductor is easily modeled
as a filamentary (line) current:

J̃ isy(x) = −Ĩ0δ(x− x0),
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where x0 is the position of the current filament. Then

H̃(x) = − jωµ0

4
Ĩ0δ(x − x0)

and by (7.234),

bm = − jωµ0

4k0
Ĩ0

∫ xm

−L/2
δ(u− x0) sin k0(xm − u) du

=

{

−j η04 Ĩ0 sin k0(xm − x0), xm > x0,
0, otherwise.

For a center-fed slot with x0 = 0, this is most easily implemented by choosing N even.
Then

bm =

{

−j η04 Ĩ0 sin k0(xm), xm > 0,
0, otherwise.

A filamentary current source is a crude model for the actual feed of a realistic slot an-
tenna. An alternative is to use a distributed current source, spreading out the excitation
similar to the manner in which a frill voltage source spreads out the impressed electric
field on a dipole surface. One approach is to model the feed as a conducting strip, with
an edge singular current distribution akin to the field distribution in the slot. In the case
of a center-fed slot we use

J̃ isy(x, y) =







2Ĩ0

πA
√

1−( x
A/2 )

2
, |x| < A/2,

0, |x| > A/2,

where A is the width of the strip. Then bm = 0 when xm < −A/2. Otherwise

bm = −j Ĩ0η0
2πA









sin(k0xm)

∫ B

−A/2

cosu
√

1−
(

u
A/2

)2
du

− cos(k0xm)

∫ B

−A/2

sinu
√

1−
(

u
A/2

)2
du









, (7.239)

where B = xm when xm < A/2, and B = A/2 when xm > A/2. These integrals are
easily computed numerically.
With all MoM elements determined, we can solve the matrix equation and determine

the voltage distribution. From this we can find the slot antenna input impedance

Zin = Ṽ (x0)/Ĩ0.

Let us treat some examples.

◮ Example 7.41: Impedance of a slot antenna — effect of feed model

Consider a slot antenna of length L = 50 mm and width w = 1 mm. The slot is a half
wavelength long at f = 3 GHz, so there should be a resonance near this frequency. Set
f = 3 GHz and solve for the slot antenna input impedance when the slot is center-fed.
Explore the effect of the number of pulse functions used, N , on the input resistance and
reactance. Compare the results for the filamentary current feed and for the strip feed with
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a width A = w.

Solution: Figure 7.75 shows the input impedance of the slot antenna computed using
the MoM as a function of the number of pulses used to represent the slot voltage. The
input resistance of the slot found with the filamentary feed is nearly the same as that
found using the strip feed; both results converge to around 305 Ω by N = 200 partitions.
However, the input reactance differs for the two feeds. The reactance with the filamentary
feed converges quickly to about −150 Ω by N = 200. The reactance for the strip feed varies
more significantly for smaller values of N , but settles in to about −164 Ω by N = 200. The
strip feed results require more partitions to converge due to the narrow width of the strip,
since the integrals in (7.239) are dependent on the position of the match point xm within the
domain of the strip. In any case, it is apparent that the input reactance of the slot antenna
depends on the feed model used, much as was observed for the dipole antenna. Thus, we
again emphasize that an accurate calculation of the input impedance of a realistic antenna
requires a highly realistic model of the feed.
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FIGURE 7.75
Impedance of a slot antenna of length L = 50 mm and width w = 1 mm. f = 3 GHz. ◭

◮ Example 7.42: Impedance of a slot antenna as a function of frequency

Consider the slot antenna of Example 7.41. Choose N = 200 and plot the input resistance
and reactance as a function of frequency using the strip feed with A = w. Locate the first
three resonance frequencies and plot the slot voltages as a function of position at these
frequencies.

Solution: Figure 7.76 shows the impedance of the slot antenna as a function of frequency.
The first resonance occurs at 2.81 GHz, with an input resistance of 494 Ω. This frequency
corresponds to L/λ = 0.469, and thus the antenna is slightly less than a half-wavelength long
at its first resonance, similar to the dipole antenna of Section 7.3.1. The second resonance
occurs at 5.04 GHz, where the input resistance is 35 Ω. Finally, the third resonance is
observed at 8.75 GHz, with an input resistance of 336 Ω. It is interesting to note that
the first and third resonances are of the antiresonance type due to the rapid change in
reactance and the highly peaked resistance at the resonance frequency. In contrast, the
second resonance has a slowly varying reactance and relatively low resistance. This behavior
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is directly opposite that of the dipole antenna impedance shown in Figure 7.16, where it is
the second resonance that has antiresonance characteristics, while the first and third show
a more slow variation of the reactance.
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FIGURE 7.76
Impedance of a slot antenna of length L = 50 mm and width w = 1 mm found using N = 200
pulse functions.

The magnitude and phase of the slot voltage distribution are plotted in Figures 7.77 and
7.78, respectively, for each of the resonance frequencies identified from the impedance plot.
At the first resonance, the voltage is nearly sinusoidal, with just a few degrees of phase
variation across the slot. At higher resonances, both the amplitude and phase variation
increase in complexity. Compare these plots with Figures 7.17 and 7.18, which show the
current on a dipole antenna at the first three resonances. The striking similarity is an
example of the complementarity principle [57].
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FIGURE 7.77
Magnitude of the voltage of a slot antenna of length L = 50 mm and width w = 1 mm found
using N = 200 pulse functions. Applied current is 1 A.
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FIGURE 7.78
Phase of the voltage of a slot antenna of length L = 50 mm and width w = 1 mm found
using N = 200 pulse functions. Applied current is 1 A. ◭

◮ Example 7.43: Pattern of a slot antenna

Consider the slot antenna of Example 7.42. Plot the pattern of the antenna in the xz plane
as a function of θ at each of the first three resonance frequencies.

Solution: The xz-plane is identified by φ = 0, 0 ≤ θ ≤ π for x ≥ 0, and φ = π, 0 ≤ θ ≤ π
for x ≥ 0. Since these conditions are cumbersome to plot, we allow θ to take on negative
values to indicate the half plane φ = π. This is only for plotting convenience. From (7.237)
the field when φ = 0 or φ = π is given by

Ẽ = jk0
e−jk0r

r

(

φ̂ cos θ cosφ
) sin

(

k0
∆
2
sin θ

)

k0 sin θ

N
∑

n=1

ane
jk0xn sin θ cosφ.

Thus, in either half plane, the magnitude of the far-zone electric field has a proportionality
given by

|Ẽ(θ)| ∼
∣

∣

∣

∣

∣

cos θ
sin
(

k0
∆
2
sin θ

)

k0 sin θ

N
∑

n=1

ane
jk0xn sin θ

∣

∣

∣

∣

∣

.

This function describes the θ-dependence of the far-zone field, and is thus the antenna field
pattern for the xz-plane. Figure 7.79 shows a plot of the antenna pattern for each of the
first three resonance frequencies, with the maximum value normalized to unity. For higher
resonance frequencies the slot is electrically larger, and the voltage has more variation across
the slot (as seen in Figures 7.77 and 7.78.) This produces a more complex antenna pattern at
higher resonance frequencies. Note that the pattern is zero at θ = ±π/2, since the presence
of the conducting ground plane compels the tangential electric field to be zero there. Also
note that we restrict our plot to the half plane z > 0; the pattern is symmetric about this
plane since the antenna radiates identically into the lower half space.
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FIGURE 7.79
Field pattern in xz-plane of a slot antenna of length L = 50 mm and width w = 1 mm found
using N = 200 pulse functions. ◭

7.7 Application: electromagnetic shielding revisited

Shielding against electromagnetic fields has become increasingly important as electronic
devices have become more sophisticated and more compact. Many consumer electronics
products incorporate radio-frequency devices in close proximity to digital circuitry, and
the probability of interference is high. Interference can be ameliorated by surrounding
sensitive circuitry with metallic shields, but gaps in butted surfaces, cracks, and venti-
lation holes present opportunities for interfering signals to penetrate into the shielded
region. An important canonical problem for understanding leakage into shielded regions
is a narrow rectangular slot in a ground plane.
In § 3.7.2.2 we studied the penetration of an electrostatic field through a circular hole in

a conducting screen. The problem of penetration through an aperture is much harder for
electromagnetic fields. Although approximate solutions using scalar diffraction theory
are available (see [73]), accurate results require a numerical solution. Fortunately, in
§ 7.6.2 we put in place all the tools needed to do the calculation.

7.7.1 Penetration of a narrow slot in a ground plane

Consider a plane wave incident from the upper half space onto a narrow slot in a ground
plane (Figure 7.80). We can find the field penetrating the slot by solving the matrix
equation (7.232), and then computing the field in the lower half space using (7.238).
To solve the matrix equation, we set the impressed aperture current J̃ isy to zero, and

specialize the impressed field H̃i
x in (7.226) to that of a plane wave. The matrix entries

are identical to those found for the radiation case (i.e, for the slot antenna). We need
only specialize the right-hand-side elements, bm, for an incident plane wave.
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Calculation of right-hand-side elements. Since the development of the MFIE for
a slot in § 7.6.2 assumes that the impressed magnetic field in the aperture is x-directed,
we consider the case of a TE-polarized plane wave (Figure 7.80). The wave is assumed
incident with its wave vector in the xz-plane, and its electric field polarized in the y-
direction. The incident wave vector is ki = −k0x̂ sin θ0 − k0ẑ cos θ0, so the fields are
given by

Ẽi = Ẽ0ŷe
jk0x sin θ0ejk0z cos θ0

and

H̃i =
ki × Ẽi

η0
= −ẑ

Ẽ0

η0
ejk0x sin θ0ejk0z cos θ0 sin θ0 + x̂

Ẽ0

η0
ejk0x sin θ0ejk0z cos θ0 cos θ0

where θ0 is the incidence angle measured from the z-axis. In the development of the MFIE
we assume that the impressed field is the sum of the incident field and the reflected field
(or, equivalently, the field produced by the images of the impressed sources), and thus
satisfies the boundary condition on the ground plane. For the case of a TE-polarized
plane wave incident on a PEC ground plane, the reflected field will also be a plane wave,
with a wave vector given by kr = −k0x̂ sin θ0 + k0ẑ cos θ0. Thus, the reflected fields are

Ẽr = −Ẽ0ŷe
jk0x sin θ0e−jk0z cos θ0

and

H̃r =
kr × Ẽr

η0
= ẑ

Ẽ0

η0
ejk0x sin θ0e−jk0z cos θ0 sin θ0 + x̂

Ẽ0

η0
ejk0x sin θ0e−jk0z cos θ0 cos θ0

such that the total electric field tangential to the ground plane is zero. The impressed
magnetic field is thus

H̃ = H̃i + H̃r

= −ẑ2j
Ẽ0

η0
ejk0x sin θ0 sin(k0z cos θ0) sin θ0 + x̂2

Ẽ0

η0
ejk0x sin θ0 cos(k0z cos θ0) cos θ0.

Thus we have the aperture impressed field

H̃i
x(x) = 2

Ẽ0

η0
cos θ0e

jk0x sin θ0 . (7.240)

Substitution of (7.240) into (7.226) gives the aperture function

H̃(x) = − jωµ0

2

Ẽ0

η0
cos θ0e

jk0x sin θ0 .

Then from (7.234) we have the right-hand side elements

bm = − jωµ0

2k0

Ẽ0

η0
cos θ0

∫ xm

−L/2
ejk0u sin θ0 sin k0(xm − u) du

= −j Ẽ0

2
cos θ0

∫ xm

−L/2
ejk0u sin θ0 sin k0(xm − u) du.
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FIGURE 7.80

TE-polarized plane wave incident on a narrow rectangular slot.

Integration gives

bm = j
Ẽ0

2k0 cos θ0
e−jk0

L
2 sin θ0

{

j sin θ0 sin
[

k0(m− 1
2 )∆

]

+ cos
[

k0(m− 1
2 )∆

]

− e
jk0

(

m−1
2

)

∆sin θ0

}

.

At normal incidence (θ0 = 0) this simplifies to

bm = j
Ẽ0

2k0

{

cos[k0(m− 1
2 )∆]− 1

}

. (7.241)

◮ Example 7.44: Shielding effectiveness of a slot in a ground plane

A narrow slot in a perfectly conducting ground plane is illuminated by a plane electromag-
netic wave of amplitude E0, as shown in Figure 7.80. Let the slot length be L = 50 mm
and the slot width be w = 1 mm. Compute the shielding effectiveness on the z-axis below
the slot as a function of frequency and position using N = 200 partitions. Assume normal
incidence (θ0 = 0).

Solution: We solve the matrix equation for the slot voltage using (7.241) for the right-
hand-side elements. Then we compute the near-zone field below the slot using (7.238). For
points on the z-axis, the field reduces to

Ẽ = ∓ 1

2π
ŷz

N
∑

n=1

an

∫ xn+∆/2

xn−∆/2

1 + jk0R

4πR3
e−jk0R dx′,

with R =
√
x′2 + z2. Using this, the shielding effectiveness is SE = 20 log10 |E0/Ẽy|.

Figure 7.81 shows the shielding effectiveness as a function of frequency, for various ob-
servation positions beneath the ground plane. At low frequencies, where the slot is short
compared to a wavelength, little field penetrates and the shielding effectiveness is high. As
the frequency increases, a greater amount of field penetrates and the shield is less effective.
Greatest penetration occurs at the first resonance (2.81 GHz), when the induced aperture
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field is strongest, producing the greatest radiation into the lower half space. Shielding effec-
tiveness is also low near the third resonance (8.75 GHz).

Note from Figure 7.81 that as the observation point moves farther from the aperture
the field decreases and SE becomes larger. Interestingly, at points near to the aperture
SE becomes negative, indicating that the strength of the field penetrating the aperture is
greater than that of the incident plane wave. This can be thought of as a sort of focusing
effect in the near field region. Figure 7.82 shows more clearly how the shielding effectiveness
increases with depth.
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FIGURE 7.81
Shielding effectiveness on the z-axis for a plane wave normally incident on a slot in a perfectly
conducting ground plane. Slot dimensions are L = 50 mm, w = 1 mm. Field found using
N = 200 pulse functions.
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FIGURE 7.82
Shielding effectiveness on the z-axis for a plane wave normally incident on a slot in a perfectly
conducting ground plane. Slot dimensions are L = 50 mm, w = 1 mm. Field found using
N = 200 pulse functions.

It is important to realize that the shielding effectiveness of an aperture in a conducting
enclosure is dependent on a variety of factors. The examples above show that SE depends
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strongly on frequency and on observation point. It is also dependent on the arrival angle and
polarization of the incident wave. Figure 7.83 shows the dependence of SE on the incidence
angle for an observation position z = −100 mm, showing that greatest penetration occurs
at normal incidence. As the angle is increased, there is little change for lower frequencies
until grazing incidence is approached (near 90◦.) At 8.75 GHz there is sufficient variation
in the phase of the aperture field that an increase in shielding effectiveness occurs near 25◦.

 0

 20

 40

 60

 80

 0  30  60  90

f=1 GHz

f=6 GHz

f=8.75 GHz

f=2.81 GHz

S
E

 (
d
B

)

θ0 (deg)

FIGURE 7.83
Shielding effectiveness on the z-axis for a plane wave incident at angle θ0 on a slot in a
perfectly conducting ground plane, observed at z = −100 mm. Slot dimensions are L =
50 mm, w = 1 mm. Field found using N = 200 pulse functions. ◭

7.8 Problems

7.1 Consider the steady-state transmission line shown in Figure 7.3. (a) Derive the
integral equation for the voltage on the transmission line, assuming Zg 6= 0. (b) Obtain
a numerical solution to the integral equation derived in part (a) using pulse function
expansion and point matching. Assume the transmission line is lossless and that Z0 =
Zg = 50Ω, ZL = 100 − j100Ω, and ℓ = 2.3λ, and compare the numerical result to the
analytic solution.

7.2 Verify the identity (7.16) using integration by parts.

7.3 Verify by substitution that (7.40) satisfies the differential equation (7.38).

7.4 Verify by substitution that (7.43) satisfies the integral equation (7.41).

7.5 Show that when µ̃ is z-dependent, the differential equation for g(z) changes from
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(7.32) to
∂2g(z, ω)

∂z2
− 1

µ̃(z, ω)

∂µ̃(z, ω)

∂z

∂g(z, ω)

∂z
+ k2z(z, ω)g(z, ω) = 0

and that the integral equation for g(z) becomes

g(z) = −
∫ z

0

{h(t) + (z − t)[f(t)− h′(t)]} g(t) dt+

+
a− zh0
a− dh0

∫ d

0

{h(t) + (d− t)[f(t)− h′(t)]} g(t) dt+ 2Ẽ0
z − d

a− dh0
.

Here a(ω) = jη0/[ωµ̃(0, ω) cosφ0], h(z) = −µ̃′(z)/µ̃(z), and h0 = 1− ah(0). See [164].

7.6 Since the ordinary differential equation (7.32) is of second order, it will have two
independent solutions, say g1(z, ω) and g2(z, ω). (a) Using the boundary conditions
(7.33) and (7.36), show that g(z, ω) for the conductor-backed slab is given by

g(z, ω) =
2Ẽ0(ω)

F (ω) + a(ω)G(ω)
[g2(d, ω)g1(z, ω)− g1(d, ω)g2(z, ω)] ,

where

F (ω) = g1(0, ω)g2(d, ω)− g1(d, ω)g2(0, ω),

G(ω) = g′1(0, ω)g2(d, ω)− g1(d, ω)g
′
2(0, ω),

with g′1(z, ω) = ∂g1(z, ω)/∂z, etc. (b) Using (7.37) and the results from part (a), show
that the reflection coefficient is

Γ̃(ω) =
F (ω)− a(ω)G(ω)

F (ω) + a(ω)G(ω)
.

7.7 Consider a TE plane wave obliquely incident on a conductor-backed slab as de-
scribed in § 7.2. Assume the slab has unit relative permeability, zero conductivity, and
permittivity profile

ǫ̃(z, ω) = ǫ̃r0(ω)ǫ0e
κ(ω)z.

Show by substitution that the solutions of the differential equation (7.32) are given by

g1(z, ω) = Jν(λe
κz/2), g2(z, ω) = Nν(λe

κz/2),

where λ = 2k0
√
µ̃r ǫ̃r0/κ and ν = 2kx/κ.

7.8 Consider a TE plane wave obliquely incident on a conductor-backed slab as de-
scribed in § 7.2. Assume the slab has unit relative permeability, zero conductivity, and
permittivity profile

ǫ̃(z, ω) = ǫ̃r0(ω)ǫ0e
κ(ω)z.

(a) Expanding the field in the slab using pulse functions as in (7.46), and using point
matching, derive the expressions for the entries in the matrix equation (7.47). (b) Solve
the matrix equation for N = 2000, f = 10 GHz, ǫ̃r0 = 4, κ = 20 m−1, d = 0.03 m,
and φ0 = 30◦, and determine g(z) and Γ̃. Compare the results with the analytic results
obtained in Problem 7.7. See [164].
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FIGURE 7.84

Problem 7.10.

7.9 Verify that (7.44) may be written in the form (7.45).

7.10 Consider a plane wave normally incident on a homogeneous air-backed slab with
parameters µ̃ and ǫ̃c as shown in Figure 7.84. Show that within the slab (0 ≤ z ≤ d) the
z-dependence of the electric field is given by the equation

g(z) = −k2
∫ z

0

(z − t)g(t) dt+ 2Ẽ0 +

(

z − j
η0
ωµ̃

)

k2

d

∫ d

0

[

(z − t)− j
η0
ωµ̃

]

g(t) dt,

where Ẽ0 is the amplitude of the incident electric field.

7.11 Consider a TM plane wave obliquely incident on an inhomogeneous conductor-
backed slab as shown in Figure 7.85. (a) Beginning with Maxwell’s equations, derive
a differential equation for the magnetic field H̃y(x, z) within the slab. Let H̃y(x, z) =
f(x)g(z), and show that g(z) obeys the differential equation

g′′(z)− ǫ̃c′(z)

ǫ̃c(z)
g′(z) + k2z(z)g(z) = 0,

where ǫ̃c(z) = ǫ̃(z)−jσ̃(z)/ω and k2z(z) = k2(z)−k2x. (b) Apply the appropriate boundary
conditions and show that g(z) satisfies

g(z) =

∫ d

0

[(z − a)− (z − t)U(z − t)]
[

k2z(t)g(t) + h(t)g′(t)
]

dt+ 2H̃0,

for 0 ≤ z ≤ d. Here H̃0 is the amplitude of the incident magnetic field, U(z) is the unit
step function (A.6), a = j/[η0ωǫ̃

c(0) cosφ0], and h(z) = −ǫ̃c′(z)/ǫ̃c(z).

7.12 Show that the moment-method matrix entries (7.65) are symmetric: Amn = Anm.

7.13 Consider the frill generator model for a monopole antenna as shown in Figure 7.13.
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FIGURE 7.85

Problem 7.11.

The electric field in the ground-plane aperture is assumed to be the coaxial-cable field

Ẽ(r) = ρ̂
Ṽ0/2

ρ ln(b/a)
.

Using the equivalence and image theorems, derive the electric field on the axis of the
monopole antenna, and thus verify (7.70).

7.14 Consider Pocklington’s integral equation, as given in (7.80). (a) Specialize the
equation to a straight wire extending from z = −L to z = L. Assuming that the
thin-wire approximation is valid, compute the necessary derivatives of the kernel. (b)
Develop an MoM solution to the equation derived in part (a), assuming that the thin-wire
approximation is valid. Implement a computer solution for the current and the input
impedance using pulse function expansion and point matching, with a frill generator.
For the case f=300 MHz, L = 0.25 m, and a = 0.0001 m, compare the input impedance
as a function of the number of pulse functions used to the results from Hallén’s equation
shown in Figure 7.14. Repeat for a = 0.01 m, and compare to Figure 7.15. Repeat for
a = 0.001 m and compare to both figures.

7.15 Using the technique of § 7.3.2.2, convert the Pocklington integral equation for a
loop antenna, (7.86), to Hallén form. Use integration by parts to remove the derivatives
in the kernel.

7.16 Consider a thin wire as shown in Figure 7.19, carrying a current Ĩ(z, ω). The far-
zone electric field produced by the current is found from (7.73). Using the inverse Fourier
transform integral, show that the time-domain field in the far zone is

Eθ(r, t) =
µ0

4πr
sin θ

∫ L

−L
I ′
(

z′, t− r

c
+
z′ cos θ

c

)

dz′.
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7.17 The coupling coefficients for the current on a thin wire excited by an incident
plane wave may be approximated using the simple sinusoidal current formula (7.105).
Substitute this expression and show that am = Rm/Cm, where

Rm ≈ −8π2smǫ0 sin θiE0(sm)J0(−jsma sin θi/c)

×
(

mπ
2L

)

(

mπ
2L

)2
+ (γm cos θi)

2

[

(−1)meγmL cos θi − e−γmL cos θi
]

and

Cm ≈ C−
m + (−1)mC+

m

where

C±
m =

1

2

∫ L

−L

∫ L

−L

[

(mπ

2L

)2

F (z − z′, sm)∓ γ2m
c
g(z − z′, sm)

]

cos
(mπ

2L
[z ± z′]

)

dz′ dz.

See [162].

7.18 Consider a transient plane wave incident on a circular loop of wire. The late-time
current induced in the wire may be found using the singularity expansion method. Using
the Fourier series representation of the current, show that the natural frequencies of the
loop may be found by solving

n2

b2
Kn(s) +

γ2

2
[Kn−1(s) +Kn+1(s)] = 0,

where

Kn(s) =
1

2π

∫ π

−π
G(ζ, s)e−jnζ dζ

and

G(ζ, s) =

∫ 2π

0

e−γR̄(ξ,ζ)

R̄(ξ, ζ)
dξ.

Note that the natural frequencies are indexed by n, which is determined by the periodicity
of the current. See [17], [161].

7.19 Carry out the details of the integral to verify (7.72).

7.20 Show by substitution that the 2-D Green’s function (7.124) satisfies

∇2G2D(ρ|ρ′) + k20G2D(ρ|ρ′) = −δ(ρ− ρ′).

7.21 Develop a solution for the current on a conducting strip when the excitation is
by an electric line source centered a distance d above the strip. See Figure 7.86. Let
f = 300 MHz, w = 1 m, Ĩ = 1 A, and N = 201 pulses. Plot the magnitude and phase
of the current density as a function of position for the following cases: (a) d = w/4; (b)
d = w; (c) d = 4w. Compare to the results for plane wave excitation shown in Figure
7.35.
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FIGURE 7.86

Problem 7.21.

7.22 Consider the computation of the moment method matrix elements for a conduct-
ing strip under TM plane-wave illumination (7.132). Although a singularity occurs only
when the source and observation partitions are the same (m = n), when the partitions
are adjacent the integrand may still vary rapidly when the source point is close to the ob-
servation point, and thus the integral may take an undesirable amount of computational
resources. Show that for adjacent partitions,

An−1,n = An+1,n =
1

k0

∫ 3k0∆/2

k0∆/2

[

H
(2)
0 (u)− f0(u)

]

du

+ ∆− j
2∆

π

[

γ − ln 2 +
3

2
ln 3 + ln

(

k0
∆

2

)

− 1

]

,

where f0(u) is defined in (7.133). This may be extended to other partitions as well.

7.23 Consider the resistive strip examined in § 7.4.3. A TE-polarized plane wave is
incident on the strip at an angle φ0. (a) Derive a Hallén integral equation for the
equivalent current on the strip. (b) Use pulse-function expansion and point matching to
obtain a matrix equation for the current. (c) Using the parameters from Example 7.22,
compute and plot the equivalent current induced in the strip.

7.24 A function f(z), 0 ≤ z ≤ d, is represented using a pulse function expansion:

f(z) =

N
∑

n=1

anPn(z)

where

Pn(z) =

{

1, (n− 1)∆ ≤ z ≤ n∆,

0 elsewhere,

with ∆ = d/N . We wish to estimate the value of f(z) at z = 0 using the values of the
first three pulse amplitudes. Let fa(z) be a quadratic function that passes through the
centers of the first three pulses, and show that

fa(0) =
1
8 [15a1 − 10a2 + 3a3] .
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A.1 Conservative vector fields

For a sufficiently smooth vector field A = A(r), the following conditions are equivalent:

1. The net circulation of A around any closed path C vanishes:
∮

C A · dl = 0.

2. The line integral of A between two locations a and b is independent of the integra-
tion path:

∫

C1
A · dl =

∫

C2
A · dl, where C1 and C2 are any two curves running

from a to b.

3. There is a scalar field φ = φ(r) such that A = ∇φ. It is common to refer to φ as a
potential function for A.

4. A is irrotational: ∇×A = 0.

The interested reader may see Marsden and Tromba [126] for a proof. A vector field A
satisfying any of the conditions 1–4 is said to be conservative.

A.2 The Fourier transform

The Fourier transform permits us to decompose a complicated field structure into ele-
mental components. This can simplify the computation of fields and provide physical
insight into their spatiotemporal behavior. In this section we review the properties of
the transform and demonstrate its usefulness in solving field equations.

A.2.1 One-dimensional Fourier transform

Let f be a function of a single variable x. The Fourier transform of f(x) is the function
F (k) defined by the integral

F{f(x)} = F (k) =

∫ ∞

−∞
f(x)e−jkx dx. (A.1)

Note that x and the corresponding transform variable k must have reciprocal units: if x
is time in seconds, then k is a temporal frequency in radians per second; if x is a length
in meters, then k is a spatial frequency in radians per meter. We sometimes refer to F (k)
as the frequency spectrum of f(x).
Not every function has a Fourier transform. The existence of (A.1) can be guaranteed

by a set of sufficient conditions such as the following:

841
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1. f is absolutely integrable:
∫∞
−∞ |f(x)| dx <∞;

2. f has no infinite discontinuities;

3. f has at most finitely many discontinuities and finitely many extrema in any finite
interval (a, b).

While such rigor is certainly of mathematical value, it may be of less ultimate use to
the engineer than the following heuristic observation offered by Bracewell [24]: a good
mathematical model of a physical process should be Fourier transformable. That is, if the
Fourier transform of a mathematical model does not exist, the model cannot precisely
describe a physical process.

The usefulness of the transform hinges on our ability to recover f through the inverse
transform:

F−1{F (k)} = f(x) =
1

2π

∫ ∞

−∞
F (k) ejkx dk. (A.2)

When this is possible we write

f(x) ↔ F (k)

and say that f(x) and F (k) form a Fourier transform pair. The Fourier integral theorem
states that

F F−1{f(x)} = F−1 F{f(x)} = f(x),

except at points of discontinuity of f . At a jump discontinuity the inversion formula
returns the average value of the one-sided limits f(x+) and f(x−) of f(x). At points of
continuity the forward and inverse transforms are unique.

A.2.1.1 Transform theorems and properties

We now review some basic facts pertaining to the Fourier transform. Let f(x) ↔ F (k) =
R(k) + jX(k), and g(x) ↔ G(k).

1. Linearity. αf(x) + βg(x) ↔ αF (k) + βG(k) if α and β are arbitrary constants.
This follows directly from the linearity of the transform integral, and makes the
transform useful for solving linear differential equations (e.g., Maxwell’s equations).

2. Symmetry. The property F (x) ↔ 2πf(−k) is helpful when interpreting transform
tables in which transforms are listed only in the forward direction.

3. Conjugate function. We have f∗(x) ↔ F ∗(−k).

4. Real function. If f is real, then F (−k) = F ∗(k). Also,

R(k) =

∫ ∞

−∞
f(x) cos kx dx, X(k) = −

∫ ∞

−∞
f(x) sin kx dx,

and

f(x) =
1

π
Re

∫ ∞

0

F (k)ejkx dk.

A real function is completely determined by its positive frequency spectrum. It is
obviously advantageous to know this when planning to collect spectral data.
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5. Real function with reflection symmetry. If f is real and even, then X(k) ≡ 0 and

R(k) = 2

∫ ∞

0

f(x) cos kx dx, f(x) =
1

π

∫ ∞

0

R(k) coskx dk.

If f is real and odd, then R(k) ≡ 0 and

X(k) = −2

∫ ∞

0

f(x) sin kx dx, f(x) = − 1

π

∫ ∞

0

X(k) sinkx dk.

(Recall that f is even if f(−x) = f(x) for all x. Similarly f is odd if f(−x) = −f(x)
for all x.)

6. Causal function. Recall that f is causal if f(x) = 0 for x < 0.

(a) If f is real and causal, then

X(k) = − 2

π

∫ ∞

0

∫ ∞

0

R(k′) cos k′x sin kx dk′ dx,

R(k) = − 2

π

∫ ∞

0

∫ ∞

0

X(k′) sin k′x cos kx dk′ dx.

(b) If f is real and causal, and f(0) is finite, then R(k) and X(k) are related by
the Hilbert transforms

X(k) = − 1

π
P.V.

∫ ∞

−∞

R(k)

k − k′
dk′, R(k) =

1

π
P.V.

∫ ∞

−∞

X(k)

k − k′
dk′.

(c) If f is causal and has finite energy, it is not possible to have F (k) = 0 for
k1 < k < k2. That is, the transform of a causal function cannot vanish over
an interval.

A causal function is completely determined by the real or imaginary part of its
spectrum. As with item 4, this is helpful when performing calculations or mea-
surements in the frequency domain. If the function is not band-limited, however,
truncation of integrals will give erroneous results.

7. Time-limited vs. band-limited functions. Assume t2 > t1. If f(t) = 0 for both t < t1
and t > t2, then it is not possible to have F (k) = 0 for both k < k1 and k > k2
where k2 > k1. That is, a time-limited signal cannot be band-limited. Similarly, a
band-limited signal cannot be time-limited.

8. Null function. If the forward or inverse transform of a function is identically zero,
then the function is identically zero. This important consequence of the Fourier
integral theorem is useful when solving homogeneous partial differential equations
in the frequency domain.

9. Space or time shift. For any fixed x0,

f(x− x0) ↔ F (k)e−jkx0 . (A.3)

A temporal or spatial shift affects only the phase of the transform, not the magni-
tude.
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10. Frequency shift. For any fixed k0,

f(x)ejk0x ↔ F (k − k0).

Note that if f ↔ F where f is real, then frequency-shifting F causes f to be-
come complex — again, this is important if F has been obtained experimentally or
through computation in the frequency domain.

11. Similarity. We have

f(αx) ↔ 1

|α|F
(

k

α

)

,

where α is any real constant. “Reciprocal spreading” is exhibited by the Fourier
transform pair; dilation in space or time results in compression in frequency, and
vice versa.

12. Convolution. We have

∫ ∞

−∞
f1(x

′)f2(x− x′) dx′ ↔ F1(k)F2(k), (A.4)

f1(x)f2(x) ↔ 1

2π

∫ ∞

−∞
F1(k

′)F2(k − k′) dk′.

The first of these is particularly useful when a problem has been solved in the
frequency domain and the solution is found to be a product of two or more functions
of k.

13. Parseval’s identity. We have

∫ ∞

−∞
|f(x)|2 dx =

1

2π

∫ ∞

−∞
|F (k)|2 dk.

Computations of energy in the time and frequency domains always give the same
result.

14. Differentiation. We have

dnf(x)

dxn
↔ (jk)nF (k) and (−jx)nf(x) ↔ dnF (k)

dkn
.

The Fourier transform can convert a differential equation in the x domain into an
algebraic equation in the k domain, and vice versa.

15. Integration. We have

∫ x

−∞
f(u) du ↔ πF (k)δ(k) +

F (k)

jk

where δ(k) is the Dirac delta or unit impulse.
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A.2.1.2 Generalized Fourier transforms and distributions

It is worth noting that many useful functions are not Fourier transformable in the sense
given above. An example is the signum function

sgn(x) =

{

−1, x < 0,

1, x > 0.

Although this function lacks a Fourier transform in the usual sense, for practical purposes
it may still be safely associated with what is known as a generalized Fourier transform. A
treatment of this notion would be out of place here; however, the reader should certainly
be prepared to encounter an entry such as

sgn(x) ↔ 2/jk

in a standard Fourier transform table. Other functions can be regarded as possessing
transforms when generalized functions are permitted into the discussion. An important
example of a generalized function is the Dirac delta δ(x), which has enormous value
in describing distributions that are very thin, such as the charge layers often found
on conductor surfaces. We shall not delve into the intricacies of distribution theory.
However, we can hardly avoid dealing with generalized functions; to see this we need
look no further than the simple function cos k0x with its transform pair

cos k0x ↔ π[δ(k + k0) + δ(k − k0)].

The reader of this book must therefore know the standard facts about δ(x): that it
acquires meaning only as part of an integrand, and that it satisfies the sifting property

∫ ∞

−∞
δ(x− x0)f(x) dx = f(x0)

for any continuous function f . With f(x) = 1 we obtain the familiar relation
∫ ∞

−∞
δ(x) dx = 1.

With f(x) = e−jkx we obtain
∫ ∞

−∞
δ(x)e−jkx dx = 1,

thus
δ(x) ↔ 1.

It follows that
1

2π

∫ ∞

−∞
ejkx dk = δ(x). (A.5)

A.2.1.3 Useful transform pairs

Some of the more common Fourier transforms that arise in the study of electromagnetics
are given in Appendix C. These often involve the simple functions defined here:

1. Unit step function

U(x) =

{

1, x > 0,

0, x < 0.
(A.6)
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2. Signum function

sgn(x) =

{

−1, x < 0,

1, x > 0.
(A.7)

3. Rectangular pulse function

rect(x) =

{

1, |x| < 1,

0, |x| > 1.
(A.8)

4. Triangular pulse function

Λ(x) =

{

1− |x|, |x| < 1,

0, |x| > 1.
(A.9)

5. Sinc function

sinc(x) =
sinx

x
. (A.10)

A.2.2 Transforms of multi-variable functions

Fourier transformations can be performed over multiple variables by successive applica-
tions of (A.1). For example, the two-dimensional Fourier transform over x1 and x2 of
the function f(x1, x2, x3, . . . , xN ) is the quantity F (kx1 , kx2 , x3, . . . , xN ) given by

∫ ∞

−∞

[∫ ∞

−∞
f(x1, x2, x3, . . . , xN ) e−jkx1x1 dx1

]

e−jkx2x2 dx2

=

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2, x3, . . . , xN ) e−jkx1x1e−jkx2x2 dx1 dx2.

The two-dimensional inverse transform is computed by multiple application of (A.2),
recovering f(x1, x2, x3, . . . , xN ) through the operation

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
F (kx1 , kx2 , x3, . . . , xN ) ejkx1x1ejkx2x2 dkx1 dkx2 .

Higher-dimensional transforms and inversions are done analogously.

A.2.2.1 Transforms of separable functions

If we are able to write

f(x1, x2, x3, . . . , xN ) = f1(x1, x3, . . . , xN )f2(x2, x3, . . . , xN ),

then successive transforms on the variables x1 and x2 result in

f(x1, x2, x3, . . . , xN ) ↔ F1(kx1 , x3, . . . , xN )F2(kx2 , x3, . . . , xN ).

In this case a multi-variable transform can be obtained with the help of a table of one-
dimensional transforms. If, for instance,

f(x, y, z) = δ(x− x′)δ(y − y′)δ(z − z′),
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then we obtain
F (kx, ky, kz) = e−jkxx

′

e−jkyy
′

e−jkzz
′

by three applications of (A.1).
A more compact notation for multi-dimensional functions and transforms makes use

of the vector notation k = x̂kx + ŷky + ẑkz and r = x̂x+ ŷy+ ẑz where r is the position
vector. In the example above, for instance, we could have written

δ(x − x′)δ(y − y′)δ(z − z′) = δ(r− r′),

and

F (k) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(r− r′)e−jk·r dx dy dz = e−jk·r

′

.

A.2.2.2 Fourier–Bessel transform

If x1 and x2 have the same dimensions, it may be convenient to recast the two-dimensional
Fourier transform in polar coordinates. Let x1 = ρ cosφ, kx1 = p cos θ, x2 = ρ sinφ, and
kx2 = p sin θ, where p and ρ are defined on (0,∞) and φ and θ are defined on (−π, π).
Then

F (p, θ, x3, . . . , xN ) =

∫ π

−π

∫ ∞

0

f(ρ, φ, x3, . . . , xN ) e−jpρ cos(φ−θ)ρ dρ dφ. (A.11)

If f is independent of φ (due to rotational symmetry about an axis transverse to x1 and
x2), then the φ integral can be computed using the identity

J0(x) =
1

2π

∫ π

−π
e−jx cos(φ−θ) dφ.

Thus (A.11) becomes

F (p, x3, . . . , xN ) = 2π

∫ ∞

0

f(ρ, x3, . . . , xN )J0(ρp) ρ dρ, (A.12)

showing that F is independent of the angular variable θ. Expression (A.12) is termed
the Fourier–Bessel transform of f . The reader can easily verify that f can be recovered
from F through

f(ρ, x3, . . . , xN ) =

∫ ∞

0

F (p, x3, . . . , xN )J0(ρp) p dp,

the inverse Fourier–Bessel transform.

A.2.3 A review of complex contour integration

Some powerful techniques for the evaluation of integrals rest on complex variable theory.
In particular, the computation of the Fourier inversion integral is often aided by these
techniques. We therefore provide a brief review of this material. For a fuller discussion
the reader may refer to one of many widely available textbooks on complex analysis.
We shall denote by f(z) a complex valued function of a complex variable z. That is,

f(z) = u(x, y) + jv(x, y),

where the real and imaginary parts u(x, y) and v(x, y) of f are each functions of the real
and imaginary parts x and y of z:

z = x+ jy = Re z + j Im z.

Here j =
√
−1, as is mostly standard in the electrical engineering literature.



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 848 — #872
✐

✐

✐

✐

✐

✐

848 Electromagnetics

A.2.3.1 Limits, differentiation, and analyticity

Let w = f(z), and let z0 = x0 + jy0 and w0 = u0 + jv0 be points in the complex z and
w planes, respectively. We say that w0 is the limit of f(z) as z approaches z0, and write

lim
z→z0

f(z) = w0,

if and only if both u(x, y) → u0 and v(x, y) → v0 as x → x0 and y → y0 independently.
The derivative of f(z) at a point z = z0 is defined by the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
,

if it exists. Existence requires that the derivative be independent of direction of approach;
that is, f ′(z0) cannot depend on the manner in which z → z0 in the complex plane. (This
turns out to be a much stronger condition than simply requiring that the functions u and
v be differentiable with respect to the variables x and y.) We say that f(z) is analytic
at z0 if it is differentiable at z0 and at all points in some neighborhood of z0.

If f(z) is not analytic at z0 but every neighborhood of z0 contains a point at which
f(z) is analytic, then z0 is called a singular point of f(z).

A.2.3.2 Laurent expansions and residues

Although Taylor series can be used to expand complex functions around points of ana-
lyticity, we must often expand functions around points z0 at or near which the functions
fail to be analytic. For this we use the Laurent expansion, a generalization of the Taylor
expansion involving both positive and negative powers of z − z0:

f(z) =

∞
∑

n=−∞
an(z − z0)

n =

∞
∑

n=1

a−n
(z − z0)n

+

∞
∑

n=0

an(z − z0)
n.

The numbers an are the coefficients of the Laurent expansion of f(z) at point z = z0.
The first series on the right is the principal part of the Laurent expansion, and the second
series is the regular part . The regular part is an ordinary power series, hence it converges
in some disk |z − z0| < R where R ≥ 0. Putting ζ = 1/(z − z0), the principal part
becomes

∑∞
n=1 a−nζ

n. This power series converges for |ζ| < ρ where ρ ≥ 0, hence the

principal part converges for |z − z0| > 1/ρ , r. When r < R, the Laurent expansion
converges in the annulus r < |z − z0| < R; when r > R, it diverges everywhere in the
complex plane.

The function f(z) has an isolated singularity at point z0 if f(z) is not analytic at z0
but is analytic in the “punctured disk” 0 < |z − z0| < R for some R > 0. Isolated
singularities are classified by reference to the Laurent expansion. Three types can arise:

1. Removable singularity. The point z0 is a removable singularity of f(z) if the princi-
pal part of the Laurent expansion of f(z) about z0 is identically zero (i.e., if an = 0
for n = −1,−2,−3, . . .).

2. Pole of order k. The point z0 is a pole of order k if the principal part of the Laurent
expansion about z0 contains only finitely many terms that form a polynomial of
degree k in (z − z0)

−1. A pole of order 1 is called a simple pole.

3. Essential singularity. The point z0 is an essential singularity of f(z) if the principal
part of the Laurent expansion of f(z) about z0 contains infinitely many terms (i.e.,
if a−n 6= 0 for infinitely many n).
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FIGURE A.1

Derivation of the residue theorem.

The coefficient a−1 in the Laurent expansion of f(z) about an isolated singular point z0
is the residue of f(z) at z0. It can be shown that

a−1 =
1

2πj

∮

Γ

f(z) dz (A.13)

where Γ is any simple closed curve oriented counterclockwise and containing in its interior
z0 and no other singularity of f(z). Particularly useful to us is the formula for evaluation
of residues at pole singularities. If f(z) has a pole of order k at z = z0, then the residue
of f(z) at z0 is given by

a−1 =
1

(k − 1)!
lim
z→z0

dk−1

dzk−1
[(z − z0)

kf(z)]. (A.14)

A.2.3.3 Cauchy–Goursat and residue theorems

It can be shown that if f(z) is analytic at all points on and within a simple closed contour
C, then

∮

C

f(z) dz = 0.

This central result is known as the Cauchy–Goursat theorem. We shall not offer a proof,
but shall proceed instead to derive a useful consequence known as the residue theorem.
Figure A.1 depicts a simple closed curve C enclosing n isolated singularities of a function
f(z). We assume that f(z) is analytic on and elsewhere within C. Around each singular
point zk we have drawn a circle Ck so small that it encloses no singular point other than
zk; taken together, the Ck (k = 1, . . . , n) and C form the boundary of a region in which
f(z) is everywhere analytic. By the Cauchy–Goursat theorem,

∫

C

f(z) dz +

n
∑

k=1

∫

Ck

f(z) dz = 0.

Hence,

1

2πj

∫

C

f(z) dz =

n
∑

k=1

1

2πj

∫

Ck

f(z) dz,
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FIGURE A.2

Derivation of the contour deformation principle.

where now the integrations are all performed in a counterclockwise sense. By (A.13)

∫

C

f(z) dz = 2πj
n
∑

k=1

rk (A.15)

where r1, . . . , rn are the residues of f(z) at the singularities within C.

A.2.3.4 Contour deformation

Suppose f is analytic in a region D and Γ is a simple closed curve in D. If Γ can be
continuously deformed to another simple closed curve Γ′ without passing out of D, then

∫

Γ′

f(z) dz =

∫

Γ

f(z) dz. (A.16)

To see this, consider Figure A.2 where we have introduced another set of curves ±γ;
these new curves are assumed parallel and infinitesimally close to each other. Let C be
the composite curve consisting of Γ, +γ, −Γ′, and −γ, in that order. Since f is analytic
on and within C, we have

∫

C

f(z) dz =

∫

Γ

f(z) dz +

∫

+γ

f(z) dz +

∫

−Γ′

f(z) dz +

∫

−γ
f(z) dz = 0.

But
∫

−Γ′ f(z) dz = −
∫

Γ′ f(z) dz and
∫

−γ f(z) dz = −
∫

+γ
f(z) dz, hence (A.16) follows.

The contour deformation principle often permits us to replace an integration contour by
one that is more convenient.

A.2.3.5 Principal value integrals

We must occasionally carry out integrations of the form

I =

∫ ∞

−∞
f(x) dx

where f(x) has a finite number of singularities xk (k = 1, . . . , n) along the real axis. Such
singularities in the integrand force us to interpret I as an improper integral. With just
one singularity present at point x1, for instance, we define

∫ ∞

−∞
f(x) dx = lim

ε→0

∫ x1−ε

−∞
f(x) dx+ lim

η→0

∫ ∞

x1+η

f(x) dx



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 851 — #875
✐

✐

✐

✐

✐

✐

Mathematical appendix 851

provided that both limits exist. When both limits do not exist, we may still be able to
obtain a well-defined result by computing

lim
ε→0

(
∫ x1−ε

−∞
f(x) dx +

∫ ∞

x1+ε

f(x) dx

)

(i.e., by taking η = ε so that the limits are “symmetric”). This quantity is called the
Cauchy principal value of I and is denoted

P.V.

∫ ∞

−∞
f(x) dx.

More generally, we have

P.V.

∫ ∞

−∞
f(x) dx = lim

ε→0

(∫ x1−ε

−∞
f(x) dx +

∫ x2−ε

x1+ε

f(x) dx

+ · · ·+
∫ xn−ε

xn−1+ε

f(x) dx+

∫ ∞

xn+ε

f(x) dx

)

for n singularities x1 < · · · < xn.
In a large class of problems, f(z) (i.e., f(x) with x replaced by the complex variable

z) is analytic everywhere except for the presence of finitely many simple poles. Some
of these may lie on the real axis (at points x1 < · · · < xn, say), and some may not.
Consider now the integration contour C shown in Figure A.3. We choose R so large and
ε so small that C encloses all the poles of f that lie in the upper half of the complex
plane. In many problems of interest, the integral of f around the large semicircle tends
to zero as R → ∞, and the integrals around the small semicircles are well-behaved as
ε→ 0. It may then be shown that

P.V.

∫ ∞

−∞
f(x) dx = πj

n
∑

k=1

rk + 2πj
∑

UHP

rk

where rk is the residue at the kth simple pole. The first sum on the right accounts for
the contributions of those poles that lie on the real axis; note that it is associated with
a factor πj instead of 2πj, since these terms arose from integrals over semicircles rather
than over full circles. The second sum, of course, is extended only over those poles that
reside in the upper half-plane.

A.2.4 Fourier transform solution of the 1-D wave equation

Successive applications of the Fourier transform can reduce a partial differential equa-
tion to an ordinary differential equation, and finally to an algebraic equation. After
the algebraic equation is solved by standard techniques, Fourier inversion can yield a
solution to the original partial differential equation. We illustrate this by solving the
one-dimensional inhomogeneous wave equation

(

∂2

∂z2
− 1

c2
∂2

∂t2

)

ψ(x, y, z, t) = S(x, y, z, t), (A.17)
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FIGURE A.3

Complex plane technique for evaluating a principal value integral.

where the field ψ is the desired unknown and S is the known source term. For uniqueness
of solution we must specify ψ and ∂ψ/∂z over some z = constant plane. Assume that

ψ(x, y, z, t)
∣

∣

∣

z=0
= f(x, y, t), (A.18)

∂

∂z
ψ(x, y, z, t)

∣

∣

∣

z=0
= g(x, y, t). (A.19)

We begin by positing inverse temporal Fourier transform relationships for ψ and S:

ψ(x, y, z, t) =
1

2π

∫ ∞

−∞
ψ̃(x, y, z, ω)ejωt dω,

S(x, y, z, t) =
1

2π

∫ ∞

−∞
S̃(x, y, z, ω)ejωt dω.

Substituting into (A.17), passing the derivatives through the integral, calculating the
derivatives, and combining the inverse transforms, we obtain

1

2π

∫ ∞

−∞

[(

∂2

∂z2
+ k2

)

ψ̃(x, y, z, ω)− S̃(x, y, z, ω)

]

ejωt dω = 0

where k = ω/c. By the Fourier integral theorem
(

∂2

∂z2
+ k2

)

ψ̃(x, y, z, ω)− S̃(x, y, z, ω) = 0. (A.20)

We have thus converted a partial differential equation into an ordinary differential equa-
tion. A spatial transform on z will now convert the ordinary differential equation into
an algebraic equation. We write

ψ̃(x, y, z, ω) =
1

2π

∫ ∞

−∞
ψ̃z(x, y, kz, ω)e

jkzz dkz ,

S̃(x, y, z, ω) =
1

2π

∫ ∞

−∞
S̃z(x, y, kz , ω)e

jkzz dkz,
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in (A.20), pass the derivatives through the integral sign, compute the derivatives, and
set the integrand to zero to get

(k2 − k2z)ψ̃
z(x, y, kz, ω)− S̃z(x, y, kz, ω) = 0;

hence

ψ̃z(x, y, kz, ω) = − S̃z(x, y, kz, ω)

(kz − k)(kz + k)
. (A.21)

The price we pay for such an easy solution is that we must now perform a two-
dimensional Fourier inversion to obtain ψ(x, y, z, t) from ψ̃z(x, y, kz , ω). It turns out to
be easiest to perform the spatial inverse transform first, so let us examine

ψ̃(x, y, z, ω) =
1

2π

∫ ∞

−∞
ψ̃z(x, y, kz , ω)e

jkzz dkz .

By (A.21) we have

ψ̃(x, y, z, ω) =
1

2π

∫ ∞

−∞
[S̃z(x, y, kz, ω)]

[ −1

(kz − k)(kz + k)

]

ejkzz dkz ,

where the integrand involves a product of two functions. With

g̃z(kz , ω) =
−1

(kz − k)(kz + k)
,

the convolution theorem gives

ψ̃(x, y, z, ω) =

∫ ∞

−∞
S̃(x, y, ζ, ω)g̃(z − ζ, ω) dζ (A.22)

where

g̃(z, ω) =
1

2π

∫ ∞

−∞
g̃z(kz , ω)e

jkzz dkz =
1

2π

∫ ∞

−∞

−1

(kz − k)(kz + k)
ejkzz dkz .

To compute this integral we use complex plane techniques. The domain of integration
extends along the real kz-axis in the complex kz-plane; because of the poles at kz = ±k,
we must treat the integral as a principal value integral. Denoting

I(kz) =
−ejkzz

2π(kz − k)(kz + k)
,

we have
∫ ∞

−∞
I(kz) dkz = lim

∫

Γr

I(kz) dkz

= lim

∫ −k−δ

−∆

I(kz) dkz + lim

∫ k−δ

−k+δ
I(kz) dkz + lim

∫ ∆

k+δ

I(kz) dkz

where the limits take δ → 0 and ∆ → ∞. Our kz-plane contour takes detours around the
poles using semicircles of radius δ, and is closed using a semicircle of radius ∆ (Figure
A.4). Note that if z > 0, we must close the contour in the upper half-plane.
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FIGURE A.4

Contour used to compute inverse transform in solution of the 1-D wave equation.

By Cauchy’s integral theorem,

∫

Γr

I(kz) dkz +

∫

Γ1

I(kz) dkz +

∫

Γ2

I(kz) dkz +

∫

Γ∆

I(kz) dkz = 0.

Thus

∫ ∞

−∞
I(kz) dkz = − lim

δ→0

∫

Γ1

I(kz) dkz − lim
δ→0

∫

Γ2

I(kz) dkz − lim
∆→∞

∫

Γ∆

I(kz) dkz .

The contribution from the semicircle of radius ∆ can be computed by writing kz in polar
coordinates as kz = ∆ejθ :

lim
∆→∞

∫

Γ∆

I(kz) dkz =
1

2π
lim

∆→∞

∫ π

0

−ejz∆ejθ

(∆ejθ − k)(∆ejθ + k)
j∆ejθ dθ.

Using Euler’s identity, we can write

lim
∆→∞

∫

Γ∆

I(kz) dkz =
1

2π
lim

∆→∞

∫ π

0

−e−∆z sin θej∆z cos θ

∆2e2jθ
j∆ejθ dθ.

Thus, as long as z > 0 the integrand will decay exponentially as ∆ → ∞, and

lim
∆→∞

∫

Γ∆

I(kz) dkz → 0.

Similarly,
∫

Γ∆
I(kz) dkz → 0 when z < 0 if we close the semicircle in the lower half-plane.

Thus,
∫ ∞

−∞
I(kz) dkz = − lim

δ→0

∫

Γ1

I(kz) dkz − lim
δ→0

∫

Γ2

I(kz) dkz. (A.23)
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The integrals around the poles can also be computed by writing kz in polar coordinates.
Writing kz = −k + δejθ , we find

lim
δ→0

∫

Γ1

I(kz) dkz =
1

2π
lim
δ→0

∫ 0

π

−ejz(−k+δejθ )jδejθ
(−k + δejθ − k)(−k + δejθ + k)

dθ

=
1

2π

∫ π

0

e−jkz

−2k
j dθ = − j

4k
e−jkz .

Similarly, using kz = k + δejθ, we obtain

lim
δ→0

∫

Γ2

I(kz) dkz =
j

4k
ejkz .

Substituting these into (A.23), we have

g̃(z, ω) =
j

4k
e−jkz − j

4k
ejkz =

1

2k
sin kz, (A.24)

valid for z > 0. For z < 0, we close in the lower half-plane instead and get

g̃(z, ω) = − 1

2k
sin kz. (A.25)

Substituting (A.24) and (A.25) into (A.22), we obtain

ψ̃(x, y, z, ω) =

∫ z

−∞
S̃(x, y, ζ, ω)

sin k(z − ζ)

2k
dζ − 1

2k

∫ ∞

z

S̃(x, y, ζ, ω)
sin k(z − ζ)

2k
dζ

where we have been careful to separate the two cases considered above. To make things
a bit easier when we apply the boundary conditions, let us rewrite the above expression.
Splitting the domain of integration, we write

ψ̃(x, y, z, ω) =

∫ 0

−∞
S̃(x, y, ζ, ω)

sin k(z − ζ)

2k
dζ +

∫ z

0

S̃(x, y, ζ, ω)
sin k(z − ζ)

k
dζ

−
∫ ∞

0

S̃(x, y, ζ, ω)
sin k(z − ζ)

2k
dζ.

Expansion of the trigonometric functions then gives

ψ̃(x, y, z, ω) =

∫ z

0

S̃(x, y, ζ, ω)
sin k(z − ζ)

k
dζ

+
sin kz

2k

∫ 0

−∞
S̃(x, y, ζ, ω) cos kζ dζ − cos kz

2k

∫ 0

−∞
S̃(x, y, ζ, ω) sin kζ dζ

− sin kz

2k

∫ ∞

0

S̃(x, y, ζ, ω) cos kζ dζ +
cos kz

2k

∫ ∞

0

S̃(x, y, ζ, ω) sin kζ dζ.

The last four integrals are independent of z, so we can represent them with functions
constant in z. Finally, rewriting the trigonometric functions as exponentials, we have

ψ̃(x, y, z, ω) =

∫ z

0

S̃(x, y, ζ, ω)
sin k(z − ζ)

k
dζ + Ã(x, y, ω)e−jkz + B̃(x, y, ω)ejkz .

(A.26)
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This formula for ψ̃ was found as a solution to the inhomogeneous ordinary differential
equation (A.20). Hence, to obtain the complete solution, we should add any possible
solutions of the homogeneous differential equation. Since these are exponentials, (A.26)
in fact represents the complete solution, where Ã and B̃ are considered unknown and
can be found using the boundary conditions.

If we are interested in the frequency-domain solution to the wave equation, then we
are done. However, since our boundary conditions (A.18) and (A.19) pertain to the time
domain, we must temporally inverse transform before we can apply them. Writing the
sine function in (A.26) in terms of exponentials, we can express the time-domain solution
as

ψ̃(x, y, z, t) =

∫ z

0
F−1

{

c

2

S̃(x, y, ζ, ω)

jω
ej

ω
c (z−ζ) − c

2

S̃(x, y, ζ, ω)

jω
e−j

ω
c (z−ζ)

}

dζ

+ F−1
{

Ã(x, y, ω)e−j
ω
c z
}

+ F−1
{

B̃(x, y, ω)ej
ω
c z
}

. (A.27)

A combination of the Fourier integration and time-shifting theorems gives the general
identity

F−1

{

S̃(x, y, ζ, ω)

jω
e−jωt0

}

=

∫ t−t0

−∞
S(x, y, ζ, τ) dτ, (A.28)

where we have assumed that S̃(x, y, ζ, 0) = 0. Using this in (A.27) along with the time-
shifting theorem, we obtain

ψ(x, y, z, t) =
c

2

∫ z

0

{

∫ t− ζ−z
c

−∞
S(x, y, ζ, τ) dτ −

∫ t− z−ζ
c

−∞
S(x, y, ζ, τ) dτ

}

dζ

+ a
(

x, y, t− z

c

)

+ b
(

x, y, t+
z

c

)

,

or

ψ(x, y, z, t) =
c

2

∫ z

0

∫ t+ z−ζ
c

t− z−ζ
c

S(x, y, ζ, τ) dτ dζ + a
(

x, y, t− z

c

)

+ b
(

x, y, t+
z

c

)

(A.29)

where
a(x, y, t) = F−1[Ã(x, y, ω)], b(x, y, t) = F−1[B̃(x, y, ω)].

To calculate a(x, y, t) and b(x, y, t), we must use the boundary conditions (A.18) and
(A.19). To apply (A.18), we put z = 0 into (A.29) to give

a(x, y, t) + b(x, y, t) = f(x, y, t). (A.30)

Using (A.19) is a bit more complicated, since we must compute ∂ψ/∂z, and z is a
parameter in the limits of the integral describing ψ. To compute the derivative, we apply
Leibnitz’ rule for differentiation:

d

dα

∫ θ(α)

φ(α)

f(x, α) dx =

(

dθ

dα

)

f (θ(α), α) −
(

dφ

dα

)

f (φ(α), α) +

∫ θ(α)

φ(α)

∂f

∂α
dx. (A.31)

Using this on the integral term in (A.29), we have

∂

∂z

[

c

2

∫ z

0

(

∫ t+ z−ζ
c

t− z−ζ
c

S(x, y, ζ, τ) dτ

)

dζ

]

=
c

2

∫ z

0

∂

∂z

(

∫ t+ z−ζ
c

t− z−ζ
c

S(x, y, ζ, τ) dτ

)

dζ,
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which is zero at z = 0. Thus,

∂ψ

∂z

∣

∣

∣

z=0
= g(x, y, t) = −1

c
a′(x, y, t) +

1

c
b′(x, y, t)

where a′ = ∂a/∂t and b′ = ∂b/∂t. Integration gives

−a(x, y, t) + b(x, y, t) = c

∫ t

−∞
g(x, y, τ) dτ. (A.32)

Equations (A.30) and (A.32) represent two algebraic equations in the two unknown
functions a and b. The solutions are

2a(x, y, t) = f(x, y, t)− c

∫ t

−∞
g(x, y, τ) dτ,

2b(x, y, t) = f(x, y, t) + c

∫ t

−∞
g(x, y, τ) dτ.

Finally, substitution of these into (A.29) gives us the solution to the inhomogeneous wave
equation

ψ(x, y, z, t) =
c

2

∫ z

0

∫ t+ z−ζ
c

t− z−ζ
c

S(x, y, ζ, τ) dτ dζ +
1

2

[

f
(

x, y, t− z

c

)

+ f
(

x, y, t+
z

c

)]

+
c

2

∫ t+ z
c

t− z
c

g(x, y, τ) dτ. (A.33)

This is known as the D’Alembert solution. The terms f(x, y, t∓ z/c) contribute to ψ as
waves propagating away from the plane z = 0 in the ±z-directions, respectively. The
integral over the forcing term S is seen to accumulate values of S over a time interval
determined by z − ζ.
The boundary conditions could have been applied while still in the temporal frequency

domain (but not the spatial frequency domain, since the spatial position z is lost). But to
do this, we would need the boundary conditions to be in the temporal frequency domain.
This is easily accomplished by transforming them to give

ψ̃(x, y, z, ω)
∣

∣

∣

z=0
= f̃(x, y, ω),

∂

∂z
ψ̃(x, y, z, ω)

∣

∣

∣

z=0
= g̃(x, y, ω).

Applying these to (A.26) (and again using Leibnitz’s rule), we have

Ã(x, y, ω) + B̃(x, y, ω) = f̃(x, y, ω),

− jkÃ(x, y, ω) + jkB̃(x, y, ω) = g̃(x, y, ω),

hence,

2Ã(x, y, ω) = f̃(x, y, ω)− c
g̃(x, y, ω)

jω
,

2B̃(x, y, ω) = f̃(x, y, ω) + c
g̃(x, y, ω)

jω
.
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Finally, substituting these back into (A.26) and expanding the sine function, we obtain
the frequency-domain solution that obeys the given boundary conditions:

ψ̃(x, y, z, ω) =
c

2

∫ z

0

[

S̃(x, y, ζ, ω)ej
ω
c (z−ζ)

jω
− S̃(x, y, ζ, ω)e−j

ω
c (z−ζ)

jω

]

dζ

+
1

2

[

f̃(x, y, ω)ej
ω
c z + f̃(x, y, ω)e−j

ω
c z
]

+
c

2

[

g̃(x, y, ω)ej
ω
c z

jω
− g̃(x, y, ω)e−j

ω
c z

jω

]

.

This is easily inverted using (A.28) to give (A.33).

A.2.5 Fourier transform solution of the 1-D homogeneous wave
equation for dissipative media

Wave propagation in dissipative media can be studied using the one-dimensional wave
equation

(

∂2

∂z2
− 2Ω

v2
∂

∂t
− 1

v2
∂2

∂t2

)

ψ(x, y, z, t) = S(x, y, z, t). (A.34)

This equation is nearly identical to the wave equation for lossless media studied in the
previous section, except for the addition of the ∂ψ/∂t term. This extra term will lead to
important physical consequences regarding the behavior of the wave solutions.

We shall solve (A.34) using the Fourier transform approach of the previous section,
but to keep the solution simple we shall only consider the homogeneous problem. We
begin by writing ψ in terms of its inverse temporal Fourier transform:

ψ(x, y, z, t) =
1

2π

∫ ∞

−∞
ψ̃(x, y, z, ω)ejωt dω.

Substituting this into the homogeneous version of (A.34) and taking the time derivatives,
we obtain

1

2π

∫ ∞

−∞

[

(jω)2 + 2Ω(jω)− v2
∂2

∂z2

]

ψ̃(x, y, z, ω)ejωt dω = 0.

The Fourier integral theorem leads to

∂2ψ̃(x, y, z, ω)

∂z2
− κ2ψ̃(x, y, z, ω) = 0 (A.35)

where

κ =
1

v

√

p2 + 2Ωp

with p = jω.
We can solve the homogeneous ordinary differential equation (A.35) by inspection:

ψ̃(x, y, z, ω) = Ã(x, y, ω)e−κz + B̃(x, y, ω)eκz. (A.36)

Here Ã and B̃ are frequency-domain coefficients to be determined. We can either specify
these coefficients directly, or solve for them by applying specific boundary conditions.
We examine each possibility below.
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A.2.5.1 Solution to the wave equation by direct application of boundary
conditions

The solution to the wave equation (A.34) will be unique if we specify functions f(x, y, t)
and g(x, y, t) such that

ψ(x, y, z, t)
∣

∣

∣

z=0
= f(x, y, t),

∂

∂z
ψ(x, y, z, t)

∣

∣

∣

z=0
= g(x, y, t). (A.37)

Assuming the Fourier transform pairs f(x, y, t) ↔ f̃(x, y, ω) and g(x, y, t) ↔ g̃(x, y, ω),
we can apply the boundary conditions (A.37) in the frequency domain:

ψ̃(x, y, z, ω)
∣

∣

∣

z=0
= f̃(x, y, ω),

∂

∂z
ψ̃(x, y, z, ω)

∣

∣

∣

z=0
= g̃(x, y, ω).

From these we find
Ã+ B̃ = f̃ , −κÃ+ κB̃ = g̃,

or

Ã =
1

2

(

f̃ − g̃

κ

)

, B̃ =
1

2

(

f̃ +
g̃

κ

)

.

Substitution into (A.36) gives

ψ̃(x, y, z, ω) = f̃(x, y, ω) coshκz + g̃(x, y, ω)
sinhκz

κ

= f̃(x, y, ω)
∂

∂z
Q̃(x, y, z, ω) + g̃(x, y, ω)Q̃(x, y, z, ω)

= ψ̃1(x, y, z, ω) + ψ̃2(x, y, z, ω)

where Q̃ = sinhκz/κ. Assuming that Q(x, y, z, t) ↔ Q̃(x, y, z, ω), we can employ the
convolution theorem to immediately write down ψ(x, y, z, t):

ψ(x, y, z, t) = f(x, y, t) ∗ ∂

∂z
Q(x, y, z, t) + g(x, y, z, t) ∗Q(x, y, z, t)

= ψ1(x, y, z, t) + ψ2(x, y, z, t). (A.38)

To find ψ we must first compute the inverse transform of Q̃. We resort to a tabulated
result [28]:

sinh
[

a
√
p+ λ

√
p+ µ

]

√
p+ λ

√
p+ µ

↔ 1
2e

− 1
2 (µ+λ)tJ0

(

1
2 (λ − µ)

√

a2 − t2
)

(|t| < a).

Here a is a positive, finite real quantity, and λ and µ are finite complex quantities.
Outside the range |t| < a the time-domain function is zero.
Letting a = z/v, µ = 0, and λ = 2Ω in the above expression, we find

Q(x, y, z, t) =
v

2
e−ΩtJ0

(

Ω

v

√

z2 − v2t2
)

[U(t+ z/v)− U(t− z/v)] (A.39)
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where U(x) is the unit step function (A.6). From (A.38) we see that

ψ2(x, y, z, t) =

∫ ∞

−∞
g(x, y, t− τ)Q(x, y, z, τ) dτ =

∫ z/v

−z/v
g(x, y, t− τ)Q(x, y, z, τ) dτ.

Using the change of variables u = t− τ and substituting (A.39), we then have

ψ2(x, y, z, t) =
v

2
e−Ωt

∫ t+ z
v

t− z
v

g(x, y, u)eΩuJ0

(

Ω

v

√

z2 − (t− u)2v2
)

du. (A.40)

To find ψ1 we must compute ∂Q/∂z. Using the product rule we have

∂Q(x, y, z, t)

∂z
=
v

2
e−ΩtJ0

(

Ω

v

√

z2 − v2t2
)

∂

∂z
[U(t+ z/v)− U(t− z/v)]

+
v

2
e−Ωt[U(t+ z/v)− U(t− z/v)]

∂

∂z
J0

(

Ω

v

√

z2 − v2t2
)

.

Next, using dU(x)/dx = δ(x) and remembering that J ′
0(x) = −J1(x) and J0(0) = 1, we

can write

∂Q(x, y, z, t)

∂z
= 1

2e
−Ωt[δ(t+ z/v) + δ(t− z/v)]

− zΩ2

2v
e−Ωt J1

(

Ω
v

√
z2 − v2t2

)

Ω
v

√
z2 − v2t2

[U(t+ z/v)− U(t− z/v)].

Convolving this expression with f(x, y, t) we obtain

ψ1(x, y, z, t) =
1
2e

−Ω
v zf

(

x, y, t− z

v

)

+ 1
2e

Ω
v zf

(

x, y, t+
z

v

)

− zΩ2

2v
e−Ωt

∫ t+ z
v

t− z
v

f(x, y, u)eΩu
J1

(

Ω
v

√

z2 − (t− u)2v2
)

Ω
v

√

z2 − (t− u)2v2
du. (A.41)

Finally, adding (A.41) and (A.40), we obtain

ψ(x, y, z, t) = 1
2e

−Ω
v zf

(

x, y, t− z

v

)

+ 1
2e

Ω
v zf

(

x, y, t+
z

v

)

− zΩ2

2v
e−Ωt

∫ t+ z
v

t− z
v

f(x, y, u)eΩu
J1

(

Ω
v

√

z2 − (t− u)2v2
)

Ω
v

√

z2 − (t− u)2v2
du

+
v

2
e−Ωt

∫ t+ z
v

t− z
v

g(x, y, u)eΩuJ0

(

Ω

v

√

z2 − (t− u)2v2
)

du. (A.42)

Note that when Ω = 0 this reduces to

ψ(x, y, z, t) = 1
2f
(

x, y, t− z

v

)

+ 1
2f
(

x, y, t+
z

v

)

+
v

2

∫ t+ z
v

t− z
v

g(x, y, u) du,

which matches (A.33) for the homogeneous case where S = 0.
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A.2.5.2 Solution to the wave equation by specification of wave amplitudes

An alternative to direct specification of boundary conditions is specification of the am-
plitude functions Ã(x, y, ω) and B̃(x, y, ω) or their inverse transforms A(x, y, t) and
B(x, y, t). If we specify the time-domain functions, we can write ψ(x, y, z, t) as the
inverse transform of (A.36). For example, a wave traveling in the +z-direction behaves
as

ψ(x, y, z, t) = A(x, y, t) ∗ F+(x, y, z, t) (A.43)

where
F+(x, y, z, t) ↔ e−κz = e−

z
v

√
p2+2Ωp.

We can find F+ using the Fourier transform pair [28]

e−
x
v

√
(p+ρ)2−σ2 ↔ e−

ρ
vxδ(t− x/v) +

σx

v
e−ρt

I1

(

σ
√

t2 − (x/v)2
)

√

t2 − (x/v)2
(A.44)

valid for x/v < t. Here x is real and positive and I1(x) is the modified Bessel function of
the first kind and order 1. Outside the range x/v < t the time-domain function is zero.
Letting ρ = Ω and σ = Ω, we find

F+(x, y, z, t) =
Ω2z

v
e−Ωt I1(Ω

√

t2 − (z/v)2)

Ω
√

t2 − (z/v)2
U(t− z/v) + e−

Ω
v zδ(t− z/v). (A.45)

Note that F+ is a real functions of time, as expected.
Substituting (A.45) into (A.43) and writing the convolution in integral form, we have

ψ(x, y, z, t) =

∫ ∞

z/v

A(x, y, t− τ)

[

Ω2z

v
e−Ωτ I1(Ω

√

τ2 − (z/v)2)

Ω
√

τ2 − (z/v)2

]

dτ

+ e−
Ω
v zA

(

x, y, t− z

v

)

(z > 0). (A.46)

A.2.6 The 3-D Green’s function for waves in dissipative media

To understand the fields produced by bounded sources within a dissipative medium, we
may wish to investigate solutions to the wave equation in three dimensions. The Green’s
function approach requires the solution to

(

∇2 − 2Ω

v2
∂

∂t
− 1

v2
∂2

∂t2

)

G(r|r′; t) = −δ(t)δ(r− r′)

= −δ(t)δ(x − x′)δ(y − y′)δ(z − z′).

That is, we are interested in the impulse response of a point source located at r = r′.
We begin by substituting the inverse temporal Fourier transform relations

G(r|r′; t) = 1

2π

∫ ∞

−∞
G̃(r|r′;ω)ejωt dω, δ(t) =

1

2π

∫ ∞

−∞
ejωt dω,

obtaining

1

2π

∫ ∞

−∞

[(

∇2 − jω
2Ω

v2
− 1

v2
(jω)2

)

G̃(r|r′;ω) + δ(r− r′)

]

ejωt dω = 0.
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By the Fourier integral theorem, we have

(∇2 + k2)G̃(r|r′;ω) = −δ(r− r′). (A.47)

This is known as the Helmholtz equation. Here

k =
1

v

√

ω2 − j2ωΩ (A.48)

is called the wavenumber.
To solve the Helmholtz equation we write G̃ in terms of a 3-dimensional inverse Fourier

transform. Substitution of

G̃(r|r′;ω) = 1

(2π)3

∫ ∞

−∞
G̃r(k|r′;ω)ejk·r d3k,

δ(r− r′) =
1

(2π)3

∫ ∞

−∞
ejk·(r−r

′) d3k,

into (A.47) gives

1

(2π)3

∫ ∞

−∞

[

∇2
(

G̃r(k|r′;ω)ejk·r
)

+ k2G̃r(k|r′;ω)ejk·r + ejk·(r−r
′)
]

d3k = 0.

Here
k = x̂kx + ŷky + ẑkz

with |k|2 = k2x + k2y + k2z = K2. Carrying out the derivatives and invoking the Fourier
integral theorem, we have

(K2 − k2)G̃r(k|r′;ω) = e−jk·r
′

.

Solving for G̃ and substituting it into the inverse transform relation, we have

G̃(r|r′;ω) = 1

(2π)3

∫ ∞

−∞

ejk·(r−r
′)

(K − k)(K + k)
d3k. (A.49)

To compute the inverse transform integral in (A.49), we write the 3-D transform vari-
able in spherical coordinates:

k · (r− r′) = KR cos θ, d3k = K2 sin θ dK dθ dφ,

where R = |r− r′| and θ is the angle between k and r− r′. Hence (A.49) becomes

G̃(r|r′;ω) = 1

(2π)3

∫ ∞

0

K2 dK

(K − k)(K + k)

∫ 2π

0

dφ

∫ π

0

ejKR cos θ sin θ dθ

=
2

(2π)2R

∫ ∞

0

K sin(KR)

(K − k)(K + k)
dK,

or, equivalently,

G̃(r|r′;ω) = 1

2jR(2π)2

∫ ∞

−∞

ejKR

(K − k)(K + k)
K dK

− 1

2jR(2π)2

∫ ∞

−∞

e−jkR

(K − k)(K + k)
K dK.
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We can compute the integrals over K using the complex plane technique. We consider K
to be a complex variable, and note that for dissipative media we have k = kr+jki, where
kr > 0 and ki < 0. Thus the integrand has poles at K = ±k. For the integral involving
e+jKR we close the contour in the upper half-plane using a semicircle of radius ∆ and
use Cauchy’s residue theorem. Then at all points on the semicircle the integrand decays
exponentially as ∆ → ∞, and there is no contribution to the integral from this part of
the contour. The real-line integral is thus equal to 2πj times the residue at K = −k:

∫ ∞

−∞

ejKR

(K − k)(K + k)
K dK = 2πj

e−jkR

−2k
(−k).

For the term involving e−jKR we close in the lower half-plane and again the contribution
from the infinite semicircle vanishes. In this case our contour is clockwise and so the real
line integral is −2πj times the residue at K = k:

∫ ∞

−∞

e−jKR

(K − k)(K + k)
K dK = −2πj

e−jkR

2k
k.

Thus

G̃(r|r′;ω) = e−jkR

4πR
. (A.50)

Note that if Ω = 0 then this reduces to

G̃(r|r′;ω) = e−jωR/v

4πR
. (A.51)

Our last step is to find the temporal Green’s function. Let p = jω. Then we can write

G̃(r|r′;ω) = eκR

4πR
where κ = −jk =

1

v

√

p2 + 2Ωp.

We may find the inverse transform using (A.44). Letting x = R, ρ = Ω, and σ = Ω, we
find

G(r|r′; t) = e−
Ω
v R

δ(t−R/v)

4πR
+

Ω2

4πv
e−Ωt

I1

(

Ω
√

t2 − (R/v)2
)

Ω
√

t2 − (R/v)2
U

(

t− R

v

)

.

We note that in the case of no dissipation where Ω = 0, this reduces to

G(r|r′; t) = δ(t−R/v)

4πR

which is the inverse transform of (A.51).

A.2.7 Fourier transform representation of the 3-D Green’s function:
the Weyl identity

Consider the solution to the Helmholtz equation with a point source

∇2G(r|r′) + k2G(r|r′) = −δ(r− r′) = −δ(x− x′)δ(y − y′)δ(z − z′), (A.52)

where k is a complex constant with Re{k} ≥ 0 and Im{k} ≤ 0. Here G(r|r′) is the
three-dimensional Green’s function for the Helmholtz equation, representing the wave
function at point r produced by a unit point source at point r′.
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In Chapter 5 we find that G(r|r′) = e−jkR/4πR where R = |r − r′|. In a variety of
problems it is also useful to express G as an inverse Fourier transform over the variables
x and y. Letting Gr form a three-dimensional Fourier transform pair with G, we can
write

G(r|r′) = 1

(2π)3

∫ ∞

−∞
Gr(kx, ky, kz|r′)ejkxxejkyyejkzz dkx dky dkz.

Substitution into (A.52) along with the inverse transform representation for the delta
function (A.5) gives

1

(2π)3
(

∇2 + k2
)

∫ ∞

−∞
Gr(kx, ky, kz|r′)ejkxxejkyyejkzz dkx dky dkz

= − 1

(2π)3

∫ ∞

−∞
ejkx(x−x

′)ejky(y−y
′)ejkz(z−z

′) dkx dky dkz.

We then combine the integrands and move the Laplacian operator through the integral
to obtain

1

(2π)3

∫ ∞

−∞

[

(

∇2 + k2
) (

Gr(k|r′)ejk·r
)

+ ejk·(r−r
′)
]

d3k = 0,

where k = x̂kx + ŷky + ẑkz. Carrying out the derivatives, we get

1

(2π)3

∫ ∞

−∞

[

(

−k2x − k2y − k2z + k2
)

Gr(k|r′) + e−jk·r
′
]

ejk·r d3k = 0.

Letting k2x + k2y = k2ρ, and invoking the Fourier integral theorem, we get the algebraic
equation

(

k2 − k2ρ − k2z
)

Gr(k|r′) + e−jk·r
′

= 0,

which we can easily solve for Gr:

Gr(k|r′) = e−jk·r
′

k2ρ + k2z − k2
. (A.53)

Equation (A.53) yields a 3-D transform representation for the Green’s function. To
obtain the 2-D representation, we must carry out the inverse transform over kz. Writing

Gxy(kx, ky, z|r′) =
1

2π

∫ ∞

−∞
Gr(kx, ky, kz|r′)ejkzz dkz

we have

Gxy(kx, ky, z|r′) =
1

2π

∫ ∞

−∞

e−jkxx
′

e−jkyy
′

ejkz(z−z
′)

k2z + (k2ρ − k2)
dkz .

Factorization of the denominator term gives

Gxy(kx, ky, z|r′) =
1

2π

∫ ∞

−∞

e−jkxx
′

e−jkyy
′

ejkz(z−z
′)

(

kz − j
√

k2ρ − k2
)(

kz + j
√

k2ρ − k2
) dkz . (A.54)

Recall that k is in the fourth quadrant of the complex plane. Hence k2 is in the lower

half-plane, k2ρ − k2 is in the upper half-plane, and
√

k2ρ − k2 is in the first quadrant. So

j
√

k2ρ − k2 and −j
√

k2ρ − k2 are in the second and fourth quadrants, respectively.
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To compute this integral, we let kz be a complex variable and consider a closed contour
in the complex plane, consisting of a semicircle and the real axis. As previously discussed,
we compute the principal value integral as the semicircle radius ∆ → ∞, and find that
the contribution along the semicircle reduces to zero. Hence we can use Cauchy’s residue
theorem (A.15) to obtain the real-line integral:

Gxy(kx, ky, z|r′) = 2πj res







1

2π

e−jkxx
′

e−jkyy
′

ejkz(z−z
′)

(

kz − j
√

k2ρ − k2
)(

kz + j
√

k2ρ − k2
)







.

Here res{f(kz)} denotes the residues of the function f(kz). The integrand in (A.54) has

poles of order 1 at kz = j
√

k2 − k2ρ and kz = −j
√

k2 − k2ρ, which are in the second and

fourth quadrants, respectively. If z− z′ > 0 we close in the upper half-plane and enclose

only the pole at kz = j
√

k2ρ − k2. Computing the residue using (A.14), we obtain

Gxy(kx, ky, z|r′) =
e−jkxx

′

e−jkyy
′

e−
√
k2ρ−k2(z−z′)

2
√

k2ρ − k2
(z > z′).

Since z > z′, this function represents a wave that propagates in the +z direction and
decays for increasing z, as expected physically. For z − z′ < 0 we close in the lower

half-plane, enclosing the pole at kz = −j
√

k2ρ − k2 and incurring an additional negative

sign since our contour is now clockwise. The residue evaluation gives

Gxy(kx, ky, z|r′) =
e−jkxx

′

e−jkyy
′

e
√
k2ρ−k2(z−z′)

2
√

k2ρ − k2
(z < z′).

We can combine both cases z > z′ and z < z′ by using the absolute value function:

Gxy(kx, ky, z|r′) =
e−jkxx

′

e−jkyy
′

e−p|z−z
′|

2p
, (A.55)

where p =
√

k2ρ − k2.

Finally, we substitute (A.55) into the inverse transform formula. This gives the Green’s
function representation

G(r|r′) = e−jk|r−r
′|

4π|r− r′| =
1

(2π)2

∫ ∞

−∞

e−p|z−z
′|

2p
ejkρ·(r−r

′) d2kρ, (A.56)

where kρ = x̂kx + ŷky, kρ = |kρ|, and d2kρ = dkx dky . Equation (A.56) has been called
the Weyl identity [22].

A.2.8 Fourier transform representation of the static Green’s function

In the study of static fields, we are interested in solving the partial differential equation

∇2G(r|r′) = −δ(r− r′) = −δ(x− x′)δ(y − y′)δ(z − z′).

Here G(r|r′), called the “static Green’s function,” represents the potential at location r
produced by a unit point source at location r′.
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In Chapter 3, we found that G(r|r′) = 1/4π|r−r′|, but it is also useful to express G as
an inverse Fourier transform over the variables x and y. We can easily obtain the desired
relation by letting k → 0 in (A.56). Then p = kρ and we have the Green’s function
representation

G(r|r′) = 1

4π|r− r′| =
1

(2π)2

∫ ∞

−∞

e−kρ|z−z
′|

2kρ
ejkρ·(r−r

′) d2kρ,

where kρ = x̂kx + ŷky, kρ = |kρ|, and d2kρ = dkx dky .

A.2.9 Fourier transform solution to Laplace’s equation

On occasion we may wish to represent the solution of the homogeneous (Laplace) equation

∇2ψ(r) = 0

in terms of a 2-D Fourier transform. In this case we represent ψ as a 2-D inverse transform
as in § A.2.7 and substitute the inverse transform to obtain

1

(2π)2

∫ ∞

−∞
∇2
(

ψxy(kx, ky, z)e
jkxxejkyy

)

dkx dky = 0.

Carrying out the derivatives and invoking the Fourier integral theorem, we find that
(

∂2

∂z2
− k2ρ

)

ψxy(kx, ky, z) = 0.

Hence
ψxy(kx, ky, z) = Aekρz +Be−kρz

where A and B are constants with respect to z. Inverse transformation gives

ψ(r) =
1

(2π)2

∫ ∞

−∞

[

A(kρ)e
kρz +B(kρ)e

−kρz] ejkρ·r d2kρ. (A.57)

It is convenient to write this expression in polar coordinates for problems with az-
imuthal symmetry. Let x = ρ cosφ, y = ρ sinφ, kx = kρ cosα, and ky = kρ sinα. Then
kρ · r = kρρ cos(α− φ) and

ψ(r) =
1

(2π)2

∫ 2π

0

∫ ∞

0

[

A(kρ)e
kρz +B(kρ)e

−kρz] ejkρρ cos(α−φ) kρ dkρ dα.

If the problem has azimuthal symmetry such that ψ is independent of φ, then both A(kρ)
and B(kρ) are independent of α. (This can be shown by taking the forward transform
of ψ(ρ, z).) In this case

ψ(ρ, z) =
1

(2π)2

∫ ∞

0

[

A(kρ)e
kρz +B(kρ)e

−kρz]
∫ 2π

0

ejkρρ cos(α−φ) dα kρ dkρ.

Using the change of variables ξ = α− φ then gives

ψ(ρ, z) =
1

(2π)2

∫ ∞

0

[

A(kρ)e
kρz +B(kρ)e

−kρz]
∫ π

−π
ejkρρ cos ξ dξ kρ dkρ.

The integral over ξ is just 2πJ0(kρρ). Absorbing the factors 2π and kρ into the terms
A(kρ) and B(kρ) gives the solution to Laplace’s equation as

ψ(ρ, z) =

∫ ∞

0

[

A(kρ)e
kρz +B(kρ)e

−kρz] J0(kρρ) dkρ. (A.58)
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A.3 Vector transport theorems

We are often interested in the time rate of change of some field integrated over a moving
volume or surface. Such a derivative may be used to describe the transport of a physical
quantity (e.g., charge, momentum, energy) through space. Many of the relevant theorems
are derived in this section. The results find application in the development of the large-
scale forms of Maxwell equations, the continuity equation, and the Poynting theorem.

A.3.1 Partial, total, and material derivatives

The key to understanding transport theorems lies in the difference between the various
means of time-differentiating a field. Consider a scalar field T (r, t) (which could represent
one component of a vector or dyadic field). If we fix our position within the field and
examine how the field varies with time, we describe the partial derivative of T . However,
this may not be the most useful means of measuring the time rate of change of a field.
For instance, in mechanics we might be interested in the rate at which water cools as
it sinks to the bottom of a container. In this case, T could represent temperature. We
could create a “depth profile” at any given time (i.e., measure T (r, t0) for some fixed t0)
by taking simultaneous data from a series of temperature probes at varying depths. We
could also create a temporal profile at any given depth (i.e., measure T (r0, t) for some
fixed r0) by taking continuous data from a probe fixed at that depth. But neither of
these would describe how an individual sinking water particle “experiences” a change in
temperature over time.
Instead, we could use a probe that descends along with a particular water packet (i.e.,

volume element), measuring the time rate of temperature change of that element. This
rate of change is called the convective or material derivative, since it corresponds to a
situation in which a physical material quantity is followed as the derivative is calculated.
We anticipate that this quantity will depend on (1) the time rate of change of T at each
fixed point that the particle passes, and (2) the spatial rate of change of T as well as
the rapidity with which the packet of interest is swept through that space gradient. The
faster the packet descends, or the faster the temperature cools with depth, the larger the
material derivative should be.
To compute the material derivative, we describe the position of a water packet by the

vector
r(t) = x̂x(t) + ŷy(t) + ẑz(t).

Because no two packets can occupy the same place at the same time, the specification of
r(0) = r0 uniquely describes (or “tags”) a particular packet. The time rate of change of r
with r0 held constant (the material derivative of the position vector) is thus the velocity
field u(r, t) of the fluid:

(

dr

dt

)

r0

=
Dr

Dt
= u. (A.59)

Here we use the “big D” notation to denote the material derivative, thereby avoiding
confusion with the partial and total derivatives described below.
To describe the time rate of change of the temperature of a particular water packet, we

only need to hold r0 constant while we examine the change. If we write the temperature
as

T (r, t) = T (r(r0, t), t) = T [x(r0, t), y(r0, t), z(r0, t), t],
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then we can use the chain rule to find the time rate of change of T with r0 held constant:

DT

Dt
=

(

dT

dt

)

r0

=

(

∂T

∂x

)(

dx

dt

)

r0

+

(

∂T

∂y

)(

dy

dt

)

r0

+

(

∂T

∂z

)(

dz

dt

)

r0

+
∂T

∂t
.

We recognize the partial derivatives of the coordinates as the components of the material
velocity (A.59), and thus can write

DT

Dt
=
∂T

∂t
+ ux

∂T

∂x
+ uy

∂T

∂y
+ uz

∂T

∂z
=
∂T

∂t
+ u · ∇T.

As expected, the material derivative depends on both the local time rate of change and
the spatial rate of change of temperature.

Suppose next that our probe is motorized and can travel about in the sinking water.
If the probe sinks faster than the surrounding water, the time rate of change (measured
by the probe) should exceed the material derivative. Let the probe position and velocity
be

r(t) = x̂x(t) + ŷy(t) + ẑz(t), v(r, t) = x̂
dx(t)

dt
+ ŷ

dy(t)

dt
+ ẑ

dz(t)

dt
.

We can use the chain rule to determine the time rate of change of the temperature
observed by the probe, but in this case we do not constrain the velocity components to
represent the moving fluid. Thus, we merely obtain

dT

dt
=
∂T

∂x

dx

dt
+
∂T

∂y

dy

dt
+
∂T

∂z

dz

dt
+
∂T

∂t
=
∂T

∂t
+ v · ∇T.

This is called the total derivative of the temperature field.
In summary, the time rate of change of a scalar field T seen by an observer moving

with arbitrary velocity v is given by the total derivative

dT

dt
=
∂T

∂t
+ v · ∇T. (A.60)

If the velocity of the observer happens to match the velocity u of a moving substance,
the time rate of change is the material derivative

DT

Dt
=
∂T

∂t
+ u · ∇T. (A.61)

We can obtain the material derivative of a vector field F by component-wise application
of (A.61):

DF

Dt
=

D

Dt
[x̂Fx + ŷFy + ẑFz ]

= x̂
∂Fx
∂t

+ ŷ
∂Fy
∂t

+ ẑ
∂Fz
∂t

+ x̂ [u · (∇Fx)] + ŷ [u · (∇Fy)] + ẑ [u · (∇Fz)] .

Using the notation

u · ∇ = ux
∂

∂x
+ uy

∂

∂y
+ uz

∂

∂z

we can write
DF

Dt
=
∂F

∂t
+ (u · ∇)F. (A.62)

This is the material derivative of a vector field F when u describes the motion of a
physical material. Similarly, the total derivative of a vector field is

dF

dt
=
∂F

∂t
+ (v · ∇)F

where v is arbitrary.
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FIGURE A.5

Derivation of the Helmholtz transport theorem.

A.3.2 The Helmholtz and Reynolds transport theorems

We choose the intuitive approach taken by Tai [188] and Whitaker [214]. Consider an
open surface S(t) moving through space and possibly deforming as it moves. The velocity
of the points composing the surface is given by the vector field v(r, t). We are interested
in computing the time derivative of the flux of a vector field F(r, t) through S(t):

ψ(t) =
d

dt

∫

S(t)

F(r, t) ·dS = lim
∆t→0

∫

S(t+∆t)
F(r, t+∆t) · dS−

∫

S(t)
F(r, t) · dS

∆t
. (A.63)

Here S(t+∆t) = S2 is found by extending each point on S(t) = S1 through a displacement
v∆t, as shown in Figure A.5. Substituting the Taylor expansion

F(r, t+∆t) = F(r, t) +
∂F(r, t)

∂t
∆t+ · · ·

into (A.63), we find that only the first two terms give nonzero contributions to the
integral, and

ψ(t) =

∫

S(t)

∂F(r, t)

∂t
· dS+ lim

∆t→0

∫

S2
F(r, t) · dS−

∫

S1
F(r, t) · dS

∆t
. (A.64)

The second term on the right can be evaluated with the help of Figure A.5. As the surface
moves through a displacement v∆t it sweeps out a volume region ∆V that is bounded
on the back by S1, on the front by S2, and on the side by a surface S3 = ∆S. We can
thus compute the two surface integrals in (A.64) as the difference between contributions
from the surface enclosing ∆V and the side surface ∆S (remembering that the normal
to S1 in (A.64) points into ∆V ). Thus

ψ(t) =

∫

S(t)

∂F(r, t)

∂t
· dS+ lim

∆t→0

∮

S1+S2+∆S
F(r, t) · dS−

∫

∆S
F(r, t) · dS3

∆t

=

∫

S(t)

∂F(r, t)

∂t
· dS+ lim

∆t→0

∫

∆V
∇ ·F(r, t) dV3 −

∫

∆S
F(r, t) · dS3

∆t
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by the divergence theorem. To compute the integrals over ∆S and ∆V , we note from
Figure A.5 that the incremental surface and volume elements are just

dS3 = dl× (v∆t), dV3 = (v∆t) · dS.

Then, since F · [dl × (v∆t)] = ∆t(v × F) · dl, we have

ψ(t) =

∫

S(t)

∂F(r, t)

∂t
·dS+ lim

∆t→0

∆t
∫

S(t)
[v∇ ·F(r, t)] · dS

∆t
− lim

∆t→0

∆t
∮

Γ [v × F(r, t)] · dl
∆t

.

Taking the limit and using Stokes’s theorem on the last integral, we finally have

d

dt

∫

S(t)

F · dS =

∫

S(t)

[

∂F

∂t
+ v∇ ·F−∇× (v × F)

]

· dS, (A.65)

which is the Helmholtz transport theorem [188, 40].
In case the surface corresponds to a moving physical material, we may wish to write

the Helmholtz transport theorem in terms of the material derivative. We can set v = u
and use

∇× (u× F) = u(∇ ·F)− F(∇ · u) + (F · ∇)u− (u · ∇)F

and (A.62) to obtain

d

dt

∫

S(t)

F · dS =

∫

S(t)

[

DF

Dt
+ F(∇ · u)− (F · ∇)u

]

· dS.

If S(t) in (A.65) is closed, enclosing a volume region V (t), then
∮

S(t)

[∇× (v × F)] · dS =

∫

V (t)

∇ · [∇× (v × F)] dV = 0

by the divergence theorem and (B.55). In this case the Helmholtz transport theorem
becomes

d

dt

∮

S(t)

F · dS =

∮

S(t)

[

∂F

∂t
+ v∇ ·F

]

· dS. (A.66)

We now come to an essential tool that we employ throughout the book. Using the
divergence theorem, we can rewrite (A.66) as

d

dt

∫

V (t)

∇ ·F dV =

∫

V (t)

∇ · ∂F
∂t

dV +

∮

S(t)

(∇ · F)v · dS.

Replacing ∇ ·F by the scalar field ρ, we have

d

dt

∫

V (t)

ρ dV =

∫

V (t)

∂ρ

∂t
dV +

∮

S(t)

ρv · dS. (A.67)

In this general form of the transport theorem, v is an arbitrary velocity. In most appli-
cations v = u describes the motion of a material substance; then

D

Dt

∫

V (t)

ρ dV =

∫

V (t)

∂ρ

∂t
dV +

∮

S(t)

ρu · dS, (A.68)

which is the Reynolds transport theorem [214]. The D/Dt notation implies that V (t)
retains exactly the same material elements as it moves and deforms to follow the material
substance.



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 871 — #895
✐

✐

✐

✐

✐

✐

Mathematical appendix 871

We may rewrite the Reynolds transport theorem in various forms. By the divergence
theorem, we have

d

dt

∫

V (t)

ρ dV =

∫

V (t)

[

∂ρ

∂t
+∇ · (ρv)

]

dV.

Setting v = u, using (B.48), and using (A.61) for the material derivative of ρ, we obtain

D

Dt

∫

V (t)

ρ dV =

∫

V (t)

[

Dρ

Dt
+ ρ∇ · u

]

dV. (A.69)

We may also generate a vector form of the general transport theorem by taking ρ in
(A.67) to be a component of a vector. Assembling all of the components, we have

d

dt

∫

V (t)

A dV =

∫

V (t)

∂A

∂t
dV +

∮

S(t)

A(v · n̂) dS. (A.70)

A.4 Dyadic analysis

Dyadic analysis was introduced in the late nineteenth century by Gibbs to generalize
vector analysis to problems in which the components of vectors are related in a linear
manner. It has now been widely supplanted by tensor theory, but maintains a foothold in
engineering, where the transformation properties of tensors are not paramount (except,
of course, in considerations such as those involving special relativity). Terms such as
“tensor permittivity” and “dyadic permittivity” are often used interchangeably.

A.4.1 Component form representation

We wish to write one vector field A(r, t) as a linear function of another vector field
B(r, t):

A = f(B).

By this we mean that each component of A is a linear combination of the components
of B:

A1(r, t) = a11′ B1′(r, t) + a12′ B2′(r, t) + a13′ B3′(r, t),

A2(r, t) = a21′ B1′(r, t) + a22′ B2′(r, t) + a23′ B3′(r, t),

A3(r, t) = a31′ B1′(r, t) + a32′ B2′(r, t) + a33′ B3′(r, t).

Here the aij′ may depend on space and time (or frequency). The prime on the second

index indicates that A and B may be expressed in distinct coordinate frames (̂i1, î2, î3)

and (̂i1′ , î2′ , î3′), respectively. We have

A1 = (a11′ î1′ + a12′ î2′ + a13′ î3′) · (̂i1′B1′ + î2′B2′ + î3′B3′),

A2 = (a21′ î1′ + a22′ î2′ + a23′ î3′) · (̂i1′B1′ + î2′B2′ + î3′B3′),

A3 = (a31′ î1′ + a32′ î2′ + a33′ î3′) · (̂i1′B1′ + î2′B2′ + î3′B3′),

and since B = î1′B1′ + î2′B2′ + î3′B3′ we can write

A = î1(a
′
1 ·B) + î2(a

′
2 ·B) + î3(a

′
3 ·B)
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where

a′1 = a11′ î1′ + a12′ î2′ + a13′ î3′ ,

a′2 = a21′ î1′ + a22′ î2′ + a23′ î3′ ,

a′3 = a31′ î1′ + a32′ î2′ + a33′ î3′ .

In shorthand notation

A = ā ·B (A.71)

where

ā = î1a
′
1 + î2a

′
2 + î3a

′
3. (A.72)

Written out, the quantity ā looks like

ā = a11′ (̂i1î1′) + a12′ (̂i1î2′) + a13′ (̂i1î3′)

+ a21′ (̂i2 î1′) + a22′ (̂i2î2′) + a23′ (̂i2î3′)

+ a31′ (̂i3 î1′) + a32′ (̂i3î2′) + a33′ (̂i3î3′).

Terms such as î1î1′ are called dyads , while sums of dyads such as ā are called dyadics.
The components aij′ of ā may be conveniently placed into an array:

[ā] =





a11′ a12′ a13′

a21′ a22′ a23′
a31′ a32′ a33′



 .

Writing

[A] =





A1

A2

A3



 , [B] =





B1′

B2′

B3′



 ,

we see that A = ā ·B can be written as

[A] = [ā] [B] =





a11′ a12′ a13′

a21′ a22′ a23′

a31′ a32′ a33′









B1′

B2′

B3′



 .

Note carefully that in (A.71) ā operates on B from the left. A reorganization of the
components of ā allows us to write

ā = a1 î1′ + a2î2′ + a3 î3′ (A.73)

where

a1 = a11′ î1 + a21′ î2 + a31′ î3,

a2 = a12′ î1 + a22′ î2 + a32′ î3,

a3 = a13′ î1 + a23′ î2 + a33′ î3.

We may now consider using ā to operate on a vector C = î1C1 + î2C2 + î3C3 from the
right:

C · ā = (C · a1 )̂i1′ + (C · a2 )̂i2′ + (C · a3 )̂i3′ .
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In matrix form C · ā is

[ā]
T
[C] =





a11′ a21′ a31′

a12′ a22′ a32′

a13′ a23′ a33′









C1

C2

C3





where the superscript “T ” denotes the matrix transpose operation. That is,

C · ā = āT ·C

where āT is the transpose of ā.
If the primed and unprimed frames coincide, then

ā = a11(̂i1î1) + a12(̂i1î2) + a13(̂i1î3)

+ a21(̂i2î1) + a22(̂i2î2) + a23 (̂i2î3)

+ a31(̂i3î1) + a32(̂i3î2) + a33 (̂i3î3).

In this case we may compare the results of ā · B and B · ā for a given vector B =
î1B1 + î2B2 + î3B3. We leave it to the reader to verify that in general, B · ā 6= ā ·B.

A.4.2 Vector form representation

We can express dyadics in coordinate-free fashion if we expand the concept of a dyad to
permit entities such as AB. Here A and B are called the antecedent and consequent,
respectively. The operation rules

(AB) ·C = A(B ·C), C · (AB) = (C ·A)B,

define the anterior and posterior products of AB with a vector C, and give results
consistent with our prior component notation. Sums of dyads such as AB + CD are
called dyadic polynomials , or dyadics. The simple dyadic

AB = (A1 î1 +A2 î2 +A3 î3)(B1′ î1′ +B2′ î2′ +B3′ î3′)

can be represented in component form using

AB = î1a
′
1 + î2a

′
2 + î3a

′
3

where

a′1 = A1B1′ î1′ +A1B2′ î2′ +A1B3′ î3′ ,

a′2 = A2B1′ î1′ +A2B2′ î2′ +A2B3′ î3′ ,

a′3 = A3B1′ î1′ +A3B2′ î2′ +A3B3′ î3′ ,

or using
AB = a1 î1′ + a2 î2′ + a3î3′

where

a1 = î1A1B1′ + î2A2B1′ + î3A3B1′ ,

a2 = î1A1B2′ + î2A2B2′ + î3A3B2′ ,

a3 = î1A1B3′ + î2A2B3′ + î3A3B3′ .
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Note that if we write ā = AB, then aij = AiBj′ .
A simple dyad AB by itself cannot represent a general dyadic ā; only six independent

quantities are available in AB (the three components of A and the three components
of B), while an arbitrary dyadic has nine independent components. However, it can be
shown that any dyadic can be written as a sum of three dyads:

ā = AB+CD+EF.

This is called a vector representation of ā. If V is a vector, the distributive laws

ā ·V = (AB+CD+EF) ·V = A(B ·V) +C(D ·V) +E(F ·V),

V · ā = V · (AB+CD+EF) = (V ·A)B+ (V ·C)D+ (V ·E)F,

apply.

A.4.3 Dyadic algebra and calculus

The cross product of a vector with a dyadic produces another dyadic. If ā = AB+CD+
EF, then by definition

ā×V = A(B×V) +C(D×V) +E(F×V),

V × ā = (V ×A)B+ (V ×C)D+ (V ×E)F.

The corresponding component forms are

ā×V = î1(a
′
1 ×V) + î2(a

′
2 ×V) + î3(a

′
3 ×V),

V × ā = (V × a1 )̂i1′ + (V × a2 )̂i2′ + (V × a3 )̂i3′ ,

where we have used (A.72) and (A.73), respectively. Interactions between dyads or
dyadics may also be defined. The dot product of two dyads AB and CD is a dyad given
by

(AB) · (CD) = A(B ·C)D = (B ·C)(AD).

The dot product of two dyadics can be found by applying the distributive property.
If α is a scalar, then the product αā is a dyadic with components equal to α times

the components of ā. Dyadic addition may be accomplished by adding individual dyadic
components as long as the dyadics are expressed in the same coordinate system. Sub-
traction is accomplished by adding the negative of a dyadic, which is defined through
scalar multiplication by −1.

Some useful dyadic identities appear in Appendix B. Many more can be found in Van
Bladel [203].

The various vector derivatives may also be extended to dyadics. Computations are
easiest in rectangular coordinates, since î1 = x̂, î2 = ŷ, and î3 = ẑ are constant with
position. The dyadic

ā = axx̂+ ayŷ + az ẑ

has divergence and curl

∇ · ā = (∇ · ax)x̂ + (∇ · ay)ŷ + (∇ · az)ẑ,
∇× ā = (∇× ax)x̂+ (∇× ay)ŷ + (∇× az)ẑ.
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Note that the divergence of a dyadic is a vector while the curl of a dyadic is a dyadic.
The gradient of a vector a = axx̂+ ayŷ + azẑ is the dyadic quantity

∇a = (∇ax)x̂ + (∇ay)ŷ + (∇az)ẑ.

The dyadic derivatives may be expressed in coordinate-free notation by using the vector
representation. The dyad AB has divergence and curl

∇ · (AB) = (∇ ·A)B+A · (∇B),

∇× (AB) = (∇×A)B−A× (∇B).

The Laplacian of a dyadic is a dyadic given by

∇2ā = ∇(∇ · ā)−∇× (∇× ā).

The divergence theorem for dyadics is
∫

V

∇ · ā dV =

∮

S

n̂ · ā dS.

Some of the other common differential and integral identities for dyadics can be found
in Van Bladel [203] and Tai [189].

A.4.4 Special dyadics

We say that ā is symmetric if
B · ā = ā ·B

for any vector B. This requires āT = ā, i.e., aij′ = aji′ . We say that ā is antisymmetric
if

B · ā = −ā ·B
for any B. In this case āT = −ā. That is, aij′ = −aji′ and aii′ = 0. A symmetric dyadic
has only six independent components while an antisymmetric dyadic has only three. The
reader can verify that any dyadic can be decomposed into symmetric and antisymmetric
parts as

ā = 1
2 (ā+ āT ) + 1

2 (ā− āT ).

A simple example of a symmetric dyadic is the unit dyadic Ī defined by

Ī = î1î1 + î2î2 + î3î3.

This quantity often arises in the manipulation of dyadic equations, and satisfies

A · Ī = Ī ·A = A

for any vector A. In matrix form, Ī is the identity matrix:

[Ī] =





1 0 0
0 1 0
0 0 1



 .

The components of a dyadic may be complex. We say that ā is hermitian if

B · ā = ā∗ ·B (A.74)
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holds for any B. This requires that ā∗ = āT . Taking the transpose, we can write

ā = (ā∗)T = ā†

where “†” stands for the conjugate-transpose operation. We say that ā is anti-hermitian
if

B · ā = −ā∗ ·B (A.75)

for arbitrary B. In this case ā∗ = −āT . Any complex dyadic can be decomposed into
hermitian and anti-hermitian parts:

ā = 1
2 (ā

H + āA) (A.76)

where
āH = ā+ ā†, āA = ā− ā†. (A.77)

A dyadic identity important in the study of material parameters is

B · ā∗ ·B∗ = B∗ · ā† ·B. (A.78)

We show this by decomposing ā according to (A.76), giving

B · ā∗ ·B∗ = 1
2

(

[B∗ · āH ]∗ +B∗ · āA]∗
)

·B∗

where we have used (B · ā)∗ = (B∗ · ā∗). Applying (A.74) and (A.75), we obtain

B · ā∗ ·B∗ = 1
2

(

[āH∗ ·B∗]∗ − [āA∗ ·B∗]∗
)

·B∗

= B∗ · 1
2

(

[āH ·B]− [āA ·B]
)

= B∗ ·
(

1
2 [ā

H − āA] ·B
)

.

Since the bracketed term is āH − āA = 2ā† by (A.77), the identity is proved.

A.5 Boundary value problems

Many physical phenomena may be described mathematically as the solutions to boundary
value problems. The desired physical quantity (usually called a “field”) in a certain
region of space is found by solving one or more partial differential equations subject to
certain conditions over the boundary surface. The boundary conditions may specify the
values of the field, some manipulated version of the field (such as the normal derivative),
or a relationship between fields in adjoining regions. If the field varies with time as
well as space, initial or final values of the field must also be specified. Particularly
important is whether a boundary value problem is well-posed and therefore has a unique
solution that depends continuously on the data supplied. This depends on the forms
of the differential equation and boundary conditions. The well-posedness of Maxwell’s
equations is discussed in § 2.2.

The importance of boundary value problems has led to an array of techniques, both
analytical and numerical, for solving them. Many problems (such as boundary value
problems involving Laplace’s equation) may be solved in several different ways. Unique-
ness permits an engineer to focus attention on which technique will yield the most efficient
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solution. In this section we concentrate on the separation of variables technique, which is
widely applied in the solution of Maxwell’s equations. We first discuss eigenvalue prob-
lems and then give an overview of separation of variables. Finally, we consider a number
of example problems in each of the three common coordinate systems.

A.5.1 Sturm–Liouville problems and eigenvalues

The partial differential equations of electromagnetics can often be reduced to ordinary
differential equations. In some cases, symmetry permits us to reduce the number of
dimensions by inspection; in other cases, we may employ an integral transform (e.g.,
the Fourier transform) or separation of variables. The resulting ordinary differential
equations may be viewed as particular cases of the Sturm–Liouville differential equation

d

dx

[

p(x)
dψ(x)

dx

]

+ q(x)ψ(x) + λσ(x)ψ(x) = 0 (a ≤ x ≤ b). (A.79)

In linear operator notation

L [ψ(x)] = −λσ(x)ψ(x), (A.80)

where L is the linear Sturm–Liouville operator

L =

(

d

dx

[

p(x)
d

dx

]

+ q(x)

)

.

Obviously ψ(x) = 0 satisfies (A.80). However, for certain values of λ dependent on p,
q, σ, and the boundary conditions we impose, (A.80) has non-trivial solutions. Each λ
that satisfies (A.80) is an eigenvalue of L, and any non-trivial solution associated with
that eigenvalue is an eigenfunction. Taken together, the eigenvalues of an operator form
its eigenvalue spectrum.
We shall restrict ourselves to the case in which L is self-adjoint. Assume p, q, and σ

are real and continuous on [a, b]. It is straightforward to show that for any two functions
u(x) and v(x), Lagrange’s identity

uL[v]− vL[u] =
d

dx

[

p

(

u
dv

dx
− v

du

dx

)]

(A.81)

holds. Integration gives Green’s formula

∫ b

a

(uL[v]− vL[u]) dx = p

(

u
dv

dx
− v

du

dx

)

∣

∣

∣

b

a
.

The operator L is self-adjoint if its associated boundary conditions are such that

p

(

u
dv

dx
− v

du

dx

)

∣

∣

∣

b

a
= 0. (A.82)

Possible sets of conditions include the homogeneous boundary conditions

α1ψ(a) + β1ψ
′(a) = 0, α2ψ(b) + β2ψ

′(b) = 0, (A.83)

and the periodic boundary conditions

ψ(a) = ψ(b), p(a)ψ′(a) = p(b)ψ′(b). (A.84)
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By imposing one of these sets on (A.80) we obtain a Sturm–Liouville problem.
The self-adjoint Sturm–Liouville operator has some nice properties. Each eigenvalue is

real, and the eigenvalues form a denumerable set with no cluster point. Moreover, eigen-
functions corresponding to distinct eigenvalues are orthogonal, and the eigenfunctions
form a complete set. Hence we can expand any sufficiently smooth function in terms of
the eigenfunctions of a problem. We discuss this further below.

A regular Sturm–Liouville problem involves a self-adjoint operator L with p(x) > 0
and σ(x) > 0 everywhere, and the homogeneous boundary conditions (A.83). If p or σ
vanishes at an endpoint of [a, b], or an endpoint is at infinity, the problem is singular.
The harmonic differential equation can form the basis of regular problems, while prob-
lems involving Bessel’s and Legendre’s equations are singular. Regular Sturm–Liouville
problems have additional properties. There are infinitely many eigenvalues. There is
a smallest eigenvalue but no largest eigenvalue, and the eigenvalues can be ordered as
λ0 < λ1 < · · · < λn · · · . Associated with each λn is a unique (to an arbitrary multiplica-
tive constant) eigenfunction ψn that has exactly n zeros in (a, b).

If a problem is singular because p = 0 at an endpoint, we can also satisfy (A.82) by
demanding that ψ be bounded at that endpoint (a singularity condition) and that any
regular Sturm–Liouville boundary condition hold at the other endpoint. This is the case
for Bessel’s and Legendre’s equations discussed below.

A.5.1.1 Orthogonality of the eigenfunctions

Let L be self-adjoint, and let ψm and ψn be eigenfunctions associated with λm and λn,
respectively. Then by (A.82) we have

∫ b

a

(ψm(x)L[ψn(x)]− ψn(x)L[ψm(x)]) dx = 0.

But L[ψn(x)] = −λnσ(x)ψn(x) and L[ψm(x)] = −λmσ(x)ψm(x). Hence

(λm − λn)

∫ b

a

ψm(x)ψn(x)σ(x) dx = 0,

and λm 6= λn implies that

∫ b

a

ψm(x)ψn(x)σ(x) dx = 0. (A.85)

We say that ψm and ψn are orthogonal with respect to the weight function σ(x).

A.5.1.2 Eigenfunction expansion of an arbitrary function

If L is self-adjoint, then its eigenfunctions form a complete set. This means that any
piecewise smooth function may be represented as a weighted series of eigenfunctions.
Specifically, if f and f ′ are piecewise continuous on [a, b], then f may be represented as
the generalized Fourier series

f(x) =

∞
∑

n=0

cnψn(x). (A.86)

Convergence of the series is uniform and gives, at any point of (a, b), the average value
[f(x+)+ f(x−)]/2 of the one-sided limits f(x+) and f(x−) of f(x). The cn can be found
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using orthogonality condition (A.85): multiply (A.86) by ψmσ and integrate to obtain

∫ b

a

f(x)ψm(x)σ(x) dx =

∞
∑

n=0

cn

∫ b

a

ψn(x)ψm(x)σ(x) dx,

hence

cn =

∫ b

a f(x)ψn(x)σ(x) dx
∫ b

a
ψ2
n(x)σ(x) dx

. (A.87)

These coefficients ensure that the series converges in mean to f ; i.e., the mean-square
error

∫ b

a

∣

∣

∣

∣

∣

f(x)−
∞
∑

n=0

cnψn(x)

∣

∣

∣

∣

∣

2

σ(x) dx

is minimized. Truncation to finitely many terms generally results in oscillations (Gibbs
phenomenon) near points of discontinuity of f . The cn are easier to compute if the ψn
are orthonormal with

∫ b

a

ψ2
n(x)σ(x) dx = 1

for each n.

A.5.1.3 Uniqueness of the eigenfunctions

If both ψ1 and ψ2 are associated with the same eigenvalue λ, then

L[ψ1(x)] + λσ(x)ψ1(x) = 0, L[ψ2(x)] + λσ(x)ψ2(x) = 0,

hence

ψ1(x)L[ψ2(x)] − ψ2(x)L[ψ1(x)] = 0.

By (A.81) we have

d

dx

[

p(x)

(

ψ1(x)
dψ2(x)

dx
− ψ2(x)

dψ1(x)

dx

)]

= 0

or

p(x)

(

ψ1(x)
dψ2(x)

dx
− ψ2(x)

dψ1(x)

dx

)

= C

where C is constant. Either of (A.83) implies C = 0, hence

d

dx

(

ψ2(x)

ψ1(x)

)

= 0

so that ψ1(x) = Kψ2(x) for some constant K. So under homogeneous boundary condi-
tions, every eigenvalue is associated with a unique eigenfunction.
This is false for the periodic boundary conditions (A.84). Eigenfunction expansion then

becomes difficult, as we can no longer assume eigenfunction orthogonality. However, the
Gram–Schmidt algorithm may be used to construct orthogonal eigenfunctions. We refer
the interested reader to Haberman [75].
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A.5.1.4 The harmonic differential equation

The ordinary differential equation

d2ψ(x)

dx2
= −k2ψ(x) (A.88)

is Sturm–Liouville with p ≡ 1, q ≡ 0, σ ≡ 1, and λ = k2. Suppose we take [a, b] = [0, L]
and adopt the homogeneous boundary conditions

ψ(0) = 0 and ψ(L) = 0. (A.89)

Since p(x) > 0 and σ(x) > 0 on [0, L], equations (A.88) and (A.89) form a regular
Sturm–Liouville problem. Thus we should have an infinite number of discrete eigenvalues.
A power series technique yields the two independent solutions

ψa(x) = Aa sin kx, ψb(x) = Ab cos kx,

to (A.88); hence by linearity the most general solution is

ψ(x) = Aa sin kx+Ab cos kx. (A.90)

The condition at x = 0 gives Aa sin 0 +Ab cos 0 = 0, hence Ab = 0. The other condition
then requires

Aa sin kL = 0. (A.91)

Since Aa = 0 would give ψ ≡ 0, we satisfy (A.91) by choosing k = kn = nπ/L for
n = 1, 2, . . .. Because λ = k2, the eigenvalues are λn = (nπ/L)2 with corresponding
eigenfunctions

ψn(x) = sin knx.

Note that λ = 0 is not an eigenvalue; eigenfunctions are nontrivial by definition, and
sin(0πx/L) ≡ 0. Likewise, the differential equation associated with λ = 0 can be solved
easily, but only its trivial solution can fit homogeneous boundary conditions: with k = 0,
(A.88) becomes d2ψ(x)/dx2 = 0, giving ψ(x) = ax+ b; this can satisfy (A.89) only with
a = b = 0.

These “eigensolutions” obey the properties outlined earlier. In particular the ψn are
orthogonal,

∫ L

0

sin
(nπx

L

)

sin
(mπx

L

)

dx =
L

2
δmn,

and the eigenfunction expansion of a piecewise continuous function f is given by

f(x) =

∞
∑

n=1

cn sin
(nπx

L

)

where, with σ(x) = 1 in (A.87), we have

cn =

∫ L

0 f(x) sin
(

nπx
L

)

dx
∫ L

0 sin2
(

nπx
L

)

dx
=

2

L

∫ L

0

f(x) sin
(nπx

L

)

dx.

Hence we recover the standard Fourier sine series for f(x).
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With little extra effort we can examine the eigenfunctions resulting from enforcement
of the periodic boundary conditions

ψ(0) = ψ(L) and ψ′(0) = ψ′(L).

The general solution (A.90) still holds, so we have the choices ψ(x) = sin kx and ψ(x) =
cos kx. Evidently both

ψ(x) = sin

(

2nπx

L

)

and ψ(x) = cos

(

2nπx

L

)

satisfy the boundary conditions for n = 1, 2, . . .. Thus each eigenvalue (2nπ/L)2 is
associated with two eigenfunctions.

A.5.1.5 Bessel’s differential equation

Bessel’s equation
d

dx

(

x
dψ(x)

dx

)

+

(

k2x− ν2

x

)

ψ(x) = 0 (A.92)

occurs when problems are solved in circular-cylindrical coordinates. Comparison with
(A.79) shows that λ = k2, p(x) = x, q(x) = −ν2/x, and σ(x) = x. We take [a, b] = [0, L]
along with the boundary conditions

ψ(L) = 0 and |ψ(0)| <∞. (A.93)

Although the resulting Sturm–Liouville problem is singular, the specified conditions
(A.93) maintain satisfaction of (A.82). The eigenfunctions are orthogonal because (A.82)
is satisfied by having ψ(L) = 0 and p(x) dψ(x)/dx → 0 as x→ 0.
As a second-order ordinary differential equation, (A.92) has two solutions denoted by

Jν(kx) and Nν(kx),

and termed Bessel functions. Their properties are summarized in Appendix E.1. The
function Jν(x), the Bessel function of the first kind and order ν, is well-behaved in [0, L].
The function Nν(x), the Bessel function of the second kind and order ν, is unbounded
at x = 0; hence it is excluded as an eigenfunction of the Sturm–Liouville problem.
The condition at x = L shows that the eigenvalues are defined by

Jν(kL) = 0.

We denote the mth root of Jν(x) = 0 by pνm. Then

kνm =
√

λνm = pνm/L.

The infinitely many eigenvalues are ordered as λν1 < λν2 < . . .. Associated with eigen-
value λνm is a single eigenfunction Jν(

√
λνmx). The orthogonality relation is

∫ L

0

Jν

(pνm
L

x
)

Jν

(pνn
L
x
)

x dx = 0 (m 6= n).

Since the eigenfunctions are also complete, we can expand any piecewise continuous
function f in a Fourier–Bessel series

f(x) =

∞
∑

m=1

cmJν

(

pνm
x

L

)

(0 ≤ x ≤ L, ν > −1).
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By (A.87) and (E.22) we have

cm =
2

L2J2
ν+1(pνm)

∫ L

0

f(x)Jν

(

pνm
x

L

)

x dx.

A.5.1.6 The associated Legendre equation

Legendre’s equation occurs when problems are solved in spherical coordinates. It is
often written in one of two forms. Letting θ be the polar angle of spherical coordinates
(0 ≤ θ ≤ π), the equation is

d

dθ

(

sin θ
dψ(θ)

dθ

)

+

(

λ sin θ − m2

sin θ

)

ψ(θ) = 0.

This is Sturm–Liouville with p(θ) = sin θ, σ(θ) = sin θ, and q(θ) = −m2/ sin θ. The
boundary conditions

|ψ(0)| <∞ and |ψ(π)| <∞
define a singular problem: the conditions are not homogeneous, p(θ) = 0 at both end-
points, and q(θ) < 0. Despite this, the Legendre problem does share properties of a regu-
lar Sturm–Liouville problem — including eigenfunction orthogonality and completeness.

Using x = cos θ, we can put Legendre’s equation into its other common form

d

dx

(

[1− x2]
dψ(x)

dx

)

+

(

λ− m2

1− x2

)

ψ(x) = 0, (A.94)

where −1 ≤ x ≤ 1. It is found that ψ is bounded at x = ±1 only if

λ = n(n+ 1)

where n ≥ m is an integer. These λ are the eigenvalues of the Sturm–Liouville problem,
and the corresponding ψn(x) are the eigenfunctions.

As a second-order partial differential equation, (A.94) has two solutions known as
associated Legendre functions. The solution bounded at both x = ±1 is the associated
Legendre function of the first kind, denoted Pmn (x). The second solution, unbounded at
x = ±1, is the associated Legendre function of the second kind Qmn (x). Appendix E.2
tabulates some properties of these functions.

For fixed m, each λmn is associated with a single eigenfunction Pmn (x). Since Pmn (x)
is bounded at x = ±1, and since p(±1) = 0, the eigenfunctions obey Lagrange’s identity
(A.81), hence are orthogonal on [−1, 1] with respect to the weight function σ(x) = 1.
Evaluation of the orthogonality integral leads to

∫ 1

−1

Pml (x)Pmn (x) dx = δln
2

2n+ 1

(n+m)!

(n−m)!
(A.95)

or equivalently

∫ π

0

Pml (cos θ)Pmn (cos θ) sin θ dθ = δln
2

2n+ 1

(n+m)!

(n−m)!
.

Form = 0, Pmn (x) is a polynomial of degree n. Each such Legendre polynomial, denoted
Pn(x), is given by

Pn(x) =
1

2nn!

dn(x2 − 1)n

dxn
.
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It turns out that

Pmn (x) = (−1)m(1− x2)m/2
dmPn(x)

dxm
,

giving Pmn (x) = 0 for m > n.
Because the Legendre polynomials form a complete set in the interval [−1, 1], we may

expand any sufficiently smooth function in a Fourier–Legendre series

f(x) =
∞
∑

n=0

cnPn(x).

Convergence in mean is guaranteed if

cn =
2n+ 1

2

∫ 1

−1

f(x)Pn(x) dx,

found using (A.87) along with (A.95).
In practice, the associated Legendre functions appear along with exponential functions

in the solutions to spherical boundary value problems. The combined functions are known
as spherical harmonics, and form solutions to two-dimensional Sturm–Liouville problems.
We consider these next.

A.5.2 Higher-dimensional SL problems: Helmholtz’s equation

Replacing d/dx by ∇, we generalize the Sturm–Liouville equation to higher dimensions:

∇ · [p(r)∇ψ(r)] + q(r)ψ(r) + λσ(r)ψ(r) = 0,

where q, p, σ, ψ are real functions. Of particular interest is the case q(r) = 0, p(r) =
σ(r) = 1, giving the Helmholtz equation

∇2ψ(r) + λψ(r) = 0. (A.96)

In most boundary value problems, ψ or its normal derivative is specified on the surface of a
bounded region. We obtain a three-dimensional analogue to the regular Sturm–Liouville
problem by assuming the homogeneous boundary conditions

αψ(r) + βn̂ · ∇ψ(r) = 0 (A.97)

on the closed surface, where n̂ is the outward unit normal.
The problem consisting of (A.96) and (A.97) has properties analogous to those of the

regular one-dimensional Sturm–Liouville problem. All eigenvalues are real. There are
infinitely many eigenvalues. There is a smallest eigenvalue but no largest eigenvalue.
However, associated with an eigenvalue there may be many eigenfunctions ψλ(r). The
eigenfunctions are orthogonal with

∫

V

ψλ1(r)ψλ2 (r) dV = 0 (λ1 6= λ2).

They are also complete and can be used to represent any piecewise smooth function f(r)
according to

f(r) =
∑

λ

aλψλ(r),
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which converges in mean when

aλm =

∫

V
f(r)ψλm(r) dV
∫

V ψ
2
λm

(r) dV
.

These properties are shared by the two-dimensional eigenvalue problem involving an open
surface S with boundary contour Γ.

A.5.2.1 Spherical harmonics

We now inspect solutions to the two-dimensional eigenvalue problem

∇2Y (θ, φ) +
λ

a2
Y (θ, φ) = 0

over the surface of a sphere of radius a. Since the sphere has no boundary contour, we
demand that Y (θ, φ) be bounded in θ and periodic in φ. In the next section we shall
apply separation of variables and show that

Ynm(θ, φ) =

√

2n+ 1

4π

(n−m)!

(n+m)!
Pmn (cos θ)ejmφ

where λ = n(n+1). Note that Qmn does not appear as it is not bounded at θ = 0, π. The
functions Ynm are called spherical harmonics (sometimes zonal or tesseral harmonics,
depending on the values of n and m). As expressed above they are in orthonormal
form, because the orthogonality relationships for the exponential and associated Legendre
functions yield

∫ π

−π

∫ π

0

Y ∗
n′m′(θ, φ)Ynm(θ, φ) sin θ dθ dφ = δn′nδm′m. (A.98)

As solutions to the Sturm–Liouville problem, these functions form a complete set on the
surface of a sphere. Hence they can be used to represent any piecewise smooth function
f(θ, φ) as

f(θ, φ) =
∞
∑

n=0

n
∑

m=−n
anmYnm(θ, φ),

where

anm =

∫ π

−π

∫ π

0

f(θ, φ)Y ∗
nm(θ, φ) sin θ dθ dφ

by (A.98). The summation index m ranges from −n to n because Pmn = 0 for m > n.
For negative index we can use

Yn,−m(θ, φ) = (−1)mY ∗
nm(θ, φ).

Some properties of the spherical harmonics are tabulated in Appendix E.3.

A.5.3 Separation of variables

We now consider a technique that finds widespread application in solving boundary value
problems, applying as it does to many important partial differential equations such as
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Laplace’s equation, the diffusion equation, and the scalar and vector wave equations.
These equations are related to the scalar Helmholtz equation

∇2ψ(r) + k2ψ(r) = 0 (A.99)

where k is a complex constant. If k is real and we supply the appropriate boundary
conditions, we have the higher-dimensional Sturm–Liouville problem with λ = k2. We
shall not pursue the extension of Sturm–Liouville theory to complex values of k.
Laplace’s equation is Helmholtz’s equation with k = 0. With λ = k2 = 0 it might

appear that Laplace’s equation does not involve eigenvalues; however, separation of vari-
ables does lead us to lower-dimensional eigenvalue problems to which our previous meth-
ods apply. Solutions to the scalar or vector wave equations usually begin with Fourier
transformation on the time variable, or with an initial separation of the time variable to
reach a Helmholtz form.
The separation of variables idea is simple. We seek a solution to (A.99) in the form

of a product of functions, each of a single variable. If ψ depends on all three spatial
dimensions, then we seek a solution of the type

ψ(u, v, w) = U(u)V (v)W (w),

where u, v, and w are the coordinate variables used to describe the problem. If ψ depends
on only two coordinates, we may seek a product solution involving two functions, each
dependent on a single coordinate; alternatively, we may use the three-variable solution
and choose constants so that the result shows no variation with one coordinate. The
Helmholtz equation is considered separable if it can be reduced to a set of independent
ordinary differential equations, each involving a single coordinate variable. The ordinary
differential equations, generally of second order, can be solved by conventional techniques
resulting in solutions of the form

U(u) = AuUA(u, ku, kv, kw) +BuUB(u, ku, kv, kw),

V (v) = AvVA(v, ku, kv, kw) +BvVB(v, ku, kv, kw),

W (w) = AwWA(w, ku, kv, kw) +BwWB(w, ku, kv, kw).

The constants ku, kv, kw are called separation constants and are found, along with the am-
plitude constants A,B, by applying boundary conditions appropriate for a given problem.
At least one separation constant depends on (or equals) k, so only two are independent.
In many cases ku, kv, and kw become the discrete eigenvalues of the respective differ-
ential equations, and correspond to eigenfunctions U(u, ku, kv, kw), V (v, ku, kv, kw), and
W (w, ku, kv, kw). In other cases the separation constants form a continuous spectrum of
values, often when a Fourier transform solution is employed.
The Helmholtz equation can be separated in eleven different orthogonal coordinate

systems [137]. Undoubtedly the most important of these are the rectangular, circular-
cylindrical, and spherical systems, and we shall consider each in detail. We do note,
however, that separability in a certain coordinate system does not imply that all prob-
lems expressed in that coordinate system can be easily handled using the resulting solu-
tions. Only when the geometry and boundary conditions are simple do the solutions lend
themselves to easy application; often other solution techniques are more appropriate.
Although rigorous conditions can be set forth to guarantee solvability by separation of

variables [124], we prefer the following, more heuristic list:

1. Use a coordinate system that allows the given partial differential equation to sep-
arate into ordinary differential equations.
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2. The problem’s boundaries must be such that those boundaries not at infinity co-
incide with a single level surface of the coordinate system.

3. Use superposition to reduce the problem to one involving a single nonhomogeneous
boundary condition. Then:

(a) Solve the resulting Sturm–Liouville problem in one or two dimensions, with
homogeneous boundary conditions on all boundaries. Then use a discrete
eigenvalue expansion (Fourier series) and eigenfunction orthogonality to sat-
isfy the remaining nonhomogeneous condition.

(b) If a Sturm–Liouville problem cannot be formulated with the homogeneous
boundary conditions (because, for instance, one boundary is at infinity), use
a Fourier integral (continuous expansion) to satisfy the remaining nonhomo-
geneous condition.

If a Sturm–Liouville problem cannot be formulated, discovering the form of the integral
transform to use can be difficult. In these cases other approaches, such as conformal
mapping, may prove easier.

A.5.3.1 Solutions in rectangular coordinates

In rectangular coordinates the Helmholtz equation is

∂2ψ(x, y, z)

∂x2
+
∂2ψ(x, y, z)

∂y2
+
∂2ψ(x, y, z)

∂z2
+ k2ψ(x, y, z) = 0. (A.100)

We seek a solution of the form ψ(x, y, z) = X(x)Y (y)Z(z); substitution into (A.100)
followed by division through by X(x)Y (y)Z(z) gives

1

X(x)

d2X(x)

dx2
+

1

Y (y)

d2Y (y)

dy2
+

1

Z(z)

d2Z(z)

dz2
= −k2. (A.101)

At this point we require the separation argument. The left-hand side of (A.101) is a sum
of three functions, each involving a single independent variable, whereas the right-hand
side is constant. But the only functions of independent variables that always sum to
a constant are themselves constants. Thus we may equate each term on the left to a
different constant:

1

X(x)

d2X(x)

dx2
= −k2x,

1

Y (y)

d2Y (y)

dy2
= −k2y, (A.102)

1

Z(z)

d2Z(z)

dz2
= −k2z ,

provided that
k2x + k2y + k2z = k2.

The negative signs in (A.102) have been introduced for convenience.
Let us discuss the general solutions of equations (A.102). If kx = 0, the two indepen-

dent solutions for X(x) are

X(x) = axx and X(x) = bx
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where ax and bx are constants. If kx 6= 0, solutions may be chosen from the list of
functions

e−jkxx, ejkxx, sin kxx, cos kxx,

any two of which are independent. Because

sinx = (ejx − e−jx)/2j and cosx = (ejx + e−jx)/2, (A.103)

the six possible solutions for kx 6= 0 are

X(x) =















































Axe
jkxx +Bxe

−jkxx,

Ax sin kxx+Bx cos kxx,

Ax sin kxx+Bxe
−jkxx,

Axe
jkxx +Bx sin kxx,

Axe
jkxx +Bx cos kxx,

Axe
−jkxx +Bx cos kxx.

(A.104)

We may base our choice on convenience (e.g., the boundary conditions may be amenable
to one particular form) or on the desired behavior of the solution (e.g., standing waves
vs. traveling waves). If k is complex, then so may be kx, ky , or kz ; observe that with
imaginary arguments the complex exponentials are actually real exponentials, and the
trigonometric functions are actually hyperbolic functions.
The solutions for Y (y) and Z(z) are identical to those for X(x). We can write, for

instance,

X(x) =

{

Axe
jkxx + Bxe

−jkxx, kx 6= 0,

axx+ bx, kx = 0,
(A.105)

Y (y) =

{

Aye
jkyy +Bye

−jkyy, ky 6= 0,

ayy + by, ky = 0,
(A.106)

Z(z) =

{

Aze
jkzz +Bze

−jkzz, kz 6= 0,

azz + bz, kz = 0.
(A.107)

◮ Example A.1: Solution to Laplace’s equation in rectangular coordinates with one dimension

Solve ∇2V (x) = 0.

Solution: Since V depends only on x we can use (A.105)–(A.107) with ky = kz = 0
and ay = az = 0. Moreover, kx = 0, because k2x + k2y + k2z = k2 = 0 for Laplace’s
equation. The general solution is therefore V (x) = axx+ bx. Boundary conditions must be
specified to determine ax and bx; for instance, the conditions V (0) = 0 and V (L) = V0 yield
V (x) = V0x/L. ◭

◮ Example A.2: Solution to Laplace’s equation in rectangular coordinates with two dimensions

Solve ∇2ψ(x, y) = 0.

Solution: We produce a lack of z-dependence in ψ by letting kz = 0 and choosing az = 0.
Moreover, k2x = −k2y since Laplace’s equation requires k = 0. This leads to three possibilities.
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If kx = ky = 0, we have the product solution

ψ(x, y) = (axx+ bx)(ayy + by). (A.108)

If ky is real and nonzero, then

ψ(x, y) = (Axe
−kyx +Bxe

kyx)(Aye
jkyy +Bye

−jkyy). (A.109)

Using the relations

sinh u = (eu − e−u)/2 and cosh u = (eu + e−u)/2 (A.110)

along with (A.103), we can rewrite (A.109) as

ψ(x, y) = (Ax sinh kyx+Bx cosh kyx)(Ay sin kyy +By cos kyy). (A.111)

(We can reuse the constant names Ax, Bx, Ay, By , since the constants are unknown at this
point.) If kx is real and nonzero, we have

ψ(x, y) = (Ax sin kxx+Bx cos kxx)(Ay sinh kxy +By cosh kxy). ◭ (A.112)

◮ Example A.3: Solution to Laplace’s equation in rectangular coordinates with two dimensions
and boundary values — example 1

Consider the problem consisting of Laplace’s equation

∇2V (x, y) = 0 (A.113)

holding in the region 0 < x < L1, 0 < y < L2, −∞ < z < ∞, together with the boundary
conditions

V (0, y) = V1, V (L1, y) = V2, V (x, 0) = V3, V (x, L2) = V4.

Find V (x, y).

Solution: The solution V (x, y) represents the potential within a conducting tube with each
wall held at a different potential. Superposition applies; since Laplace’s equation is linear, we
can write the solution as the sum of solutions to four different subproblems. Each subproblem
has homogeneous boundary conditions on one independent variable and inhomogeneous
conditions on the other, giving a Sturm–Liouville problem in one of the variables. For
instance, let us examine the solutions found above in relation to the subproblem consisting
of Laplace’s equation (A.113) in the region 0 < x < L1, 0 < y < L2, −∞ < z < ∞, subject
to the conditions

V (0, y) = V (L1, y) = V (x, 0) = 0, V (x,L2) = V4 6= 0.

First we try (A.108). The boundary condition at x = 0 gives

V (0, y) = (ax(0) + bx)(ayy + by) = 0,

which holds for all y ∈ (0, L2) only if bx = 0. The condition at x = L1,

V (L1, y) = axL1(ayy + by) = 0,

then requires ax = 0. But ax = bx = 0 gives V (x, y) = 0, and the condition at y = L2 cannot
be satisfied; clearly (A.108) was inappropriate. Next we examine (A.111). The condition at
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x = 0 gives

V (0, y) = (Ax sinh 0 + Bx cosh 0)(Ay sin kyy +By cos kyy) = 0,

hence Bx = 0. The condition at x = L1 implies

V (L1, y) = [Ax sinh(kyL1)](Ay sin kyy +By cos kyy) = 0.

This can hold if either Ax = 0 or ky = 0, but the case ky = 0 (= kx) was already considered.
Thus Ax = 0 and the trivial solution reappears. Our last candidate is (A.112). The condition
at x = 0 requires

V (0, y) = (Ax sin 0 +Bx cos 0)(Ay sinh kxy +By cosh kxy) = 0,

which implies Bx = 0. Next we have

V (L1, y) = [Ax sin(kxL1)](Ay sinh kyy +By cosh kyy) = 0.

We avoid Ax = 0 by setting sin(kxL1) = 0 so that kxn = nπ/L1 for n = 1, 2, . . .. (Here n = 0
is omitted because it would produce a trivial solution.) These are eigenvalues correspond-
ing to the eigenfunctions Xn(x) = sin(kxnx), and were found in § A.5.1 for the harmonic
equation. At this point, we have a family of solutions:

Vn(x, y) = sin(kxnx)[Ayn sinh(kxny) +Byn cosh(kxny)] (n = 1, 2, . . .).

The subscript n on the left identifies Vn as the eigensolution associated with eigenvalue kxn .
It remains to satisfy boundary conditions at y = 0, L2. At y = 0 we have

Vn(x, 0) = sin(kxnx)[Ayn sinh 0 + Byn cosh 0] = 0,

hence Byn = 0 and

Vn(x, y) = Ayn sin(kxnx) sinh(kxny) (n = 1, 2, . . .). (A.114)

It is clear that no single eigensolution (A.114) can satisfy the one remaining boundary
condition. However, we are guaranteed that a series of solutions can represent the constant
potential on y = L2; recall that as a solution to a regular Sturm–Liouville problem, the
trigonometric functions are complete (hence they could represent any well-behaved function
on the interval 0 ≤ x ≤ L1). In fact, the resulting series is a Fourier sine series for the
constant potential at y = L2. So let

V (x, y) =

∞
∑

n=1

Vn(x, y) =

∞
∑

n=1

Ayn sin(kxnx) sinh(kxny).

The remaining boundary condition requires

V (x,L2) =
∞
∑

n=1

Ayn sin(kxnx) sinh(kxnL2) = V4.

The constants Ayn can be found using orthogonality; multiplying through by sin(kxmx) and
integrating, we have

∞
∑

n=1

Ayn sinh(kxnL2)

∫ L1

0

sin

(

mπx

L1

)

sin

(

nπx

L1

)

dx = V4

∫ L1

0

sin

(

mπx

L1

)

dx.
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The integral on the left equals δmnL1/2 where δmn is the Kronecker delta given by

δmn =

{

1, m = n,

0, n 6= m.

After evaluating the integral on the right we obtain

∞
∑

n=1

Aynδmn sinh(kxnL2) =
2V4(1− cosmπ)

mπ
,

hence,

Aym =
2V4(1− cosmπ)

mπ sinh(kxmL2)
.

The final solution for this subproblem is therefore

V (x, y) =
∞
∑

n=1

2V4(1− cosnπ)

nπ sinh
(

nπL2
L1

) sin

(

nπx

L1

)

sinh

(

nπy

L1

)

.

The remaining three subproblems are left for the reader. ◭

◮ Example A.4: Solution to Laplace’s equation in rectangular coordinates with two dimensions
and boundary values — example 2

Consider the problem consisting of Laplace’s equation

∇2V (x, y) = 0

holding in the region

0 ≤ x ≤ L1, 0 ≤ y <∞, −∞ < z <∞,

together with the boundary conditions

V (0, y) = V (L1, y) = 0, V (x, 0) = V0.

Solve for V (x, y).

Solution: Let us try the solution form that worked in the previous example:

V (x, y) = [Ax sin(kxx) +Bx cos(kxx)][Ay sinh(kxy) +By cosh(kxy)].

The boundary conditions at x = 0, L1 are the same as before, so we have

Vn(x, y) = sin(kxnx)[Ayn sinh(kxny) +Byn cosh(kxny)] (n = 1, 2, . . .).

To find Ayn and Byn we note that V cannot grow without bound as y → ∞. Individually the
hyperbolic functions grow exponentially. However, using (A.110) we see that Byn = −Ayn
gives

Vn(x, y) = Ayn sin(kxnx)e
−kxny

where Ayn is a new unknown constant. (Of course, we could have chosen this exponential
dependence at the beginning.) Lastly, we can impose the boundary condition at y = 0 on
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the infinite series of eigenfunctions

V (x, y) =

∞
∑

n=1

Ayn sin(kxnx)e
−kxny

to find Ayn . The result is

V (x, y) =
∞
∑

n=1

2V0

πn
(1− cosnπ) sin(kxnx)e

−kxny.

As in the previous example, the solution is a discrete superposition of eigenfunctions. ◭

◮ Example A.5: Solution to Laplace’s equation in rectangular coordinates with two dimensions
and boundary values — example 3

Consider the problem consisting of Laplace’s equation

∇2V (x, y) = 0

holding in the region

0 ≤ x ≤ L1, 0 ≤ y <∞, −∞ < z < ∞,

together with the boundary conditions

V (0, y) = 0, V (L1, y) = V0e
−ay, V (x, 0) = 0.

Solve for V (x, y).

Solution: The solution requires a continuous superposition of eigenfunctions to satisfy the
boundary conditions. Let us try

V (x, y) = [Ax sinh kyx+Bx cosh kyx][Ay sin kyy +By cos kyy].

The conditions at x = 0 and y = 0 require that Bx = By = 0. Thus

Vky (x, y) = A sinh kyx sin kyy.

A single function of this form cannot satisfy the remaining condition at x = L1. So we form
a continuous superposition

V (x, y) =

∫ ∞

0

A(ky) sinh kyx sin kyy dky. (A.115)

By the condition at x = L1

∫ ∞

0

A(ky) sinh(kyL1) sin kyy dky = V0e
−ay. (A.116)

We can find the amplitude function A(ky) by using the orthogonality property

δ(y − y′) =
2

π

∫ ∞

0

sin xy sin xy′ dx. (A.117)
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Multiplying both sides of (A.116) by sin k′yy and integrating, we have

∫ ∞

0

A(ky) sinh(kyL1)

[
∫ ∞

0

sin kyy sin k
′
yy dy

]

dky =

∫ ∞

0

V0e
−ay sin k′yy dy.

We can evaluate the term in brackets using (A.117) to obtain

∫ ∞

0

A(ky) sinh(kyL1)
π

2
δ(ky − k′y) dky =

∫ ∞

0

V0e
−ay sin k′yy dy,

hence,
π

2
A(k′y) sinh(k

′
yL1) = V0

∫ ∞

0

e−ay sin k′yy dy.

We then evaluate the integral on the right, solve for A(ky), and substitute into (A.115) to
obtain

V (x, y) =
2V0

π

∫ ∞

0

ky
a2 + k2y

sinh(kyx)

sinh(kyL1)
sin kyy dky .

Note that our application of the orthogonality property is merely a calculation of the inverse
Fourier sine transform. Thus we could have found the amplitude coefficient by reference to
a table of transforms. ◭

◮ Example A.6: Solution to Laplace’s equation in rectangular coordinates with two dimensions
and boundary values — example 4

We can use the Fourier transform solution even when the domain is infinite in more than
one dimension. Consider the problem consisting of Laplace’s equation

∇2V (x, y) = 0

holding in the region

0 ≤ x <∞, 0 ≤ y <∞, −∞ < z <∞,

together with the boundary conditions

V (0, y) = V0e
−ay, V (x, 0) = 0.

Solve for V (x, y).

Solution: Because of the condition at y = 0, let us use

V (x, y) = (Axe
−kyx +Bxe

kyx)(Ay sin kyy +By cos kyy).

The solution form
Vky (x, y) = B(ky)e

−kyx sin kyy

satisfies the finiteness condition and the homogeneous condition at y = 0. The remaining
condition can be satisfied by a continuous superposition of solutions:

V (x, y) =

∫ ∞

0

B(ky)e
−kyx sin kyy dky.

We must have

V0e
−ay =

∫ ∞

0

B(ky) sin kyy dky.
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Use of the orthogonality relationship (A.117) yields the amplitude spectrum B(ky), and we
find that

V (x, y) =
2

π

∫ ∞

0

e−kyx
ky

a2 + k2y
sin kyy dky. ◭ (A.118)

◮ Example A.7: Solution to the Helmholtz equation in rectangular coordinates with three
dimensions and boundary values

Solve
∇2ψ(x, y, z) + k2ψ(x, y, z) = 0

for
0 ≤ x ≤ L1, 0 ≤ y ≤ L2, 0 ≤ z ≤ L3,

subject to

ψ(0, y, z) = ψ(L1, y, z) = 0,

ψ(x, 0, z) = ψ(x, L2, z) = 0,

ψ(x, y, 0) = ψ(x, y,L3) = 0.

Here k 6= 0 is a constant.

Solution: This is a three-dimensional eigenvalue problem as described in § A.5.1, where
λ = k2 are the eigenvalues and the closed surface is a rectangular box. Physically, the
wave function ψ represents the so-called eigenvalue or normal mode solutions for the “TM
modes” of a rectangular cavity. Since k2x+k

2
y+k

2
z = k2, we might have one or two separation

constants equal to zero, but not all three. We find, however, that the only solution with a
zero separation constant that can fit the boundary conditions is the trivial solution. In light
of the boundary conditions and because we expect standing waves in the box, we take

ψ(x, y, z) = [Ax sin(kxx) +Bx cos(kxx)]

× [Ay sin(kyy) +By cos(kyy)]

× [Az sin(kzz) +Bz cos(kzz)].

The conditions ψ(0, y, z) = ψ(x, 0, z) = ψ(x, y, 0) = 0 give Bx = By = Bz = 0. The
conditions at x = L1, y = L2, and z = L3 require the separation constants to assume the
discrete values kx = kxm = mπ/L1, ky = kyn = nπ/L2, and kz = kzp = pπ/L3, where
k2xm + k2yn + k2zp = k2mnp and m,n, p = 1, 2, . . .. Associated with each of these eigenvalues is
an eigenfunction of a one-dimensional Sturm–Liouville problem. For the three-dimensional
problem, an eigenfunction

ψmnp(x, y, z) = Amnp sin(kxmx) sin(kyny) sin(kzpz)

is associated with each three-dimensional eigenvalue kmnp. Each choice of m,n, p produces
a discrete cavity resonance frequency at which the boundary conditions can be satisfied.
Depending on the values of L1,2,3, we may have more than one eigenfunction associated
with an eigenvalue. For example, if L1 = L2 = L3 = L then k121 = k211 = k112 =

√
6π/L.

However, the eigenfunctions associated with this single eigenvalue are all different:

ψ121 = sin(kx1x) sin(ky2y) sin(kz1z),

ψ211 = sin(kx2x) sin(ky1y) sin(kz1z),

ψ112 = sin(kx1x) sin(ky1y) sin(kz2z).
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When more than one cavity mode corresponds to a given resonant frequency, we call the
modes degenerate. By completeness we can represent any well-behaved function as

f(x, y, z) =
∑

m,n,p

Amnp sin(kxmx) sin(kyny) sin(kzpz).

The Amnp are found using orthogonality. When such expansions are used to solve problems
involving objects (such as excitation probes) inside the cavity, they are termed normal mode

expansions of the cavity field. ◭

A.5.3.2 Solutions in cylindrical coordinates

In cylindrical coordinates the Helmholtz equation is

1

ρ

∂

∂ρ

(

ρ
∂ψ(ρ, φ, z)

∂ρ

)

+
1

ρ2
∂2ψ(ρ, φ, z)

∂φ2
+
∂2ψ(ρ, φ, z)

∂z2
+ k2ψ(ρ, φ, z) = 0. (A.119)

With ψ(ρ, φ, z) = P (ρ)Φ(φ)Z(z) we obtain

1

ρ

∂

∂ρ

(

ρ
∂(PΦZ)

∂ρ

)

+
1

ρ2
∂2(PΦZ)

∂φ2
+
∂2(PΦZ)

∂z2
+ k2(PΦZ) = 0;

carrying out the ρ derivatives and dividing through by PΦZ, we have

− 1

Z

d2Z

dz2
= k2 +

1

ρ2Φ

d2Φ

dφ2
+

1

ρP

dP

dρ
+

1

P

d2P

dρ2
.

The left side depends on z while the right side depends on ρ and φ, hence both must
equal the same constant k2z :

− 1

Z

d2Z

dz2
= k2z , (A.120)

k2 +
1

ρ2Φ

d2Φ

dφ2
+

1

ρP

dP

dρ
+

1

P

d2P

dρ2
= k2z . (A.121)

We have separated the z-dependence from the dependence on the other variables. For
the harmonic equation (A.120),

Z(z) =

{

Az sin kzz +Bz cos kzz, kz 6= 0,

azz + bz, kz = 0.
(A.122)

Of course we could use exponentials or a combination of exponentials and trigonometric
functions instead. Rearranging (A.121) and multiplying through by ρ2, we obtain

− 1

Φ

d2Φ

dφ2
=
(

k2 − k2z
)

ρ2 +
ρ

P

dP

dρ
+
ρ2

P

d2P

dρ2
.

The left and right sides depend only on φ and ρ, respectively; both must equal some
constant k2φ:

− 1

Φ

d2Φ

dφ2
= k2φ, (A.123)

(

k2 − k2z
)

ρ2 +
ρ

P

dP

dρ
+
ρ2

P

d2P

dρ2
= k2φ. (A.124)
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The variables ρ and φ are thus separated, and harmonic equation (A.123) has solutions

Φ(φ) =

{

Aφ sin kφφ+Bφ cos kφφ, kφ 6= 0,

aφφ+ bφ, kφ = 0.
(A.125)

Equation (A.124) is a bit more involved. In rearranged form it is

d2P

dρ2
+

1

ρ

dP

dρ
+

(

k2c −
k2φ
ρ2

)

P = 0 (A.126)

where
k2c = k2 − k2z .

The solution depends on whether any of kz, kφ, or kc are zero. If kc = kφ = 0, then

d2P

dρ2
+

1

ρ

dP

dρ
= 0

so that
P (ρ) = aρ ln ρ+ bρ.

If kc = 0 but kφ 6= 0, we have

d2P

dρ2
+

1

ρ

dP

dρ
−
k2φ
ρ2
P = 0

so that
P (ρ) = aρρ

−kφ + bρρ
kφ . (A.127)

This includes the case k = kz = 0 (Laplace’s equation). If kc 6= 0 then (A.126) is Bessel’s
differential equation. For noninteger kφ the two independent solutions are denoted Jkφ(z)
and J−kφ(z), where Jν(z) is the ordinary Bessel function of the first kind of order ν. For
kφ an integer n, Jn(z) and J−n(z) are not independent and a second independent solution
denoted Nn(z) must be introduced. This is the ordinary Bessel function of the second
kind, order n. As it is also independent when the order is noninteger, Jν(z) and Nν(z)
are often chosen as solutions whether ν is integer or not. Linear combinations of these
independent solutions may be used to produce new independent solutions. The functions

H
(1)
ν (z) and H

(2)
ν (z) are the Hankel functions of the first and second kind of order ν, and

are related to the Bessel functions by

H(1)
ν (z) = Jν(z) + jNν(z),

H(2)
ν (z) = Jν(z)− jNν(z).

The argument z can be complex (as can ν, but this shall not concern us). When z is
imaginary we introduce two new functions Iν(z) and Kν(z), defined for integer order by

In(z) = j−nJn(jz),

Kn(z) =
π

2
jn+1H(1)

n (jz).

Expressions for noninteger order are given in Appendix E.1.
Bessel functions cannot be expressed in terms of simple, standard functions. However,

a series solution to (A.126) produces many useful relationships between Bessel functions
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of differing order and argument. The recursion relations for Bessel functions serve to
connect functions of various orders and their derivatives. See Appendix E.1.

Of the six possible solutions to (A.126),

R(ρ) =











































AρJν(kcρ) +BρNν(kcρ),

AρJν(kcρ) +BρH
(1)
ν (kcρ),

AρJν(kcρ) +BρH
(2)
ν (kcρ),

AρNν(kcρ) + BρH
(1)
ν (kcρ),

AρNν(kcρ) + BρH
(2)
ν (kcρ),

AρH
(1)
ν (kcρ) +BρH

(2)
ν (kcρ),

which do we choose? Again, we are motivated by convenience and the physical nature
of the problem. If the argument is real or imaginary, we often consider large or small
argument behavior. For x real and large,

Jν(x) →
√

2

πx
cos
(

x− π

4
− ν

π

2

)

, Nν(x) →
√

2

πx
sin
(

x− π

4
− ν

π

2

)

,

H(1)
ν (x) →

√

2

πx
ej(x−

π
4 −ν π2 ), H(2)

ν (x) →
√

2

πx
e−j(x−

π
4 −ν π2 ),

Iν(x) →
√

1

2πx
ex, Kν(x) →

√

π

2x
e−x,

while for x real and small,

J0(x) → 1, Jν(x) →
1

ν!

(x

2

)ν

,

N0(x) →
2

π
(lnx+ 0.5772157− ln 2), Nν(x) → − (ν − 1)!

π

(

2

x

)ν

.

Because Jν(x) and Nν(x) oscillate for large argument, they can represent standing waves
along the radial direction. However, Nν(x) is unbounded for small x and is inappropriate
for regions containing the origin. The Hankel functions become complex exponentials for
large argument, hence, they represent traveling waves. Finally, Kν(x) is unbounded
for small x and cannot be used for regions containing the origin, while Iν(x) increases
exponentially for large x and cannot be used for unbounded regions.

◮ Example A.8: Solution to Laplace’s equation in cylindrical coordinates with two dimensions
and boundary values — example 1

Solve
∇2V (ρ, φ) = 0

in the region
0 ≤ ρ ≤ ∞, 0 ≤ φ ≤ φ0, −∞ < z <∞,

with the boundary conditions

V (ρ, 0) = 0, V (ρ, φ0) = V0.

Solution: Since there is no z-dependence we let kz = 0 in (A.122) and choose az = 0. Then
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k2c = k2 − k2z = 0 since k = 0. There are two possible solutions, depending on whether kφ is
zero. First let us try kφ 6= 0. Using (A.125) and (A.127), we have

V (ρ, φ) = [Aφ sin(kφφ) +Bφ cos(kφφ)][aρρ
−kφ + bρρ

kφ ]. (A.128)

Assuming kφ > 0 we must have bρ = 0 to keep the solution finite. The condition V (ρ, 0) = 0
requires Bφ = 0. Thus

V (ρ, φ) = Aφ sin(kφφ)ρ
−kφ .

Our final boundary condition requires

V (ρ, φ0) = V0 = Aφ sin(kφφ0)ρ
−kφ .

Because this cannot hold for all ρ, we must resort to kφ = 0 and

V (ρ, φ) = (aφφ+ bφ)(aρ ln ρ+ bρ). (A.129)

Proper behavior as ρ → ∞ dictates that aρ = 0. V (ρ, 0) = 0 requires bφ = 0. Thus
V (ρ, φ) = V (φ) = bφφ. The constant bφ is found from the remaining boundary condition:
V (φ0) = V0 = bφφ0 so that bφ = V0/φ0. The final solution is

V (φ) = V0φ/φ0.

It is worthwhile to specialize this to φ0 = π/2 and compare with the solution to the same
problem found earlier using rectangular coordinates. With a = 0 in (A.118) we have

V (x, y) =
2

π

∫ ∞

0

e−kyx
sin kyy

ky
dky.

Despite its much more complicated form, this must be the same solution by uniqueness. ◭

◮ Example A.9: Solution to Laplace’s equation in cylindrical coordinates with two dimensions
and boundary values — example 2

Solve
∇2V (ρ, φ) = 0

in the region
0 ≤ ρ ≤ ∞, 0 ≤ φ ≤ 2π, −∞ < z <∞,

where the boundary conditions are those of a “split cylinder”:

V (a, φ) =

{

V0, 0 < φ < π,

0, −π < φ < 0.

Solution: Because there is no z-dependence, we choose kz = az = 0 and have k2c = k2−k2z =
0. Since kφ = 0 would violate the boundary conditions at ρ = a, we use

V (ρ, φ) = (aρρ
−kφ + bρρ

kφ)(Aφ sin kφφ+Bφ cos kφφ).

The potential must be single-valued in φ: V (ρ, φ + 2nπ) = V (ρ, φ). This is only possible if
kφ is an integer, say kφ = m. Then

Vm(ρ, φ) =

{

(Am sinmφ+Bm cosmφ)ρm, ρ < a,

(Cm sinmφ+Dm cosmφ)ρ−m, ρ > a.
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On physical grounds we have discarded ρ−m for ρ < a and ρm for ρ > a. To satisfy
the boundary conditions at ρ = a we must use an infinite series of the complete set of
eigensolutions. For ρ < a, the boundary condition requires

B0 +
∞
∑

m=1

(Am sinmφ+Bm cosmφ)am =

{

V0, 0 < φ < π,

0, −π < φ < 0.

Application of the orthogonality relations

∫ π

−π

cosmφ cosnφ dφ =
2π

ǫn
δmn (m,n = 0, 1, 2, . . .), (A.130)

∫ π

−π

sinmφ sinnφdφ = πδmn (m,n = 1, 2, . . .), (A.131)

∫ π

−π

cosmφ sinnφ dφ = 0 (m,n = 0, 1, 2, . . .), (A.132)

where

ǫn =

{

1, n = 0,

2, n > 0,
(A.133)

is Neumann’s number, produces appropriate values for the constants Am and Bm. The full
solution is

V (ρ, φ) =



















V0

2
+
V0

π

∞
∑

n=1

[1− (−1)n]

n

(ρ

a

)n

sinnφ, ρ < a,

V0

2
+
V0

π

∞
∑

n=1

[1− (−1)n]

n

(

a

ρ

)n

sinnφ, ρ > a.

◭

◮ Example A.10: Solution to Laplace’s equation in cylindrical coordinates with three dimen-
sions and boundary values

Solve
∇2V (ρ, φ, z) = 0

in the region
0 ≤ ρ ≤ a, −π ≤ φ ≤ π, 0 ≤ z ≤ h,

where the boundary conditions are those of a “grounded cannister” with top at potential
V0:

V (ρ, φ, 0) = 0 (0 ≤ ρ ≤ a, −π ≤ φ ≤ π),

V (a, φ, z) = 0 (−π ≤ φ ≤ π, 0 ≤ z ≤ h),

V (ρ, φ, h) = V0 (0 ≤ ρ ≤ a, −π ≤ φ ≤ π).

Solution: Symmetry precludes φ-dependence, hence kφ = aφ = 0. Since k = 0 (Laplace’s
equation) we also have k2c = k2 − k2z = −k2z. Thus we have either kz real and kc = jkz , or
kc real and kz = jkc. With kz real we have

V (ρ, z) = [Az sin kzz +Bz cos kzz][AρK0(kzρ) +BρI0(kzρ)];
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with kc real we have

V (ρ, z) = [Az sinh kcz +Bz cosh kcz][AρJ0(kcρ) +BρN0(kcρ)]. (A.134)

The functionsK0 and I0 are inappropriate for use in this problem, and we proceed to (A.134).
Since N0 is unbounded for small argument, we need Bρ = 0. The condition V (ρ, 0) = 0
gives Bz = 0, thus

V (ρ, z) = Az sinh(kcz)J0(kcρ).

The oscillatory nature of J0 means that we can satisfy the condition at ρ = a:

V (a, z) = Az sinh(kcz)J0(kca) = 0 for 0 ≤ z < h

if J0(kca) = 0. Letting p0m denote the mth root of J0(x) = 0 for m = 1, 2, . . ., we have
kcm = p0m/a. Because we cannot satisfy the boundary condition at z = h with a single
eigensolution, we use the superposition

V (ρ, z) =

∞
∑

m=1

Am sinh
(p0mz

a

)

J0
(p0mρ

a

)

.

We require

V (ρ, h) =
∞
∑

m=1

Am sinh

(

p0mh

a

)

J0
(p0mρ

a

)

= V0, (A.135)

where the Am can be evaluated by orthogonality of the functions J0(p0mρ/a). If pνm is the
mth root of Jν(x) = 0, then

∫ a

0

Jν
(pνmρ

a

)

Jν
(pνnρ

a

)

ρ dρ = δmn
a2

2
J ′2
ν (pνn) = δmn

a2

2
J2
ν+1(pνn) (A.136)

where J ′
ν(x) = dJν(x)/dx. Multiplying (A.135) by ρJ0(p0nρ/a) and integrating, we have

An sinh

(

p0nh

a

)

a2

2
J ′2
0 (p0na) =

∫ a

0

V0J0
(p0nρ

a

)

ρ dρ.

Use of (E.107),
∫

xn+1Jn(x) dx = xn+1Jn+1(x) + C,

allows us to evaluate
∫ a

0

J0
(p0nρ

a

)

ρ dρ =
a2

p0n
J1(p0n).

With this we finish calculating Am and have

V (ρ, z) = 2V0

∞
∑

m=1

sinh( p0m
a
z)J0(

p0m
a
ρ)

p0m sinh( p0m
a
h)J1(p0m)

as the desired solution. ◭

◮ Example A.11: Solution to the Helmholtz equation in cylindrical coordinates with three
dimensions and boundary values

Solve
∇2ψ(ρ, φ, z) + k2ψ(ρ, φ, z) = 0

in the region
0 ≤ ρ ≤ a, −π ≤ φ ≤ π, −∞ < z <∞
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with the boundary conditions

n̂ · ∇ψ(ρ, φ, z)
∣

∣

∣

ρ=a
=
∂ψ(ρ, φ, z)

∂ρ

∣

∣

∣

ρ=a
= 0

for −π ≤ φ ≤ π and −∞ < z <∞.

Solution: The solution to this problem leads to the transverse-electric (TEz) fields in
a lossless circular waveguide, where ψ represents the z-component of the magnetic field.
Although there is symmetry with respect to φ, we seek φ-dependent solutions; the resulting
complete eigenmode solution will permit us to expand any well-behaved function within
the waveguide in terms of a normal mode (eigenfunction) series. In this problem none of
the constants k, kz, or kφ equal zero, except as a special case. However, the field must be
single-valued in φ and thus kφ must be an integer m. We consider our possible choices for
P (ρ), Z(z), and Φ(φ). Since k2c = k2 − k2z and k2 > 0 is arbitrary, we must consider various
possibilities for the signs of k2c and k2z. We can rule out k2c < 0 based on consideration of
the behavior of the functions Im and Km. We also need not consider kc < 0, since this gives
the same solution as kc > 0. We are then left with two possible cases. Writing k2z = k2− k2c ,
we see that either k > kc and k2z > 0, or k < kc and k2z < 0. For k2z > 0 we write

ψ(ρ, φ, z) = [Aze
−jkzz +Bze

jkzz][Aφ sinmφ+Bφ cosmφ]Jm(kcρ).

Here the terms involving e∓jkzz represent waves propagating in the ±z directions. The
boundary condition at ρ = a requires

J ′
m(kca) = 0

where J ′
m(x) = dJm(x)/dx. Denoting the nth zero of J ′

m(x) by p′mn we have kc = kcm =
p′mn/a. This gives the eigensolutions

ψm = [Azme
−jkzz +Bzme

jkzz][Aφm sinmφ+Bφm cosmφ]kcJm

(

p′mnρ

a

)

.

The undetermined constants Azm, Bzm, Aρm, Bρm could be evaluated when the individual
eigensolutions are used to represent a function in terms of a modal expansion. For the case
k2z < 0 we again choose complex exponentials in z; however, kz = −jα gives e∓jkzz = e∓αz

and attenuation along z. The reader can verify that the eigensolutions are

ψm = [Azme
−αz +Bzme

αz][Aφm sinmφ+Bφm cosmφ]kcJm

(

p′mnρ

a

)

where now k2c = k2 + α2. ◭

We have used Bessel function completeness in the examples above. This property is
a consequence of the Sturm–Liouville problem first studied in § A.5.1. We often use
Fourier–Bessel series to express functions over finite intervals. Over infinite intervals we
use the Fourier–Bessel transform.

The Fourier–Bessel series can be generalized to Bessel functions of noninteger order,
and to the derivatives of Bessel functions. Let f(ρ) be well-behaved over the interval
[0, a]. Then the series

f(ρ) =

∞
∑

m=1

CmJν

(

pνm
ρ

a

)

(0 ≤ ρ ≤ a, ν > −1)
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converges, and the constants are

Cm =
2

a2J2
ν+1(pνm)

∫ a

0

f(ρ)Jν

(

pνm
ρ

a

)

ρ dρ

by (A.136). Here pνm is the mth root of Jν(x). An alternative form of the series uses
p′νm, the roots of J ′

ν(x), and is given by

f(ρ) =

∞
∑

m=1

DmJν

(

p′νm
ρ

a

)

(0 ≤ ρ ≤ a, ν > −1).

In this case the expansion coefficients are found using the orthogonality relationship
∫ a

0

Jν

(

p′νm
a
ρ

)

Jν

(

p′νn
a
ρ

)

ρ dρ = δmn
a2

2

(

1− ν2

p′2νm

)

J2
ν (p

′
νm),

and are

Dm =
2

a2
(

1− ν2

p′2νm
J2
ν (p

′
νm)

)

∫ a

0

f(ρ)Jν

(

p′νm
a
ρ

)

ρ dρ.

A.5.3.3 Solutions in spherical coordinates

If into Helmholtz’s equation

1

r2
∂

∂r

(

r2
∂ψ(r, θ, φ)

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂ψ(r, θ, φ)

∂θ

)

+
1

r2 sin2 θ

∂2ψ(r, θ, φ)

∂φ2
+ k2ψ(r, θ, φ) = 0

we put ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) and multiply through by r2 sin2 θ/ψ(r, θ, φ), we obtain

sin2 θ

R(r)

d

dr

(

r2
dR(r)

dr

)

+
sin θ

Θ(θ)

d

dθ

(

sin θ
dΘ(θ)

dθ

)

+ k2r2 sin2 θ = − 1

Φ(φ)

d2Φ(φ)

dφ2
.

Since the right side depends only on φ while the left side depends only on r and θ, both
sides must equal some constant µ2:

sin2 θ

R(r)

d

dr

(

r2
dR(r)

dr

)

+
sin θ

Θ(θ)

d

dθ

(

sin θ
dΘ(θ)

dθ

)

+ k2r2 sin2 θ = µ2, (A.137)

d2Φ(φ)

dφ2
+ µ2Φ(φ) = 0. (A.138)

We have thus separated off the φ-dependence. Harmonic ordinary differential equation
(A.138) has solutions

Φ(φ) =

{

Aφ sinµφ+Bφ cosµφ, µ 6= 0,

aφφ+ bφ, µ = 0.

(We could have used complex exponentials to describe Φ(φ), or some combination of
exponentials and trigonometric functions, but it is conventional to use only trigonometric
functions.) Rearranging (A.137) and dividing through by sin2 θ, we have

1

R(r)

d

dr

(

r2
dR(r)

dr

)

+ k2r2 = − 1

sin θΘ(θ)

d

dθ

(

sin θ
dΘ(θ)

dθ

)

+
µ2

sin2 θ
.
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We introduce a new constant k2θ to separate r from θ:

1

R(r)

d

dr

(

r2
dR(r)

dr

)

+ k2r2 = k2θ , (A.139)

− 1

sin θΘ(θ)

d

dθ

(

sin θ
dΘ(θ)

dθ

)

+
µ2

sin2 θ
= k2θ . (A.140)

Equation (A.140),

1

sin θ

d

dθ

(

sin θ
dΘ(θ)

dθ

)

+

(

k2θ −
µ2

sin2 θ

)

Θ(θ) = 0,

can be put into a standard form by letting

η = cos θ (A.141)

and k2θ = ν(ν + 1) where ν is a parameter:

(1− η2)
d2Θ(η)

dη2
− 2η

dΘ(η)

dη
+

[

ν(ν + 1)− µ2

1− η2

]

Θ(η) = 0 (|η| ≤ 1).

This is the associated Legendre equation. It has two independent solutions called associ-
ated Legendre functions of the first and second kinds, denoted Pµν (η) and Q

µ
ν (η), respec-

tively. In these functions, all three quantities µ, ν, η may be arbitrary complex constants
as long as ν + µ 6= −1,−2, . . .. But (A.141) shows that η is real in our discussion; µ will
generally be real also, and will be an integer whenever Φ(φ) is single-valued. The choice
of ν is somewhat more complicated. The function Pµν (η) diverges at η = ±1 unless ν
is an integer, while Qµν (η) diverges at η = ±1 regardless of whether ν is an integer. In
§ A.5.1 we required that Pµν (η) be bounded on [−1, 1] to have a Sturm–Liouville problem
with suitable orthogonality properties. By (A.141) we must exclude Qµν (η) for problems
containing the z-axis, and restrict ν to be an integer n in Pµν (η) for such problems.
In case the z-axis is excluded, we choose ν = n whenever possible, because the finite
sums Pmn (η) and Qmn (η) are much easier to manipulate than Pµν (η) and Q

µ
ν (η). In many

problems we must count on completeness of the Legendre polynomials Pn(η) = P 0
n(η) or

spherical harmonics Ymn(θ, φ) in order to satisfy the boundary conditions. In this book
we shall consider only those boundary value problems that can be solved using integer
values of ν and µ, hence choose

Θ(θ) = AθP
m
n (cos θ) +BθQ

m
n (cos θ). (A.142)

Single-valuedness in Φ(φ) is a consequence of having µ = m, and φ = constant boundary
surfaces are thereby disallowed.

The associated Legendre functions have many important properties. For instance,

Pmn (η) =







0, m > n,

(−1)m
(1− η2)m/2

2nn!
dn+m(η2 − 1)n

dηn+m
, m ≤ n.

(A.143)

The case m = 0 receives particular attention because it corresponds to azimuthal invari-
ance (φ-independence). We define P 0

n(η) = Pn(η) where Pn(η) is the Legendre polyno-
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mial of order n. From (A.143), we see that∗

Pn(η) =
1

2nn!

dn(η2 − 1)n

dηn

is a polynomial of degree n, and that

Pmn (η) = (−1)m(1 − η2)m/2
dm

dηm
Pn(η).

Both the associated Legendre functions and the Legendre polynomials obey orthogonality
relations and many recursion formulas.
In problems where the z-axis is included, the product Θ(θ)Φ(φ) is sometimes defined

as the spherical harmonic

Ynm(θ, φ) =

√

2n+ 1

4π

(n−m)!

(n+m)!
Pmn (cos θ)ejmφ.

These functions, which are complete over the surface of a sphere, were treated earlier in
this section.
Remembering that k2r = ν(ν + 1), the r-dependent equation (A.139) becomes

1

r2
d

dr

(

r2
dR(r)

dr

)

+

(

k2 +
n(n+ 1)

r2

)

R(r) = 0. (A.144)

When k = 0 we have

d2R(r)

dr2
+

2

r

dR(r)

dr
− n(n+ 1)

r2
R(r) = 0

so that
R(r) = Arr

n +Brr
−(n+1).

When k 6= 0, the substitution R̄(r) =
√
krR(r) puts (A.144) into the form

r2
d2R̄(r)

dr2
+ r

dR̄(r)

dr
+
[

k2r2 −
(

n+ 1
2

)2
]

R̄(r) = 0,

which we recognize as Bessel’s equation of half-integer order. Thus

R(r) =
R̄(r)√
kr

=
Zn+ 1

2
(kr)

√
kr

.

For convenience, we define the spherical Bessel functions

jn(z) =

√

π

2z
Jn+ 1

2
(z),

nn(z) =

√

π

2z
Nn+ 1

2
(z) = (−1)n+1

√

π

2z
J−(n+ 1

2 )
(z),

h(1)n (z) =

√

π

2z
H

(1)

n+ 1
2

(z) = jn(z) + jnn(z),

h(2)n (z) =

√

π

2z
H

(2)

n+ 1
2

(z) = jn(z)− jnn(z).

∗Care must be taken when consulting tables of Legendre functions and their properties. In particular,
one must be on the lookout for possible disparities regarding the factor (−1)m (cf., [74, 1, 115, 12] vs.
[6, 183]). Similar care is needed with Qmn (x).
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These can be written as finite sums involving trigonometric functions and inverse powers
of z. We have, for instance,

j0(z) =
sin z

z
, j1(z) =

sin z

z2
− cos z

z
,

n0(z) = −cos z

z
, n1(z) = −cos z

z2
− sin z

z
.

We can now write R(r) as a linear combination of any two of the spherical Bessel

functions jn, nn, h
(1)
n , h

(2)
n :

R(r) =















































Arjn(kr) +Brnn(kr),

Arjn(kr) +Brh
(1)
n (kr),

Arjn(kr) +Brh
(2)
n (kr),

Arnn(kr) +Brh
(1)
n (kr),

Arnn(kr) +Brh
(2)
n (kr),

Arh
(1)
n (kr) +Brh

(2)
n (kr).

(A.145)

Imaginary arguments produce modified spherical Bessel functions; the interested reader
is referred to Gradshteyn [74] or Abramowitz [1].

◮ Example A.12: Solution to Laplace’s equation in spherical coordinates with three dimensions
and boundary values — example 1

Solve
∇2V (r, θ, φ) = 0

in the region
θ0 ≤ θ ≤ π/2, 0 ≤ r <∞, −π ≤ φ ≤ π

where the boundary conditions are those of a cone held at a potential V0 with respect to the
z = 0 plane:

V (r, θ0, φ) = V0 (−π ≤ φ ≤ π, 0 ≤ r <∞),

V (r, π/2, φ) = 0 (−π ≤ φ ≤ π, 0 ≤ r <∞).

Solution: Azimuthal symmetry prompts us to choose µ = aφ = 0. Since k = 0 we have

R(r) = Arr
n +Brr

−(n+1). (A.146)

Noting that positive and negative powers of r are unbounded for large and small r, respec-
tively, we take n = Br = 0. Hence the solution depends only on θ:

V (r, θ, φ) = V (θ) = AθP
0
0 (cos θ) +BθQ

0
0(cos θ).

We must retain Q0
0 since the solution region does not contain the z-axis. Using

P 0
0 (cos θ) = 1 and Q0

0(cos θ) = ln cot(θ/2)

(cf., Appendix E.2), we have

V (θ) = Aθ +Bθ ln cot(θ/2).



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 905 — #929
✐

✐

✐

✐

✐

✐

Mathematical appendix 905

A straightforward application of the boundary conditions gives Aθ = 0 and Bθ = V0/ ln cot(θ0/2),
hence

V (θ) = V0
ln cot(θ/2)

ln cot(θ0/2)
. ◭

◮ Example A.13: Solution to Laplace’s equation in spherical coordinates with three dimensions
and boundary values — example 2

Solve
∇2V (r, θ, φ) = 0

in the region
θ0 ≤ θ ≤ π, 0 ≤ r <∞, −π ≤ φ ≤ π

where the boundary conditions are those of a conducting sphere split into top and bottom
hemispheres and held at a potential difference of 2V0:

V (a, θ, φ) = −V0, (π/2 ≤ θ < π, −π ≤ φ ≤ π),

V (a, θ, φ) = +V0, (0 < θ ≤ π/2, −π ≤ φ ≤ π).

Find V (r, θ, φ) for r < a.

Solution: Azimuthal symmetry gives µ = 0. The two possible solutions for Θ(θ) are

Θ(θ) =

{

Aθ +Bθ ln cot(θ/2), n = 0,

AθPn(cos θ), n 6= 0,

where we have discarded Q0
0(cos θ) because the region of interest contains the z-axis. The

n = 0 solution cannot match the boundary conditions; neither can a single term of the type
AθPn(cos θ), but a series of these latter terms can. We use

V (r, θ) =
∞
∑

n=0

Vn(r, θ) =
∞
∑

n=0

[Arr
n +Brr

−(n+1)]Pn(cos θ). (A.147)

The terms r−(n+1) and rn are not allowed, respectively, for r < a and r > a. For r < a
then,

V (r, θ) =
∞
∑

n=0

Anr
nPn(cos θ).

Letting V0(θ) be the potential on the surface of the split sphere, we impose the boundary
condition:

V (a, θ) = V0(θ) =
∞
∑

n=0

Ana
nPn(cos θ) (0 ≤ θ ≤ π).

This is a Fourier–Legendre expansion of V0(θ). The An are evaluated by orthogonality.
Multiplying by Pm(cos θ) sin θ and integrating from θ = 0 to π, we obtain

∞
∑

n=0

Ana
n

∫ π

0

Pn(cos θ)Pm(cos θ) sin θ dθ =

∫ π

0

V0(θ)Pm(cos θ) sin θ dθ.

Using orthogonality relationship (A.95) and the given V0(θ), we have

Ama
m 2

2m+ 1
= V0

∫ π/2

0

Pm(cos θ) sin θ dθ − V0

∫ π

π/2

Pm(cos θ) sin θ dθ.
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The substitution η = cos θ gives

Ama
m 2

2m+ 1
= V0

∫ 1

0

Pm(η) dη − V0

∫ 0

−1

Pm(η) dη

= V0

∫ 1

0

Pm(η) dη − V0

∫ 1

0

Pm(−η) dη;

then Pm(−η) = (−1)mPm(η) gives

Am = a−m
2m+ 1

2
V0[1− (−1)m]

∫ 1

0

Pm(η) dη.

Because Am = 0 for m even, we can put m = 2n+ 1 (n = 0, 1, 2, . . .) and have

A2n+1 =
(4n+ 3)V0

a2n+1

∫ 1

0

P2n+1(η) dη =
V0(−1)n

a2n+1

4n+ 3

2n+ 2

(2n!)

(2nn!)2

by (E.178). Hence

V (r, θ) =
∞
∑

n=0

V0(−1)n
4n+ 3

2n+ 2

(2n!)

(2nn!)2

( r

a

)2n+1

P2n+1(cos θ)

for r < a. The case r > a is left to the reader. ◭

◮ Example A.14: Solution to the Helmholtz equation in spherical coordinates with three
dimensions and boundary values

Solve
∇2ψ(x, y, z) + k2ψ(x, y, z) = 0

in the region
0 ≤ r ≤ a, 0 ≤ θ ≤ π, −π ≤ φ ≤ π

with the boundary condition

ψ(a, θ, φ) = 0, 0 ≤ θ ≤ π, −π ≤ φ ≤ π.

Solution: The wave function ψ represents the solutions for the electromagnetic field within
a spherical cavity for modes TE to r. Despite the prevailing symmetry, we choose solutions
that vary with both θ and φ. We are motivated by a desire to solve problems involving cavity
excitation, and eigenmode completeness will enable us to represent any piecewise continuous
function within the cavity. We employ spherical harmonics because the boundary surface
is a sphere. These exclude Qnm(cos θ), which is appropriate since our problem contains the
z-axis. Since k 6= 0 we must choose a radial dependence from (A.145). Small-argument

behavior rules out nn, h
(1)
n , and h

(2)
n , leaving us with

ψ(r, θ, φ) = Amnjn(kr)Ynm(θ, φ)

or, equivalently,
ψ(r, θ, φ) = Amnjn(kr)P

m
n (cos θ)ejmφ.

The eigenvalues λ = k2 are found by applying the condition at r = a:

ψ(a, θ, φ) = Amnjn(ka)Ynm(θ, φ) = 0,
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requiring jn(ka) = 0. Denoting the qth root of jn(x) = 0 by αnq , we have knq = αnq/a and
corresponding eigenfunctions

ψmnq(r, θ, φ) = Amnqjn(knqr)Ynm(θ, φ).

The eigenvalues are proportional to the resonant frequencies of the cavity, and the eigenfunc-
tions can be used to find the modal field distributions. Since the eigenvalues are independent
of m, we may have several eigenfunctions ψmnq associated with each kmnq . The only limi-
tation is that we must keep m ≤ n to have Pnm(cos θ) nonzero. This is another instance of
mode degeneracy. There are 2n degenerate modes associated with each resonant frequency
(one for each of e±jnφ). By completeness we can expand any piecewise continuous function
within or on the sphere as a series

f(r, θ, φ) =
∑

m,n,q

Amnqjn(knqr)Ynm(θ, φ). ◭
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Useful identities

Algebraic identities for vectors and dyadics

A+B = B+A (B.1)

A ·B = B ·A (B.2)

A×B = −B×A (B.3)

A · (B+C) = A ·B+A ·C (B.4)

A× (B+C) = A×B+A×C (B.5)

A · (B×C) = B · (C×A) = C · (A×B) (B.6)

A× (B×C) = B(A ·C)−C(A ·B) = B× (A×C) +C× (B×A) (B.7)

(A×B) · (C×D) = A · [B× (C×D)] = (B ·D)(A ·C)− (B ·C)(A ·D) (B.8)

(A×B)× (C×D) = C[A · (B×D)]−D[A · (B×C)] (B.9)

A× [B× (C×D)] = (B ·D)(A×C)− (B ·C)(A ×D) (B.10)

A · (c̄ ·B) = (A · c̄) ·B (B.11)

A× (c̄ ·B) = (A× c̄) ·B (B.12)

A× (c̄ ×B) = (A× c̄)×B (B.13)

C · (ā · b̄) = (C · ā) · b̄ (B.14)

(ā · b̄) ·C = ā · (b̄ ·C) (B.15)

A · (B× c̄) = −B · (A× c̄) = (A×B) · c̄ (B.16)

A× (B× c̄) = B · (A× c̄)− c̄(A ·B) (B.17)

A · Ī = Ī ·A = A (B.18)

A× Ī = Ī×A (B.19)

(Ī×A) ·B = A×B (B.20)

A · (Ī×B) = A×B (B.21)

(Ī×A) · c̄ = A× c̄ (B.22)

c̄ · (Ī×A) = c̄×A (B.23)
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Integral theorems

In the relations below, surface S bounds volume V , curve Γ bounds surface S, unit vector
n̂ is normal to surface S at position r, unit vectors l̂ and m̂ are tangential to surface S
at position r, unit vector l̂ is tangential to contour Γ, and m̂ × l̂ = n̂, dl = l̂ dl, while
dS = n̂ dS.

Divergence theorem

∫

V

∇ ·A dV =

∮

S

A · dS (B.24)

∫

V

∇ · ā dV =

∮

S

n̂ · ā dS (B.25)

∫

S

∇s ·A dS =

∮

Γ

m̂ ·A dl (B.26)

Gradient theorem
∫

V

∇a dV =

∮

S

adS (B.27)

∫

V

∇A dV =

∮

S

n̂A dS (B.28)

∫

V

∇sa dS =

∮

Γ

m̂a dl (B.29)

Curl theorem
∫

V

(∇×A) dV = −
∮

S

A× dS (B.30)

∫

V

(∇× ā) dV =

∮

S

n̂× ā dS (B.31)

∫

S

∇s ×A dS =

∮

Γ

m̂×A dl (B.32)

Stokes’s theorem
∫

S

(∇×A) · dS =

∮

Γ

A · dl (B.33)

∫

S

n̂ · (∇× ā) dS =

∮

Γ

dl · ā (B.34)



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 911 — #935
✐

✐

✐

✐

✐

✐

Useful identities 911

Green’s first identity for scalar fields

∫

V

(∇a · ∇b+ a∇2b) dV =

∮

S

a
∂b

∂n
dS (B.35)

Green’s second identity for scalar fields (Green’s theorem)

∫

V

(a∇2b− b∇2a) dV =

∮

S

(

a
∂b

∂n
− b

∂a

∂n

)

dS (B.36)

Green’s first identity for vector fields

∫

V

{(∇×A) · (∇×B)−A · [∇× (∇×B)]} dV

=

∫

V

∇ · [A× (∇×B)] dV

=

∮

S

[A× (∇×B)] · dS (B.37)

Green’s second identity for vector fields

∫

V

{B · [∇× (∇×A)]−A · [∇× (∇×B)]} dV

=

∮

S

[A× (∇×B)−B× (∇×A)] · dS (B.38)

Helmholtz theorem

A(r) = −∇
[∫

V

∇′ ·A(r′)

4π|r− r′| dV
′ −
∮

S

A(r′) · n̂′

4π|r− r′| dS
′
]

+∇×
[∫

V

∇′ ×A(r′)

4π|r− r′| dV
′ +

∮

S

A(r′)× n̂′

4π|r− r′| dS
′
]

(B.39)

Miscellaneous identities

∮

S

dS = 0 (B.40)

∫

S

n̂× (∇a) dS =

∮

Γ

adl (B.41)

∫

S

(∇a×∇b) · dS =

∫

Γ

a∇b · dl = −
∫

Γ

b∇a · dl (B.42)

∮

dlA =

∫

S

n̂× (∇A) dS (B.43)
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Derivative identities

∇ (a+ b) = ∇a+∇b (B.44)

∇ · (A+B) = ∇ ·A+∇ ·B (B.45)

∇× (A+B) = ∇×A+∇×B (B.46)

∇(ab) = a∇b+ b∇a (B.47)

∇ · (aB) = a∇ ·B+B · ∇a (B.48)

∇× (aB) = a∇×B−B×∇a (B.49)

∇ · (A×B) = B · ∇ ×A−A · ∇ ×B (B.50)

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B · ∇)A− (A · ∇)B (B.51)

∇(A ·B) = A× (∇×B) +B× (∇×A) + (A · ∇)B+ (B · ∇)A (B.52)

∇× (∇×A) = ∇(∇ ·A)−∇2A (B.53)

∇ · (∇a) = ∇2a (B.54)

∇ · (∇×A) = 0 (B.55)

∇× (∇a) = 0 (B.56)

∇× (a∇b) = ∇a×∇b (B.57)

∇2(ab) = a∇2b+ 2(∇a) · (∇b) + b∇2a (B.58)

∇2(aB) = a∇2B+B∇2a+ 2(∇a · ∇)B (B.59)

∇2ā = ∇(∇ · ā)−∇× (∇× ā) (B.60)

∇ · (AB) = (∇ ·A)B+A · (∇B) = (∇ ·A)B+ (A · ∇)B (B.61)

∇× (AB) = (∇×A)B−A× (∇B) (B.62)

∇ · (∇× ā) = 0 (B.63)

∇× (∇A) = 0 (B.64)

∇(A×B) = (∇A)×B− (∇B)×A (B.65)

∇(aB) = (∇a)B+ a(∇B) (B.66)

∇ · (ab̄) = (∇a) · b̄+ a(∇ · b̄) (B.67)

∇× (ab̄) = (∇a)× b̄+ a(∇× b̄) (B.68)

∇ · (aĪ) = ∇a (B.69)

∇× (aĪ) = ∇a× Ī (B.70)
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Identities involving the displacement vector

Here R = r− r′, R = |R|, R̂ = R/R, and f ′(x) = df(x)/dx.

∇f(R) = −∇′f(R) = R̂f ′(R) (B.71)

∇R = R̂ (B.72)

∇
(

1

R

)

= − R̂

R2
(B.73)

∇
(

e−jkR

R

)

= −R̂

(

1

R
+ jk

)

e−jkR

R
(B.74)

∇ · [f(R)R̂] = −∇′ · [f(R)R̂] = 2
f(R)

R
+ f ′(R) (B.75)

∇ ·R = 3 (B.76)

∇ · R̂ =
2

R
(B.77)

∇ ·
(

R̂
e−jkR

R

)

=

(

1

R
− jk

)

e−jkR

R
(B.78)

∇× [f(R)R̂] = 0 (B.79)

∇2

(

1

R

)

= −4πδ(R) (B.80)

(∇2 + k2)
e−jkR

R
= −4πδ(R) (B.81)

Identities involving the plane-wave function

Here E is a constant vector and k = |k|.

∇
(

e−jk·r
)

= −jke−jk·r (B.82)

∇ ·
(

Ee−jk·r
)

= −jk ·Ee−jk·r (B.83)

∇×
(

Ee−jk·r
)

= −jk×Ee−jk·r (B.84)

∇2
(

Ee−jk·r
)

= −k2Ee−jk·r (B.85)
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Identities involving the transverse/longitudinal decomposition

In the relations below, û is a constant unit vector, Au ≡ û · A, ∂/∂u ≡ û · ∇, At ≡
A− ûAu, and ∇t ≡ ∇− û∂/∂u.

A = At + ûAu (B.86)

∇ = ∇t + û
∂

∂u
(B.87)

û ·At = 0 (B.88)

(û · ∇t)φ = 0 (B.89)

∇tφ = ∇φ− û
∂φ

∂u
(B.90)

û · (∇φ) = (û · ∇)φ =
∂φ

∂u
(B.91)

û · (∇tφ) = 0 (B.92)

∇t · (ûφ) = 0 (B.93)

∇t × (ûφ) = −û×∇tφ (B.94)

∇t × (û×A) = û∇t ·At (B.95)

û× (∇t ×A) = ∇tAu (B.96)

û× (∇t ×At) = 0 (B.97)

û · (û×A) = 0 (B.98)

û× (û×A) = −At (B.99)

∇φ = ∇tφ+ û
∂φ

∂u
(B.100)

∇ ·A = ∇t ·At +
∂Au
∂u

(B.101)

∇×A = ∇t ×At + û×
[

∂At

∂u
−∇tAu

]

(B.102)

∇2φ = ∇2
tφ+

∂2φ

∂u2
(B.103)

∇×∇×A =

[

∇t ×∇t ×At −
∂2At

∂u2
+∇t

∂Au
∂u

]

+ û

[

∂

∂u
(∇t ·At)−∇2

tAu

]

(B.104)

∇2A =

[

∇t(∇t ·At) +
∂2At

∂u2
−∇t ×∇t ×At

]

+ û∇2Au (B.105)
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Fourier transform pairs

Listed below are some pairs of the form g(x) ↔ G(k) where

G(k) =

∫ ∞

−∞
g(x)e−jkx dx and g(x) =

1

2π

∫ ∞

−∞
G(k)ejkx dk.

rect(x) ↔ 2 sinc k (C.1)

Λ(x) ↔ sinc2
k

2
(C.2)

sgn(x) ↔ 2

jk
(C.3)

ejk0x ↔ 2πδ(k − k0) (C.4)

δ(x) ↔ 1 (C.5)

1 ↔ 2πδ(k) (C.6)

dnδ(x)

dxn
↔ (jk)n (C.7)

xn ↔ 2πjn
dnδ(k)

dkn
(C.8)

U(x) ↔ πδ(k) +
1

jk
(C.9)

∞
∑

n=−∞
δ

(

t− n
2π

k0

)

↔ k0

∞
∑

n=−∞
δ(k − nk0) (C.10)

e−ax
2 ↔

√

π

a
e−

k2

4a (C.11)

e−axU(x) ↔ 1

a+ jk
(C.12)

e−a|x| ↔ 2a

a2 + k2
(C.13)
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e−ax cos bxU(x) ↔ a+ jk

(a+ jk)2 + b2
(C.14)

e−ax sin bxU(x) ↔ b

(a+ jk)2 + b2
(C.15)

cos k0x ↔ π[δ(k + k0) + δ(k − k0)] (C.16)

sin k0x ↔ jπ[δ(k + k0)− δ(k − k0)] (C.17)

1
2be

− 1
2 bx[I0(

1
2 bx) + I1(

1
2bx)U(x) ↔

√

jk + b

jk
− 1 (C.18)

g(x)− ae−ax
∫ x

−∞
eaug(u) du ↔ jk

jk + a
G(k) (C.19)
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Coordinate systems

Rectangular coordinate system

Coordinate variables

u = x (−∞ < x <∞) (D.1)

v = y (−∞ < y <∞) (D.2)

w = z (−∞ < z <∞) (D.3)

Vector algebra
A = x̂Ax + ŷAy + ẑAz (D.4)

A ·B = AxBx +AyBy +AzBz (D.5)

A×B =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
Ax Ay Az
Bx By Bz

∣

∣

∣

∣

∣

∣

= x̂(AyBz −AzBy) + ŷ(AzBx − axBz) + ẑ(AxBy −AyBx) (D.6)

Dyadic representation

ā = x̂axxx̂+ x̂axyŷ + x̂axzẑ

+ ŷayxx̂+ ŷayyŷ + ŷayzẑ

+ ẑazxx̂+ ẑazyŷ + ẑazzẑ (D.7)

ā = x̂a′x + ŷa′y + ẑa′z = axx̂+ ayŷ + az ẑ (D.8)

a′x = axxx̂+ axyŷ + axzẑ (D.9)

a′y = ayxx̂+ ayyŷ + ayzẑ (D.10)

a′z = azxx̂+ azyŷ + azzẑ (D.11)

ax = axxx̂+ ayxŷ + azxẑ (D.12)

ay = axyx̂+ ayyŷ + azyẑ (D.13)

az = axzx̂+ ayzŷ + azzẑ (D.14)

917
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Differential operations

dl = x̂ dx+ ŷ dy + ẑ dz (D.15)

dV = dx dy dz (D.16)

dSx = dy dz (D.17)

dSy = dx dz (D.18)

dSz = dx dy (D.19)

∇f = x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z
(D.20)

∇ · F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

(D.21)

∇× F =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣

∣

∣

∣

∣

∣

= x̂

(

∂Fz
∂y

− ∂Fy
∂z

)

+ ŷ

(

∂Fx
∂z

− ∂Fz
∂x

)

+ ẑ

(

∂Fy
∂x

− ∂Fx
∂y

)

(D.22)

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
(D.23)

∇2F = x̂∇2Fx + ŷ∇2Fy + ẑ∇2Fz (D.24)

Separation of the Helmholtz equation

∂2ψ(x, y, z)

∂x2
+
∂2ψ(x, y, z)

∂y2
+
∂2ψ(x, y, z)

∂z2
+ k2ψ(x, y, z) = 0 (D.25)

ψ(x, y, z) = X(x)Y (y)Z(z) (D.26)

k2x + k2y + k2z = k2 (D.27)

d2X(x)

dx2
+ k2xX(x) = 0 (D.28)

d2Y (y)

dy2
+ k2yY (y) = 0 (D.29)

d2Z(z)

dz2
+ k2zZ(z) = 0 (D.30)



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 919 — #943
✐

✐

✐

✐

✐

✐

Coordinate systems 919

X(x) =

{

AxF1(kxx) +BxF2(kxx), kx 6= 0,

axx+ bx, kx = 0.
(D.31)

Y (y) =

{

AyF1(kyy) +ByF2(kyy), ky 6= 0,

ayy + by, ky = 0.
(D.32)

Z(z) =

{

AzF1(kzz) +BzF2(kzz), kz 6= 0,

azz + bz, kz = 0.
(D.33)

F1(ξ), F2(ξ) =



















ejξ

e−jξ

sin(ξ)

cos(ξ)

(D.34)

Cylindrical coordinate system

Coordinate variables

u = ρ (0 ≤ ρ <∞) (D.35)

v = φ (−π ≤ φ ≤ π) (D.36)

w = z (−∞ < z <∞) (D.37)

x = ρ cosφ (D.38)

y = ρ sinφ (D.39)

z = z (D.40)

ρ =
√

x2 + y2 (D.41)

φ = tan−1 y

x
(D.42)

z = z (D.43)

Vector algebra

ρ̂ = x̂ cosφ+ ŷ sinφ (D.44)

φ̂ = −x̂ sinφ+ ŷ cosφ (D.45)

ẑ = ẑ (D.46)

A = ρ̂Aρ + φ̂Aφ + ẑAz (D.47)

A ·B = AρBρ +AφBφ +AzBz (D.48)
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A×B =

∣

∣

∣

∣

∣

∣

ρ̂ φ̂ ẑ
Aρ Aφ Az
Bρ Bφ Bz

∣

∣

∣

∣

∣

∣

= ρ̂(AφBz −AzBφ) + φ̂(AzBρ −AρBz) + ẑ(AρBφ −AφBρ) (D.49)

Dyadic representation

ā = ρ̂aρρρ̂+ ρ̂aρφφ̂+ ρ̂aρzẑ

+ φ̂aφρρ̂+ φ̂aφφφ̂+ φ̂aφzẑ

+ ẑazρρ̂+ ẑazφφ̂+ ẑazzẑ (D.50)

ā = ρ̂a′ρ + φ̂a′φ + ẑa′z = aρρ̂+ aφφ̂+ az ẑ (D.51)

a′ρ = aρρρ̂+ aρφφ̂+ aρz ẑ (D.52)

a′φ = aφρρ̂+ aφφφ̂+ aφzẑ (D.53)

a′z = azρρ̂+ azφφ̂+ azz ẑ (D.54)

aρ = aρρρ̂+ aφρφ̂+ azρẑ (D.55)

aφ = aρφρ̂+ aφφφ̂+ azφẑ (D.56)

az = aρzρ̂+ aφzφ̂+ azz ẑ (D.57)

Differential operations

dl = ρ̂ dρ+ φ̂ρ dφ+ ẑ dz (D.58)

dV = ρ dρ dφ dz (D.59)

dSρ = ρ dφ dz, (D.60)

dSφ = dρ dz, (D.61)

dSz = ρ dρ dφ (D.62)

∇f = ρ̂
∂f

∂ρ
+ φ̂

1

ρ

∂f

∂φ
+ ẑ

∂f

∂z
(D.63)

∇ ·F =
1

ρ

∂

∂ρ
(ρFρ) +

1

ρ

∂Fφ
∂φ

+
∂Fz
∂z

(D.64)
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∇× F =
1

ρ

∣

∣

∣

∣

∣

∣

ρ̂ ρφ̂ ẑ
∂
∂ρ

∂
∂φ

∂
∂z

Fρ ρFφ Fz

∣

∣

∣

∣

∣

∣

= ρ̂

(

1

ρ

∂Fz
∂φ

− ∂Fφ
∂z

)

+ φ̂

(

∂Fρ
∂z

− ∂Fz
∂ρ

)

+ ẑ

(

1

ρ

∂[ρFφ]

∂ρ
− 1

ρ

∂Fρ
∂φ

)

(D.65)

∇2f =
1

ρ

∂

∂ρ

(

ρ
∂f

∂ρ

)

+
1

ρ2
∂2f

∂φ2
+
∂2f

∂z2
(D.66)

∇2F = ρ̂

(

∇2Fρ −
2

ρ2
∂Fφ
∂φ

− Fρ
ρ2

)

+ φ̂

(

∇2Fφ +
2

ρ2
∂Fρ
∂φ

− Fφ
ρ2

)

+ ẑ∇2Fz (D.67)

Separation of the Helmholtz equation

1

ρ

∂

∂ρ

(

ρ
∂ψ(ρ, φ, z)

∂ρ

)

+
1

ρ2
∂2ψ(ρ, φ, z)

∂φ2
+
∂2ψ(ρ, φ, z)

∂z2
+ k2ψ(ρ, φ, z) = 0 (D.68)

ψ(ρ, φ, z) = P (ρ)Φ(φ)Z(z) (D.69)

k2c = k2 − k2z (D.70)

d2P (ρ)

dρ2
+

1

ρ

dP (ρ)

dρ
+

(

k2c −
k2φ
ρ2

)

P (ρ) = 0 (D.71)

∂2Φ(φ)

∂φ2
+ k2φΦ(φ) = 0 (D.72)

d2Z(z)

dz2
+ k2zZ(z) = 0 (D.73)

Z(z) =

{

AzF1(kzz) +BzF2(kzz), kz 6= 0,

azz + bz, kz = 0.
(D.74)

Φ(φ) =

{

AφF1(kφφ) +BφF2(kφφ), kφ 6= 0,

aφφ+ bφ, kφ = 0.
(D.75)

P (ρ) =















aρ ln ρ+ bρ, kc = kφ = 0,

aρρ
−kφ + bρρ

kφ , kc = 0 and kφ 6= 0,

AρG1(kcρ) +BρG2(kcρ), otherwise.

(D.76)

F1(ξ), F2(ξ) =



















ejξ

e−jξ

sin(ξ)

cos(ξ)

(D.77)



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 922 — #946
✐

✐

✐

✐

✐

✐

922 Electromagnetics

G1(ξ), G2(ξ) =























Jkφ(ξ)

Nkφ(ξ)

H
(1)
kφ

(ξ)

H
(2)
kφ

(ξ)

(D.78)

Spherical coordinate system

Coordinate variables

u = r (0 ≤ r <∞) (D.79)

v = θ (0 ≤ θ ≤ π) (D.80)

w = φ (−π ≤ φ ≤ π) (D.81)

x = r sin θ cosφ (D.82)

y = r sin θ sinφ (D.83)

z = r cos θ (D.84)

r =
√

x2 + y2 + z2 (D.85)

θ = tan−1

√

x2 + y2

z
(D.86)

φ = tan−1 y

x
(D.87)

Vector algebra

r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ (D.88)

θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ (D.89)

φ̂ = −x̂ sinφ+ ŷ cosφ (D.90)

A = r̂Ar + θ̂Aθ + φ̂Aφ (D.91)

A ·B = ArBr +AθBθ +AφBφ (D.92)

A×B =

∣

∣

∣

∣

∣

∣

r̂ θ̂ φ̂

Ar Aθ Aφ
Br Bθ Bφ

∣

∣

∣

∣

∣

∣

= r̂(AθBφ −AφBθ) + θ̂(AφBr −ArBφ) + φ̂(ArBθ −AθBr) (D.93)
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Dyadic representation

ā = r̂arrr̂+ r̂arθθ̂ + r̂arφφ̂

+ θ̂aθrr̂+ θ̂aθθθ̂ + θ̂aθφφ̂

+ φ̂aφr r̂+ φ̂aφθθ̂ + φ̂aφφφ̂ (D.94)

ā = r̂a′r + θ̂a′θ + φ̂a′φ = ar r̂+ aθθ̂ + aφφ̂ (D.95)

a′r = arrr̂+ arθθ̂ + arφφ̂ (D.96)

a′θ = aθrr̂+ aθθθ̂ + aθφφ̂ (D.97)

a′φ = aφr r̂+ aφθθ̂ + aφφφ̂ (D.98)

ar = arrr̂+ aθrθ̂ + aφrφ̂ (D.99)

aθ = arθr̂+ aθθθ̂ + aφθφ̂ (D.100)

aφ = arφr̂+ aθφθ̂ + aφφφ̂ (D.101)

Differential operations

dl = r̂ dr + θ̂r dθ + φ̂r sin θ dφ (D.102)

dV = r2 sin θ dr dθ dφ (D.103)

dSr = r2 sin θ dθ dφ (D.104)

dSθ = r sin θ dr dφ (D.105)

dSφ = r dr dθ (D.106)

∇f = r̂
∂f

∂r
+ θ̂

1

r

∂f

∂θ
+ φ̂

1

r sin θ

∂f

∂φ
(D.107)

∇ · F =
1

r2
∂

∂r

(

r2Fr
)

+
1

r sin θ

∂

∂θ
(sin θFθ) +

1

r sin θ

∂Fφ
∂φ

(D.108)

∇× F =
1

r2 sin θ

∣

∣

∣

∣

∣

∣

r̂ rθ̂ r sin θφ̂
∂
∂r

∂
∂θ

∂
∂φ

Fr rFθ r sin θFφ

∣

∣

∣

∣

∣

∣

=
r̂

r sin θ

(

∂[Fφ sin θ]

∂θ
− ∂Fθ

∂φ

)

+
θ̂

r

(

1

sin θ

∂Fr
∂φ

− ∂[rFφ]

∂r

)

+
φ̂

r

(

∂[rFθ]

∂r
− ∂Fr

∂θ

)

(D.109)
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∇2f =
1

r2
∂

∂r

(

r2
∂f

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂f

∂θ

)

+
1

r2 sin2 θ

∂2f

∂φ2
(D.110)

∇2F = r̂

[

∇2Fr −
2

r2

(

Fr +
cos θ

sin θ
Fθ +

1

sin θ

∂Fφ
∂φ

+
∂Fθ
∂θ

)]

+ θ̂

[

∇2Fθ −
1

r2

(

1

sin2 θ
Fθ − 2

∂Fr
∂θ

+ 2
cos θ

sin2 θ

∂Fφ
∂φ

)]

+ φ̂

[

∇2Fφ − 1

r2

(

1

sin2 θ
Fφ − 2

1

sin θ

∂Fr
∂φ

− 2
cos θ

sin2 θ

∂Fθ
∂φ

)]

(D.111)

Separation of the Helmholtz equation

1

r2
∂

∂r

(

r2
∂ψ(r, θ, φ)

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂ψ(r, θ, φ)

∂θ

)

+
1

r2 sin2 θ

∂2ψ(r, θ, φ)

∂φ2
+ k2ψ(r, θ, φ) = 0 (D.112)

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) (D.113)

η = cos θ (D.114)

1

R(r)

d

dr

(

r2
dR(r)

dr

)

+ k2r2 = n(n+ 1) (D.115)

(1 − η2)
d2Θ(η)

dη2
− 2η

dΘ(η)

dη
+

[

n(n+ 1)− µ2

1− η2

]

Θ(η) = 0 (|η| ≤ 1) (D.116)

d2Φ(φ)

dφ2
+ µ2Φ(φ) = 0 (D.117)

Φ(φ) =

{

Aφ sin(µφ) +Bφ cos(µφ), µ 6= 0,

aφφ+ bφ, µ = 0.
(D.118)

Θ(θ) = AθP
µ
n (cos θ) +BθQ

µ
n(cos θ) (D.119)

R(r) =

{

R(r) = Arr
n +Brr

−(n+1), k = 0,

ArF1(kr) +BrF2(kr), otherwise.
(D.120)

F1(ξ), F2(ξ) =



















jn(ξ)

nn(ξ)

h
(1)
n (ξ)

h
(2)
n (ξ)

(D.121)
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E

Properties of special functions

E.1 Bessel functions

Notation

z = complex number; ν, x = real numbers; n = integer

Jν(z) = ordinary Bessel function of the first kind

Nν(z) = ordinary Bessel function of the second kind

Iν(z) = modified Bessel function of the first kind

Kν(z) = modified Bessel function of the second kind

H
(1)
ν = Hankel function of the first kind

H
(2)
ν = Hankel function of the second kind

jn(z) = ordinary spherical Bessel function of the first kind

nn(z) = ordinary spherical Bessel function of the second kind

h
(1)
n (z) = spherical Hankel function of the first kind

h
(2)
n (z) = spherical Hankel function of the second kind

f ′(z) = df(z)/dz = derivative with respect to argument

Differential equations

d2Zν(z)

dz2
+

1

z

dZν(z)

dz
+

(

1− ν2

z2

)

Zν(z) = 0 (E.1)

Zν(z) =



















Jν(z)

Nν(z)

H
(1)
ν (z)

H
(2)
ν (z)

(E.2)

Nν(z) =
cos(νπ)Jν (z)− J−ν(z)

sin(νπ)
(ν 6= n, | arg z| < π) (E.3)

H(1)
ν (z) = Jν(z) + jNν(z) (E.4)

H(2)
ν (z) = Jν(z)− jNν(z) (E.5)
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d2Z̄ν(x)

dz2
+

1

z

dZ̄ν(z)

dz
−
(

1 +
ν2

z2

)

Z̄ν = 0 (E.6)

Z̄ν(z) =

{

Iν(z)

Kν(z)
(E.7)

L(z) =

{

Iν(z)

ejνπKν(z)
(E.8)

Iν(z) = e−jνπ/2Jν(ze
jπ/2) (−π < arg z ≤ π/2) (E.9)

Iν(z) = ej3νπ/2Jν(ze
−j3π/2) (π/2 < arg z ≤ π) (E.10)

Kν(z) =
jπ

2
ejνπ/2H(1)

ν (zejπ/2) (−π < arg z ≤ π/2) (E.11)

Kν(z) = − jπ
2
e−jνπ/2H(2)

ν (ze−jπ/2) (−π/2 < arg z ≤ π) (E.12)

In(x) = j−nJn(jx) (E.13)

Kn(x) =
π

2
jn+1H(1)

n (jx) (E.14)

d2zn(z)

dz2
+

2

z

dzn(z)

dz
+

[

1− n(n+ 1)

z2

]

zn(z) = 0 (n = 0,±1,±2, . . .) (E.15)

zn(z) =



















jn(z)

nn(z)

h
(1)
n (z)

h
(2)
n (z)

(E.16)

jn(z) =

√

π

2z
Jn+ 1

2
(z) (E.17)

nn(z) =

√

π

2z
Nn+ 1

2
(z) (E.18)

h(1)n (z) =

√

π

2z
H

(1)

n+ 1
2

(z) = jn(z) + jnn(z) (E.19)

h(2)n (z) =

√

π

2z
H

(2)

n+ 1
2

(z) = jn(z)− jnn(z) (E.20)

nn(z) = (−1)n+1j−(n+1)(z) (E.21)
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Properties of special functions 927

Orthogonality relationships

∫ a

0

Jν

(pνm
a
ρ
)

Jν

(pνn
a
ρ
)

ρ dρ = δmn
a2

2
J2
ν+1(pνn) = δmn

a2

2
[J ′
ν(pνn)]

2
(ν > −1)

(E.22)

∫ a

0

Jν

(

p′νm
a
ρ

)

Jν

(

p′νn
a
ρ

)

ρ dρ = δmn
a2

2

(

1− ν2

p′2νm

)

J2
ν (p

′
νm) (ν > −1) (E.23)

∫ ∞

0

Jν(αx)Jν (βx)x dx =
1

α
δ(α− β) (E.24)

∫ a

0

jl

(αlm
a
r
)

jl

(αln
a
r
)

r2 dr = δmn
a3

2
j2n+1(αlna) (E.25)

∫ ∞

−∞
jm(x)jn(x) dx = δmn

π

2n+ 1
(m,n ≥ 0) (E.26)

Jm(pmn) = 0 (E.27)

J ′
m(p′mn) = 0 (E.28)

jm(αmn) = 0 (E.29)

j′m(α′
mn) = 0 (E.30)

Specific examples

j0(z) =
sin z

z
(E.31)

n0(z) = −cos z

z
(E.32)

h
(1)
0 (z) = − j

z
ejz (E.33)

h
(2)
0 (z) =

j

z
e−jz (E.34)

j1(z) =
sin z

z2
− cos z

z
(E.35)

n1(z) = −cos z

z2
− sin z

z
(E.36)

j2(z) =

(

3

z3
− 1

z

)

sin z − 3

z2
cos z (E.37)

n2(z) =

(

− 3

z3
+

1

z

)

cos z − 3

z2
sin z (E.38)



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 928 — #952
✐

✐

✐

✐

✐

✐

928 Electromagnetics

Functional relationships

Jn(−z) = (−1)nJn(z) (E.39)

In(−z) = (−1)nIn(z) (E.40)

jn(−z) = (−1)njn(z) (E.41)

nn(−z) = (−1)n+1nn(z) (E.42)

J−n(z) = (−1)nJn(z) (E.43)

N−n(z) = (−1)nNn(z) (E.44)

I−n(z) = In(z) (E.45)

K−n(z) = Kn(z) (E.46)

j−n(z) = (−1)nnn−1(z) (n > 0) (E.47)

Power series

Jn(z) =

∞
∑

k=0

(−1)k
(z/2)n+2k

k!(n+ k)!
(E.48)

In(z) =

∞
∑

k=0

(z/2)n+2k

k!(n+ k)!
(E.49)

Small argument approximations |z| ≪ 1

Jn(z) ≈
1

n!

(z

2

)n

(E.50)

Jν(z) ≈
1

Γ(ν + 1)

(z

2

)ν

(E.51)

N0(z) ≈
2

π
(ln z + 0.5772157− ln 2) (E.52)

Nn(z) ≈ − (n− 1)!

π

(

2

z

)n

(n > 0) (E.53)

Nν(z) ≈ −Γ(ν)

π

(

2

z

)ν

(ν > 0) (E.54)

In(z) ≈
1

n!

(z

2

)n

(E.55)

Iν(z) ≈
1

Γ(ν + 1)

(z

2

)ν

(E.56)

K0(z) ≈ − ln z (E.57)

Kν(z) ≈
Γ(ν)

2

(z

2

)−ν
(Re ν > 0) (E.58)

jn(z) ≈
2nn!

(2n+ 1)!
zn (E.59)

nn(z) ≈ − (2n)!

2nn!
z−(n+1) (E.60)
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Large argument approximations |z| ≫ 1

Jν(z) ≈
√

2

πz
cos
(

z − π

4
− νπ

2

)

(| arg z| < π) (E.61)

Nν(z) ≈
√

2

πz
sin
(

z − π

4
− νπ

2

)

(| arg z| < π) (E.62)

H(1)
ν (z) ≈

√

2

πz
ej(z−

π
4 − νπ

2 ) (−π < arg z < 2π) (E.63)

H(2)
ν (z) ≈

√

2

πz
e−j(z−

π
4 − νπ

2 ) (−2π < arg z < π) (E.64)

Iν(z) ≈
√

1

2πz
ez (| arg z| < π/2) (E.65)

Kν(z) ≈
√

π

2z
e−z (| arg z| < 3π/2) (E.66)

jn(z) ≈
1

z
sin
(

z − nπ

2

)

(| arg z| < π) (E.67)

nn(z) ≈ −1

z
cos
(

z − nπ

2

)

(| arg z| < π) (E.68)

h(1)n (z) ≈ (−j)n+1 e
jz

z
(−π < arg z < 2π) (E.69)

h(2)n (z) ≈ jn+1 e
−jz

z
(−2π < arg z < π) (E.70)

Recursion relationships

zZν−1(z) + zZν+1(z) = 2νZν(z) (E.71)

Zν−1(z)− Zν+1(z) = 2Z ′
ν(z) (E.72)

zZ ′
ν(z) + νZν(z) = zZν−1(z) (E.73)

zZ ′
ν(z)− νZν(z) = −zZν+1(z) (E.74)

zLν−1(z)− zLν+1(z) = 2νLν(z) (E.75)

Lν−1(z) + Lν+1(z) = 2L′
ν(z) (E.76)

zL′
ν(z) + νLν(z) = zLν−1(z) (E.77)

zL′
ν(z)− νLν(z) = zLν+1(z) (E.78)

zzn−1(z) + zzn+1(z) = (2n+ 1)zn(z) (E.79)

nzn−1(z)− (n+ 1)zn+1(z) = (2n+ 1)z′n(z) (E.80)

zz′n(z) + (n+ 1)zn(z) = zzn−1(z) (E.81)

− zz′n(z) + nzn(z) = zzn+1(z) (E.82)
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Integral representations

Jn(z) =
1

2π

∫ π

−π
e−jnθ+jz sin θ dθ (E.83)

Jn(z) =
1

π

∫ π

0

cos(nθ − z sin θ) dθ (E.84)

Jn(z) =
1

2π
j−n

∫ π

−π
ejz cos θ cos(nθ) dθ (E.85)

In(z) =
1

π

∫ π

0

ez cos θ cos(nθ) dθ (E.86)

Kn(z) =

∫ ∞

0

e−z cosh(t) cosh(nt) dt (| arg z| < π/2) (E.87)

jn(z) =
zn

2n+1n!

∫ π

0

cos(z cos θ) sin2n+1 θ dθ (E.88)

jn(z) =
(−j)n

2

∫ π

0

ejz cos θPn(cos θ) sin θ dθ (E.89)

Wronskians and cross products

Jν(z)Nν+1(z)− Jν+1(z)Nν(z) = − 2

πz
(E.90)

H(2)
ν (z)H

(1)
ν+1(z)−H(1)

ν (z)H
(2)
ν+1(z) =

4

jπz
(E.91)

Iν(z)Kν+1(z) + Iν+1(z)Kν(z) =
1

z
(E.92)

Iν(z)K
′
ν(z)− I ′ν(z)Kν(z) = −1

z
(E.93)

Jν(z)H
(1)
ν

′
(z)− J ′

ν(z)H
(1)
ν (z) =

2j

πz
(E.94)

Jν(z)H
(2)
ν

′
(z)− J ′

ν(z)H
(2)
ν (z) = − 2j

πz
(E.95)

H(1)
ν (z)H(2)

ν

′
(z)−H(1)

ν

′
(z)H(2)

ν (z) = − 4j

πz
(E.96)

jn(z)nn−1(z)− jn−1(z)nn(z) =
1

z2
(E.97)

jn+1(z)nn−1(z)− jn−1(z)nn+1(z) =
2n+ 1

z3
(E.98)

jn(z)n
′
n(z)− j′n(z)nn(z) =

1

z2
(E.99)

h(1)n (z)h(2)n
′
(z)− h(1)n

′
(z)h(2)n (z) = −2j

z2
(E.100)
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Summation formulas ✁
✁
✁
✁

✦✦✦✦✦✦✦✦✦✦

φ

ψr
R

ρ

R, r, ρ, φ, ψ as shown.

R =
√

r2 + ρ2 − 2rρ cosφ.

ejνψZν(zR) =
∞
∑

k=−∞
Jk(zρ)Zν+k(zr)e

jkφ (ρ < r, 0 < ψ < π/2) (E.101)

ejnψJn(zR) =

∞
∑

k=−∞
Jk(zρ)Jn+k(zr)e

jkφ (E.102)

ejzρ cosφ =

∞
∑

k=0

jk(2k + 1)jk(zρ)Pk(cosφ) (E.103)

For ρ < r and 0 < ψ < π/2,

ejzR

R
=

jπ

2
√
rρ

∞
∑

k=0

(2k + 1)Jk+ 1
2
(zρ)H

(1)

k+ 1
2

(zr)Pk(cosφ) (E.104)

e−jzR

R
= − jπ

2
√
rρ

∞
∑

k=0

(2k + 1)Jk+ 1
2
(zρ)H

(2)

k+ 1
2

(zr)Pk(cosφ) (E.105)

Integrals

∫

xν+1Jν(x) dx = xν+1Jν+1(x) + C (E.106)

∫

Zν(ax)Zν(bx)x dx = x
[bZν(ax)Zν−1(bx)− aZν−1(ax)Zν(bx)]

a2 − b2
+ C (a 6= b)

(E.107)

∫

xZ2
ν (ax) dx =

x2

2

[

Z2
ν (ax) − Zν−1(ax)Zν+1(ax)

]

+ C (E.108)

∫ ∞

0

Jν(ax) dx =
1

a
(ν > −1, a > 0) (E.109)
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Fourier–Bessel expansion of a function

f(ρ) =

∞
∑

m=1

amJν

(

pνm
ρ

a

)

(0 ≤ ρ ≤ a, ν > −1) (E.110)

am =
2

a2J2
ν+1(pνm)

∫ a

0

f(ρ)Jν

(

pνm
ρ

a

)

ρ dρ (E.111)

f(ρ) =

∞
∑

m=1

bmJν

(

p′νm
ρ

a

)

(0 ≤ ρ ≤ a, ν > −1) (E.112)

bm =
2

a2
(

1− ν2

p′2νm
J2
ν (p

′
νm)

)

∫ a

0

f(ρ)Jν

(

p′νm
a
ρ

)

ρ dρ (E.113)

Series of Bessel functions

ejz cosφ =

∞
∑

k=−∞
jkJk(z)e

jkφ (E.114)

ejz cosφ = J0(z) + 2

∞
∑

k=1

jkJk(z) cosφ (E.115)

sin z = 2

∞
∑

k=0

(−1)kJ2k+1(z) (E.116)

cos z = J0(z) + 2

∞
∑

k=1

(−1)kJ2k(z) (E.117)

E.2 Legendre functions

Notation

x, y, θ = real numbers; l,m, n = integers;

Pmn (cos θ) = associated Legendre function of the first kind

Qmn (cos θ) = associated Legendre function of the second kind

Pn(cos θ) = P 0
n(cos θ) = Legendre polynomial

Qn(cos θ) = Q0
n(cos θ) = Legendre function of the second kind

Differential equation x = cos θ.

(1− x2)
d2Rmn (x)

dx2
− 2x

dRmn (x)

dx
+

[

n(n+ 1)− m2

1− x2

]

Rmn (x) = 0 (|x| ≤ 1) (E.118)

Rmn (x) =

{

Pmn (x)

Qmn (x)
(E.119)
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Orthogonality relationships

∫ 1

−1

Pml (x)Pmn (x) dx = δln
2

2n+ 1

(n+m)!

(n−m)!
(E.120)

∫ π

0

Pml (cos θ)Pmn (cos θ) sin θ dθ = δln
2

2n+ 1

(n+m)!

(n−m)!
(E.121)

∫ 1

−1

Pmn (x)P kn (x)

1− x2
dx = δmk

1

m

(n+m)!

(n−m)!
(E.122)

∫ π

0

Pmn (cos θ)P kn (cos θ)

sin θ
dθ = δmk

1

m

(n+m)!

(n−m)!
(E.123)

∫ 1

−1

Pl(x)Pn(x) dx = δln
2

2n+ 1
(E.124)

∫ π

0

Pl(cos θ)Pn(cos θ) sin θ dθ = δln
2

2n+ 1
(E.125)

Specific examples

P0(x) = 1 (E.126)

P1(x) = x = cos(θ) (E.127)

P2(x) =
1
2 (3x

2 − 1) = 1
4 (3 cos 2θ + 1) (E.128)

P3(x) =
1
2 (5x

3 − 3x) = 1
8 (5 cos 3θ + 3 cos θ) (E.129)

P4(x) =
1
8 (35x

4 − 30x2 + 3) = 1
64 (35 cos 4θ + 20 cos 2θ + 9) (E.130)

P5(x) =
1
8 (63x

5 − 70x3 + 15x) = 1
128 (63 cos 5θ + 35 cos 3θ + 30 cos θ) (E.131)

Q0(x) =
1

2
ln

(

1 + x

1− x

)

= ln

(

cot
θ

2

)

(E.132)

Q1(x) =
x

2
ln

(

1 + x

1− x

)

− 1 = cos θ ln

(

cot
θ

2

)

− 1 (E.133)

Q2(x) =
1

4
(3x2 − 1) ln

(

1 + x

1− x

)

− 3

2
x (E.134)

Q3(x) =
1

4
(5x3 − 3x) ln

(

1 + x

1− x

)

− 5

2
x2 +

2

3
(E.135)

Q4(x) =
1

16
(35x4 − 30x2 + 3) ln

(

1 + x

1− x

)

− 35

8
x3 +

55

24
x (E.136)
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P 1
1 (x) = −(1− x2)1/2 = − sin θ (E.137)

P 1
2 (x) = −3x(1− x2)1/2 = −3 cosθ sin θ (E.138)

P 2
2 (x) = 3(1− x2) = 3 sin2 θ (E.139)

P 1
3 (x) = − 3

2 (5x
2 − 1)(1− x2)1/2 = − 3

2 (5 cos
2 θ − 1) sin θ (E.140)

P 2
3 (x) = 15x(1− x2) = 15 cos θ sin2 θ (E.141)

P 3
3 (x) = −15(1− x2)3/2 = −15 sin3 θ (E.142)

P 1
4 (x) = − 5

2 (7x
3 − 3x)(1 − x2)1/2 = − 5

2 (7 cos
3 θ − 3 cos θ) sin θ (E.143)

P 2
4 (x) =

15
2 (7x2 − 1)(1− x2) = 15

2 (7 cos2 θ − 1) sin2 θ (E.144)

P 3
4 (x) = −105x(1− x2)3/2 = −105 cosθ sin3 θ (E.145)

P 4
4 (x) = 105(1− x2)2 = 105 sin4 θ (E.146)

Functional relationships

Pmn (x) =

{

0, m > n,

(−1)m (1−x2)m/2

2nn!
dn+m(x2−1)n

dxn+m , m ≤ n.
(E.147)

Pn(x) =
1

2nn!

dn(x2 − 1)n

dxn
(E.148)

Rmn (x) = (−1)m(1 − x2)m/2
dmRn(x)

dxm
(E.149)

P−m
n (x) = (−1)m

(n−m)!

(n+m)!
Pmn (x) (E.150)

Pn(−x) = (−1)nPn(x) (E.151)

Qn(−x) = (−1)n+1Qn(x) (E.152)

Pmn (−x) = (−1)n+mPmn (x) (E.153)

Qmn (−x) = (−1)n+m+1Qmn (x) (E.154)

Pmn (1) =

{

1, m = 0,

0, m > 0.
(E.155)

|Pn(x)| ≤ Pn(1) = 1 (E.156)

Pn(0) =
Γ
(

n
2 + 1

2

)

√
π Γ
(

n
2 + 1

) cos
nπ

2
(E.157)

P−m
n (x) = (−1)m

(n−m)!

(n+m)!
Pmn (x) (E.158)
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Power series

Pn(x) =

n
∑

k=0

(−1)k(n+ k)!

(n− k)!(k!)22k+1

[

(1− x)k + (−1)n(1 + x)k
]

(E.159)

Recursion relationships

(n+ 1−m)Rmn+1(x) + (n+m)Rmn−1(x) = (2n+ 1)xRmn (x) (E.160)

(1− x2)Rmn
′(x) = (n+ 1)xRmn (x) − (n−m+ 1)Rmn+1(x) (E.161)

(2n+ 1)xRn(x) = (n+ 1)Rn+1(x) + nRn−1(x) (E.162)

(x2 − 1)R′
n(x) = (n+ 1)[Rn+1(x)− xRn(x)] (E.163)

R′
n+1(x) −R′

n−1(x) = (2n+ 1)Rn(x) (E.164)

Integral representations

Pn(cos θ) =

√
2

π

∫ π

0

sin
(

n+ 1
2

)

u√
cos θ − cosu

du (E.165)

Pn(x) =
1

π

∫ π

0

[x+ (x2 − 1)1/2 cos θ]n dθ (E.166)

Addition formula

Pn(cos γ) = Pn(cos θ)Pn(cos θ
′)

+ 2

n
∑

m=1

(n−m)!

(n+m)!
Pmn (cos θ)Pmn (cos θ′) cosm(φ− φ′) (E.167)

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′) (E.168)

Summations

1

|r− r′| =
1

√

r2 + r′2 − 2rr′ cos γ
=

∞
∑

n=0

rn<
rn+1
>

Pn(cos γ) (E.169)

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′) (E.170)

r< = min {|r|, |r′|} , r> = max {|r|, |r′|} (E.171)
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Integrals
∫

Pn(x) dx =
Pn+1(x)− Pn−1(x)

2n+ 1
+ C (E.172)

∫ 1

−1

xmPn(x) dx = 0, m < n (E.173)

∫ 1

−1

xnPn(x) dx =
2n+1(n!)2

(2n+ 1)!
(E.174)

∫ 1

−1

x2kP2n(x) dx =
22n+1(2k)!(k + n)!

(2k + 2n+ 1)!(k − n)!
(E.175)

∫ 1

−1

Pn(x)√
1− x

dx =
2
√
2

2n+ 1
(E.176)

∫ 1

−1

P2n(x)√
1− x2

dx =

[

Γ
(

n+ 1
2

)

n!

]2

(E.177)

∫ 1

0

P2n+1(x) dx = (−1)n
(2n)!

2n+ 2

1

(2nn!)2
(E.178)

Fourier–Legendre series expansion of a function

f(x) =

∞
∑

n=0

anPn(x) (|x| ≤ 1) (E.179)

an =
2n+ 1

2

∫ 1

−1

f(x)Pn(x) dx (E.180)

Limits

lim
θ→π

P 1
n(cos θ)

sin θ
= − (−1)n

2
n(n+ 1) (E.181)

lim
θ→π

d

dθ
P 1
n(cos θ) =

(−1)n

2
n(n+ 1) (E.182)

E.3 Spherical harmonics

Notation

θ, φ = real numbers; m,n = integers

Ynm(θ, φ) = spherical harmonic function

Differential equation

1

sin θ

∂

∂θ

(

sin θ
∂Y (θ, φ)

∂θ

)

+
1

sin2 θ

∂2Y (θ, φ)

∂φ2
+

1

a2
λY (θ, φ) = 0 (E.183)
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λ = a2n(n+ 1) (E.184)

Ynm(θ, φ) =

√

2n+ 1

4π

(n−m)!

(n+m)!
Pmn (cos θ)ejmφ (E.185)

Orthogonality relationships

∫ π

−π

∫ π

0

Y ∗
n′m′(θ, φ)Ynm(θ, φ) sin θ dθ dφ = δn′nδm′m (E.186)

∞
∑

n=0

n
∑

m=−n
Y ∗
nm(θ′, φ′)Ynm(θ, φ) = δ(φ− φ′)δ(cos θ − cos θ′) (E.187)

Specific examples

Y00(θ, φ) =
√

1
4π (E.188)

Y10(θ, φ) =
√

3
4π cos θ (E.189)

Y11(θ, φ) = −
√

3
8π sin θejφ (E.190)

Y20(θ, φ) =
√

5
4π

(

3
2 cos

2 θ − 1
2

)

(E.191)

Y21(θ, φ) = −
√

15
8π sin θ cos θejφ (E.192)

Y22(θ, φ) =
√

15
32π sin2 θe2jφ (E.193)

Y30(θ, φ) =
√

7
4π

(

5
2 cos

3 θ − 3
2 cos θ

)

(E.194)

Y31(θ, φ) = −
√

21
64π sin θ

(

5 cos2 θ − 1
)

ejφ (E.195)

Y32(θ, φ) =
√

105
32π sin2 θ cos θe2jφ (E.196)

Y33(θ, φ) = −
√

35
64π sin3 θe3jφ (E.197)

Functional relationships

Yn0(θ, φ) =

√

2n+ 1

4π
Pn(cos θ) (E.198)

Yn,−m(θ, φ) = (−1)mY ∗
nm(θ, φ) (E.199)

Addition formulas

Pn(cos γ) =
4π

2n+ 1

n
∑

m=−n
Ynm(θ, φ)Y ∗

nm(θ′, φ′) (E.200)
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Pn(cos γ) = Pn(cos θ)Pn(cos θ
′)

+
n
∑

m=−n

(n−m)!

(n+m)!
Pmn (cos θ)Pmn (cos θ′) cos[m(φ − φ′)] (E.201)

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ − φ′) (E.202)

Series
n
∑

m=−n
|Ynm(θ, φ)|2 =

2n+ 1

4π
(E.203)

1

|r− r′| =
1

√

r2 + r′2 − 2rr′ cos γ

= 4π
∞
∑

n=0

n
∑

m=−n

1

2n+ 1

rn<
rn+1
>

Y ∗
nm(θ′, φ′)Ynm(θ, φ) (E.204)

r< = min {|r|, |r′|} , r> = max {|r|, |r′|} (E.205)

Series expansion of a function

f(θ, φ) =
∞
∑

n=0

n
∑

m=−n
anmYnm(θ, φ) (E.206)

anm =

∫ π

−π

∫ π

0

f(θ, φ)Y ∗
nm(θ, φ) sin θ dθ dφ (E.207)
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Derivation of an integral identity

We wish to evaluate the integral

I =

∫ b

y=−b

∫ a

x=−a

dx dy
√

x2 +Q2y2
.

Because the integrand is even in both x and y we can write

I = 4

∫ b

0

(

∫ a

0

dx
√

x2 +Q2y2

)

dy.

The inner integral may be computed using a tabulated formula from [41]:

I = 4

∫ b

0

ln
(

x+
√

x2 +Q2y2
)

∣

∣

∣

∣

a

0

dy = 4

∫ b

0

ln

(

a+
√

a2 +Q2y2

Qy

)

dy.

Setting u = Qy/a, we obtain

I = 4
a

Q

∫ Qb/a

0

ln

(

1 +
√
1 + u2

u

)

du

and can employ the identity [41]

ln

(

1 +
√
1 + x2

x

)

= csch−1x

to write

I = 4
a

Q

∫ Qb/a

0

csch−1u du.

This integral is tabulated in Dwight [52],

I = 4
a

Q

[

u csch−1u+ sinh−1 u
]

∣

∣

∣

∣

Qb/a

0

,

and the identity sinh−1 u = ln(u +
√
u2 + 1) gives

I = 4
a

Q

[

u ln

(

1 +
√
1 + u2

u

)

+ ln
(

u+
√

u2 + 1
)

]

∣

∣

∣

∣

Qb/a

0

.

Evaluating and noting that u lnu→ 0 as u→ 0, we finally obtain

I = 4
a

Q



Q
b

a
ln





a

bQ
+

√

1 +

(

a

bQ

)2


+ ln





bQ

a
+

√

1 +

(

bQ

a

)2






 .
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Two special cases are of interest. When a = b we get

I = 4
a

Q

[

Q ln

(

1

Q
+

√

1 +
1

Q2

)

+ ln
(

Q+
√

1 +Q2
)

]

. (F.1)

When Q = 1 this reduces to
I = 8a ln(1 +

√
2). (F.2)
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ω–β plot, 365
10-dB bandwidth, 677

of a dipole antenna, 698
3-dB beamwidth, 675

of a circular dish antenna, 705
of a dipole antenna, 685
of a Hertzian dipole antenna, 683
of a rectangular waveguide aperture

antenna, 701
of a small loop antenna, 693

absolute electrostatic potential, 161
accepted power, 676
action at a distance, 2
active material, 341
aether, 95
Ampere, André-Marie, 2
Ampere’s force law, 220
Ampere’s law, 25

applied to a line current, 200
applied to a volume current, 201
for static fields, 199
obtained from Stratton–Chu formu-
las, 657

frequency-domain, 286
initial conditions, 26
integral form, 60
invariance, 46
kinematic form, 63
phasor form, 336
with magnetic sources, 69

Amperian path, 200
amplification factors, 481
amplitude spectrum, 357
analytic function, 291, 848
angular spectrum, 448, 453, 456

of a line source, 451
anisotropic material, 32, 288, 290, 301, 310,

342
lossless, 297
TE–TM decomposition, 540

anode, 127

anomalous dispersion, 319, 364
antenna, 670, 671, 727

aperture, 672, 698
dish, 701
far-zone fields, 670
rectangular waveguide, 699

bandwidth, 677
bicone, 441, 644
circular loop, 748
input admittance, 750

dipole, 661, 684, 734
far-zone fields, 684

directivity, 676
discone, 644
effective area, 679
efficiency, 678
feed models, 733
frill, 734
slice gap, 734

gain, 678
Hertzian dipole, 515, 680
horn, 637, 699
input impedance, 676, 734
mismatch factor, 677
pattern, 675
polarization, 674
reciprocity, 673, 679
return loss, 677
types, 672
wire, 672, 695

antenna pattern, 675
circular dish antenna, 705
dipole antenna, 685
gain pattern, 678
Hertzian dipole, 682
loop antenna, 692
power pattern, 664
receiving, 679
rectangular waveguide aperture antenna,

701
slot antenna, 830
small loop antenna, 693
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antiferromagnetic material, 32, 327
antiresonance, 697, 738, 752, 828
aperture

circular, 263
in a perfectly conducting shield, 263

arc plot, 323
assembly energy, 160, 183, 225, 227
associated Legendre equation, 902
associated Legendre functions, 902
atomic polarization, 314
attenuation, 363
attenuation constant, 359

for a circular waveguide, 568
for a rectangular waveguide, 563
for a transmission line, 615
for TEM modes
due to material loss, 607
due to wall loss, 608

in a waveguide, 553
due to material loss, 554
due to wall loss, 559

auxiliary equations, 26, 60
large-scale forms, 61

average Green’s function, 729
axial vector, 68

back lobe, of antenna pattern, 675
backscatter, 540
backward wave, 112, 365, 461
ball

of charge, 159, 184, 185
permanently magnetized, 230, 231

band-limited function, 843
bandwidth, 677
baseband signal, 361
basis function, 712

classification
entire domain, 713
subdomain, 713

Baum, Carl E., 754
beamwidth, 675
Bessel functions, 390, 419, 881, 925

completeness, 900
functional relationships, 927
integral representations, 929
integrals involving, 931
large argument (asymptotic) approx-

imations, 929
notation, 925
orthogonality, 927

power series representation, 928
recursion relationships, 929
series of, 932
small argument approximations, 928
spherical, 903
summation formulas, 930
table of derivative zeros, 566
table of zeros, 566
Wronskians, 930

Bessel’s equation, 414, 881, 895, 903, 925
eigenfunctions, 881
eigenvalues, 881
singularity, 881

bianisotropic material, 32, 92, 94, 98, 102,
348, 353

biasing field, 328
biaxial material, 38
bicone antenna, 441, 644
biconical transmission line, 441, 642

characteristic impedance, 441, 644
biisotropic material, 32
Biot, Jean-Baptiste, 2
Biot–Savart law, 215

applied to circular loop, 216
obtained from Stratton–Chu formu-

las, 656
birefringence, 37
bistatic RCS, 743
Boffi, L.V., 53
Boltzmann, Ludwig Eduard, 23
boundary condition(s), 24, 71, 163, 211,

337
electrostatic potential, 163
at a dipole layer, 195
Boffi form, 163

for a half-plane, 456
for phasor fields, 337
frequency-domain, 287
homogeneous, 877
impedance, 349
magnetic scalar potential, 212
moving surface, 78
normal electric flux density, 73
electrostatics, 163

normal magnetic flux density, 73
magnetostatics, 211

perfect electric conductor, 77
perfect magnetic conductor, 77
periodic, 877
postulate, 74
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Poynting vector, 97, 344
time-average, 345

steady current, 163
tangential electric field, 72
electrostatics, 163

tangential magnetic field, 72
magnetostatics, 211

using equivalent sources, 77
vector potential, 212
waveguide
TE modes, 553
TM modes, 553

boundary value problem, 714, 876
conducting cylinder, 425
conducting wedge, 428
material cylinder, 420
using spatial Fourier transform, 449

boundary values
in solution to Poisson’s equation, 176
used in duality, 82

branch cut, 451, 458
branch point, 445, 451, 458
Brewster angle, 387
Brillouin diagram, 490

capacitance, 239
definition, 240
of a parallel-plate capacitor, 243
per unit length of a transmission line,

609
coaxial cable, 622
parallel plates, 619

relationship to resistance, 242
capacitance coefficients, 280
carrier wave, 361
cascaded matrices

for calculating reflection coefficient, 400
cascaded system, 401, 462
cathode, 127
cathode ray tube, 127, 128, 136
Cauchy principal value, 851
Cauchy’s residue theorem, 446, 451, 457,

850
Cauchy–Goursat theorem, 291, 849
causality, 5, 29, 35, 51, 112, 123, 288, 290,

843
cavity resonator

spherical, 906
cell, 460
characteristic impedance, 441, 615

characteristic resistance, 610
per unit length of a coaxial cable, 622
per unit length of parallel plates, 619

charge, 5
conservation of, 5, 15
density, 7
dipole layer, 193
equilibrium in a conductor, 154, 162,

184
equivalent Poisson–Kelvin, 56
equivalent polarization, 56
equivalent polarization surface, 78, 315
Hertzian dipole, 513
invariance, 27
line, 7
electrostatic force on, 182
electrostatic potential of, 172

magnetic, 21, 69
motion, 124
near an edge, 197
positive and negative, 5
quantization, 6
surface, 7
volume, 7

charge density, 7
line, 13
singular, 14
surface, 12

charged particle motion, 124
charging by friction, 5
check (ǎ), 1
chiral material, 32, 38
chirality parameter, 40
chiroplasma, 32
Chu, L.J., 651
circular polarization, 374
Clausius, Rudolf Julius Emanuel, 316
Clausius–Mosotti formula, 316
clockwise polarization, 372
closed system, 90
coaxial cable, 621

capacitance per unit length, 622
conductance per unit length, 622
external inductance per unit length,

622
higher-order modes, 571
internal inductance per unit length,

622
resistance per unit length, 622

coaxial connector, 573
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coefficients of inductance, 281
Cole, K.S., 323
Cole, R.H., 323
Cole–Cole diagram, 323
Cole–Cole equation, 323
Cole–Cole parameter, 323
collimation

of electron beam, 131
collision frequency, 304, 326, 368
collocation, 712
complementary solution, 730, 777
complete set, 712, 713, 878, 900
complex function, 847

analyticity, 848
differentiability, 848
limit of, 848
singular point, 848

complex permittivity, 289, 295
of a plasma, 305

complex Poynting theorem, 343
complex Poynting vector, 340
complex wavenumber, 354
conductance

per unit length of a transmission line,
614

coaxial cable, 622
parallel plates, 619

conducting material, 35
conduction current, 11, 153, 289
conductivity, 35, 154

conductor model, 326
dc, 290, 293, 326
dyadic, 37
of a plasma, 305

conductor(s), 35
charge equilibrium, 154
Drude model, 326
good, 35, 376
grounded, 154, 174, 177, 180, 196
perfect electric, 36, 85
perfect magnetic, 36
plasma model, 326

conductor-backed/air-backed method, 474
cones

current on, 441
in solution to Laplace’s equation, 904
spherical wave between, 441, 642

conformal mapping, 166
conservation of electromagnetic momentum,

93

conservation of energy
electromagnetic, 94
gravitational, 160
mechanical, 91

conservation of linear momentum, 89
conservative field, 160
constitutive relations, 4, 30, 31, 302

biisotropic material, 38
for a dispersive material, 288
for a plasma, 305
for time-harmonic fields, 334
free space, 33
frequency symmetry, 288
frequency-domain, 288
linear anisotropic material, 37
linear isotropic material, 34
nonlinear material, 40
nonstationary, 35
perfect conductors, 36
phasor form, 336
rotating or deforming medium, 53
secondary, 68
transformation, 51
used in duality, 81

continuity equation, 16, 25
applied to relaxation, 155
magnetic, 69
phasor form, 336

contour deformation, 850
contour integral, 847
contour of integration, 445, 850
convection current, 11
convective derivative, 867
convergence in mean, 879
convolution theorem, 844
convolutional kernel, 710
coordinate systems, 917

cylindrical, 919
rectangular, 917
spherical, 922

correction term, 518
Coulomb, Charles-Augustin de, 2
Coulomb gauge, 204, 502
Coulomb’s law, 51, 171

obtained from Stratton–Chu formu-
las, 656

counterclockwise polarization, 372
coupling coefficient, 756, 760
covariance, 27, 44, 45, 49, 54, 56
creeping wave, 540
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critical angle, 385, 386
attenuation constant, 388

critical frequency, 324
crystal(s), 37

biaxial, 38
negative uniaxial, 38
positive uniaxial, 38

curl theorem, 910
current density, 10

line, 13
singular, 14
surface, 13

current(s), 10
atomic, 326
conduction, 11, 153, 289
convection, 11
displacement, 3, 60, 376
eddy, 247, 256
electrolytic, 11
equivalent Amperian, 55
equivalent magnetic surface, 78
equivalent magnetization, 55
equivalent polarization, 55, 96
filamentary, 225
flux of, 11
Hertzian dipole, 513
impressed, 289, 509, 661, 667
magnetic, 69
Hertzian dipole, 514
impressed, 509

natural mode expansion, 754
on a transmission line, 609
primary, 11, 507
secondary, 11, 289, 303, 309, 310, 455,

507
standing wave, 661
steady, 156
integral properties, 156

terminal, 673
curvature drift, 142
cutoff frequency, 365, 367, 550, 554

of a ferrite-filled waveguide, 579
of a rectangular waveguide, 562

cutoff wavenumber, 551
cycloid

curate, 141
prolate, 141

cyclotron frequency, 133
cylinder(s)

coaxial

stored magnetic energy, 229
conducting
integral equation for, 793
scattering from, 425

integral equation for
TE case, 798
TM case, 794

magnetic field integral equation for,
803

material
integral equation for, 808
scattering from, 420, 808
scattering width, 812

split, 897
square, 815

cylindrical coordinate system, 919
cylindrical wave

expansion of a plane wave, 420
nonuniform, 420, 421, 428
phase constant, 416
phase velocity, 415
power carried by, 416
uniform, 114, 413, 417
wavelength, 416

cylindrical wavefronts, 415

D’Alembert solution, 857
damping coefficient, 758
damping parameter, 330
Debye equation, 322
Debye, Peter Joseph William, 322, 539
decomposition

electric–magnetic source, 80
hermitian, 876
of electromagnetic systems, 87
solenoidal–lamellar, 499
spatial Fourier, 444
spatial symmetry, 493
TE–TM, 82, 528
in spherical coordinates, 531

transverse–longitudinal, 523
identities, 914

deconvolution, 714
deforming medium, 53
degenerate modes, 562, 907
del operator, 1
delta function

Fourier transform, 915
Kronecker, 890

demagnetizing field, 328
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density function, 14
depolarizing dyadic, 518

for a cubical volume, 519
for a spherical volume, 519

derivative
convective, 867
material, 867
partial, 867
total, 868

derivative identities, 912
diamagnetic material, 326
dielectric, 313

extended Lorentz model, 321
good, 35
Lorentz model, 319
perfect, 35

dielectric shell, 267
differential equation(s)

Bessel, 881, 895, 903, 925
for spherical harmonics, 936
harmonic, 880
Helmholtz, 883
Legendre, 882, 932

differential operations
cylindrical coordinates, 920
rectangular coordinates, 918
spherical coordinates, 923

diffraction
by a half-plane, 459
coefficient, 459
geometrical theory of, 459

diffusion
into a planar conductor, 255
through a cylindrical shell, 273

diffusion equation, 99, 253
dipole, 20

Hertzian, 82
dipole antenna, 661, 684, 734

3-dB beamwidth, 685
current distribution, 738
directivity, 688
far-zone fields, 684
gain, 689
input impedance, 696, 737
radiated power, 688
radiation function, 685
radiation intensity, 688
radiation resistance, 688
short, 689

dipole layer, 193

dipole moment, 188, 223, 303, 513
induced, 314
of a dielectric, 313
of a planar loop, 210
permanent, 314, 322
potential, 209
surface density, 194
vector, 209
volume density, 211

dipole polarization, 314
Dirac delta, 845
directional weighting function, 664

of a dipole antenna, 684
of a dish antenna, 703
of a loop antenna, 691
of a rectangular waveguide aperture

antenna, 700
of a slot, 825
of an aperture antenna, 670

directive gain, 676
directivity, 676

of a dipole antenna, 688
of a Hertzian dipole antenna, 683
of a small loop antenna, 693

Dirichlet Green’s function, 174
discone antenna, 644
discontinuities

spatial, 71
dish antenna, 701

3-dB beamwidth, 705
directional weighting function, 703
far-zone fields, 703
pattern, 705

dispersion, 99, 288, 297, 305, 318, 390,
554, 580

anomalous, 319, 364, 365
normal, 319, 365
radiative, 741

dispersion diagram, 365, 411
for a waveguide, 554

dispersion formula for classical physics, 319
dispersion relation

Debye medium, 322
displacement current, 60, 376

in a capacitor, 241
displacement vector, 1

identities, 913
divergence theorem, 910
domain, 709
dominant mode, 562
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drift
E×B, 139
curvature, 142
magnetic gradient, 142

drift velocity, 139, 142, 156
Drude equation, 326
Drude, Paul Karl Ludwig, 326
dual problems, 81, 351
duality, 80, 81, 357, 419

frequency domain, 351
point sources, 83
source-free region, 84, 353

dyad, 871, 872
dyadic Green’s function, 518

electric, 516
magnetic, 516

dyadic polynomial, 873
dyadic(s), 871

algebra of, 874
anterior and posterior products, 873
anti-hermitian, 876
antisymmetric, 875
calculus of, 874
component representation, 871
conductivity, 37
cylindrical coordinate formulas, 920
depolarizing, 518
for a cubical volume, 519
for a spherical volume, 519

hermitian, 875
identities, 909
permeability, 37
permittivity, 37
rectangular coordinate formulas, 917
spherical coordinate formulas, 923
symmetric, 875
unit, 875
vector representation, 873

E mode, 529
E-B drift, 139
E-plane

of a rectangular waveguide aperture
antenna, 700

early time period, 754, 765
Earnshaw’s theorem, 153, 233
echo area, 539
eddy, 256
eddy current, 247, 256
edge

charge singularity, 197, 265
current near, 434
current singularity, 434
electrostatic potential near, 196

effective area, 679
effective permittivity, 316
efficiency, 678
eigenfunction, 877, 885

complete set, 878
orthogonality, 878
uniqueness, 879

eigenfunction expansion, 711, 878
eigenmodes, 553
eigenvalue, 462, 553, 711, 877, 885

spectrum, 877
Einstein, Albert, 2, 3, 49, 363, 503
electret, 192, 314
electric charge, 5

conservation of, 5, 15
invariance of, 6
quantization, 6

electric current, 10
density, 10

electric dipole, 339
electric displacement, 26
electric excitation, 26
electric field integral equation, 720, 730,

746, 771, 777, 794
electric field strength, 26
electric flux density, 26
electric intensity, 26
electric polarization, 356, 413
electric susceptibility, 34, 58

of a plasma, 305
electric wall, 495
electro-quasistatic system

characteristics, 238
potential difference, 238
Poynting theorem, 239

electro-quasistatics, 236
applied to a capacitor, 243

electrolytic current, 11
electromagnetic compatibility, 261
electromagnetic field, 24, 27

dynamic coupling, 151
electromagnetic momentum, 27
electromagnetic power, 27
electromagnetic radiation, 99
electromagnetics

free-space, 7
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macroscopic, 6
electromotive force, 26, 55, 60, 61, 225, 248

motional, 63
electron beam, 303
electron cyclotron frequency, 309
electron density, 368
electron gun, 128, 137
electron microscope, 127, 130
electron optics, 130
electron volt, 125
electronic polarization, 314
electrostatic field

of a cylindrical volume charge, 160
of a spherical volume charge, 159
of an infinite line charge, 159, 172

electrostatic lens, 130, 131
electrostatic potential, 161
electrostatic shielding, 262
elliptic integral, 207, 251
elliptical polarization, 374
empirical–inductive viewpoint, 23
energy

assembly, 160, 183, 227
chemical, 288
conservation of, 15
conservation of electromagnetic, 94
conservation of mechanical, 91
density, 94, 96
dissipated, 294, 295
electron, 125
kinetic, 126, 132, 307
mechanical, 289
radiated by sources, 120
stored electric, 185, 233, 295, 300, 343,

559
in a spherical ball of charge, 184,
185

stored electromagnetic, 294, 299
stored magnetic, 228, 295, 301, 343,

558
between cylinders, 229

thermal, 224, 288
velocity, 377

energy theorem, 302
energy velocity, 363, 559
entire domain function, 713
entire function, 458, 755
entities of intensity, 26, 68
entities of quantity, 26, 68
equation of continuity, 16

equation of motion, 124, 126, 139, 140, 143
equipotential surface, 130, 162
equivalence principle

Love’s, 667
Schelkunoff’s, 669

equivalent magnetic surface current, 78
equivalent magnetization charge, 203
equivalent magnetization current, 55, 205

impressed, 509
physical interpretation, 210

equivalent magnetization surface charge,
211

equivalent polarization charge, 56
of a dielectric sphere, 199

equivalent polarization current, 55, 96
impressed, 505, 509

equivalent polarization surface charge, 78,
315

Euler method, 130
evanescent wave, 367, 388, 448, 449, 558

in a waveguide, 554
Ewald–Oseen extinction theorem, 659
excluded region, 658
existence, 28
expansion in spherical harmonics, 938
extinction theorem, 659

far zone, 662
far-zone fields, 514, 539, 658

and radiated power, 664
general formulation, 663
of a conducing cylinder, 795, 798
of a conducting strip, 778
of a dipole antenna, 684
of a dish antenna, 703
of a Hertzian dipole antenna, 681
of a rectangular waveguide aperture

antenna, 700
of a slot, 826
produced by equivalent sources, 670
TEM behavior, 664

far-zone vector potential, 664
Faraday rotation, 412
Faraday’s law, 25

for static fields, 160
frequency-domain, 287
initial conditions, 26
integral form, 60
invariance, 46
kinematic form, 62
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phasor form, 336
with magnetic sources, 69

Faraday, Michael, 2
fast Fourier transform, 741, 762, 767
Fermat’s principle, 130
ferrimagnetic material, 327
ferrite

biasing field, 328
damping parameter, 330
dispersion diagram, 411
filling a rectangular waveguide, 578
line width, 331
saturation magnetization, 330
TE fields, 541

ferromagnetic material, 327
fiber optical cable, 624, 631
field concept, 2
field pattern, 675
field terminology, 26
finite difference technique, 130, 166
finiteness conditions, 658
Floquet’s theorem, 461
flux, 2

magnetic, 62, 69, 248
tube, 225

flux density
electric, 26
magnetic, 26

flux linkage, 249
flux vector, 55
force

Ampere’s law of, 220, 225
between line charges, 182
between two current-carrying wires, 220,

222
using Maxwell’s stress tensor, 222

density, 90
electric, 181
volume density, 181

electromotive, 55
electrostatic, 5
frictional, 317
gravitational, 88
Lorentz, 4, 68, 87, 88, 93, 122, 124,

153, 156, 160, 219, 303, 308, 317
magnetomotive, 55
mechanical, 88
on a charged sphere, 181
on a current-carrying wire, 219
on a split current-carrying wire, 219

on a wire loop, 220
restoring, 317, 326
volume density, 88

force vector, 55
form invariance, 54
forward problem, 28
Fourier integral theorem, 177, 178, 443,

453, 497, 842
Fourier series, 461, 749

generalized, 878
Gibbs phenomenon, 879

Fourier transform, 166, 333, 841
applied to integral equations, 711
existence, 841
generalized, 845
in derivation of three-dimensional Green’s

function, 861
in solution of one-dimensional wave

equation, 851
in solution of one-dimensional wave

equation for dissipative media, 858
in solution of Poisson’s equation, 176
integral
one-dimensional, 841
two-dimensional, 846

inversion integral, 842, 846
of separable functions, 846
properties
causal function, 843
conjugate function, 842
convolution, 844
differentiation, 844
integration, 844
linearity, 842
null function, 843
Parseval’s identity, 844
real function, 842
reflection symmetry, 843
shifting, 843
similarity, 844
symmetry, 842
time/band-limited function, 843

spatial, 442
tabulated transform pairs, 915
temporal, 285, 741
two-dimensional, 443

Fourier–Bessel series, 881, 931
Fourier–Bessel transform, 847

inversion, 847
Fourier–Legendre series, 883, 905, 936
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fractional bandwidth, 677
fractional volume, 317
frame of reference, 27, 45, 57, 59, 153
Franklin, Benjamin, 5
Franz formula, 666, 667
Fredholm integral equation, 709, 716, 720,

724, 730
free space

intrinsic impedance, 34
permeability, 33
permittivity, 33

free-electron laser, 124
frequency

collision, 304, 326, 368
critical, 324
cutoff, 365, 367, 554, 562
cyclotron, 133
electron cyclotron, 309
gyromagnetic response, 329
Laplace, 754
Larmor precessional, 327
plasma, 304, 318
resonance, 318, 413
saturation magnetization, 328
spatial, 841
temporal, 841

frequency spectrum, 286, 841
Fresnel coefficients, 384
Friis equation, 680
frill model, 734
front-to-back ratio, 675
fundamental equations, 26
fundamental fields, 56, 67

gain, 678
of a dipole antenna, 689
of a Hertzian dipole antenna, 684

gain pattern, 678
Galerkin’s method, 714
Galilean transformation, 42, 61
Galileo Galilei, 85
gap voltage, 248
gauge

Coulomb, 204, 502
Lorenz, 503

gauge transformation, 15, 204, 500, 502
Gauss, Johann Carl Friedrich, 3
Gauss’s law, 25

direct solutions to, 158
frequency-domain, 287

integral form, 61
invariance, 46
phasor form, 336
with magnetic sources, 69

Gaussian surface, 158
generalized Fourier transform, 845
geometrical optics, 130, 458, 459, 539
geometrical theory of diffraction, 459
Gibbs, Josiah Willard, 871
Gibbs phenomenon, 879
global reflection coefficient, 394, 395
good conductor, 35, 376
good dielectric, 35, 374
Goos–Hänchen shift, 388
gradient theorem, 910
Gram–Schmidt orthogonalization, 879
Green’s first identity, 557

for scalar fields, 911
for vector fields, 911

Green’s function(s), 167, 510
average, 729, 746
Dirichlet, 174
electric dyadic, 516
electrostatic potential, 168
for a sphere, 180
general solution, 169
reciprocity, 175
two-dimensional, 172
unbounded space, 171

far-zone, 663
Laplace domain, 755
magnetic dyadic, 516
Neumann, 175
periodic, 464
primary, 176
reciprocity of, 168, 520
secondary, 177
static, 865
Fourier transform approach, 865

three-dimensional, 512, 769
Fourier transform approach, 861, 863
time-domain, 511

two-dimensional, 172, 418, 769
spectral representation, 451

Green’s reciprocation theorem, 180, 235
Green’s second identity, 168

for scalar fields, 911
for vector fields, 214, 911

Green’s theorem, 510, 911
ground, 154, 162
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group velocity, 362, 365, 377
for a transmission line, 615
in a good conductor, 376
in a periodic structure, 461
in a waveguide, 554
TEM guided modes, 607

guided wavelength, 555, 607, 615
guiding center, 134
gyromagnetic ferrite, 329
gyromagnetic material, 327
gyromagnetic property, 327
gyromagnetic ratio, 327
gyromagnetic response frequency, 329
gyrotron, 124
gyrotropic material, 310, 348

H mode, 529
H-plane

of a rectangular waveguide aperture
antenna, 701

Hölder’s inequality for integrals, 218
half-plane, 197

field scattered by, 458
scattering from, 455

half-power beamwidth, 675
Hallén’s equation, 730

for a conducting strip, 777
for a narrow slot in a ground plane,

821
for curved wires, 746
for natural mode currents, 757
time-domain, 764

Hallén, Erik G., 730, 749, 764
Hankel functions, 415, 418, 772, 895

spherical, 539
harmonic differential equation, 880

eigenfunctions, 880
eigenvalues, 880

harmonic oscillator, 317
Hartree harmonics, 461
helical trajectory

of electrons, 135
Helmholtz decomposition, 499
Helmholtz equation, 544, 862, 883, 885

eigenfunctions, 883
eigenvalues, 883
for electric scalar potential, 508
for electric vector potential, 508
for magnetic scalar potential, 508
for magnetic vector potential, 508

for nonradiating sources, 442
Fourier transform solution, 447
polar coordinates, 448

scalar, 286, 357
separability, 885
separation of variables
cylindrical coordinates, 921
rectangular coordinates, 918
spherical coordinates, 924

two-dimensional, 355
vector, 354, 544

Helmholtz, Hermann Ludwig Ferdinand von,
85

Helmholtz theorem, 911
Helmholtz transport theorem, 870
HEMP, 111
hermitian decomposition, 876
hermitian kernel, 710
hermitian matrix, 311, 329, 343
Hertz, Heinrich Rudolf, 3, 23, 99, 680
Hertzian dipole, 82, 513, 651

antenna, 680
3-dB beamwidth, 683
directivity, 683
gain, 684
radiated power, 683
radiation intensity, 683
radiation resistance, 684

electric vector potential of, 513
electromagnetic fields of, 513
magnetic, 514
radiated power, 515
radiation resistance, 515

Hertzian potential, 504, 506, 668
representation of TE/TM fields, 529
representation of TEM field, 530

Hilbert, David, 23
Hilbert transform, 293, 843
homogeneous integral equation, 710
homogeneous medium, 31
horizontal linear polarization, 373
horn antenna, 637, 699
Huygens, Christiaan, 665
hysteresis, 228

ill-conditioned matrix, 714
image, 175–177, 179, 495

identified using symmetry, 495
of a line source, 454

impedance
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964 Electromagnetics

characteristic, 615
internal, 781
per unit length of a transmission line,

613
surface, 255

impedance bandwidth, 677
impedance boundary condition, 349
impedance sheet, 85
impressed current, 661, 667
impressed field, 167, 197, 718, 727, 740,

746, 750, 766
models for, 733

impressed magnetization current, 509
impressed polarization current, 505, 509
impressed source, 105, 107, 294, 352, 452,

505, 509, 651
impulse function

Fourier transform, 915
incidence angle, 380
induced-emf method, 695
inductance, 249

coefficients, 281
internal, 252, 256
mutual, 250
Neumann formula for, 250

Neumann’s formula, 281
of a circular wire, 258
per unit length of a transmission line,

611, 612
coaxial cable, 622
parallel plates, 619

self, 250
Neumann formula for, 250

surface, 256
induction fields, 514
inertial reference frame, 41
inhomogeneous medium, 31
initial conditions, 26
input admittance, 750

of a circular loop antenna, 751
input impedance, 344, 441, 676, 734

of a dipole antenna, 696
of a slot antenna, 828
of a wire antenna, 696

input reactance, 677
instantaneous rest-frame theory, 53
insulator, 313
integral equation(s), 709

classification
electric field integral equation, 720

first kind, 710
Fredholm, 709
magnetic field integral equation, 793
second kind, 710
Volterra, 710

direct solution, 711
domain of, 709
dual, 264, 456
eigenfunction expansion, 711
for a circular loop, 748
for a conducting cylinder, 793
magnetic field integral equation, 803

for a conducting strip, 771
Hallén’s equation, 777

for a layered medium, 724
for a material cylinder, 808
for a penetrable body, 720
for a perfectly conducting body, 720
for a resistive strip, 781
for a thin wire, 730
curved, 743
natural mode current, 755

for a waveguide, 784, 788
for an inhomogeneous layeredmedium,

721
Fourier series solution, 749
Galerkin’s method, 714
Hallén’s, 730, 746
homogeneous, 710
kernel of, 710
linear, 709
method of moments, 712
method of weighting functions, 713
numerical solutions, 711
operator form, 710
Pocklington, 746
successive substitution, 711
time-domain, 763

integral theorems, 910
integral transform, 285
interfacial reflection coefficient, 393, 724
interfacial transmission coefficient, 393
internal impedance, 488, 781
internal inductance, 252, 253, 256
intrinsic impedance, 68, 110, 359

free space, 34
invariance of charge, 6
inverse Fourier transform, 445, 842

in polar coordinates, 448
inverse problem, 28, 124
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inverse square law, 166, 171, 215
inversion contour, 445, 451, 456
inversion integral

in polar coordinates, 448
ionosphere, 99, 135, 145, 308, 368

plane wave in, 368
isotropic material, 32, 155, 166, 202, 296
isotropic radiator, 675
iteration, 711

Joule heating, 224, 225, 294, 363, 370
Joule’s law, 224
jump conditions, 5, 24, 71

kernel(s), 710
convolutional, 710
Fourier series expansion of, 749
Hallén’s, 747
hermitian, 710
Pocklington, 746
positive definite, 710
separable, 710
singular, 710
symmetric, 710
thin-wire, 733

Kirchhoff approximation, 707
Kirchhoff’s laws, 3
Kramers, Hendrik Anthony, 293
Kramers–Kronig relations, 35, 293, 297

applied to a plasma, 307
applied to a resonant material, 321

Kronecker delta function, 890
Kronig, Ralph de Laer, 293

laboratory frame, 41, 51, 57, 59, 62, 67,
70, 79, 144

Lagrange’s identity, 877
Lagrangian density function, 98
lamellar field, 499, 501
Laplace transform, 755
Laplace’s equation, 166

applied to an edge, 196
for bodies in an impressed field, 197
for electro-quasistatics, 238
for magneto-quasistatics, 247
Fourier transform approach, 866
one-dimensional, 887
solved using separation of variables,

887, 896, 904
two-dimensional, 887

uniqueness, 167
Laplacian

longitudinal, 523
of 1/R, 169
transverse, 443, 445, 522

Larmor period, 135
Larmor precessional frequency, 327
late time period, 754
Laurent series, 848

convergence, 848
principal part, 848
regular part, 848

law of reflection, 385
law of refraction, 386
layer-shift method, 475
layered medium, 391, 461
least squares, 714
left-hand polarization, 372
Legendre functions, 198, 232, 882, 884, 902,

932
addition formula, 935
functional relationships, 934
integral representations, 935
integrals involving, 935
limits, 936
notation, 932
orthogonality, 933
power series representation, 935
recursion relationships, 935
summations, 935

Legendre polynomials, 192, 882
Legendre’s equation, 882, 902, 932

eigenfunctions, 882
eigenvalues, 882
singularity, 882

light, 99
light line, 365
line charge, 158
line charge density, 13
line current

Biot–Savart law applied to, 216
electromagnetic fields of, 418
force on, 220, 222
magnetic field found using Ampere’s

law, 200
magnetic field found using vector po-

tential, 206
torque, 222

line current density, 13
line current segment
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magnetic field of, 206
vector potential of, 205

line source, 428
above an interface, 452
electric
angular spectrum, 451
fields found using Fourier transform,
449

fields of, 418, 770
image, 454
magnetic
fields found using Fourier transform,
451

fields of, 418
periodic, 463

line width, 331
linear operator, 509, 710, 877

self-adjoint, 877
linear polarization, 373

horizontal, 373
vertical, 373

linearity, 79, 842
link budget equation, 680
Liouville’s theorem, 458
lobe, of antenna pattern, 675
local field, 315
longitudinal field, 523, 528, 551
longitudinal Laplacian, 523
longitudinal section modes, 582
longitudinal vector component, 522
loop

antenna, 748
Biot–Savart law applied to, 216
force on, 220
hysteresis, 228
magnetic dipole moment, 208, 210
static magnetic field, 208
torque on, 223
vector potential, 207

loop antenna, 691
beamwidth, 693
directivity, 693
pattern, 692, 693
radiated power, 693
radiation resistance, 693

Lorentz factor, 45, 124
Lorentz force equation, 27

invariance, 50
Lorentz, Hendrik Antoon, xxi, 56, 67, 73,

315–317, 319

Lorentz invariant, 49
Lorentz lemma, 85
Lorentz model of permittivity, 319
Lorentz reciprocity theorem, 84, 349, 651
Lorentz transformation, 45, 51, 54, 61, 68

first order, 44, 57, 67
Lorentz’s lemma, 349
Lorentz–Lorenz formula, 316
Lorenz condition, 507, 508
Lorenz gauge, 503
Lorenz, Ludvig Valentin, xxi, 316
loss tangent, 323, 360, 375, 554, 607
lossless material, 341
lossy material, 341
Love’s equivalence principle, 667

macroscopic electromagnetics, 302
magnetic charge, 20, 21, 69
magnetic current, 69
magnetic dipole, 208, 339
magnetic dipole moment, 208
magnetic excitation, 26
magnetic field integral equation, 793, 802,

806
for a narrow slot in a ground plane,

819
for an aperture in a ground plane, 818

magnetic field strength, 26
magnetic flux, 62, 248
magnetic flux density, 26
magnetic force, 26
magnetic Gauss’s law, 25
magnetic gradient drift, 142
magnetic induction, 26
magnetic intensity, 26
magnetic line current

fields of, 418
magnetic line source, 432
magnetic moment, 326

orbital, 327
spin, 327

magnetic monopole, 21, 69, 208
magnetic polarization, 356, 413
magnetic scalar potential, 202
magnetic susceptibility, 34

dyadic, 329
magnetic vector potential, 204
magnetic wall, 37, 495
magnetization, 338

saturation, of a ferrite, 330
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magnetization vector, 53
magneto-quasistatic system

and conductors, 253
characteristics of, 246
Poynting theorem, 246
scalar potential, 247
vector potential, 247

magneto-quasistatics, 244
magnetoelectric effects, 32
magnetomotive force, 55, 60
main beam, of antenna pattern, 675
marching on in time, 764
Maricourt, Pierre de, 20
match point, 712
matched layers, 397
material

active, 307, 341
anisotropic, 32, 288, 290, 301, 310,

342
lossless, 297

antiferromagnetic, 32, 327
bianisotropic, 32, 68, 92, 94, 98, 102,

348, 353
biaxial, 38
biisotropic, 32, 38, 68
chiral, 32, 38
chiroferrite, 32
chiroplasma, 32
crystal, 37
Debye, 322
diamagnetic, 326
dielectric, 313
dispersive, 35, 96, 288, 297, 353
dissipative, 288, 294, 296, 297
ferrimagnetic, 327
ferrite, 37, 327
damping parameter, 330
line width, 331
plane wave in, 410
saturation magnetization, 330

ferromagnetic, 327
good dielectric, 374
gyromagnetic, 327
gyrotropic, 37, 297, 310, 348
lossless, 329

homogeneous, 31
ideal, 31
inhomogeneous, 31, 721
insulator, 35
isotropic, 32, 155, 166, 202, 296

layered, 380
inhomogeneous, 721

linear isotropic, 34
lossless, 297, 301, 307, 341
lossy, 341
multi-layered, 391
nonreciprocal, 412
nonstationary, 31
paramagnetic, 327
passive, 322, 342, 359
plasma, 37
reciprocal, 85
resonant, 318
spatially dispersive, 31
stationary, 31
synthetic, 38
temporally dispersive, 31
uniaxial, 38

material characterization, 466
conductor-backed/air-backedmethod,

474
free-space methods, 466, 478, 481
layer-shift method, 475
NRW method, 469
reflection-transmission method, 469
sensitivity coefficients, 481
two-backing method, 476
two-polarization method, 478
two-thickness method, 471
uncertainty analysis, 480

material derivative, 16, 867
Maxwell–Boffi equations, 53
Maxwell–Garnett mixing formula, 317
Maxwell, James Clerk, 3, 23, 26, 55, 95
Maxwell–Minkowski equations, 24, 25
Maxwell’s equations

alternative forms, 64
alternative kinematic forms, 64
Boffi form, 34, 53, 66
kinematic forms, 67
large-scale forms, 66

compared for static fields, 199
definite form, 28, 34
for symmetric sources and fields, 494
form invariance, 27, 41, 43, 64
frequency-domain, 286
indefinite form, 28
integral forms, 60
interdependence, 25
large-scale forms, 60
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Minkowski form, 25
moving, deforming surfaces, 65
phasor form, 336
postulate, 23, 73
static decoupling of fields, 152
static electric field, 152
Boffi form, 152

static magnetic field, 152, 199
Boffi form, 153

Stratton–Chu solution, 651
with magnetic sources, 69

Maxwell’s stress tensor, 92, 111
electrostatic case, 181
magnetostatic case, 221

mean value theorem of electrostatics, 232
mechanical stress tensor, 89
mediating field, 4, 24
medium

chiral, 38
Debye, 322
dissipative, 294
gyrotropic, 297, 310
homogeneous, 31
inhomogeneous, 31
lossy, 346
multi-layered, 391, 461
nonstationary, 31
passive, 342
reciprocal, 348
spatially dispersive, 31
stationary, 31
synthetic, 38
temporally dispersive, 31

Mei, Kenneth Kwai-Hsiang, 746
method of moments, 166, 712

applied to a circular material cylin-
der, 812

applied to a conducting cylinder
magnetic field integral equation, 806
TE case, 798
TM case, 794

applied to a conducting strip
TE case, 777
TM case, 771

applied to a material cylinder, 809
applied to a resistive strip, 781
applied to a square material cylinder,

815
applied to a thin wire, 730
natural mode current, 757

scattering, 739
applied to a transmission line, 716
applied to a waveguide
TE modes, 789
TM modes, 784

applied to an inhomogeneous layered
medium, 724

collocation, 712
convergence, 725, 736, 814, 816
matrix symmetry, 732
self terms, 732
singularity extraction, 732

method of steepest descents, 451
Michelson, Albert Abraham, 3
Michelson–Morely experiment, 3
Mie, Gustav Adolf Feodor Wilhelm Lud-

wig, 539
Mie scattering, 539
Minkowski, Hermann, 24, 27, 51
mismatch factor, 677
mixing formula

for dielectrics, 316
Maxwell–Garnett, 317
Rayleigh, 317

mixture
of dielectrics, 316

mobility, 156
modal amplitude, 754
modes, 553

degenerate, 562
hybrid, 550
longitudinal section, 582
natural oscillation, 754

molecular polarization, 314
momentum

angular, 91, 327
conservation of, 15
conservation of electromagnetic, 93
conservation of linear, 89
density, 88
density of electromagnetic, 93
kinetic density of, 89
mechanical, 88, 304
particle, 124

monochromatic field, 333, 334, 363
monopole, 20, 21
monostatic scattering, 539
Morely, Edward Williams, 3
Morera’s theorem, 291, 457
Mosotti field, 315, 318
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Mosotti, O.F., 315
motion

charged particle, 124
equation of, 124, 126

motional emf, 63
multi-layered medium, 391, 461
multipole expansion, 185

applied to spherical charge distribu-
tion, 190

for electromagnetic fields, 515
in spherical harmonics, 189
of the potential of a dielectric sphere,

193
of the vector potential, 209

multipole moments, 186, 314
of a dipole, 187
of a point charge, 187
of a quadrupole, 188

mutual capacitance, 280
mutual inductance, 250

Neumann formula for, 250

natural frequency, 756, 757
natural mode, 754

current expansion, 754
series, 754

natural oscillations, 754
natural resonance, 754
near-zone fields, 98, 514

of a slot, 826
Neumann Green’s function, 175
Neumann series, 711
Neumann’s formula, 281
Neumann’s number, 420, 422, 430, 898
Newton, Isaac, 2
Nicolson–Ross–Weir method, 469
nonconservative field, 202
nondestructive evaluation, 256
nonradiating sources, 118, 121, 122, 438,

441, 442
spherically symmetric, 442

nonreciprocal material, 412
nonstationary medium, 31
nonuniform cylindrical wave, 419–421, 428
nonuniform plane wave, 378, 383, 391, 447
nonuniform spherical wave, 438
normal dispersion, 319, 364
nuclear electromagnetic pulse, 111, 123
null, of antenna pattern, 675
number density, 303, 314, 316, 328

Oersted, Hans Christian, 2
Ohm’s law, 3, 11, 35, 153
optical axis, 38
optical permittivity, 322
optical scattering, 539
ordinary points, 25
orientation polarization, 314
orthogonality

of basis functions, 714
of Bessel functions, 901, 927
of eigenfunctions, 878
of Legendre functions, 933
of spherical harmonics, 937
of the cosine function, 898
of the sine function, 889, 891, 898
of waveguide modes, 555, 569

parallel plate transmission line, 618
parallel polarization, 381, 392
paramagnetic material, 327
Parseval’s identity, 844
particular solution, 730, 777
passband, 463
passive material, 322, 342, 359
passive medium, 294
perfect dielectric, 35
perfect electric conductor, 36, 85
perfect insulator, 35
perfect magnetic conductor, 36
periodic fields, 460
periodic Green’s function, 464
periodic line source

fields of, 464
permanent dipole moment, 314, 322
permanent magnet, 203, 229
permanent magnetic moment, 327
permeability, 34

dyadic, 37, 329
Kramers–Kronig relations for, 294
of a ferrite, 329
of free space, 33
relative, 34

permittivity, 34
complex, 289, 354
dyadic, 295
frequency symmetry, 290

dyadic, 37
symmetry, 311

effective, 316
electrostatic, 290
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extended Lorentz model, 321
frequency dependence, 290
Kramers–Kronig relations for, 293
Lorentz model, 319
of a conductor, 326
of a magnetized plasma, 309
of a plasma, 305
of free space, 33
optical, 322
relative, 34
static, 319, 322

perpendicular polarization, 381, 392
phase constant, 359

for a transmission line, 615
in a waveguide, 553
TEM guided modes, 607

phase velocity, 362, 365, 371, 440
for a transmission line, 615
in a good conductor, 376
in a periodic structure, 461
in a plasma, 367
in a waveguide, 554
TEM guided modes, 607

phasor, 298, 335
physical optics

applied to a conducting cylinder, 426,
795, 799

scattering width, 795, 799
applied to a strip, 773, 778
scattering width, 774

applied to a wedge
current, 434
total field, 436

pitch
of a helix, 135

planar field symmetry, 493
plane wave, 357

amplitude spectrum, 357
angular spectrum, 448
attenuation, 363
attenuation constant, 359
electric field, 358
evanescent, 448, 449
expansion in terms of cylindrical waves,

420
group velocity, 362
identities, 913
in a good conductor, 376
in a good dielectric, 374
in a periodic medium, 461

in a plasma, 367
magnetic field, 359
nonuniform, 378, 383, 391, 447
phase constant, 359
phase velocity, 362, 371
power carried by, 376
reflected, 382
superposition of, 414, 449, 454
transient, 109, 389, 399
transmitted, 382
uniform, 358, 370, 385, 444
wavelength, 371

plane wave superposition, 414, 449, 454
plasma, 37, 124, 297, 303, 317, 365, 410

conductivity, 305
dispersion diagram, 368
dyadic permittivity, 309
lossless, 307, 309
magnetized, 308
model of a conductor, 326
permittivity, 305
plane wave in, 367
velocity, 304

plasma frequency, 304, 318
plates (conducting)

line source between, 496, 498
Pocklington’s equation, 746

for a circular loop, 748
Pocklington, Henry Cabourn, 746
Poincaré, Jules Henri, 374
Poincaré sphere, 374
point matching, 713
Poisson’s equation, 166, 191, 500

for electric scalar potential, 502
for electro-quasistatics, 238
for magnetostatics, 203
for vector potential, 205
solution for planar media, 176
uniqueness, 167

Poisson’s sum formula, 464
polar molecule, 322
polar vector, 68
polarizability, 314
polarization, 108, 338, 371

antenna, 674
atomic, 314
circular, 374, 411, 412
deterministic, 371
dipole, 314
electric, 413



✐

✐

“iee-00” — 2018/3/13 — 11:27 — page 971 — #995
✐

✐

✐

✐

✐

✐

Index 971

electronic, 314
elliptical, 374
linear, 373, 412
magnetic, 413
molecular, 314
orientation, 314
parallel, 381, 392
partial, 371
permanent, 192
perpendicular, 381, 392
random, 371

polarization ellipse, 371, 372
polarization state, 373, 374
polarization vector, 53, 313

physical interpretation of, 190
polarizing angle, 387
pole, 445, 451, 755, 758, 848
pole series, 755
position vector, 1

transverse, 355, 769
positive definite kernel, 710
potential

absolute electrostatic, 161
referred to infinity, 162, 184

electric scalar, 501, 508
integral representation, 502

electric vector, 501, 508
electro-quastistatic, 238
electrostatic, 161
for dielectric sphere in uniform elec-
tric field, 197

general solution, 169
Green’s function, 168
near an edge, 196
of a charge above an interface be-
tween dielectric media, 178

of a cylindrical volume charge, 173
of a line charge, 172
of a permanently polarized sphere,
193

of a point charge outside a grounded
conducting sphere, 179

of a spherical volume charge, 162
of charge above a conducting plane,
176

far-zone, 664
Hertzian, 504, 508, 668
in a bounded region, 521
in an unbounded region, 521
Laplace domain, 755

magnetic scalar, 505, 508
magnetic vector, 204, 505, 508
general solution, 215
integral representation, 205
of a line current segment, 205

magnetostatic, 202
mean value, 232
of a dipole layer, 193
of a Hertzian dipole, 513
primary, 176
reference, 15
scalar, 500
scattered, 719
secondary, 176
vector, 500

potential difference, 161
magnetostatic, 202

power
accepted by an antenna, 676
carried by a transmission line, 616
carried by a waveguide mode, 556
radiated, 674

power density, 376
power pattern, 664, 675
Poynting, John Henry, 94
Poynting theorem, 94, 294, 337, 341

and stored electric energy, 185
applied to a cylindrical wave, 117, 416
applied to a Hertzian dipole, 515
applied to a plane wave, 111
applied to a resistor, 243
applied to a spherical wave, 119, 440
applied to a waveguide, 558
applied to a wire, 224
applied to nonradiating sources, 122
complex, 343
for electro-quasistatics, 239
for magneto-quasistatics, 246
for time-harmonic fields, 338
nondispersive material, 340

steady currents, 224
Poynting vector, 94

and far-zone fields, 664
complex, 340
time-average, 340

precession, 327
pressure

electromagnetic, 111
mechanical, 87, 90

Priestly, Joseph, 2
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primary current, 11
primary Green’s function, 176
primary potential, 176
principal axes, 37
principal part, 848
principal-value integral, 293, 307, 511, 517,

518, 806, 851
principle of Ampere and Lorentz, 53
principle of duality, 81

frequency domain, 351
principle of linear momentum, 89
principle of superposition, 79
product solution, 885
progressive phase shift, 463
propagation constant, 553, 615
propagation of errors, 481
purely electric fields, 50
purely magnetic fields, 50

Q, 758
quadrupole moment, 189
quantization of charge, 6
quantum mechanics, 6, 303, 326
quarter-wave transformer, 397
quasistatic fields, 98

radar cross-section, 489
bistatic, 742
of a sphere, 539
of a thin wire, 743

radar cross-sectional width, 773
radiated power, 674

of a dipole antenna, 688
of a Hertzian dipole, 515
of a Hertzian dipole antenna, 683
of a small loop antenna, 693

radiation condition, 347, 442, 510, 512,
521, 658

radiation damping, 540, 754
radiation efficiency, 678
radiation fields, 514

of a Hertzian dipole, 514
radiation function, 685
radiation intensity, 674

of a dipole antenna, 688
of a Hertzian dipole antenna, 683

radiation pattern, 675
radiation resistance, 515, 678

of a dipole antenna, 688
of a Hertzian dipole antenna, 684

of a small loop antenna, 693
radiative dispersion, 741
Rayleigh mixing formula, 317
Rayleigh scattering, 539
Rayleigh–Carson reciprocity theorem, 351
reaction, 84, 349
reaction theorem, 350
reactive power, 344
realized gain, 678
receiving pattern, of an antenna, 679
reciprocal medium, 85, 348
reciprocal system, 349
reciprocity, 84, 85, 175, 520, 732

antenna, 673, 679
Rayleigh–Carson, 351
reaction, 350

reciprocity theorem, 84, 349
rectangular coordinate system, 917
rectangular pulse function, 846

Fourier transform, 915
rectangular waveguide aperture antenna,

699
3-dB beamwidth, 701
directional weighting function, 700
far-zone fields, 700
pattern, 701

recursion, 393, 395
recursion relation, 711
reference point, 161
reflection angle, 385
reflection boundary, 432, 459
reflection coefficient, 384, 388, 394–396, 401,

454, 723
global, 394, 395
interfacial, 393
load, 718
structure, 396, 401
time-domain, 389

refraction, 130
regular function, 457
regular part, 848
relative permeability, 34
relative permittivity, 34
relaxation, 322
relaxation spectrum, 322, 323
relaxation time, 155, 322
residual, 712
residue, 446, 849

formula for evaluating, 849
resistance, 239
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characteristic, 610
definition, 242
input, 676
of a circular wire, 258
of a parallel-plate capacitor, 243
per unit length of a transmission line,

612
coaxial cable, 622
parallel plates, 619

radiation, 678
relationship to capacitance, 242
surface, 256, 781

resonance, 319, 344
damped, 754
natural, 754
of a circular loop, 751
of a dipole antenna, 738, 743
of a slot antenna, 828
of a thin wire, 741

resonance curve, 320
resonance frequency, 318, 413

of an antenna, 677
resonance region, 539
rest mass, 124
retarded potentials, 511
return loss, 677
Reynolds, Osborne, 85
Reynolds transport theorem, 16, 89, 91,

870
Riemann–Lebesgue lemma, 291
right-hand polarization, 372
right-hand rule, 226, 372
Roentgen, Wilhelm Conrad, 52
rotating medium, 53
roundoff error, 714
Rumsey, Victor H., 349

S-parameters, 593
saturation, 328
saturation magnetization, 330
saturation magnetization frequency, 328
Savart, Félix, 2
scalar Helmholtz equation, 286, 355, 357
scattered field, 197, 420, 428, 454, 498,

537, 718, 727
scattering

from a conducting cylinder, 425, 793
physical optics approximation, 426

from a conducting sphere
time-domain, 540

using vector potentials, 537
using vector spherical wave functions,
548

from a conducting strip, 770
from a conducting wedge, 428
from a half-plane, 455
from a material cylinder, 420, 808
from a periodic surface, 461
from a planar surface, 454
from a resistive strip, 780
from a square material cylinder, 815
from a thin wire, 739
time-domain, 741, 762

Mie, 539
monostatic, 539
optical, 539
Rayleigh, 539

scattering parameters, 593
scattering problem, 718
scattering width, 773, 777

of a conducting cylinder, 795, 799
of a conducting strip, 775, 778
of a material cylinder, 812
of a resistive strip, 781, 783
of a square material cylinder, 816

Schelkunoff equivalence principle, 669, 699
applied to a screen with an aperture,

669, 819
Schelkunoff, Sergei Alexander, 74, 668
secondary current, 11, 289, 303, 309, 310,

455
secondary field, 197, 420, 428, 455
secondary Green’s function, 177
secondary potential, 176
secondary source, 105, 352, 665
secondary source concept, 665
sectoral waveguide

E-plane, 637
H-plane, 640

self capacitance, 280
self inductance, 250

Neumann formula for, 250
self-adjoint linear operator, 877
Sellmeier equation, 319
sensitivity coefficients, 481
separable kernel, 710
separation argument, 886
separation constants, 885
separation of variables, 166, 196, 884
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applied to Laplace’s equation, 887, 896,
904

conditions for solvability, 885
cylindrical coordinates, 921
rectangular coordinates, 886, 918
separation argument, 886
spherical coordinates, 924

shadow boundary, 432, 459
shadow zone, 432, 459
shell

conducting, 273
electrostatic shielding by, 262

cylindrical
diffusion through, 273
electrostatic shielding by, 267
magnetostatic shielding by, 271
quasistatic shielding by, 273

spherical
magnetostatic shielding by, 271

shield, 261
shielding

effectiveness, 261
electromagnetic, 276, 403
electrostatic, 262
using dielectric materials, 267
using perfect conductors, 262

magnetostatic, 271
quasistatic, 273
with planar layers, 404

shielding effectiveness, 261
absorptive, 406
due to multiple reflections, 407
of a slot in a ground plane, 833
of planar layers, 404
reflective, 406

side lobe, of antenna pattern, 675
side-lobe-level, 675
sifting property, 845
signum function, 845, 846

Fourier transform, 915
similarity parameters, 86
similitude, 85

linear media, 86
sinc function, 846
singular kernel, 710
singular matrix, 795, 798
singularity, 119, 440, 445, 517, 732, 746,

750, 772, 785, 790, 803, 848, 878,
881, 882

essential, 848

pole, 848
removable, 848

singularity expansion method, 742, 754
singularity extraction, 732, 750, 772, 785,

790
sinusoidal steady-state field, 333
skin depth, 253, 255, 376, 559
slab waveguide, 625
slice gap model, 734, 750
slot

directional weighting function, 825
far-zone fields, 826
Hallén’s equation for the slot voltage,

821
near-zone fields, 826
shielding effectiveness, 833

slot antenna
input impedance, 828
pattern, 830
resonance frequency, 828
voltage distribution, 829

slow-wave structure, 586, 591
small-signal assumption, 328
Snell’s law, 382, 391, 398, 400

of reflection, 385
of refraction, 386

solenoidal field, 499, 501
solenoidal–lamellar decomposition, 499

using vector spherical wave functions,
543

Sommerfeld, Arnold JohannesWilhelm, 23,
26, 68, 521

Sommerfeld radiation conditions, 347, 350,
521, 657, 658

source
equivalent, 339
Huygens, 666
impressed, 105, 294, 352, 420, 452,

493, 505, 509, 651
nonradiating, 118, 121
secondary, 105, 352, 665
symmetric, 493

source-excluding region, 521, 666
space harmonics, 461
space-shifting theorem, 843
spatial averaging, 7
spatial frequency, 442, 841

spectrum, 443
spatially dispersive medium, 31
special relativity, 23, 41, 156
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specular reflection, 540
sphere

cavity resonator, 906
dielectric
immersed in electrostatic field, 197,
199

multipole expansion for, 193
electrostatic force on, 181
mean value of potential, 232
multipole expansion of, 190
Poincaré, 374
potential of, 191
potential of permanently polarized, 193
solution to Laplace’s equation for, 905
solution to Poisson’s equation for, 179
split, 905

spherical Bessel functions, 903
spherical coordinate system, 922
spherical harmonics, 189, 884, 936

addition formulas, 937
applied to a permanently magnetized

ball, 230
applied to potential of a sphere, 192
functional relationships, 937
notation, 936
orthogonality relationships, 937
series expansion of a function, 938
series of, 938

spherical shell
shielding by, 271

spherical wave, 118, 521, 658, 665, 671
nonuniform, 438
phase velocity, 440
power carried by, 440
uniform, 438
wavelength, 440

spin, 326
spurious solutions, 107
square material cylinder, 815
square-root edge singularity, 434
staircase approximation, 716
staircasing effect, 809
standing wave ratio, 677, 718
state, 4
state variable, 4
static field limit, 152
stationary medium, 31
stationary variational formula, 696
steady current, 156
Stokes, George Gabriel, 73, 373

Stokes parameters, 373
Stokes’s theorem, 910
stopband, 409, 412, 463

for a ferrite-filled waveguide, 579
Storer, James E., 749
strain, mechanical, 87
Stratton, Julius Adams, 651
Stratton–Chu formulation, 651

for bounded space, 665
for unbounded space, 659

streamlines, 225, 269
stress

electromagnetic, 92
mechanical, 87

stress tensor
Maxwell’s, 92, 111
mechanical, 89

strip
conducting, 770
Hallén’s integral equation for, 777
scattering width, 775, 778
TM integral equation for, 771

resistive, 780
scattering width, 783
TM integral equation for, 781

strip transmission line, 618
structure reflection coefficient, 396, 401
structure transmission coefficient, 396, 401
Sturm–Liouville equation, 877
Sturm–Liouville problem, 878

higher-dimensional, 883
regular, 878

subdomain function, 713
substrate, 625
successive substitution, 711
superposition, 79, 356, 443, 508

integral, 510
of plane waves, 448, 449, 454

superstrate, 625
supplemental fields, 67
surface charge density, 12
surface current density, 13
surface dipole moment density, 194
surface impedance, 255, 488
surface inductance, 256
surface resistance, 256, 408, 560, 781
surface traction, 88, 111
surface waves, 624
susceptance
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per unit length of a transmission line,
614

susceptibility, 40
dielectric, 313
electric, 34, 58
magnetic, 34

symmetric kernel, 710
symmetry

electrostatic Green’s function, 168
even, 495
odd, 494
of the moment method matrix, 732,

771, 785
periodic, 460
planar, 493
reflection, 493
spatial, 493

system
cascaded, 401, 462
closed, 90
electromagnetic, 87
mechanical, 87
reciprocal, 349
state of, 4
thermodynamic, 87

Tai, Chen-To, 23, 54, 74
TE polarization, 356
TE wave, 381
TE wave impedance, 414, 553
TE–TM decomposition, 528

for anisotropic media, 540
in spherical coordinates, 531
in terms of Hertzian potentials, 529

telegraphist’s equations, 611, 715
Tellegen medium, 38
TEM fields

in terms of Hertzian potentials, 530
in terms of scalar potential function,

607
TEM guided modes

phase and attenuation constants, 607
phase and group velocities, 607

TEM wave, 108, 359
TEM wave impedance, 607
temporal frequency, 841
temporally dispersive medium, 31
tensor theory, 871
terminals, 673

terminology for the electromagnetic field,
26

tesseral harmonics, 884
Thales of Miletus, 5
thin-wire approximation, 732, 746, 764
thin-wire kernel, 733
Thomson’s theorem, 184, 233, 240
three-dimensional Green’s function, 512

time-domain, 511
tilde (ã), 1
tilt angle, 372
time-average Poynting vector, 340
time-domain reflection coefficient, 389
time-harmonic field, 334
time-limited function, 843
time-shifting theorem, 843
TM polarization, 356
TM wave, 381
TM wave admittance, 553
TM wave impedance, 414, 553
torque, 222, 327

on a planar loop, 223
total derivative, 868
total internal reflection, 388
transform(s)

Fourier, 841
Hilbert, 293

transient plane wave, 399
transit time, 763
transmission angle, 385, 400
transmission coefficient, 384, 396, 401, 454

interfacial, 393
structure, 396, 401

transmission line, 606
analyzed using integral equations, 715
biconical, 441, 642
capacitance per unit length, 609
characteristic impedance, 615
characteristic resistance, 610
coaxial, 621
conductance per unit length, 614
current, 609
inductance per unit length, 611
external, 612
internal, 612

phase and attenuation constants, 615
phase and group velocities, 615
power transport, 616
propagation constant, 615
resistance per unit length, 612
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series impedance per unit length, 613
shunt susceptance per unit length, 614
standing wave ratio, 718
strip (parallel plate), 618
telegraphist’s equations, 611
voltage, 608
wave equations, 614

transmission matrices, 401
transmission parameters, 401
transparency range, 297
transport theorems, 867

Helmholtz theorem, 870
Reynolds theorem, 870

transverse electric, 528
transverse electric wave, 381
transverse electromagnetic, 530
transverse electromagnetic wave, 108, 359
transverse field, 523, 528
transverse gradient, 356
transverse Laplacian, 355, 443, 445, 522
transverse magnetic, 528
transverse magnetic wave, 381
transverse position vector, 355
transverse vector component, 522
transverse–longitudinal decomposition, 523

identities, 914
traveling wave, 370, 414, 444, 767
triangle waveguide, 574
triangular pulse function, 846

Fourier transform, 915
trochoid, 141
two-backing method, 476
two-dimensional field relations, 356
two-dimensional fields, 417, 444
two-dimensional Fourier transform, 443
two-dimensional Green’s function, 418, 769

electrostatic potential, 172
spectral representation, 451

two-dimensional Helmholtz equation, 355
two-polarization method, 478
two-thickness method

with air backing, 473
with conductor backing, 471

ubitron, 124
uncertainty analysis, 480
uncharged conductor, 153
uniaxial material, 38
uniform cylindrical wave, 114
uniform plane wave, 107, 358, 385, 444

uniform spherical wave, 438
uniqueness, 28, 29, 54, 165, 215, 345, 382,

456, 510, 512, 668
electrostatic field, 165
magnetostatic field, 212
of eigenfunctions, 879
Poisson’s equation, 167
time-harmonic fields, 346
vector potential, 204

unit dyadic, 875
unit step function, 845

Fourier transform, 915
units of the electromagnetic fields, 25

vector algebra
cylindrical coordinates, 919
rectangular coordinates, 917
spherical coordinates, 922

vector Green’s theorem, 651
vector Helmholtz equation, 354
vector Huygens principle, 651, 665

Franz formula, 666
vector identities, 909
vector Kirchhoff solution, 651
vector spherical wave functions, 543

and scattering from a sphere, 548
in spherical coordinates, 546
representation of a plane wave, 547

velocity of energy transport, 377
vertical linear polarization, 373
voltage

electro-quasistatic, 238
gap, 248
on a transmission line, 608
terminal, 673

Volterra integral equation, 710
volume current

magnetic field found using Ampere’s
law, 201

wake, 113, 116
wall impedance, 349
water

Cole–Cole plot, 323
dispersion diagram, 365
transient reflection from, 390

wave admittance
TM, 553

wave equation
and uniqueness, 107
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bianisotropic media, 102
conducting media, 106
D’Alembert solution, 857
for a waveguide, 552
for cylindrical wave, 115
nonuniform, 419

for electric Hertzian potential, 505
for electric scalar potential, 504, 508
for electric vector potential, 502, 508
for magnetic Hertzian potential, 506
for magnetic scalar potential, 506, 508
for magnetic vector potential, 506, 508
for plane wave, 108
for spherical wave, 119, 439
for voltage and current on a transmis-

sion line, 614
Fourier transform solution, 447
polar coordinates, 448

frequency-domain, 354
isotropic media, 104
one-dimensional
Fourier transform solution, 851
Fourier transform solution for dis-
sipative media, 858

scalar, 106
using equivalent sources, 105

wave impedance
for a cylindrical wave, 414
for a layered medium, 393
for a planar interface, 386, 388
for a spherical wave, 440
TE, 414, 553
TEM, 607
TM, 414, 553

wave vector, 358, 447
reflected, 382
transmitted, 382

wave(s)
backward, 112, 365, 461
completely polarized, 371
converging spherical, 119
creeping, 540
cylindrical
expansion of a plane wave, 420
nonuniform, 420, 428
uniform, 413, 417

electromagnetic, 99
evanescent, 367, 388, 448, 449, 558
nonuniform plane, 378, 447
partially polarized, 371

plane, 357
expansion in terms of cylindrical waves,
420

polarization of, 108, 371
propagating, 109
randomly polarized, 371
slow, 586, 591
spherical, 658, 665, 671
nonuniform, 438
uniform, 438

standing, 388, 421, 726, 887
surface, 624
TE, 381
TEM, 108, 359
TM, 381
transient cylindrical, 114
transient plane, 109, 389
transient spherical, 119
transverse electromagnetic, 359
traveling, 370, 388, 414, 421, 444, 887
uniform cylindrical, 114
uniform plane, 358, 444
uniform spherical, 118
velocity, 109

wavefronts, 370, 415, 440
waveguide, 365, 549, 550, 783

attenuation
due to material loss, 554
due to wall loss, 559

boundary conditions, 553
circular, 564
cutoff condition, 554
cutoff frequency, 554
cutoff wavenumber, 784
dispersion diagram, 554
energy velocity, 559
excitation, 550, 569
fiber optical, 624, 631
integral equation for
TE modes, 788
TM modes, 784

integrated optical, 624
mode orthogonality, 555
modes, 553
open-boundary, 624
partially filled, 582
phase and group velocities, 554
power transport, 556
rectangular, 560
sectoral
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E-plane, 637
H-plane, 640

slab, 625
TE fields, 551, 553
TM fields, 551, 552
triangular, 574
wave equation for, 552

wavelength, 440
in a waveguide, 555
plane wave, 371
TEM guided modes, 607

wavenumber, 286, 354, 358, 862
cutoff, 551
frequency symmetry, 360
Laplace domain, 755

wedge
scattering from, 428

weighting function, 713
well-conditioned matrix, 718
well-posed model, 28, 876
Weyl identity, 865
Wiener–Hopf technique, 456
Wilson, H.A., 52
wire

force on, 219
integral equation for, 730
curved, 743
Hallén form, 746
Pocklington form, 746
thin-wire approximation, 732, 746
time-domain, 763

internal inductance, 252, 258
natural frequency, 756
Poynting flux in, 225
resistance, 258
scattering from, 739

wire antenna, 672, 695
input impedance, 696

work, 91, 161, 171, 183, 225
work function, 154
Wronskian, 416, 425, 430, 930

zero, of antenna pattern, 675
zonal harmonics, 884
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Chapter 1

1.1. The charge density is given by

ρ(r, t) = ρs(θ, φ, t)δ(r − r0).

The total charge on the sphere is

Q(t) =

∫
V
ρ(r, t) dV (V = all of space)

=

∫ 2π

0

∫ π

0

∫ ∞
0

ρs(θ, φ, t)δ(r − r0) r2 sin θ dr dθ dφ

=

∫ 2π

0

∫ π

0
ρs(θ, φ, t)

[∫ ∞
0

δ(r − r0) r2 dr

]
sin θ dθ dφ

= r2
0

∫ 2π

0

∫ π

0
ρs(θ, φ, t) sin θ dθ dφ.

1.2. The charge density is given by

ρ(r, t) = ρs(r, θ, t)δ (ρ[φ− φ0])

= ρs(r, θ, t)δ (r sin θ[φ− φ0])

= ρs(r, θ, t)
δ(φ− φ0)

r sin θ

since δ(ax) = δ(x)/a. The total charge on the half-plane is

Q(t) =

∫
V
ρ(r, t) dV (V = all of space)

=

∫ 2π

0

∫ π

0

∫ ∞
0

ρs(r, θ, t)
δ(φ− φ0)

r sin θ
r2 sin θ dr dθ dφ

=

∫ π

0

∫ ∞
0

ρs(r, θ, t) r dr dθ

∫ 2π

0
δ(φ− φ0) dφ

=

∫ π

0

∫ ∞
0

ρs(r, θ, t) r dr dθ.

1.3. The charge density is given by

ρ(r, t) = ρs(φ, z, t)δ(ρ− ρ0).

The total charge on the cylinder is

Q(t) =

∫
V
ρ(r, t) dV (V = all of space)

=

∫ ∞
−∞

∫ 2π

0

∫ ∞
0

ρs(φ, z, t)δ(ρ− ρ0) ρ dρ dφ dz

=

∫ ∞
−∞

∫ 2π

0
ρs(φ, z, t)

[∫ ∞
0

δ(ρ− ρ0) ρ dρ

]
dφ dz

= ρ0

∫ ∞
−∞

∫ 2π

0
ρs(φ, z, t) dφ dz.

1



1.4. The charge density is given by

ρ(r, t) = ρs(ρ, z, t)δ (ρ[φ− φ0]) = ρs(ρ, z, t)
δ(φ− φ0)

ρ
.

The total charge on the half-plane is

Q(t) =

∫
V
ρ(r, t) dV (V = all of space)

=

∫ ∞
−∞

∫ 2π

0

∫ ∞
0

ρs(ρ, z, t)
δ(φ− φ0)

ρ
ρ dρ dφ dz

=

∫ ∞
−∞

∫ ∞
0

ρs(ρ, z, t) dρ dz

∫ 2π

0
δ(φ− φ0) dφ

=

∫ ∞
−∞

∫ ∞
0

ρs(ρ, z, t) dρ dz.

1.5. (a) Write J = ρ̂Jρ(ρ, t).

Apply the continuity equation to the stationary cylinder ρ = a, 0 ≤ z ≤ L:

dQ

dt
=

d

dt

∫
ρ dV =

d

dt

∫ L

0

∫ 2π

0

∫ a

0
ρ0ρ

2e−βtρ dρ dφ dz = −βπLa
4

2
ρ0e
−βt,

dQ

dt
= −

∮
S

J · dS = −
∫ L

0

∫ 2π

0
Jρ(a, t)ρ̂ · ρ̂a dφ dz = −2πLaJρ(a, t),

∴ Jρ(a, t) = ρ0
βa3

4
e−βt.

Hence

J(ρ, t) = ρ̂ρ0
βρ3

4
e−βt.

Equating this to volume charge density times velocity,

ρ̂ρ0
βρ3

4
e−βt = ρ0ρ

2e−βtv,

we obtain

v = ρ̂
βρ

4
.

(b) Satisfaction of the first equation follows from

∇ · J =
1

ρ

∂

∂ρ
(ρJρ) =

1

ρ

∂

∂ρ

(
β
ρ4

4
e−βtρ0

)
= βρ0ρ

2e−βt,

and
∂ρ

∂t
=

∂

∂t

(
ρ0ρ

2e−βt
)

= −βρ0ρ
2e−βt.

For the second equation, we first calculate

∇ · v =
1

ρ

∂

∂ρ
(ρvρ) =

1

ρ

∂

∂ρ

(
β
ρ2

4

)
=
β

2
.

2



But
Dρ

Dt
=
∂ρ

∂t
+ v · ∇ρ where ∇ρ = ρ̂

∂

∂ρ

(
ρ0ρ

2e−βt
)

= 2ρ̂ρ0ρe
−βt,

so
Dρ

Dt
= −βρ0ρ

2e−βt + ρ̂
βρ

4
· 2ρ̂ρ0ρe

−βt = −β
2
ρ0ρ

2e−βt

as desired.

1.6. (a)

Q =

∫ 2π

0

∫ π

0

∫ 2

0
4r2 cos2 θ δ(θ − π/4)r2 sin θ dr dθ dφ = 56.9 C.

(b)

Q =

∫ 2

0

∫ 2π

0

∫ ∞
0

4 cos2 φ δ(ρ− 2)ρ dρ dφ dz = 50.3 C.

(c)

Q =

∫ 2

0

∫ ∞
0

∫ ∞
0

4z3 δ(x)δ(y) dx dy dz = 16 C.

(d)

Q =

∫
ρ dV =

∫ 2

0

∫ 2π

0

∫ ∞
0

4ρzδ(ρ− 3)ρ dρ dφ dz = 144π C.

(e)

Q =

∫
ρ dV =

∫ ∞
−∞

∫ π

0

∫ ∞
0

5(z + 2)δ(z)δ(ρ− 3)ρ dρ dφ dz = 30π C.

1.7.
∂ρ

∂t
= −16x2e−4t, ∇ρ = x̂8xe−4t.

dρ

dt
=
∂ρ

∂t
+ v · ∇ρ

= −16x2e−4t + x̂Ax · x̂8xe−4t

= 8x2e−4t(A− 2).

We have dρ/dt = 0 when A = 2.

1.8.
∂ρ

∂t
= −4βr2e−βt, ∇ρ = r̂8re−βt.

dρ

dt
=
∂ρ

∂t
+ v · ∇ρ = −4βr2e−βt + r̂2r · r̂8re−βt = 4r2(4− β)e−βt.

We have dρ/dt = 0 when β = 4.

3



Chapter 2

2.1. Start with (2.99):

P =

[
1

c
P̄− ε0Ī

]
·E + L̄ ·B. (1)

Put H = B
µ0
−M:

P =

[
1

c
P̄− ε0Ī

]
·E + L̄ · [µ0H + µ0M],[

1

c
P̄− ε0Ī

]
·E + [µ0L̄] ·H = P− [µ0L̄] ·M. (*)

Next examine (2.100):

M = −M̄ ·E−
(
cQ̄− 1

µ0
Ī

)
·B. (2)

Put H = B
µ0
−M:

M = −M̄ ·E−
(
cQ̄− 1

µ0
Ī

)
· [µ0H + µ0M],

M̄ ·E + (µ0cQ̄− Ī) ·H = −M− (µ0cQ̄− Ī) ·M. (**)

Equations (*) and (**) are the constitutive relations between (E,H) and (P,M).

2.2. Examine the transformed Gauss’ law (2.77):

γ
∂Dx

∂x′
− γ v

c2

∂Dx

∂t′
+
∂Dy

∂y′
+
∂Dz

∂z′
= ρ.

Substitute from (2.74):
∂Hz

∂y′
− ∂Hy

∂z′
= Jx − γv

∂Dx

∂x′
+ γ

∂Dx

∂t′
.

This gives

γ
∂Dx

∂x′
− v

c2

∂Hz

∂y′
+
v

c2

∂Hy

∂z′
+
v

c2
Jx − γ

v2

c2

∂Dx

∂x′
+
∂Dy

∂y′
+
∂Dz

∂z′
= ρ,

∂

∂x′
γDx

(
1− v2

c2

)
+

∂

∂y′

(
Dy −

v

c2
Hz

)
+

∂

∂z′

(
Dz +

v

c2
Hy

)
= ρ− v

c2
Jx,

∂

∂x′
Dx +

∂

∂y′
γ
(
Dy −

v

c2
Hz

)
+

∂

∂z′
γ
(
Dz +

v

c2
Hy

)
= ργ − γ v

c2
Jx,

∂

∂x′
D′x +

∂

∂y′
D′y +

∂

∂z′
D′z = ργ − γ v

c2
Jx,

or
∇′ ·D′ = ρ′ = ργ − γ v

c2
Jx.

So
cρ′ = γ(cρ− βJx) where β = v/c.

Generalizing, we obtain
cρ′ = γ(cρ− β · J).
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2.3. The solutions all follow Example 2.4.

2.4. (a) Examine the inequality c2B2 > E2. We have

B2 = B2
‖ +B2

⊥, E2 = E2
‖ + E2

⊥.

In a moving frame we have the following.

(B′)2 = B′ ·B′ = B′‖ ·B
′
‖ + B′⊥ ·B′⊥,

B′‖ = B‖, B′⊥ =
γ

c
(cB⊥ − β ×E⊥).

So

B′⊥ ·B′⊥ = γ2B2
⊥ − 2

γ2

c
B⊥ · (β ×E⊥) +

γ2

c2
β2E2

⊥,

Also,
(E′)2 = E′ ·E′ = E′‖ ·E

′
‖ + E′⊥ ·E′⊥,

E′‖ = E‖, E′⊥ = γ(E⊥ + β × cB⊥).

So
E′⊥ ·E′⊥ = γ2E2

⊥ + 2γ2cE⊥ · (β ×B⊥) + γ2c2β2B2
⊥.

Thus, the inequality is for a moving frame

c2B2
‖ + c2γ2B2

⊥ − 2γcB⊥ · (β ×E⊥) + γ2β2E2
⊥ > E2

‖ + γ2E2
⊥ + 2γ2cE⊥ · (β ×B⊥) + γ2c2β2B2

⊥.

Use
E⊥ · (β ×B⊥) = −B⊥ · (β ×E⊥)

to write
c2B2

‖ + c2γ2B2
⊥(1− β2) > E2

‖ + γ2E2
⊥(1− β2).

Since 1− β2 = 1/γ2,
c2(B2

‖ +B2
⊥) > E2

‖ + E2
⊥,

or
c2B2 > E2,

which is true, so
c(B′)2 > (E′)2.

(b) Similar to part (a).

2.5. (a) Setting
E ·B = (E‖ + E⊥) · (B‖ + B⊥) = E‖B‖ + E⊥ ·B⊥ = 0,

we get
E‖B‖ = −E⊥ ·B⊥ (1)

We also have
cB2 > E2 =⇒ c(B2

‖ +B2
⊥) > E2

‖ + E2
⊥. (2)

From Problem 2.4 we know that

c(B′‖
2

+B′⊥
2
) > E′‖

2
+ E′⊥

2
.

Thus if E′ = 0 then B′‖
2 +B′⊥

2 > 0 and (2) is true. To have E′ = 0 we need
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(A) E′‖ = E‖ = 0 =⇒ E‖ = 0.

(B) E′⊥ = γ(E⊥ + β × cB⊥) = 0.

Note that (B) is satisfied if β × cB⊥ = −E⊥ for some β. Examine

(C) E⊥ · (β × cB⊥) = cβ · (E⊥ ×B⊥) = E2
⊥.

From (2), since E‖ = 0,
E⊥ ·B⊥ = 0 =⇒ E⊥ ⊥ B⊥ ⊥ β.

So β is in the direction of E⊥ ×B⊥ and has magnitude E⊥/cB⊥ from (C). So

β =
E⊥
cB⊥

· E⊥ ×B⊥
E⊥B⊥

=
1

cB2
⊥

(E⊥ ×B⊥)

will make E′ = 0 if E ·B = 0 and c2B2 > E2.

(b) If c2B2 < E2, then (1) is satisfied by B‖ = 0 and we need B′⊥ = 0 to have B′ = 0. Note that

B′⊥ = 0 =⇒ cB⊥ − β ×E⊥ = 0 =⇒ cB⊥ = β ×E⊥.

Examine
B⊥ · (cB⊥) = B⊥ · (β ×E⊥) = β · (E⊥ ×B⊥).

So β is in the direction E⊥ ×B⊥ and has magnitude

β =
cB2
⊥

E⊥B⊥
=
cB⊥
E⊥

.

Thus

β =
cB⊥
E⊥
· E⊥ ×B⊥
E⊥B⊥

=
c

E2
⊥

(E⊥ ×B⊥)

will make B′ = 0 if E ·B = 0 and c2B2 > E2.

2.6. Lab frame:
F = QE = Q(E‖ + E⊥).

Inertial frame:
F′ = QE′ +Qv ×B′.

Use

E′ = E′‖ + E′⊥ = E‖ + γ(E⊥ + β × cB⊥),

B′ = B′‖ + B′⊥ = B‖ +
γ

c
(cB⊥ − β ×E⊥),

to get

F′ = QE‖ +QγE⊥ +Qγβ × cB⊥ +Qv ×B‖ +Qγv ×B⊥ −Q
γ

c
v × (β ×E⊥).

Now use
v

c
× (β ×E⊥) = β × (β ×E⊥) = β(β ·E⊥)−E⊥(β · β) = −β2E⊥
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to write

F′ = QE‖ +QγE⊥(1 + β2) + 2Qγv ×B⊥ +Qv ×B‖

= Q(E‖ + E⊥) +QγE⊥

(
1 + β2 − 1

γ

)
+ 2Qγv ×B⊥ +Qv ×B‖.

Therefore
F′ = F +Q

[
γE⊥(1 + β2 −

√
1− β2) + 2γv ×B⊥ + v ×B‖

]
.

2.7. We have
D′ = ε′E′, B′ = µ′H′,

D‖ + γD⊥ +
γ

c
β ×H⊥ = ε′E‖ + ε′γE⊥ + ε′γcβ ×B⊥, (1)

B‖ + γB⊥ −
γ

c
β ×E⊥ = µ′H‖ + µ′γH⊥ − µ′γcβ ×D⊥. (2)

Cross β into (1):

β ×D‖ + γβ ×D⊥ +
γ

c
β × (β ×H⊥) = ε′β ×E‖ + ε′γβ ×E⊥ + ε′γcβ × (β ×B⊥).

Use
β × (β ×A⊥) = β(β ·A⊥)−A⊥β · β = −β2A⊥

to write
γβ ×D⊥ =

γ

c
β2H⊥ + ε′γβ ×E⊥ − ε′γcβ2B⊥.

Substituting into (2),

B‖ + γB⊥ −
γ

c
β ×E⊥ = µ′H‖ + µ′γH⊥ − µ′c

[γ
c
β2H⊥ + ε′γβ ×E⊥ − ε′γcβ2B⊥

]
,

B‖ + γB⊥ − µ′ε′γc2β2B⊥ =
γ

c
β ×E⊥ − µ′ε′cγβ ×E⊥ + µ′H‖ − µ′γH⊥ + γµ′β2H⊥.

We attempt to write this as

B = B‖ + B⊥ = AH +BH‖ + Cβ ×E.

Equate ‖ components to get
B‖ = µ′H‖.

Equate ⊥ components to get

γB⊥(1− β2n2) =
γ

c
(1− n2)β ×E⊥ − µ′γ(β2 − 1)H⊥

or

B⊥ =
1

c

1− n2

1− β2n2
β ×E⊥ − µ′

β2 − 1

1− β2n2
H⊥.
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So

B = B‖ + B⊥ = µ′H‖ + µ′
1− β2

1− β2n2
H⊥ +

1

c

1− n2

1− β2n2
β ×E⊥

= AH +BH‖ + Cβ ×E

= A(H‖ + H⊥) +BH‖ + Cβ × (E‖ + E⊥)

= (A+B)H‖ +AH⊥ + Cβ ×E⊥.

We have

A+B = µ′, A = µ′
1− β2

1− β2n2
, C =

1

c

1− n2

1− β2n2
,

hence

B = µ′ −A = µ′β2 1− n2

1− β2n2
.

Writing

H‖ = β̂(β̂ ·H) =
ββ

β2
·H

we get

B = AH +BH‖ + Cβ ×E

= µ′
[
A

µ′
Ī +

B

µ′
ββ

β2

]
·H−Ω×E (Ω = Cβ)

= µ′
[

1− β2

1− β2n2
Ī− n2 − 1

1− β2n2
ββ

]
·H− n2 − 1

1− n2β2

β

c
×E

= µ′Ā ·H−Ω×E

where

Ā =
1− β2

1− β2n2

[
Ī− n2 − 1

1− β2
ββ

]
and

Ω =
n2 − 1

1− n2β2

β

c
.

By following similar steps we can show that

D = ε′Ā ·E + Ω×H.

2.8. Start with D′ = ε′E′ and B′ = µ′H′. Substitute (2.44)–(2.46) to get

D +
v ×H

c2
= ε′(E + v ×B), (1)

B− v ×E

c2
= µ′(H− v ×D). (2)

Cross v into (1):

v ×D = −v × (v ×H)

c2
+ ε′v ×E + ε′v × (v ×B).
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Substitute this into (2):

B =
v ×E

c2
+ µ′H− µ′

[
−v × (v ×H)

c2

]
− µ′ε′v ×E− µ′ε′v × (v ×B)

=
v ×E

c2
(1− µ′ε′c2) + µ′

[
H +

v × (v ×H)

c2

]
− c2µ′ε′

v × (v ×B)

c2
.

Since n2 = c2µ′ε′, we have

B + n2 v × (v ×B)

c2
= µ′

[
H +

v × (v ×H)

c2

]
− v ×E

c2
(n2 − 1).

Note that ∣∣∣∣v × (v ×B)

c2

∣∣∣∣ ∼ v2

c2
|B| � |B|

and ∣∣∣∣v × (v ×E)

c2

∣∣∣∣ ∼ v2

c2
|E| � |E|

since v2/c2 � 1. Therefore

B = µ′H− (n2 − 1)
v ×E

c2
.

2.9.

M′ =
B′

µ0
−H′

=
B‖

µ0
+

1

µ0

γ

c
(cB⊥ − β ×E⊥)−H‖ − γ(H⊥ − β × cD⊥).

Equate ‖ components:

M′
‖ =

B‖

µ0
−H‖.

But

M =
B

µ0
−H,

so
M′
‖ = M‖.

Equate ⊥ components:

M′
⊥ =

1

µ0

γ

c
(cB⊥ − β ×E⊥)− γ(H⊥ − β × cD⊥)

=
1

µ0
γB⊥ − γH⊥ + β ×

(
γcD⊥ −

γ

µ0c
E⊥

)
= γ

(
B⊥
µ0
−H⊥

)
+ γcβ ×

(
D⊥ −

1

µ0c2
E⊥

)
= γ

(
B⊥
µ0
−H⊥

)
+ γcβ × (D⊥ − ε0E⊥).
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But
P⊥ = D⊥ − ε0E⊥,

so
M′
⊥ = γM⊥ + γcβ ×P⊥ = γ(M⊥ + β × cP⊥).

2.10. (a) Into D′ = ε0E
′ + P′, substitute (2.44) and (2.45):

D + v × H

c2
= ε0(E + v ×B) + P′.

Next use D = ε0E + P and the fact that

B = µ0(H + M) =⇒ v ×B = µ0v ×H + µ0v ×M

to get

ε0E + P +
v ×H

c2
= ε0E + ε0µ0v ×H + ε0µ0v ×M + P′.

Therefore

P′ =
v ×M

c2
+ P.

(b) Into B′ = µ0(H′ + M′), substitute H′ = H− v ×D and B′ = B− v ×E/c2:

B− v ×E

c2
= µ0(H− v ×D) + µ0M

′.

Next use B = µ0(H + M) and the fact that

D = ε0E + P =⇒ v ×D = ε0v ×E + v ×P

to get

µ0H + µ0M−
v ×E

c2
= µ0H− µ0(ε0v ×E + v ×P) + µ0M

′.

Therefore
µ0M = −µ0v ×P + µ0M

′

as desired.

2.11. Start with (2.114) and (2.115):

P = P′ +
v ×M

c2
, M = M′ − v ×P.

Then
v ×P = v ×P′ +

v

c2
× (v ×M)

and we have
M = M′ − v ×P′ − v

c2
× (v ×M)

or

M +
v2

c2
v̂ × (v̂ ×M) = M′ − v ×P′.
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But ∣∣∣∣v2

c2
v̂ × (v̂ ×M)

∣∣∣∣� |M|
because v2/c2 � 1, so

M = M′ − v ×P′.

Now use

P′ = ε0χ
′
eE
′, M′ =

χ′m
µ0µ′r

B′,

to write

M =
χ′m
µ0µ′r

B′ − ε0χ′ev ×E′.

By (2.148) and (2.147) we have

B′ = B− v ×E

c2
, E′ = E + v ×B,

so

M =
χ′m
µ0µ′r

(
B− v ×E

c2

)
− ε0χ′ev × (E + v ×B)

= B

(
χ′m
µ0µ′r

)
− ε0χ′ev × (v ×B)−

(
χ′m

c2µ0µ′r
+ ε0χ

′
e

)
v ×E

=
1

µ0

[
B
χ′m
µ′r
− χ′e

v × (v ×B)

c2

]
− ε0

(
χ′m
µ′r

+ χ′e

)
v ×E.

But ∣∣∣∣χ′ev × (v ×B)

c2

∣∣∣∣ =

∣∣∣∣χ′e v2

c2
v̂ × (v̂ ×B)

∣∣∣∣� ∣∣∣∣χ′mµ′r B

∣∣∣∣ ,
so

M =
χ′m
µ0µ′r

B− ε0
(
χ′m
µ′r

+ χ′e

)
v ×E.

2.12. Start with
P = P‖ + P⊥, P‖ = P′‖.

Then

cP′⊥ = γ(cP⊥ − β ×M⊥) =⇒ P⊥ =
1

γ
P′⊥ +

1

c
β ×M⊥,

so

P = P′‖ +
1

γ
P′⊥ +

1

c
β ×M⊥.

Use (2.150),

M⊥ =
1

γ
M′
⊥ − β × cP⊥,

to get

P = P′‖ +
1

γ
P′⊥ +

1

c
β ×

[
1

γ
M′
⊥ − β × cP⊥

]
.
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Now rearrange,

P + β × (β ×P⊥) = P′‖ +
1

γ
P′⊥ +

1

cγ
β ×M′

⊥,

and use the fact that β × (β ×P⊥) = −β2P⊥ to get

P− β2P⊥ = P′‖ +
1

cγ
β ×M′

⊥ +
1

γ
P′⊥.

Equating ‖ terms, we get
P‖ = P′‖.

Equating ⊥ terms, we get

(1− β2)P⊥ =
1

cγ
β ×M′

⊥ +
1

γ
P′⊥.

Next use

M′
⊥ =

χ′m
µ0µ′r

B′⊥ =
χm
µ0µ′r

γ

c
[cB⊥ − β ×E⊥],

P′⊥ = ε0χ
′
eE
′
⊥ = ε0χ

′
eγ[E⊥ + β × cB⊥],

to get

(1− β2)P⊥ =
1

cγ

γ

c

χ′m
µ0µ′r

cβ ×B⊥ −
1

cγ

γ

c

χ′m
µ0µ′r

β × (β ×E⊥) + ε0χ
′
eE⊥ + ε0χ

′
eβ × cB⊥

= (β ×B⊥)

[
cε0χ

′
e +

1

c

χ′m
µ0µ′r

]
+ E⊥

[
ε0χ
′
e +

χ′m
c2µ0µ′r

β2

]
= (β × cB⊥)

[
ε0χ
′
e +

χ′m
c2µ0µ′r

]
+ E⊥

[
ε0χ
′
e +

χ′m
c2µ0µ′r

β2

]
= (β × cB⊥)ε0

[
χ′e +

χ′m
µ′r

]
+ E⊥ε0

[
χ′e +

χ′m
µ′r
β2

]
so that

P⊥ =
(β × cB⊥)

1− β2
ε0

[
χ′e +

χ′m
µ′r

]
+

E⊥
1− β2

ε0

[
χ′e +

χ′m
µ′r
β2

]
.

Now
P = P‖ + P⊥, P‖ = P′‖ = ε0χ

′
eE
′
‖ = ε0χ

′
eE‖ = ε0χ

′
e(E−E⊥).

Thus,

P = ε0χ
′
eE + E⊥

[
ε0χe

(
1

1− β2
− 1

)
+
χ′m
µ′r
β2

]
+

(β × cB⊥)

1− β2
ε0

[
χ′e +

χ′m
µ′r

]
.

If v/c� 1, then β2 � 1 and

P = ε0χ
′
eE +

(v

c
× cB⊥

)
ε0

[
χ′e +

χ′m
µ′r

]
.

Use
v ×B⊥ = v × (B−B‖) = v ×B since v ×B‖ = 0.

Obtain

P = ε0χ
′
eE + ε0

(
χ′e +

χ′m
µ′r

)
v ×B.

A similar set of steps can be used to find M.
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2.13. Start with (2.102):

∇×E = −∂B

∂t
.

Integrate over a surface S: ∫
S

(∇×E) · dS = −
∫
S

∂B

∂t
· dS.

Use (2.127): ∫
S

∂B

∂t
· dS =

d

dt

∫
S

B · dS−
∫
S

[v(∇ ·B)−∇× (v ×B)] · dS.

But ∇ ·B = 0 from (2.96), so∫
S

(∇×E) · dS = − d

dt

∫
S

B · dS−
∫
S

[∇× (v ×B)] · dS.

Use Stokes’s theorem: ∮
Γ

E · dl = − d

dt

∫
S

B · dS−
∮

Γ
(v ×B) · dl,

or ∮
Γ
[E + v ×B] · dl = − d

dt

∫
S

B · dS.

Therefore ∮
Γ

E∗ · dl = − d

dt

∫
S

B · dS where E∗ = E + v ×B.

Next, start with (2.103):

∇× B

µ0
= J + JM + JP + ε0

∂E

∂t
.

Integrate over a surface S and use Stokes’s theorem:

1

µ0

∮
Γ

B · dl =

∫
S

[J + JM + JP ] · dS + ε0

∫
S

∂E

∂t
· dS.

Use (2.127): ∫
S

∂E

∂t
· dS =

d

dt

∫
S

E · dS−
∫
S

[v(∇ ·E)−∇× (v ×E)] · dS.

But

∇ ·E =
ρ+ ρP
ε0

from (2.104) so

1

µ0

∮
Γ

B · dl = ε0
d

dt

∫
S

E · dS−
∫
S

(ρ+ ρP )v · dS + ε0

∮
γ
(v ×E) · dl +

∫
S

[J + JM + Jp] · dS.

So ∮
Γ
[B− µ0ε0v ×E] · dl = µ0ε0

d

dt

∫
S

E · dS + µ0

∫
S

[J + JM + Jp] · dS,

or ∮
Γ

B+ · dl =

∫
S
µ0J

+ · dS +
1

c2

d

dt

∫
S

E · dS
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where

J+ = J + JM + JP − (ρ+ ρP )v and B+ = B− 1

c2
v ×E.

Next, start with (2.135): ∮
S

(n̂×E) dS = −
∫
V

∂B

∂t
dV.

Use (2.132): ∫
V

∂B

∂t
dV =

d

dt

∫
V

B dV −
∮
S

B(v · n̂) dS.

So ∮
S

(n̂×E) dS = − d

dt

∫
V

B dV +

∮
S

B(v · n̂) dS,

or ∮
S

[(n̂×E)− (v · n̂)B] dS = − d

dt

∫
V

B dV.

Finally, start with (2.136):∮
S

(n̂×B) dS = µ0

∫
V

[J + JM + JP ] dV + µ0ε0

∫
V

∂E

∂t
dV.

Use (2.132): ∫
V

∂E

∂t
dV =

d

dt

∫
V

E dV −
∮
S

E(v · n̂) dS.

So ∮
S

(n̂×B) dS +
1

c2

∮
S

E(v · n̂) dS = µ0

∫
V

[J + JM + JP ] dV +
1

c2

d

dt

∫
V

E dV,

or ∮
S

[
(n̂×B) +

1

c2
(v · n̂)E

]
dS = µ0

∫
V

[J + JM + JP ] dV +
1

c2

d

dt

∫
V

E dV.

2.14. Start by integrating (2.141) over a time-changing surface to get∫
S

(∇×E) · dS = −
∫
S

Jm · dS−
∫
S

∂B

∂t
· dS. (A)

Use (2.127): ∫
S

∂B

∂t
· dS =

d

dt

∫
S

B · dS−
∫
S

v(∇ ·B) · dS +

∫
S
∇× (v ×B) · dS

where ∇ ·B = ρm by (2.143). Hence, by Stokes’s theorem,∫
S

∂B

∂t
· dS =

d

dt

∫
S

B · dS−
∫
S
ρmv · dS +

∮
Γ
(v ×B) · dl.

Substitute this into (A) and use Stokes’s theorem again:∮
Γ

E · dl = −
∫
S

Jm · dS− d

dt

∫
S

B · dS +

∫
S
ρmv · dS−

∮
Γ
(v ×B) · dl.
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So ∮
Γ
(E + v ×B) · dl = − d

dt

∫
S

B · dS−
∫
S

(Jm − ρmv) · dS.

Hence (2.37) is changed by the addition of the third term. Since (2.142) contains no magnetic
source terms, (2.138) is unchanged.

Next, integrate (2.141) over a time-changing volume:∫
V

(∇×E) dV = −
∫
V

Jm dV −
∫
V

∂B

∂t
dV.

Apply the curl theorem: ∮
S

(n̂×E) dS = −
∫
V

Jm dV −
∫
V

∂B

∂t
dV. (B)

Use (2.132): ∫
V

∂B

∂t
dV =

d

dt

∫
V

B dV −
∮
S

B(v · n̂) dS.

So (B) becomes ∮
S

(n̂×E) dS = −
∫
V

Jm dV −
d

dt

∫
V

B dV +

∮
S

B(v · n̂) dS

or ∮
S

[n̂×E− (v · n̂)B] dS = −
∫
V

Jm dV −
d

dt

∫
V

B dV.

Thus, (2.139) is modified by the addition of the first term on the right-hand side. Since (2.103)
contains no magnetic sources, (2.140) is unchanged.

2.15. Consider Figure 2.5, where the sources are magnetic charge ρm and magnetic current Jm.
Integrate (2.142) over V , with J = 0:∫

S1

n̂1 ×H1 dS +

∫
S2

n̂2 ×H2 dS +

∫
S3

n̂3 ×H dS =

∫
V

∂D

∂t
dV.

Choose δ = k∆ so that most of the source lies within V . As ∆→ 0, we have S1 = S2, n̂1 = −n̂2 =
n̂12, and V → 0. Thus ∫

V

∂D

∂t
dV → 0

and ∫
S1

n̂12 × (H1 −H2) dS = 0

or
n̂12 × (H1 −H2) = 0.

Next integrate (2.141) over V :∫
S1

n̂1 ×E1 dS +

∫
S2

n̂2 ×E2 dS +

∫
S3

n̂3 ×E dS =

∫
V

(
−Jm −

∂B

∂t

)
dV.
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Choose δ = k∆ so that most of the source lies within V . As ∆→ 0, we have S1 = S2, n̂1 = −n̂2 =
n̂12, and V → 0. So ∫

S1

n̂12 × (E1 −E2) dS = −
∫
V

Jm dV

= −
∫
S1

∫ δ/2

−δ/2
Jm dS dx

= −
∫ δ/2

−δ/2
f(x,∆) dx

∫
S1

Jms dS.

But

lim
∆→0

∫ δ/2

−δ/2
f(x,∆) dx = 1,

so ∫
S1

n̂12 × (E1 −E2) dS = −
∫
S1

Jms dS

or
n̂12 × (E1 −E2) = −Jms.

Next integrate (2.143) over V :∫
S1

B1 · dS +

∫
S2

B2 · dS +

∫
S3

B · dS =

∫
V
ρm dV.

As ∆→ 0, we have S1 = S2, n̂1 = −n̂2 = n̂12. Therefore∫
S1

(B1 −B2) · n̂12 dS =

∫
V
ρm dV

=

∫
S1

∫ δ/2

−δ/2
ρm dS dx

=

∫ δ/2

−δ/2
f(x,∆) dx

∫
S1

ρms dS

=

∫
S1

ρms dS

and we obtain
(B1 −B2) · n̂12 = ρms.

Integration of (2.144) with ρ = 0 gives

(D1 −D2) · n̂12 = 0.

2.16. Consider a surface carrying an electric current Js as shown in Figure 2.6. We begin with
(2.148) where V is the volume V1 shown in Figure 2.6. Since V1 does not contain Js, we have∫

S1

[n̂×H− (v · n̂)D] dS +

∫
S10

[n̂×H + (v · n̂)D] dS =

∫
V1

J dV +
d

dt

∫
V1

D dV. (A)
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Apply the same formula to the region V2:∫
S2

[n̂×H− (v · n̂)D] dS +

∫
S20

[n̂×H + (v · n̂)D] dS =

∫
V2

J dV +
d

dt

∫
V2

D dV. (B)

Add (A) and (B):∫
S1+S2

[n̂×H− (v · n̂)D] dS −
∫
V1+V2

J dV − d

dt

∫
V1+V2

D dV −
∫
S10

[n̂10 ×H + (v · n̂10)D] dS

−
∫
S20

[n̂20 ×H + (v · n̂20)D] dS = 0.

If δ is very small, then S1 + S2 = S, V1 + V2 = V , and n̂10 = −n̂20 = n̂12. Then∫
S

[n̂×H+(v·n̂)D] dS−
∫
V

J dV − d

dt

∫
V

D dV =

∫
S10

n̂12×(H1−H2) dS+

∫
S10

(v·n̂12)(D1−D2) dS.

(C)
Now apply (2.148) to the volume region V that intersects the surface. This region does contain the
surface current Js.∫

S
[n̂×H + (v · n̂)D] dS −

∫
V

J dV − d

dt

∫
V

D dV =

∫
S10

Js dS. (D)

Consistency between (C) and (D) requires that

n̂12 × (H1 −H2) + (v · n̂12)(D1 −D2) = Js.

This is the desired boundary condition. Application of (2.147) to a surface containing a magnetic
surface current Jm will, through an analogous set of steps, lead to the second boundary condition.

2.17. Start with (2.252) and (2.253):(
∇̄+

∂

∂t
ζ̄

)
·E = − ∂

∂t
µ̄ ·H− Jm,

(
∇̄ − ∂

∂t
ξ̄

)
·H =

∂

∂t
ε̄ ·E + J.

Define a new dyadic ε̄−1 by
ε̄−1 · ε̄ = ε̄ · ε̄−1 = Ī.

Then (2.252) becomes
∂E

∂t
= ε̄−1 ·

(
∇̄ − ∂

∂t
ξ̄

)
·H− ε̄−1 · J. (*)

Next, differentiate (2.252) with respect to time:(
∇̄+

∂

∂t
ζ̄

)
· ∂E

∂t
= − ∂2

∂t2
(µ̄ ·H)− ∂Jm

∂t
.

Lastly, substitute (*) to get[(
∇̄+

∂

∂t
ζ̄

)
· ε̄−1 ·

(
∇̄ − ∂

∂t
ξ̄

)
+
∂2

∂t2
µ̄

]
·H =

(
∇̄+

∂

∂t
ξ̄

)
· ε̄−1 · J− ∂Jm

∂t
.

For an anisotropic medium we have B = µ̄ ·H and D = ε̄ ·E, so ξ̄ = ζ̄ = 0. Then we get(
∇̄ · ε̄−1 · ∇̄+

∂2

∂t2
µ̄

)
·H = ∇̄ · ε̄−1 · J− ∂Jm

∂t
.
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2.18. Let

D(r, t) = ε(r)E(r, t), B(r, t) = µ(r)H(r, t).

Maxwell’s equations:

∇×E = −µ∂H

∂t
, ∇×H = J + ε

∂E

∂t
, ∇ · (εE) = ρ.

Curl of Faraday’s law:

∇× (∇×E) = − ∂

∂t
∇× (µH) = − ∂

∂t
[µ∇×H−H×∇µ]

∇(∇ ·E)−∇2E = − ∂

∂t

[
µ

(
J + ε

∂E

∂t

)
−H×∇µ

]
= −µ∂J

∂t
− µε∂

2E

∂t2
+
∂H

∂t
×∇µ

= −µ∂J

∂t
− µε∂

2E

∂t2
− 1

µ
(∇×E)×∇µ

∇ · (εE) = ρ =⇒ ε∇ ·E + E · ∇ε = ρ

=⇒ ∇ ·E =
ρ

ε
−E · ∇ε

ε

∴ ∇
(
ρ

ε
−E · ∇ε

ε

)
−∇2E = −µ∂J

∂t
− µε∂

2E

∂t2
− (∇×E)× ∇µ

µ

∇2E− µε∂
2E

∂t2
+∇

(
E · ∇ε

ε

)
− (∇×E)× ∇µ

µ
= µ

∂J

∂t
+∇

(ρ
ε

)
2.19. We have from Ampere’s law and Faraday’s law

∂Hx

∂z
= ε0

∂Ey
∂t

, (*)

∂Ey
∂z

= µ(z)
∂Hx

∂t
. (**)

We differentiate (*) with respect to t and (**) with respect to z to give,

∂2Hx

∂z∂t
= ε0

∂2Ey
∂t2

,
∂2Ey
∂z2

= µ(z)
∂2Hx

∂z∂t
+
∂µ(z)

∂z

∂Hx

∂t
.

Substituting for ∂2Hx/∂z∂t and using (**) gives the wave equation for Ey:

∂2Ey
∂z2

− 1

µ(z)

∂µ(z)

∂z

∂Ey
∂z
− µ(z)ε0

∂2Ey
∂t2

= 0.

To find the wave equation for Hx we differentiate (**) with respect to t and (*) with respect to z
to give,

∂2Hx

∂z2
= ε0

∂2Ey
∂z∂t

,
∂2Ey
∂z∂t

= µ(z)
∂2Hx

∂t2
.
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Substituting for ∂2Ey/∂z∂t gives

∂2Hx

∂z2
− µ(z)ε0

∂2Hx

∂t2
= 0,

which is the desired wave equation.

2.20. For µ(r) = µ0 and ε(r) = ε(z) we have

∇µ = 0, ∇ε = x̂
∂ε

∂z
.

Setting J = 0 and ρ = 0 we get

∇2E− µε∂
2E

∂t2
+∇

[
E ·
(

ẑ
1

ε

∂ε

∂z

)]
= 0, ∇2H− µε∂

2H

∂t2
− (∇×H)×

(
ẑ

1

ε

∂ε

∂z

)
= 0.

Now use

∇
[
E ·
(

ẑ
1

ε

∂ε

∂z

)]
= ∇

[
Ez

1

ε

∂ε

∂z

]
= Ez∇

(
1

ε

∂ε

∂z

)
+

1

ε

∂ε

∂z
∇Ez

= Ez

[
1

ε
∇ ∂ε
∂z

+
∂ε

∂z
∇1

ε

]
+

1

ε

∂ε

∂z
∇Ez

= ẑEz

[
1

ε

∂2ε

∂z2
− 1

ε2

(
∂ε

∂z

)2
]

+
1

ε

∂ε

∂z
∇Ez

to get the wave equations

∇2E− µε∂
2E

∂t2
+ ẑEz

[
1

ε

∂2ε

∂z2
− 1

ε2

(
∂ε

∂z

)2
]

+
1

ε

∂ε

∂z
∇Ez = 0,

∇2H− µε∂
2H

∂t2
+

1

ε

∂ε

∂z
ẑ× (∇×H) = 0.

If E(r, t) = ŷEy(z, t) and H(r, t) = x̂Hx(z, t) then

∇Ez = 0, ẑ× (∇×H) = ẑ×
(

ŷ
∂Hx

∂z

)
= −x̂

∂Hx

∂z
,

and

∇2E = ŷ
∂2Ey
∂z2

, ∇2H = x̂
∂2Hx

∂z2
.

With these the wave equations become

ŷ
∂2Ey
∂z2

− ŷµε
∂2Ey
∂t2

= 0,

x̂
∂2Hx

∂z2
− x̂µε

∂2Hx

∂t2
− x̂

1

ε

∂ε

∂z

∂Hx

∂z
= 0,

which are identical to (2.247) and (2.245) from Example 2.7.
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2.21. We want to show that (2.265)

∇2E− µ0ε0
∂2E

∂t2
=

1

ε0
∇(ρ+ ρP ) + µ0

∂

∂t
(J + JM + Jp)

is equivalent to (2.259)

∇× (∇×E) + µε
∂2E

∂t2
= −∇× Jm − µ

∂J

∂t

when D = εE, B = µH, and Jm = 0. The equivalent sources are

Jp =
∂P

∂t
, JM = ∇×M, ρP = −∇ ·P,

where

P = D− ε0E, M =
B

µ0
−H.

Therefore

JP =
∂

∂t
(εE− ε0E) = ε0

(
ε

ε0

∂E

∂t
− ∂E

∂t

)
and

JM = ∇×
(
µ

µ0
H

)
−∇×H =

µ

µ0
∇×H−∇×H

since the material is homogeneous. Also,

ρP = −∇ ·D + ε0∇ ·E.

Substitute the equivalent sources into (2.265):

∇2E− µ0ε0
∂2E

∂t2
=

1

ε0
∇(ρ−∇ ·D + ε0∇ ·E) + µ0

∂

∂t

[
J +

µ

µ0
∇×H−∇×H + ε

∂E

∂t
− ε0

∂E

∂t

]
= ∇(∇ ·E) + µ0

∂

∂t

[
J +

µ

µ0
J +

µ

µ0

∂D

∂t
− J− ε∂E

∂t
+ ε

∂E

∂t
− ε0

∂E

∂t

]
= ∇(∇ ·E)− µ0ε0

∂2E

∂t2
+ µ

∂J

∂t
+ µ

∂2D

∂t2
.

So

−∇2E +∇(∇ ·E) + µε
∂2E

∂t2
= −µ∂J

∂t
or

∇× (∇×E) + µε
∂2E

∂t2
= −µ∂J

∂t

which is (2.259).

Next we substitute the equivalent sources into (2.266) and use

∇× B

µ0
=

µ

µ0
∇×H =

µ

µ0

(
J +

∂D

∂t

)
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to get

∇2B− µ0ε0
∂2B

∂t2
= −µ0∇×

[
J +

1

µ0
∇×B−∇×H +

∂D

∂t
− ε0

∂E

∂t

]
= −µ0∇×

[
J +

µ

µ0
J +

µε

µ0

∂E

∂t
− J− ∂D

∂t
+
∂D

∂t
− ε0

∂E

∂t

]
= −µ∇× J− µε ∂

∂t
(∇×E)− µ0ε0

∂

∂t
(∇×E).

So

∇2B = −µ∇× J + µε
∂2B

∂t2
,

∇×∇×B = µ∇× J− µε∂
2B

∂t2
,

∇×∇×H + µε
∂2H

∂t2
= ∇× J,

which is (2.260).

2.22. Eliminating the third term, we obtain from (2.284)

H(z, t) =
H0

2
e−

Ω
v
zf
(
t− z

v

)
+
H0

2
e

Ω
v
zf
(
t+

z

v

)
.

To plot this, let ε = 81ε0 and µ = µ0 (which implies v = 3.33× 107 m/s), σ = 2× 10−4 S/m, and
f(t) = rect(t/τ) with τ = 1 µs. This gives the plot shown in Figure 1. We see that this plot is very
similar to Text Figure 2.8. The pulse shape is mostly determined by the exponential factors, and
these factors also affect the amplitudes of the pulses in a similar way to Text Figure 2.8. The most
important contribution from the third term in (2.364) is to create the wake or “tail” seen in Text
Figure 2.8.

2.23. (a) Let b = b(t) = vt be the radius of the expanding surface. The charge density is

ρ(r, t) =
Q

4πb2
δ(r − b) =

Q

4π(vt)2
δ(r − vt).

For a Gaussian surface of radius r, Gauss’s law reads∮
S

D · n̂ dS =

{
0, r < b = vt,

Q, r > b = vt.

So

4πr2Dr(r, t) =

{
0, r < b = vt,

Q, r > b = vt.
= QU(r − vt)

and we have

E(r, t) = r̂
Q

4πε0r2
U(r − vt).
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(b) By (2.300) we have

E(r, t) = − 1

ε0
∇ψ(r, t) = − 1

ε0
r̂
∂ψ

∂r

= − 1

ε0
r̂
∂

∂r

[
Q

4πr

vt− r
vt

U(r − vt)
]

= − Q

4πε0
r̂

{
U(r − vt) ∂

∂r

[
vt− r
vtr

]
+

[
vt− r
vtr

]
δ(r − vt)

}
= − Q

4πε0
r̂

[
1

vt

(
−r − vt+ r

r2

)]
U(r − vt)

= r̂
Q

4πε0r2
U(r − vt)

for r > vt.

(c) By the definition of volume current we have

J = ρv =
Q

4π(vt)2
δ(r − vt)[vr̂] = r̂

Q

4πvt2
δ(r − vt).
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Compare this to (2.298):

J = ∇
(
∂ψ

∂t

)
=

∂

∂t
(∇ψ) = −r̂ε0

∂Er
∂t

= −r̂ε0
∂

∂t

[
Q

4πε0r2
U(r − vt)

]
= −r̂

Q

4πr2

∂

∂t
U(r − vt)

= r̂
Q

4πr2
vδ(r − vt)

= r̂
Q

4π(vt)2
vδ(r − vt)

= r̂
Q

4πvt2
δ(r − vt).

2.24. (a) Under the assumptions stated, Gauss’s law reads ∇ ·E = 0. We therefore set

∇ ·E =
∂

∂x
[A(x+ y) cos(ωt)] +

∂

∂y
[B(x− y) cos(ωt)] = 0

and find that A = B. (b) Since

∇×E = ẑ

{
∂Ey
∂x
− ∂Ex

∂y

}
= ẑ

{
∂

∂x
[B(x− y) cos(ωt)]− ∂

∂y
[A(x+ y) cos(ωt)]

}
= 0,

Faraday’s law shows that B is constant.

2.25. (a) Use Faraday’s law:

−µ0
∂H

∂t
= ∇×E = −x̂E0β sin

(π
a
x
)

sin(ωt− βz) + ẑE0
π

a
cos
(π
a
x
)

cos(ωt− βz),

and integrate with respect to t:

H(r, t) = −x̂
E0

ωµ0
β sin

(π
a
x
)

cos(ωt− βz)− ẑ
E0

ωµ0

π

a
cos
(π
a
x
)

sin(ωt− βz).

(b) Since J = 0, Ampere’s law reads

∇×H = ε0
∂E

∂t
.

Substituting E and H from above, we find that

β =

√
ω2µ0ε0 −

(
π
a

)2
.

2.26. (a)
D = εE = ŷ30ε0x

2y2e−αtU(t).
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(b)

D(r, t) = ε0E(r, t) + ε0

∫ t

−∞
χe(r, t− t′)E(r, t′) dt′

= ŷ10ε0x
2e−αtU(t) +

∫ t

−∞
ŷ30ε0x

2y2U(t− t′)U(t′)e−αt
′
dt′

= ŷ10ε0x
2e−αtU(t) +

∫ t

0
ŷ30ε0x

2y2U(t)e−αt
′
dt′

= ŷ10ε0x
2e−αtU(t) + ŷ30ε0x

2y2U(t)

[
1

α
− e−αt

α

]
.

(c)

D = ε̄ ·E
= (3ε0x̂x̂ + 2ε0x̂ŷ + 4ε0ẑŷ) · [ŷ10x2e−αt U(t)]

= x̂20ε0x
2e−αt U(t) + ẑ40ε0x

2e−αt U(t).

(d)

D = ε(E + β∇×E)

= 7ε0[ŷ10x2e−αt U(t) + ẑ200xe−αtU(t)]

= 70ε0xe
−αt U(t) [ŷx+ ẑ20].

2.27. ∮
S

J∗ · dS =

∮
S

(J− ρv) · n̂ dS =

∫ 2π

0

∫ π

0
−ρ0v0r̂ · r̂R2(t) sin θ dθ dφ

= −4πρ0v0R
2(t) = −4πρ0v

3
0t

2.∫
V
ρ dV =

∫ 2π

0

∫ π

0

∫ R(t)

0
ρ0r

2 sin θ dr dθ dφ =
4

3
πR3(t) =

4

3
πv3

0t
3,

∴ − d

dt

∫
V
ρ dV = − d

dt

(
4

3
πv3

0t
3

)
= −4πρ0v

3
0t

2.

2.28. (a)

ρPsa = −r̂ · r̂ 31.87× 10−12

(2× 10−2)2
= −7.97× 10−8 C/m2,

ρPsb = r̂ · r̂ 31.87× 10−12

(4× 10−2)2
= 1.99× 10−8 C/m2.

(b)
QPs = 4πa2ρPsa + 4πb2ρPsb = 0.

(c)

ρP = −∇ ·P = − 1

r2

∂

∂r
(r2Pr) = − 1

r2

∂

∂r
(31.87× 10−12) = 0.

24



(d)

QP =

∫
V
ρP dV = 0.

(e) Since P = ε0(εr − 1)E, we have

31.87× 10−12 = ε0(εr − 1)0.45 or εr = 9.

2.29. Original problem: (E1,D1,B1,H1).

D1 = εE1 + ξH1,

B1 = ξE1 + µH1.

Dual problem:

E2 = η0H1, B2 = −η0D1, η0D2 = B1, η0H2 = −E1.

D2 = ε2E2 + ξ2H2, (*)

B2 = ξ2E2 + µ2H2. (**)

Substitute:

−B2

η0
= ε(−η0H2) + ξ

(
E2

η0

)
=⇒ B2 = η2

0εH2 − ξE2,

η0D2 = ξ(−η0H2) + µ

(
E2

η0

)
=⇒ D2 = −ξH2 +

µ

η2
0

E2.

Compare to (*) and (**):

ε2 =
µ

η2
0

, ξ2 = −ξ, µ2 = η2
0ε.

2.30.

D = εE + ξH,

B = ξE + µH.

E · ∂D

∂t
= E · ∂

∂t
(εE + ξH) = εE · ∂E

∂t
+ ξE · ∂H

∂t
,

H · ∂B

∂t
= H · ∂

∂t
(ξE + µH) = ξH · ∂E

∂t
+ µH · ∂H

∂t
,

E · ∂D

∂t
+ H · ∂B

∂t
= εE · ∂E

∂t
+ ξE · ∂H

∂t
+ ξH · ∂E

∂t
+ µH · ∂H

∂t

=
1

2
ε
∂

∂t
E ·E + ξ

∂

∂t
E ·H +

1

2
µ
∂

∂t
H ·H

=
∂

∂t

( ε
2
E ·E + ξE ·H +

µ

2
H ·H

)
=

∂

∂t
Uem.
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Thus

∇ · Sem −
∂

∂t
Uem = −J ·E

where
Sem = E×H

and

Uem =
ε

2
E ·E + ξE ·H +

µ

2
H ·H

=
1

2
E · (εE + ξH) +

1

2
H · (ξE + µH)

=
1

2
(D ·E + B ·H).

2.31.
∂ψ

∂z
= −1

2

1

v
f ′
(
t− z

v

)
+

1

2

1

v
f ′
(
t+

z

v

)
+

1

v
g
(
t+

z

v

) v
2
−
(
−1

v

)
g
(
t− z

v

) v
2
,

∂2ψ

∂z2
=

1

2

1

v2
f ′′
(
t− z

v

)
+

1

2

1

v2
f ′′
(
t+

z

v

)
+

1

v2
g′
(
t+

z

v

) v
2
− 1

v2
g′
(
t− z

v

) v
2
,

∂ψ

∂t
=

1

2
f ′
(
t− z

v

)
+

1

2
f ′
(
t+

z

v

)
+
v

2
g
(
t+

z

v

)
− v

2
g
(
t− z

v

)
,

∂2ψ

∂t2
=

1

2
f ′′
(
t− z

v

)
+

1

2
f ′′
(
t+

z

v

)
+
v

2
g′
(
t+

z

v

)
− v

2
g′
(
t− z

v

)
.

The problem is finished by direct substitution.

2.32. (a)

∇×E = −∂B

∂t
=

φ̂

r

∂

∂r
(rEθ) = φ̂β

E0

r
sin(ωt− βr),

B = φ̂β
E0

r

∫
sin(ωt− βr) dt = φ̂

β

ω

E0

r
cos(ωt− βr),

H(r, t) =
B(r, t)

µ0
= φ̂

β

ωµ0

E0

r
cos(ωt− βr).

(b)

Psphere(t) =

∮
[E(r, t)×H(r, t)] · n̂ dS

=

∫ 2π

0

∫ π

0

[
θ̂
E0

r
cos(ωt− βr)× φ̂

β

ωµ0

E0

r
cos(ωt− βr)

]
· r̂ r2 sin θ dθ dφ

= 4πE2
0

β

ωµ0
cos2(ωt− βr).

2.33. (a)

∇×H = ε0
∂E

∂t
= −ŷ

∂Hz

∂x
= −ŷβH0 sin(ωt− βx),

E(r, t) = ŷ
β

ωε0
H0 cos(ωt− βx).
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(b)

∇×E = −µ0
∂H

∂t
= ẑ

∂Ey
∂x

= ẑ
β2

ωε0
sin(ωt− βx),

so

H = ẑ
β2

ω2µ0ε0
H0 cos(ωt− βx) = ẑH0 cos(ωt− βx)

and we must have
β2

ω2µ0ε0
= 1.

So
β = ω

√
µ0ε0.

2.34. See Figure 2.

Figure 2

(a) ∮
E · dl =

∫ v0t+a

v0t
x̂

1

x
cos(ωt− βb) · x̂ dx+

∫ v0t

v0t+a
x̂

1

x
cosωt · x̂ dx.

−
∫
∂B

∂t
· dS = −

∫ v0t+a

x=v0t

∫ b

z=0
−φ̂µ0ω

ηx
sin(ωt− βz) · φ̂ dz dx.

both sides = [cos(ωt− βb)− cosωt] ln

(
v0t+ a

v0t

)
.

(b)

v ×B = ẑv0
µ0

ηρ
cos(ωt− βz).

∮
(v ×B) · dl =

∫ b

0
v0

µ0

ηv0t
cos(ωt− βz) dz −

∫ b

0
v0

µ0

η(v0t+ a)
cos(ωt− βz) dz

= −v0
µ0

ηβ

[
1

v0t
− 1

v0t+ a

]
[sin(ωt− βb)− sinωt].

∮
(E + v ×B) · dl = [cos(ωt− βb)− cosωt] ln

(
v0t+ a

v0t

)
+ v0

µ0

ηβ

[
1

v0t+ a
− 1

v0t

]
[sin(ωt− βb)− sinωt].
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∫
B · dS =

∫ v0t+a

x=v0t

∫ b

z=0
φ̂
µ0

ηx
cos(ωt− βz) · φ̂ dz dx

= −µ0

ηβ
ln

(
v0t+ a

v0t

)
[sin(ωt− βb)− sinωt].

− d

dt

∫
B · dS = ω

µ0

ηβ
ln

(
v0t+ a

v0t

)
[cos(ωt− βb)− cosωt]

+
µ0

ηβ

(
v0

v0t+ a
− v0

v0t

)
[sin(ωt− βb)− sinωt].

2.35.

E(r, θ, t) = θ̂
1

r sin θ
A(t− r/v), H(r, θ, t) = φ̂

1

η

1

r sin θ
A(t− r/v).

(a)

V (r, t) =

∫ π−θ0

θ0

1

r sin θ
θ̂ · θ̂A(t− r/v)r dθ = 2A(t− r/v) ln

[
cot

θ0

2

]
.

(b)

Js = n̂×H = θ̂ ×
[
φ̂

1

η

1

r sin θ
A(t− r/v)

]
= r̂

1

η

1

r sin θ
A(t− r/v),

I(r, t) =

∫ 2π

0
r̂

1

η

1

r sin θ
A(t− r/v) · r̂r sin θ dφ =

2π

η
A(t− r/v).

(c)

Rc =
η

π
ln

[
cot

θ0

2

]
.
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Chapter 3

3.1. The line charge is shown in Figure 3 along with source and field point position vectors r′ and
r.

Figure 3

We have r = x̂x + ŷy = ρ̂ρ and r′ = ẑz′, hence the displacement vector is R = r − r′ = ρ̂ρ − ẑz′

with |R| = (ρ2 + z′2)1/2. The electric field is given by

E(r) =
1

4πε

∫
Γ
ρl(z

′)
R

|R|3
dl′ =

1

4πε

[
ρ̂ρ

∫ ∞
−∞

ρl(z
′) dz′

(ρ2 + z′2)3/2
− ẑ

∫ ∞
−∞

ρl(z
′)z′ dz′

(ρ2 + z′2)3/2

]
as desired. The function ρl(z) = ρ0 sgn(z) is odd about z = 0, so the first integral vanishes:

E(r) = −ẑ
1

4πε
· 2
∫ ∞

0

ρ0z
′ dz′

(ρ2 + z′2)3/2
= −ẑ

ρ0

2περ
.

3.2. The ring is shown in Figure 4 along with source and field point position vectors r′ and r.

We have r = ẑz and r′ = ρ̂′a = x̂a cosφ′ + ŷa sinφ′. Hence

R = r− r′ = ẑz − x̂a cosφ′ − ŷa sinφ′

and
|R| = (z2 + a2 cos2 φ′ + a2 sin2 φ′)1/2 = (z2 + a2)1/2.

The electric field is given by

E =
1

4πε

∫
Γ
ρl(φ

′)
R

|R|3
dl′

=
1

4πε

∫ 2π

0
ρl(φ

′)
ẑz − x̂a cosφ′ − ŷa sinφ′

(z2 + a2)3/2
a dφ′

= − a2

4πε(z2 + a2)3/2

[
x̂

∫ 2π

0
ρl(φ

′) cosφ′ dφ′ + ŷ

∫ 2π

0
ρl(φ

′) sinφ′ dφ′
]

+ ẑ
az

4πε(z2 + a2)3/2

∫ 2π

0
ρl(φ

′) dφ′.
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Figure 4

When ρl(φ) = ρ0 sinφ, we obtain

E = −ŷ
a2ρ0

4ε(z2 + a2)3/2
.

When ρl(φ) = ρ0 cos2 φ, we get

E = ẑ
azρ0

4ε(z2 + a2)3/2
.

3.3. The source and field point positions for this problem are indicated in Figure 5.

Figure 5

Writing r = ẑz and r′ = ρ̂′ρ′ = x̂ρ′ cosφ′ + ŷρ′ sinφ′, we obtain

R = r− r′ = ẑz − x̂ρ′ cosφ′ − ŷρ′ sinφ′

and
|R| = (z2 + ρ′

2
cos2 φ′ + ρ′

2
sin2 φ′)1/2 = (z2 + ρ′

2
)1/2.

The electric field is

E =
1

4πε

∫
S
ρs(r

′)
R

|R|3
dS′ =

1

4πε

∫ ∞
0

∫ 2π

0
ρs(ρ

′, φ′)
ẑz − x̂ρ′ cosφ′ − ŷρ′ sinφ′

(z2 + ρ′2)3/2
ρ′ dφ′ dρ′
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so that

Ex = − 1

4πε

∫ ∞
0

∫ 2π

0

ρs(ρ
′, φ′)ρ′2 cosφ′

(z2 + ρ′2)3/2
dφ′ dρ′,

Ey = − 1

4πε

∫ ∞
0

∫ 2π

0

ρs(ρ
′, φ′)ρ′2 sinφ′

(z2 + ρ′2)3/2
dφ′ dρ′,

Ez =
z

4πε

∫ ∞
0

∫ 2π

0

ρs(ρ
′, φ′)ρ′

(z2 + ρ′2)3/2
dφ′ dρ′.

When ρs(ρ, φ) = ρ0U(ρ− a), we obtain

Ex = Ey = 0, Ez =
ρ0

2ε
sgn(z)

1√
1 + (a/z)2

.

When ρs(ρ, φ) = ρ0[1− U(ρ− a)], we get

Ex = Ey = 0, Ez =
ρ0

2ε
sgn(z)

[
1− 1√

1 + (a/z)2

]
.

3.4. The sphere is indicated in Figure 6.

Figure 6

Writing r = ẑz and

r′ = r̂′r′ = x̂a sin θ′ cosφ′ + ŷa sin θ′ sinφ′ + ẑa cos θ′,

we obtain
R = r− r′ = ẑ(z − a cos θ′)− x̂a sin θ′ cosφ′ − ŷa sin θ′ sinφ′

and

|R| = [(z − a cos θ′)2 + a2 sin2 θ′ cos2 φ′ + a sin2 θ′ sin2 φ′]1/2 = (z2 + a2 − 2az cos θ′)1/2.
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The electric field is given by

E =
1

4πε

∫
S
ρs(θ

′)
R

|R|3
dS′

=
1

4πε

∫ 2π

0

∫ π

0
ρs(θ

′)
ẑ(z − a cos θ′)− x̂a sin θ′ cosφ′ − ŷa sin θ′ sinφ′

(z2 + a2 − 2az cos θ′)3/2
a2 sin θ′ dθ′ dφ′,

hence

Ex = Ey = 0 since

∫ 2π

0

(
cosφ′

sinφ′

)
dφ′ = 0

and

Ez =
a2

2ε

∫ π

0

ρs(θ
′)(z − a cos θ′) sin θ′ dθ′

(z2 + a2 − 2az cos θ′)3/2
.

When ρs(θ) = ρ0, we obtain

Ez =
a2ρ0

2εz2

[
a+ z√

a2 + z2 + 2az
− a− z√

a2 + z2 − 2az

]
=
a2ρ0

2εz2

[
a+ z√
(a+ z)2

− a− z√
(a− z)2

]

=
a2ρ0

2εz2

[
a+ z

|a+ z|
− a− z
|a− z|

]
=
a2ρ0

2εz2
[sgn(a+ z)− sgn(a− z)]

=


0, |z| < a,

ẑ
a2ρ0

εz2
, z > a,

−ẑ
a2ρ0

εz2
, z < a.

When ρs(θ) = ρ0 sgn(θ − π
2 ), we get

Ez = −a
2ρ0

2ε

∫ π/2

0

(z − a cos θ′) sin θ′ dθ′

(z2 + a2 − 2az cos θ′)3/2
+
a2ρ0

2ε

∫ π

π/2

(z − a cos θ′) sin θ′ dθ′

(z2 + a2 − 2az cos θ′)3/2

=
a2ρ0

2εz2

[
− 2a√

a2 + z2
+ sgn(a− z) + sgn(a+ z)

]

=


ẑ
a2ρ0

εz2

[
1− a√

a2 + z2

]
, |z| < a,

−ẑ
a3ρ0

εz2
√
a2 + z2

, |z| > a.

3.5. (a) Consider Figure 2.6 of the textbook with the only source being surface charge. Begin with
∇×E = 0. Integrate over a volume region V and use the curl theorem (B.30)∫

V
(∇×E) dV =

∮
S

(n̂×E) dS = 0.
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Apply this to each of the regions V1 and V2 in the left side of Figure 2.6:∫
S1

(n̂×E) dS +

∫
S10

(n̂×E) dS = 0,∫
S2

(n̂×E) dS +

∫
S20

(n̂×E) dS = 0.

Add to obtain ∫
S1+S2

(n̂×E) dS −
∫
S10

(n̂10 ×E1) dS −
∫
S20

(n̂20 ×E2) dS = 0.

Now let δ → 0 so that n̂10 = −n̂20 = n̂12, S1 + S2 = S, S10 = S20. So∮
S

(n̂×E) dS =

∫
S10

[n̂12 × (E1 −E2)] dS. (*)

Next, apply to the surface S in the right side of Figure 2.6:∮
S

(n̂×E) dS = 0 =

∫
S10

0 dS. (**)

To have (**) give the same result as (*), we must have n̂12 × (E1 −E2) = 0.

(b) Begin with ∇·D = 0. Integrate over a volume region V and use the divergence theorem (B.24)∫
V

(∇ ·D) dV =

∫
V
ρ dV.

So ∮
S

D · n̂ dS =

∫
V
ρ dV.

Apply this to each of the regions V1 and V2 in the left half of Figure 2.6. Since there is no charge
within either of these regions, ∫

S1

D · n̂ dS +

∫
S10

D · n̂ dS = 0,∫
S2

D · n̂ dS +

∫
S20

D · n̂ dS = 0.

Add to obtain ∫
S1+S2

D · n̂ dS −
∫
S10

D1 · n̂10 dS −
∫
S20

D2 · n̂20 dS = 0.

Now let δ → 0 so that n̂10 = −n̂20 = n̂12, S1 + S2 = S, S10 = S20. So∮
S

D · n̂ dS =

∫
S10

[n̂12 × (D1 −D2)] dS. (*)

Next, apply to the surface S in the right half of Figure 2.6. The charge contained in V is a surface
charge, so ∮

S
D · n̂ dS =

∫
S10

ρs dS. (**)

To have (**) give the same result as (*), we must have n̂12 · (D1 −D2) = ρs.
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Figure 7

3.6. The geometry appears in Figure 7.

We have

ρsp = n̂ ·P
∣∣
z=0

= n̂ · (D− ε0E)
∣∣
z=0

= (ε− ε0)n̂ ·E
∣∣
z=0

= −(ε− ε0)
∂Φ

∂n

∣∣∣∣
z=0

.

Φ1(r) =

∫
V
G1(r|r′)ρ(r′)

ε1
dV ′ =

∫
V
G1(r|r′)Qδ(z

′ − h)δ(x′)δ(y′)

ε1
dx′ dy′ dz′

=
Q

ε1
G1(r|x′ = 0, y′ = 0, z′ = h)

=
Q

ε1

1

(2π)2

∫∫ ∞
−∞

e−kρ|z−h| + ε1−ε2
ε1+ε2

e−kρ(z+h)

2kρ
ejkρ·r d2kρ

kρ · r = (x̂kx + ŷky) · (x̂x+ ŷy + ẑz) = kxx+ kyy

kx = kρ cos ξ
ky = kρ sin ξ
x = ρ cosφ
y = ρ sinφ

 =⇒ kρ · r = kρρ cos(ξ − φ)

So, for z < h,

Φ1 =
Q

ε1

1

(2π)2

∫ 2π

0

∫ ∞
0

e−kρ(h−z) + ε1−ε2
ε1+ε2

e−kρ(h+z)

2kρ
ejkρρ cos(ξ−φ) kρ dkρ dξ

Let x = ξ − φ and use∫ 2π

0
ejkρρ cos(ξ−φ) dξ =

∫ 2π−φ

−φ
ejkρρ cosx dx =

∫ π

−π
ejkρρ cosx dx = 2πJ0(kρρ)

So

Φ1 =
Q

ε1

1

2π

∫ ∞
0

e−kρ(h−z) + ε1−ε2
ε1+ε2

e−kρ(h+z)

2
J0(kρρ) dkρ

Since n̂ = −ẑ,

∂Φ1

∂n
= −∂Φ1

∂z
= −Q

ε1

1

2π

∫ ∞
0

kρe
−kρ(h−z) + ε1−ε2

ε1+ε2
kρe
−kρ(h+z)

2
J0(kρρ) dkρ

34



ρsp1 = (ε1 − ε0)
Q

ε1

1

4π

[
1− ε1 − ε2

ε1 + ε2

] ∫ ∞
0

e−kρhJ0(kρρ) dkρ

=
ε1 − ε0
ε1

Q

4π

[
2ε2

ε1 + ε2

] ∫ ∞
0

e−kρhJ0(kρρ) dkρ

=
ε1 − ε0
ε1

Q

2π

ε2
ε1 + ε2

h

(h2 + ρ2)3/2
(*)

Next,

Φ2 =
Q

ε2

1

(2π)2

∫∫ ∞
−∞

2ε2
ε1 + ε2

e−kρ(h−z)

2kρ
ej(kxx+kyy) dkx dky

=
Q

ε2

1

(2π)2

2ε2
ε1 + ε2

∫ 2π

0

∫ ∞
0

e−kρ(h−z)

2kρ
ejkρρ cos(ξ−φ)kρ dkρ dξ

=
Q

ε1 + ε2

1

2π

∫ ∞
0

e−kρ(h−z)J0(kρρ) dkρ

n̂ = ẑ =⇒ ∂Φ2

∂n
=
∂Φ2

∂z
=

Q

ε1 + ε2

1

2π

∫ ∞
0

e−kρ(h−z)J0(kρρ)kρ dkρ

ρsp2 = −(ε2 − ε0)
Q

ε1 + ε2

1

2π

∫ ∞
0

e−kρhJ0(kρρ)kρ dkρ

= −ε2 − ε0
ε1 + ε2

Q

2π

h

(h2 + ρ2)3/2
(**)

Qp1 =

∫
S
ρsp1 dS

=

∫ 2π

0

∫ ∞
0

ε1 − ε0
ε1

Q

2π

ε2
ε1 + ε2

h

(h2 + ρ2)3/2
ρ dρ dφ

=
ε1 − ε0
ε1

Q

2π

ε2h

ε1 + ε2

∫ 2π

0
dφ

∫ ∞
0

ρ dρ

(h2 + ρ2)3/2

= Q
ε2
ε1

ε1 − ε0
ε1 + ε2

Qp2 =

∫
S
ρsp2 dS

= −
∫ 2π

0

∫ ∞
0

ε2 − ε0
ε1 + ε2

Q

2π

h

(h2 + ρ2)3/2
ρ dρ dφ

= −Qε2 − ε0
ε1 + ε2

Qp1 +Qp2 =
Q

ε1

1

ε1 + ε2
[ε2(ε1 − ε0)− ε1(ε2 − ε0)]

= Q
ε0
ε1

ε1 − ε2
ε1 + ε2

.

Note that Qp1 +Qp2 = 0 when ε1 = ε2.
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Figure 8

3.7. See Figure 8.

Primary potential:

Φp(r) =

∫
V
Gp(r|r′)ρ(r′)

ε
dV ′

where

Gp(r|r′) =
1

(2π)2

∫∫ ∞
−∞

e−kρ|z−z
′|

2kρ
ejkρ·(r−r

′) d2kρ.

Secondary potential:

Φs(r) =
1

(2π)2

∫∫ ∞
−∞

[
A(kρ)e

kρz +B(kρ)e
−kρz

]
ejkρ·r d2kρ. (A)

Total potential:

Φ(r) = Φp(r) + Φs(r)

=
1

(2π)2

∫∫ ∞
−∞

{
A(kρ)e

kρz +B(kρ)e
−kρz +

∫
V

e−kρ|z−z
′|

2kρ
e−jkρ·r

′ ρ(r′)

ε
dV ′

}
ejkρ·r d2kρ.

To find A and B, apply the boundary conditions at z = 0 and z = d:.

Φ
∣∣
z=0

= 0 =⇒ 1

(2π)2

∫∫ ∞
−∞

{
A+B +

∫
V

e−kρ|−z
′|

2kρ
e−jkρ·r

′ ρ(r′)

ε
dV ′

}
ejkρ·r d2kρ = 0

=⇒ A+B +

∫
V

e−kρz
′

2kρ
e−jkρ·r

′ ρ(r′)

ε
dV ′ = 0. (*)

Φ
∣∣
z=d

= 0 =⇒ 1

(2π)2

∫∫ ∞
−∞

{
Aekρd +Be−kρd +

∫
V

e−kρ|d−z
′|

2kρ
e−jkρ·r

′ ρ(r′)

ε
dV ′

}
ejkρ·r d2kρ = 0

=⇒ Aekρd +Be−kρd +

∫
V

e−kρ(d−z′)

2kρ
e−jkρ·r

′ ρ(r′)

ε
dV ′ = 0. (**)
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Solve (*) and (**) simultaneously to get

A =

∫
V

e−jkρ·r
′

2kρ

ρ(r′)

ε

[
−e−kρd sinh kρz

′

sinh kρd

]
dV ′,

B =

∫
V

e−jkρ·r
′

2kρ

ρ(r′)

ε

[
−sinh kρ(d− z′)

sinh kρd

]
dV ′.

Back-substitute A and B into (A):

Φs(r) =
1

(2π)2

∫∫ ∞
−∞

{∫
V

e−jkρ·r
′

2kρ

ρ(r′)

ε

[
−e−kρd sinh kρz

′

sinh kρd

]
dV ′ekρz

+

∫
V

e−jkρ·r
′

2kρ

ρ(r′)

ε

[
−sinh kρ(d− z′)

sinh kρd

]
dV ′e−kρz

}
ejkρ·r d2kρ

=

∫
V

ρ(r′)

ε

{
1

(2π)2

∫∫ ∞
−∞

[
−e−kρ(d−z) sinh kρz

′

sinh kρd
− e−kρz sinh kρ(d− z′)

sinh kρd

]
ejkρ·(r−r

′)

2kρ
d2kρ

}
dV ′

=

∫
V

ρ(r′)

ε
Gs(r|r′) dV ′

where

Gs(r|r′) =
1

(2π)2

∫∫ ∞
−∞

[
−e−kρ(d−z) sinh kρz

′

sinh kρd
− e−kρz sinh kρ(d− z′)

sinh kρd

]
ejkρ·(r−r

′)

2kρ
d2kρ.

3.8. Refer to Figure 9.

Figure 9

In the answer to Problem 3.7, put

1

sinh kρd
= 2

∞∑
n=0

e−(2n+1)kρd

to get

Gs(r|r′) =
1

(2π)2

∫∫ ∞
−∞

∞∑
n=0

[
− e−kρ(d−z)e−(2n+1)kρd(ekρz

′ − e−kρz′)

− e−kρze−(2n+1)kρd(ekρ(d−z′) − e−kρ(d−z′))

]
ejkρ·(r−r

′)

2kρ
d2kρ.
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Compare this to the primary Green’s function

Gp(r|r′) =
1

(2π)2

∫∫ ∞
−∞

e−kρ|z−z
′|

2kρ
ejkρ·(r−r

′) d2kρ.

Since z′ in Gp is the vertical position of the source point, each term in Gs can be viewed as arising
from a point source that is an image of the primary charge Q.

Consider the figure, and consider each term in Gs.

1. −e−kρ[−z−z′+2d+2nd].

When n = 0 this can be written as

−e−kρ[−z−z′+2d] = −e−kρ[−(z+z′−2d)] = −e−kρ|z−(−z′+2d)|

with z + z′ − 2d < 0 implying that z < −z′ + 2d. This is the potential for a charge −Q located at
z = −z′+ 2d which is the image charge A in the figure. It represents Q imaged into the conducting
plate at z = d.

2. −e−kρ[+z+z′+2nd].

When n = 0 this can be written as

−e−kρ[z+z′] = −e−kρ|z+z′|

with z + z′ > 0 implying that z > −z′. This is the potential for a charge −Q located at z = −z′
which is the image charge B in the figure. It represents Q imaged into the conducting plate at
z = 0.

3. +e−kρ[−z+z′+2d+2nd].

When n = 0 this can be written as

+e−kρ[−z+z′+2d] = +e−kρ[−(z−z′−2d)] = +e−kρ|z−(z′+2d)|

with z − z′ − 2d < 0 implying that z < z′ + 2d. This is the potential for a charge +Q located at
z = z′ + 2d which is the image charge B′ in the figure. It represents B imaged into the conducting
plate at z = d.

4. +e−kρ[+z−z′+2d+2nd].

When n = 0 this can be written as

+e−kρ[+z−z′+2d] = +e−kρ|z−(z′−2d)|

with z − z′ + 2d > 0 implying that z > z′ − 2d. This is the potential for a charge +Q located at
z = z′ − 2d which is the image charge A′ in the figure. It represents A imaged into the conducting
plate at z = 0.

For n > 0, each of the terms represents a multiple image into the plate at z = 0 or z = d, and can
be identified as above.

3.9. Refer to Figure 10.

To compute the Green’s function we will employ the boundary conditions.

38



Figure 10

(a) Φ1 = Φ2 at z = d.

(b) ε1
∂Φ1

∂z
= ε2

∂Φ2

∂z
at z = d.

(c) Φ2 = 0 at z = 0.

There are two cases to consider: source in region 1, and source in region 2.

Case 1: Source in region 1.

Φp
1 =

∫
V1

Gp(r|r′)ρ(r′)

ε1
dV ′

=

∫
V1

[
1

(2π)2

∫∫ ∞
−∞

e−kρ|z−z
′|

2kρ
ejkρ·(r−r

′) d2kρ

]
ρ(r′)

ε1
dV ′.

For z < z′ we have |z − z′| = z′ − z and

∂Φp
1

∂z
=

∫
V1

[
1

(2π)2

∫∫ ∞
−∞

e−kρ(z′−z)

2kρ
ejkρ·(r−r

′)kρ d
2kρ

]
ρ(r′)

ε1
dV ′.

Also

Φs
1 =

1

(2π)2

∫∫ ∞
−∞

B(kρ)e
−kρzejkρ·r d2kρ,

∂Φs
1

∂z
=

1

(2π)2

∫∫ ∞
−∞

B(kρ)e
−kρzejkρ·r(−kρ) d2kρ,

Φs
2 =

1

(2π)2

∫∫ ∞
−∞

[
Ā(kρ)e

kρz + B̄(kρ)e
−kρz

]
ejkρ·r d2kρ,

∂Φs
2

∂z
=

1

(2π)2

∫∫ ∞
−∞

[
Ā(kρ)e

kρz − B̄(kρ)e
−kρz

]
ejkρ·rkρ d

2kρ.

Boundary condition (c) gives

Ā(kρ) + B̄(kρ) = 0, so B̄(kρ) = −Ā(kρ).
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Therefore

Φs
2 =

1

(2π)2

∫∫ ∞
−∞

Ā(kρ)2 sinh kρz e
jkρ·r d2kρ,

∂Φs
2

∂z
=

1

(2π)2

∫∫ ∞
−∞

Ā(kρ)2 cosh kρz e
jkρ·rkρ d

2kρ.

Boundary condition (a) reads Φp
1 + Φs

1 = Φs
2 at z = d.∫

V1

[
1

(2π)2

∫∫ ∞
−∞

e−kρ(z′−d)

2kρ
ejkρ·(r−r

′) d2kρ

]
ρ(r′)

ε1
dV ′

+
1

(2π)2

∫∫ ∞
−∞

B(kρ)e
−kρdejkρ·r d2kρ =

1

(2π)2

∫∫ ∞
−∞

Ā(kρ)2 sinh kρd e
jkρ·r d2kρ,

hence ∫
V1

e−kρz
′
ekρd

2kρ
e−jkρ·r

′ ρ(r′)

ε1
dV ′ +B(kρ)e

−kρd = 2Ā(kρ) sinh kρd.

Boundary condition (b):
∂Φp

1

∂z
+
∂Φs

1

∂z
=
ε2
ε1

∂Φs
2

∂z
,∫

V1

e−kρz
′
ekρd

2kρ
e−jkρ·r

′ ρ(r′)

ε1
dV ′ −B(kρ)e

−kρd =
ε2
ε1

2Ā(kρ) cosh kρd.

Calling

F =

∫
V1

e−kρz
′
ekρd

2kρ
e−jkρ·r

′ ρ(r′)

ε1
dV ′

we have so far

F +B(kρ)e
−kρd = 2Ā(kρ) sinh kρd, (*)

F −B(kρ)e
−kρd =

ε2
ε1

2Ā(kρ) cosh kρd. (**)

Adding (*) and (**), we obtain

2F = 2Ā(kρ) sinh kρd+
ε2
ε1

2Ā(kρ) cosh kρd

or

Ā(kρ) =
ε1F

S
where S = ε1 sinh kρd+ ε2 cosh kρd.

Subtracting instead, we obtain

2B(kρ)e
−kρd = 2Ā(kρ)

[
sinh kρd−

ε2
ε1

cosh kρd

]
,

ε1B(kρ)e
−kρd = Ā(kρ)T where T = ε1 sinh kρd− ε2 cosh kρd,

B̄(kρ) = Ā(kρ)e
kρd T

ε1
=
ε1F

S
ekρd

T

ε1
= Fekρd

T

S
.
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So

Φ1 =

∫
V1

ρ(r′)

ε1

1

(2π)2

∫∫ ∞
−∞

{
e−kρ|z−z

′|

2kρ
+
e−kρz

′
ekρd

2kρ
ekρde−kρz

T

S

}
ejkρ·(r−r

′) d2kρ dV
′.

This implies

G1(r|r′) =
1

(2π)2

∫∫ ∞
−∞

[
e−kρ|z−z

′| + e−kρ(z+z′−2d)T

S

]
ejkρ·(r−r

′)

2kρ
d2kρ.

Also

Φ2 =

∫
V1

ρ(r′)

ε1

1

(2π)2

∫∫ ∞
−∞

2
ε1
S

sinh kρz
e−kρz

′
ekρd

2kρ
ejkρ·(r−r

′) d2kρ dV
′

so that

G2(r|r′) =
1

(2π)2

∫∫ ∞
−∞

2
ε1
S

sinh kρze
−kρ(z′−d) e

jkρ·(r−r′)

2kρ
d2kρ.

Case 2: Source in region 2.

Φs
1 =

1

(2π)2

∫∫ ∞
−∞

B(kρ)e
−kρzejkρ·r d2kρ

∂Φs
1

∂z
=

1

(2π)2

∫∫ ∞
−∞

B(kρ)e
−kρzejkρ·r(−kρ) d2kρ

Φs
2 =

1

(2π)2

∫∫ ∞
−∞

[
Ā(kρ)e

kρz + B̄(kρ)e
−kρz

]
ejkρ·r d2kρ

∂Φs
2

∂z
=

1

(2π)2

∫∫ ∞
−∞

[
Ā(kρ)e

kρz − B̄(kρ)e
−kρz

]
ejkρ·rkρ d

2kρ

Φp
2 =

∫
V2

Gp(r|r′)ρ(r′)

ε2
dV ′

=

∫
V2

[
1

(2π)2

∫∫ ∞
−∞

e−kρ|z−z
′|

2kρ
ejkρ·(r−r

′) d2kρ

]
ρ(r′)

ε2
dV ′.

For z > z′ we have |z − z′| = z − z′ and

∂Φp
2

∂z
=

∫
V2

[
− 1

(2π)2

∫∫ ∞
−∞

e−kρ(z−z′)

2kρ
ejkρ·(r−r

′)kρ d
2kρ

]
ρ(r′)

ε2
dV ′.

Boundary condition (c): Φ2 = 0 at z = 0:

1

(2π)2

∫∫ ∞
−∞

[
Ā(kρ) + B̄(kρ)

]
ejkρ·r d2kρ +

∫
V2

[
1

(2π)2

∫∫ ∞
−∞

e−kρz
′

2kρ
ejkρ·(r−r

′) d2kρ

]
ρ(r′)

ε2
dV ′ = 0

Let

FA =

∫
V2

e−kρz
′

2kρ
e−jkρ·r

′ ρ(r′)

ε2
dV ′.
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Then
1

(2π)2

∫∫ ∞
−∞

[
Ā(kρ) + B̄(kρ) + FA

]
ejkρ·r d2kρ = 0

so
Ā(kρ) + B̄(kρ) = −FA.

Boundary condition (a): Φs
1 = Φs

2 + Φp
2 at z = d.

1

(2π)2

∫∫ ∞
−∞

B(kρ)e
−kρdejkρ·r d2kρ =

1

(2π)2

∫∫ ∞
−∞

[
Ā(kρ)e

kρd + B̄(kρ)e
−kρd

]
ejkρ·r d2kρ

+

∫
V2

[
1

(2π)2

∫∫ ∞
−∞

e−kρ(d−z′)

2kρ
ejkρ·(r−r

′) d2kρ

]
ρ(r′)

ε2
dV ′

B(kρ)e
−kρd = Ā(kρ)e

kρd + B̄(kρ)e
−kρd + e−kρdFB

where

FB =

∫
V2

ekρz
′

2kρ
e−jkρ·r

′ ρ(r′)

ε2
dV ′

Boundary condition (b):

ε1
∂Φ1

∂z
= ε2

∂Φ2

∂z
at z = d

or

ε1
∂Φs

1

∂z
= ε2

[
∂Φs

2

∂z
+
∂Φp

2

∂z

]
at z = d

ε1
1

(2π)2

∫∫ ∞
−∞

B(kρ)e
−kρdejkρ·r(−kρ) d2kρ = ε2

1

(2π)2

∫∫ ∞
−∞

[
Ā(kρ)e

kρd − B̄(kρ)e
−kρd

]
ejkρ·rkρ d

2kρ

+ ε2

∫
V2

[
− 1

(2π)2

∫∫ ∞
−∞

e−kρ(d−z′)

2kρ
ejkρ·(r−r

′)kρ d
2kρ

]
ρ(r′)

ε2
dV ′

−ε1B(kρ)e
−kρdkρ = ε2

[
Ā(kρ)e

kρd − B̄(kρ)e
−kρd

]
kρ − ε2e−kρdFBkρ

We have so far:

Ā+ B̄ = −FA (*)

Be−kρd = Āekρd + B̄e−kρd + e−kρdFB (**)
ε1
ε2
Be−kρd = −Āekρd + B̄e−kρd + e−kρdFB (***)

Subtracting (***) from (**), we obtain

Be−kρd
(

1− ε1
ε2

)
= 2Āekρd

Adding (***) to (**), we obtain

Be−kρd
(

1 +
ε1
ε2

)
= 2B̄e−kρd + 2FBe

−kρd
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Divide to get
1 + ε1

ε2

1− ε1
ε2

=
2B̄e−kρd + 2FBe

−kρd

2Āekρd

or

ĀekρdQ = B̄e−kρd + FBe
−kρd where Q =

ε2 + ε1
ε2 − ε1

. (**’)

So far then,

Ā+ B̄ = −FA (*)

ĀQe2kρd − B̄ = FB (**’)

Adding (*) and (**’), we get
Ā(1 +Qe2Kρd) = −FA +BB

Ā

[
e−kρd +

ε2 + ε1
ε2 − ε1

ekρd
]

= [−FA + FB]e−kρd

Ā[ε2(e−kρd + ekρd) + ε1(ekρd − e−kρd)] = (ε2 − ε1)

∫
V2

−e−kρz′e−kρd + ekρz
′
e−kρd

2kρ
e−jkρ·r

′ ρ(r′)

ε2
dV ′

Ā =
ε2 − ε1
S

∫
V2

e−kρd sinh kρz
′

2kρ
e−jkρ·r

′ ρ(r′)

ε2
dV ′

Ā+ B̄ = −FA, (*)

−Ā+ B̄
1

Q
e−2kρd = − 1

Q
FBe

−2kρd. (**”)

Adding (*) and (**”) we get

B̄

[
1 +

1

Q
e−2kρd

]
= −

[
FA +

1

Q
FBe

−2kρd

]
,

and substitution leads to

B̄ = − 1

2kρ

∫
V2

ε1 sinh kρ(d− z′) + ε2 cosh kρ(d− z′)
ε1 sinh kρd+ ε2 cosh kρd

e−jkρ·r
′ ρ(r′)

ε2
dV ′.

Now use

Be−kρd
(

1− ε1
ε2

)
= 2Āekρd

to get

B =
ε2

ε2 − ε1
e2kρd2Ā

or

B =
2ε2e

kρd

S

∫
V2

sinh kρz
′

2kρ
ejkρ·r

′ ρ(r′)

ε2
dV ′.

So

Φ1 =

∫
V2

ρ(r′)

ε2

1

(2π)2

∫∫ ∞
−∞

[
2ε2e

kρd

S

sinh kρz
′

2kρ
ejkρ·(r−r

′) d2kρ

]
dV ′,
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G1(r|r′) =
1

(2π)2

∫∫ ∞
−∞

2ε2
S
ekρd

sinh kρz
′

2kρ
ejkρ·(r−r

′) d2kρ,

Φ2 =

∫
V2

ρ(r′)

ε2

[
1

(2π)2

∫∫ ∞
−∞

e−kρ|z−z
′|

2kρ
+
ε2 − ε1
S

ekρz
e−kρd sinh kρz

′

2kρ

− e−kρzekρd ε1 sinh kρ(d− z′) + ε2 cosh kρ(d− z′)
2kρS

]
ejkρ·(r−r

′) d2kρ,

G2(r|r′) =
1

(2π)2

∫∫ ∞
−∞

[
e−kρ|z−z

′| + (ε2 − ε1)ekρz
e−kρd sinh kρz

′

S

− e−kρ(z−d) ε1 sinh kρ(d− z′) + ε2 cosh kρ(d− z′)
S

]
ejkρ·(r−r

′)

2kρ
d2kρ.

3.10. The point charge and sphere are shown in Figure 11.

Figure 11

We know that the potential due to a point charge q located at r′ is given by

Φ(r) =
q

4πε

[
1

|r− r′|
− a/r′

|r− r′i|

]
where r′i =

a

r′2
r′.

Therefore

E = −∇Φ = − q

4πε
∇
(

1

|r− r′|

)
+

q

4πε

a

r′
∇
(

1

|r− r′i|

)
.

By (B.73) we have

∇ 1

|r− r0|
= − r− r0

|r− r0|3
,

so

E =
q

4πε

[
r− r′

|r− r′|3
−
( a
r′

) r− r′i
|r− r′i|3

]
.
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Now

ρs = n̂ ·D = εr̂ ·E
∣∣
r=a

=
q

4π

[
r̂ · (r− r′)

|r− r′|3
−
( a
r′

) r̂ · (r− r′i)

|r− r′i|3

]
.

Here
r′ = r̂′r′, r = r̂a, r′i = r̂′r′i,

so that

r̂ · (r− r′) = r̂ ·
(

r̂a− ar
′

a
r̂′
)

= a(1− k′r̂ · r̂′), k′ =
r′

a

and
|r− r′|3 = a3|r̂− k′r̂′|3.

Let γ be the angle between r̂ and r̂′. Then

|r̂− k′r̂′|3 = (1 + k′
2 − 2k′ cos γ)3/2, r̂ · (r− r′) = a(1− k′ cos γ).

Hence

ρs(r) = ρs(γ) =
q

4πa2

[
1− k′ cos γ

(1 + k′2 − 2k′ cos γ)3/2
− k′i

1− k′i cos γ

(1 + k′i
2 − 2k′i cos γ)3/2

]
where

k′i =
r′i
a

=
a

r′
=

1

k′
.

The total charge is

Q =

∫
S
ρs(r) dS

= 2π

∫ π

0
ρs(γ)a2 sin γ dγ

=
qa2

2a2

∫ π

0

[
1− k′ cos γ

(1 + k′2 − 2k′ cos γ)3/2
− k′i

1− k′i cos γ

(1 + k′i
2 − 2k′i cos γ)3/2

]
sin γ dγ.

Use ∫
(1− a cosx) sinx dx

(1 + a2 − 2a cosx)3/2
=

a− cosx√
1 + a2 − 2a cosx

to calculate∫ π

0

1− k′ cos γ

(1 + k′2 − 2k′ cos γ)3/2
=

k′ − cos γ√
1 + k′2 − 2k′ cos γ

∣∣∣∣π
0

=
k′ + 1√
(k′ + 1)2

− k′ − 1√
(k′ − 1)2

= 1− 1 = 0

since k′ = r′/a > 1. Similarly,∫ π

0

1− k′i cos γ

(1 + k′i
2 − 2k′i cos γ)3/2

=
k′i + 1√
(k′i + 1)2

− k′i − 1√
(k′i − 1)2

= 1 + 1 = 2

since k′i = a/r′ < 1. Finally,

Q =
qa2

2a2
(−k′i)(2) =

q

2

(
− a
r′

)
(2) = −q a

r′
.

45



3.11. The Green’s function for a source inside a grounded conducting sphere can be found by
swapping the charge and its image in the Green’s function found in the text for a source external
to the sphere. Thus, let r→ r′ and r′ → r and obtain

Φ(r) =

∫
V

ρ(r′)

ε

1

4π

 1

|r− r′|
− a/r∣∣∣a2

r2 r− r′
∣∣∣
 dV ′.

To check this, evaluate the potential at r = a:

Φ(r = ar̂) =

∫
V

ρ(r′)

ε

1

4π

 1

|r− r′|
− a/a∣∣∣a2

a2 r− r′
∣∣∣
 dV ′ = 0.

3.12. Refer to Figure 12.

Figure 12

The total potential is the sum of primary and secondary potentials:

Φ(r) = Φ0(r) + Φs(r),

where
Φ0(r) = −E0z = −E0r cos θ

and, by (3.82),

Φs(r) =
∞∑
n=0

Bnr
−(n+1)Pn(cos θ).

The boundary condition yields

Φ(r = a) = 0 = −E0a cos θ +

∞∑
n=0

Bna
−(n+1)Pn(cos θ).

or

E0aP1(cos θ) =

∞∑
n=0

Bna
−(n+1)Pn(cos θ).
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Multiply both sides by Pm(cos θ) sin θ and integrate:

E0a

∫ π

0
P1(cos θ)Pm(cos θ) sin θ dθ =

∞∑
n=0

Bna
−(n+1)

∫ π

0
Pn(cos θ)Pm(cos θ) sin θ dθ.

Use orthogonality relation (E.125) to get

E0aδ1m
2

3
=
∞∑
n=0

Bna
−(n+1)δnm

2

2n+ 1
= Bma

−(m+1) 2

2m+ 1
.

So Bm = 0 for m 6= 1, and
B1 = E0a

3.

Therefore

Φs(r) = B1r
−2P1(cos θ) = E0a

(a
r

)2
cos θ.

The secondary electric field is

Es(r) = −∇Φs(r) = −r̂
∂Φs

∂r
− θ̂

1

r

∂Φs

∂θ

= −E0a
3

[
r̂
∂

∂r
r−2 + θ̂

1

r3

∂

∂θ
cos θ

]
= E0

(a
r

)3
[2r̂ cos θ + θ̂ sin θ].

The total potential,

Φ(r) = Φ0(r) + Φs(r) = −E0r cos θ + E0a
(a
r

)2
cos θ = −E0a cos θ

[
r

a
−
(a
r

)2
]

vanishes at r = a as required. Calculation of surface charge density:

ρs = r̂ ·D
∣∣
r=a

= εr̂ · [ẑE0 + E0

(a
r

)3
(2r̂ cos θ + θ̂ sin θ)]

∣∣
r=a

= εE0[r̂ · ẑ + 2 cos θ]

= 3εE0 cos θ.

Total surface charge:

Q =

∫ 2π

0

∫ π

0
3εE0 cos θa2 sin θ dθ dφ

= 6πεE0a
2

∫ π

0
sin θ cos θ dθ

= 0.

3.13. The cavity is depicted in Figure 13.
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Figure 13

Outside the cavity, the total potential is the sum of impressed and scattered potentials:

Φ2(r) = Φ0(r) + Φs(r),

where
Φ0(r) = −E0z = −E0r cos θ

and, by (3.82),

Φs(r) =
∞∑
n=0

Bnr
−(n+1)Pn(cos θ).

The potential inside the cavity is, by (3.80),

Φ1(r) =
∞∑
n=0

Anr
nPn(cos θ).

To find An and Bn, we apply the boundary conditions. Condition (3.36) requires

−E0a cos θ +
∞∑
n=0

Bna
−(n+1)Pn(cos θ) =

∞∑
n=0

Ana
nPn(cos θ).

Apply (E.125) to get
−E0a+ a−2B1 = A1a (1)

and
Bna

−(n+1) = Ana
n, n 6= 1. (2)

Condition (3.17) requires

ε0
∂

∂r

[ ∞∑
n=0

Anr
nPn(cos θ)

] ∣∣∣∣
r=a

= ε0εr
∂

∂r

[
−E0r cos θ +

∞∑
n=0

Bnr
−(n+1)Pn(cos θ)

] ∣∣∣∣
r=a

or
∞∑
n=0

nAna
n−1Pn(cos θ) = −εrE0 cos θ − εr

∞∑
n=0

(n+ 1)Bna
−n−2Pn(cos θ).
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Apply orthogonality:
−εrE0 − 2εrB1a

−3 = A1, (3)

−εr(n+ 1)Bna
−n−2 = nAna

n−1. (4)

Since (2) and (4) imply An = Bn = 0 for n 6= 1, we write

A1 = B1a
−3 − E0, (5)

A1 = −2εrB1a
−3 − εrE0. (6)

Subtracting (5) and (6), we obtain

B1a
−3(1 + 2εr)− E0(1− εr) = 0

so that

B1 = E0a
3 1− εr
1 + 2εr

.

Then

A1 = E0
1− εr
1 + 2εr

− E0 = −E0

(
3εr

1 + 2εr

)
.

So

Φs(r) =
E0a

3

r2

1− εr
1 + 2εr

cos θ, Φ1(r) = −E0r
3εr

1 + 2εr
cos θ.

Inside the cavity,

E1 = −∇Φ1 = E0
3εr

1 + 2εr
∇(r cos θ) = ẑ

3εr
1 + 2εr

E0

since ∇(r cos θ) = ∇z = ẑ. Is the field inside the cavity greater than the impressed field? The
inequality

3εr
1 + 2εr

E0 > E0

holds as long as εr > 1, so the answer is yes. Indeed, the impressed field polarizes the material,
creating dipoles (Figure 14). The field due to the induced dipoles adds to the impressed field within
the cavity.

Figure 14
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Figure 15

3.14. Refer first to Figure 15.

Use image theory: replace conductor with image charge qi = −Q at z = −d. The field is the sum
of the fields due to the charge and its image:

E(r) =
Q

4πε0

r− rQ
|r− rQ|3

− Q

4πε0

r− rQi
|r− rQi |3

.

Here
r− rQ = xx̂ + yŷ + (z − d)ẑ = ρρ̂ + (z − d)ẑ, |r− rQ| =

√
ρ2 + (z − d)2,

and
r− rQi = xx̂ + yŷ + (z + d)ẑ = ρρ̂ + (z + d)ẑ, |r− rQi | =

√
ρ2 + (z + d)2,

so that

E(r) =
Q

4πε0

[
ρρ̂ + (z − d)ẑ

[ρ2 + (z − d)2]3/2
− ρρ̂ + (z + d)ẑ

[ρ2 + (z + d)2]3/2

]
.

The induced surface charge is given by

ρs = ε0ẑ ·E
∣∣
z=0

= −2dQ

4π

1

(ρ2 + d2)3/2
.

For the total charge induced on the ground plane, use∫
x dx

(x2 + a2)3/2
= − 1√

x2 + a2

to get

q =

∫
S
ρs dS =

∫ 2π

0

∫ ∞
0

(
−2dQ

4π

1

(ρ2 + d2)3/2

)
ρ dρ dφ = −2dQ

4π
(2π)

∫ ∞
0

ρ dρ

(ρ2 + d2)3/2
= −Q.
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Figure 16

At points in the z = 0 plane we have

E = −ẑ
Q

4πε0

2d

(ρ2 + d2)3/2
.

For the force computation, refer to Figure 16.

The stress tensor is given by

T̄e =
1

2
(D ·E)Ī−DE.

We have

n̂ · T̄e =
1

2
(D ·E)ẑ · Ī− ẑ ·DE = ε0ẑ

[
1

2
E ·E− EzEz

]
= −ε0ẑ

1

2
E2
z = −ε0ẑ

1

2

(
Q

4πε0

)2 4d2

(ρ2 + d2)3
.

The force can be calculated using∫
x dx

(x2 + a2)3
= −1

4

1

(x2 + a2)2

to get

F = −
∫
S

n̂ · T̄e dS = ẑ
Q2d2

8π2ε0

∫ 2π

0

∫ ∞
0

ρ dρ

(ρ2 + d2)3
dφ = ẑ

Q2d2

4πε0

∫ ∞
0

ρ dρ

(ρ2 + d2)3
= ẑ

Q2

4πε0(2d)2
.

From Coulomb’s law, the force on the image charge is

F−Q = ẑ
Q2

4πε0(2d)2

since the charge separation is 2d.

3.15. See Figure 17.

The volume charge density of these point charges is

ρ(r) = 2qδ(r− r0)− qδ(r− r0 − d)− qδ(r− r0 + d).

The moments are
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Figure 17

(0)

Q =

∫
V
ρ(r′) dV ′

= 2q

∫
V
δ(r′ − r0) dV ′ − q

∫
V
δ(r′ − r0 − d) dV ′ − q

∫
V
δ(r′ − r0 + d) dV ′

= 2q − q − q
= 0.

(1)

p =

∫
V

r′ρ(r′) dV ′

= 2q

∫
V

r′δ(r′ − r0) dV ′ − q
∫
V

r′δ(r′ − r0 − d) dV ′ − q
∫
V

r′δ(r′ − r0 + d) dV ′

= 2qr0 − q(r0 + d)− q(r0 − d) = 2qr0 − qr0 − qd− qr0 + qd

= 0.

(2)

Q̄ =

∫
V

(3r′r′ − r′2Ī)ρ(r′) dV ′

= 6qr0r0 − 2qr2
0 Ī− 3q(r0 + d)(r0 + d) + q(r0 + d) · (r0 + d)Ī

− 3q(r0 − d)(r0 − d) + q(r0 − d) · (r0 − d)Ī

= q[6r0r0 − 3r0r0 − 3r0d− 3dr0 − 3dd− 3r0r0 + 3r0d + 3dr0 − 3dd]

+ q[−2r2
0 + r2

0 + 2d · r0 + d2 + r2
0 − 2d · r0 + d2]Ī

= −6qdd + qd2Ī

Note that the first nonzero moment is independent of r0 as expected. To three terms, the potential
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expansion is

Φ(r) =
Q

4πε0r
+

r̂ · p
4πε0r2

+
1

2

r̂ · Q̄ · r̂
4πε0r3

= 0 + 0 +
1

2

r̂ · Q̄ · r̂
4πε0r3

=
1

8πε0r3
r̂ ·
[
−6qdd + qd2Ī

]
· r̂

=
q

8πε0r3

[
−6(r̂ · d)(d · r̂) + d2r̂ · Ī · r

]
=

q

8πε0r3

[
−6(r̂ · d)2 + d2

]
=

qd2

8πε0r3

[
1− 6(r̂ · d̂)2

]
.

Note that this first nonzero term dominates for r � d.

3.16.

qnm =

∫
V
ρ(r′)r′

n
Y ∗nm(θ′, φ′) dV ′

=

∫ 2π

0

∫ π

0

∫ a

0

Q

πa3
cos 2θ′r′

n

√
2n+ 1

4π

(n−m)!

(n+m)!
Pmn (cos θ′)e−jmφ

′
r′

2
sin θ′ dr′ dθ′ dφ′.

But ∫ 2π

0
e−jmφ

′
dφ′ = 2πδm,0 =⇒ qnm = 0 for m 6= 0.

For m = 0 we have

qn0 =

√
2n+ 1

4π

Q

πa3
(2π)

∫ a

0
r′
n+2

dr′
∫ π

0
cos(2θ′)P 0

n(cos θ′) sin θ′ dθ′

=

√
2n+ 1

4π

2Q

a3

(
an+3

n+ 3

)∫ π

0
cos(2θ′)Pn(cos θ′) sin θ′ dθ′

=

√
2n+ 1

4π
2Q

an

n+ 3
In

where

In =

∫ π

0
cos(2θ′)Pn(cos θ′) sin θ′ dθ′.

Now
P0(cos θ) = 1

P1(cos θ) = cos θ
P2(cos θ) = 3

4 cos 2θ + 1
4

 =⇒ cos 2θ =
4

3
P2(cos θ)− 1

3
P0(cos θ)

so that

In =
4

3

∫ π

0
P2(cos θ′)Pn(cos θ′) sin θ′ dθ′ − 1

3

∫ π

0
P0(cos θ′)Pn(cos θ′) sin θ′ dθ′.
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Apply (E.125): ∫ π

0
P2(cos θ′)Pn(cos θ′) sin θ′ dθ′ = δ2n

2

2n+ 1
=

2

5
δ2n,∫ π

0
P0(cos θ′)Pn(cos θ′) sin θ′ dθ′ = δ0n

2

2n+ 1
= 2δ0n.

So

I0 = −2

3
, I2 =

8

15
, and In = 0 for other n.

We have

q00 =

√
1

4π

2Q

3

(
−2

3

)
= −4Q

9

√
1

4π

and

q20 =

√
5

4π

2Q

5
a2

(
8

15

)
=

16
√

5Q

75
a2

√
1

4π
.

Therefore

Φ(r) =
1

ε0

∞∑
n=0

1

rn+1

[
1

2n+1

n∑
m=−n

qnmYnm(θ, φ)

]

=
1

ε0

1

r

1

2
q00Y00(θ, φ) +

1

ε0

1

r3

1

23
q20Y20(θ, φ)

=
1

ε0

1

2r

(
−
√

1

4π

4Q

9

)√
1

4π
P0(cos θ)e0 +

1

ε0

1

8r3

(√
1

4π

16
√

5

75
Qa2

)√
5

4π
P2(cos θ)e0

= − 1

4πε0

(
2

9

Q

r

)
+

1

4πε0

(
16 · 5
8 · 75

Qa2

r3

)(
3

4
cos 2θ +

1

4

)
=

1

4πε0r

(
−2Q

9

)
+

1

4πε0r3

(
2

15
Qa2

)(
3

4
cos 2θ +

1

4

)
= −2

9

Q

4πε0r
+

1

30

Qa2

4πε0r3
(3 cos 2θ + 1).

3.17. The ring of current is shown in Figure 18.

We have

B(r) =
µ0I

4π

∮
Γ

dl′ × R̂

R2
.

Beginning with r = xx̂ + yŷ + zẑ and r′ = x′x̂ + y′ŷ, we write

R = (x− x′)x̂ + (y − y′)ŷ + zẑ.

Then

R2 = (x− x′)2 + (y − y′)2 + z2

= ρ2 cos2 φ− 2ρa cosφ cosφ′ + a2 cos2 φ′ + ρ2 sin2 φ− 2ρa sinφ sinφ′ + a2 sin2 φ′ + z2

= ρ2 + a2 + z2 − 2aρ cos(φ− φ′).
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Figure 18

Furthermore

dl′ ×R = a dφ′φ̂
′ ×R

= a dφ′(−x̂ sinφ′ + ŷ cosφ′)× [x̂(x− x′) + ŷ(y − y′)z + ẑz′]

= a dφ′[−ẑ(y − y′) sinφ′ + ŷz sinφ′ − ẑ(x− x′) cosφ′ + x̂z cosφ′]

so that

[dl′ ×R]z = a dφ′[−(ρ sinφ− a sinφ′) sinφ′ − (ρ cosφ− a cosφ′) cosφ′]

= a dφ′[−ρ(sinφ sinφ′ + cosφ cosφ′) + a(sin2 φ′ + cos2 φ′)]

= a dφ′[a− ρ cos(φ− φ′)].

Hence

Bz =
µ0I

4π
a

∫ 2π

0

a− ρ cosu

[z2 + ρ2 + a2 − 2aρ cosu]3/2
du.

Change of variables:

u = π − 2x =⇒ cosu = − cos 2x = −[cos2 x− sin2 x] = −[1− 2 sin2 x].

Bz =
µ0I

4π
a

∫ π/2

−π/2

a+ ρ[1− 2 sin2 x]

[z2 + ρ2 + a2 + 2aρ(1− 2 sin2 x)]3/2
2 dx

=
µ0I

π
a

∫ π/2

0

(a+ ρ)− 2ρ sin2 x

[z2 + (a+ ρ)2 − 4aρ sin2 x]3/2
dx

=
µ0I

π
a

1

F 3/2

∫ π/2

0

(a+ ρ)− 2ρ sin2 x

[1− k2 sin2 x]3/2
dx, where F = (a+ ρ)2 + z2, k2 =

4aρ

F
.

Write
(a+ ρ)− 2ρ sin2 x

[1− k2 sin2 x]3/2
=

A

[1− k2 sin2 x]3/2
+

B

[1− k2 sin2 x]1/2

and obtain
B[1− k2 sin2 x] +A = (a+ ρ)− 2ρ sin2 x,
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A+B = (a+ ρ)−Bk2 sin2 x = −2ρ sin2 x.

B =
2ρ

k2

A+B =
2ρ

k2
+A = a+ ρ

A = a+ ρ− 2ρ

k2

A = a+ ρ− 2ρF

4aρ
=

4aρ(a+ ρ)− 2ρ[(a+ ρ)2 + z2]

4aρ

=
4a2ρ+ 4aρ2 − 2ρ[a2 + 2aρ+ ρ2 + z2]

4aρ

=
2a2ρ− 2ρ3 − 2ρz2

4aρ
=
a2 − ρ2 − z2

2a

Bz =
µ0Ia

πF 3/2

{
A

∫ π/2

0

dx

[1− k2 sin2 x]3/2
+B

∫ π/2

0

dx

[1− k2 sin2 x]1/2

}
∫ π/2

0

dx

[1− k2 sin2 x]3/2
=
E(k2)

1− k2
,

∫ π/2

0

dx

[1− k2 sin2 x]1/2
= K(k2).

1− k2 = 1− 4aρ

F
=
F − 4aρ

F

Bz =
µ0Ia

πF 3/2

{
A

F − 4aρ
E(k2) +

B

F
K(k2)

}
B =

2ρ

k2
=

2ρF

4aρ
=
F

2a

A =
a− ρ2 − z2

2a

F − 4aρ = a2 + 2aρ+ ρ2 + z2 − 4aρ = (a− ρ)2 + z2

Thus

Bz =
µ0I

2πF 1/2

{
a2 − ρ2 − z2

(a− ρ)2 + z2
E(k2) +K(k2)

}
Next,

[dl′ ×R]φ = φ̂ · a dφ′[−ẑ(y − y′) sinφ′ + ŷz sinφ′ − ẑ(x− x′) cosφ′ + x̂z cosφ′]

= a dφ′[z sinφ′ cosφ− z cosφ′ sinφ]

= a dφ′z sin(φ− φ′).

Therefore

Bφ =
µ0I

4π
az

∫ 2π

0

sinu du

[z2 + ρ2 + a2 − 2aρ cosu]3/2
= 0.
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[dl′ ×R]ρ = ρ̂ · a dφ′[−ẑ(y − y′) sinφ′ + ŷz sinφ′ − ẑ(x− x′) cosφ′ + x̂z cosφ′]

= a dφ′[z cosφ′ cosφ+ z sinφ′ sinφ]

= a dφ′z cos(φ− φ′).

Therefore

Bρ =
µ0I

4π
az

∫ 2π

0

cosu du

[z2 + ρ2 + a2 − 2aρ cosu]3/2
.

Change of variables:
u = π − 2x =⇒ cosu = −[1− 2 sin2 x],

Bρ = −µ0I

4π
az

∫ π/2

−π/2

1− 2 sin2 x

[z2 + ρ2 + a2 + 2aρ− 4aρ sin2 x]3/2
(2 dx)

= −µ0I

π

az

F 3/2

∫ π/2

0

1− 2 sin2 x

[1− k2 sin2 x]3/2
dx.

Write
1− 2 sin2 x

[1− k2 sin2 x]3/2
=

A

[1− k2 sin2 x]3/2
+

B

[1− k2 sin2 x]1/2
.

Then
A+B[1− k2 sin2 x] = 1− 2 sin2 x,

A+B = 1, −Bk2 sin2 x = −2 sin2 x,

B =
2

k2
, A = 1− 2

k2
=
k2 − 2

k2
.

So

Bρ = −µ0I

π

az

F 3/2

[
A
E(k2)

1− k2
+BK(k2)

]
=
µ0I

π

az

F 3/2k2

[
−k

2 − 2

1− k2
E(k2)− 2K(k2)

]
, k2 =

4aρ

F
.

Next use

k2 − 2

k2 − 1
=

4aρ
F − 2

4aρ
F − 1

=
4aρ− 2F

4aρ− F
=

4aρ− 2[a2 + 2aρ+ ρ2 + z2]

4aρ− [a2 + 2aρ+ ρ2 + z2]
=

−2[a2 + ρ2 + z2]

−a2 + 2aρ− ρ2 − z2
= 2

a2 + ρ2 + z2

(a− ρ)2 + z2

and the fact that
F 3/2k2 = 4aρF 1/2

to write

Bρ =
µ0I

π

az

4aρF 1/2

[
2
a2 + ρ2 + z2

(a− ρ)2 + z2
E(k2)− 2K(k2)

]
=
µ0I

2π

(
z

ρ

)
1

F 1/2

[
a2 + ρ2 + z2

(a− ρ)2 + z2
E(k2)−K(k2)

]
.
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A(r) = φ̂
µ0I

πk

(
a

ρ

)1/2 [(
1− 1

2
k2

)
K(k2)− E(k2)

]
, k =

2(aρ)1/2

F 1/2

= φ̂
µ0I

2π

F 1/2

ρ

[(
1− 1

2
k2

)
K(k2)− E(k2)

]
.

B = ∇×A = ∇× [φ̂Aφ(ρ, z)] = −ρ̂
∂Aφ
∂z

+ ẑ
1

ρ

∂

∂ρ
(ρAφ).

Bz =
µ0I

2πρ

∂

∂ρ

{
F 1/2

[(
1− 1

2
k2

)
K(k2)− E(k2)

]}
=
µ0I

2πρ

{[(
1− 1

2
k2

)
K(k2)− E(k2)

]
∂

∂ρ
F 1/2 + F 1/2 ∂

∂ρ

[(
1− 1

2
k2

)
K(k2)− E(k2)

]}
.

Let

G =
∂

∂ρ

[(
1− 1

2
k2

)
K(k2)− E(k2)

]
=

∂

∂k

[(
1− 1

2
k2

)
K(k)− E(k)

]
∂k

∂ρ
.

Here we have employed the notation K(k), E(k) in order to use derivative formulas from Gradsteyn.

k2 =
4aρ

F
=⇒ 2k

dk

dρ
=

4aF − 4aρ2(a+ ρ)

F 2
.

2k
dk

dρ
=

4a(a2 + 2aρ+ ρ2 + z2)− 8a2ρ− 8aρ2

F 2

=
4a

F 2
(a2 + 2aρ+ ρ2 + z2 − 2aρ− 2ρ2)

=
4a

F 2
(a2 − ρ2 + z2),

dk

dρ
=

2a

kF 2
(a2 − ρ2 + z2).

∂

∂k

[(
1− 1

2
k2

)
K(k)− E(k)

]
=

(
1− 1

2
k2

)
dK(k)

dk
− kK(k)− dE(k)

dk
.

Use Gradsteyn 8.123.2,
dK(k)

dk
=

E(k)

k[1− k2]
− K(k)

k
,

and Gradsteyn 8.123.4,
dE(k)

dk
=

1

k
[E(k)−K(k)].

∂

∂k

[(
1− 1

2
k2

)
K(k)− E(k)

]
= E(k)

[
1− 1

2k
2

k(1− k2)
− 1

k

]
+K(k)

[
−

1− 1
2k

2

k
− k +

1

k

]

= E(k)
1

k

[
1− 1

2k
2 − 1 + k2

1− k2

]
+K(k)

1

k

[
−1 +

1

2
k2 − k2 + 1

]
= E(k)

1

2

k

1− k2
−K(k)

1

2
k.
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Hence

G =
k

2

[
E(k)

1− k2
−K(k)

]
2a

kF 2
(a2 − ρ2 + z2),

Bz =
µ0I

2πρ

{[(
1− 1

2
k2

)
K(k)− E(k)

]
∂

∂ρ
F 1/2 + F 1/2 a

F 2

[
E(k)

1− k2
−K(k)

]
(a2 − ρ2 + z2)

}
.

Next use
∂

∂ρ
F 1/2 =

1

2F 1/2

∂F

∂ρ
=
a+ ρ

F 1/2

to write

Bz =
µ0I

2πρ

1

F 1/2

{
(a+ ρ)

[(
1− 1

2
k2

)
K(k)− E(k)

]
+
a

F

[
E(k)

1− k2
−K(k)

]
(a2 − ρ2 + z2)

}
=
µ0I

2πρ

1

F 1/2

{
K(k)

[
(a+ ρ)

(
1− 1

2
k2

)
− a

F
(a2 − ρ2 + z2)

]
+ E(k)

[
−(a+ ρ) +

a

F

a2 − ρ2 + z2

1− k2

]}
.

Coefficient of K(k):

(a+ ρ)

(
1− 1

2

4aρ

F

)
− a

F
(a2 − ρ2 + z2)

=
1

F

[
(a+ ρ)F − 2aρ(a+ ρ)− a3 + aρ2 − az2

]
=

1

F

[
(a+ ρ)(a2 + ρ2 + z2 + 2aρ)− 2a2ρ− 2aρ2 − a3 + aρ2 − az2

]
=

1

F

[
a3 + ρa2 + aρ2 + ρ3 + az2 + ρz2 + 2a2ρ+ 2aρ2 − 2a2ρ− 2aρ2 − a3 + aρ2 − az2

]
=

1

F

[
ρ(a2 + 2aρ+ ρ2 + z2)

]
=
ρ

F

[
(a+ ρ)2 + z2

]
= ρ.

Coefficient of E(k):

− a− ρ+
a

F

a2 − ρ2 + z2

1− k2

= −a− ρ+
a

F − 4aρ
(a2 − ρ2 + z2)

=
1

F − 4aρ

[
−(a+ ρ)[F − 4aρ] + a(a2 − ρ2 + z2)

]
=

1

F − 4aρ

[
−(a+ ρ)(a2 + 2aρ+ ρ2 + z2) + 4a2ρ+ 4ρa2 + a3 − ρ2a+ az2

]
=

ρ

F − 4aρ
(a2 − ρ2 − z2).

So

Bz =
µ0I

2πρF 1/2

[
ρK(k) + ρ

a2 − ρ2 − z2

F − 4aρ
E(k)

]
=

µ0I

2πF 1/2

[
a2 − ρ2 − z2

(a− ρ)2 + z2
E(k2) +K(k2)

]
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as before. Lastly,

Bρ = −
∂Aφ
∂z

= −µ0I

2πρ

∂

∂z

{
F 1/2

[(
1− 1

2
k2

)
K(k2)− E(k2)

]}
= −µ0I

2πρ

{[(
1− 1

2
k2

)
K(k)− E(k)

]
∂F 1/2

∂z
+ F 1/2 ∂

∂z

[(
1− 1

2
k2

)
K(k)− E(k)

]}
.

∂

∂z

[(
1− 1

2
k2

)
K(k)− E(k)

]
=

∂

∂k

[(
1− 1

2
k2

)
K(k)− E(k)

]
∂k

∂z
.

Use

∂

∂k

[(
1− 1

2
k2

)
K(k)− E(k)

]
=

[
E(k)

1

2

k

1− k2
−K(k)

1

2
k

]
=
k

2

[
E(k)

1− k2
−K(k)

]
,

k2 =
4aρ

F
=⇒ 2k

dk

dz
= 4aρ

∂

∂z
F−1 = −4aρ

1

F 2

∂F

∂z
= −8aρz

1

F 2

=⇒ dk

dz
= −4aρ

F 2

1

k
z = −k

2

F

z

k
= −kz

F
,

and
∂F 1/2

∂z
=

1

2F 1/2

∂F

∂z
=

z

F 1/2
.

Bρ = −µ0I

2πρ

{[(
1− 1

2
k2

)
K(k)− E(k)

]
z

F 1/2
+
k

2

[
E(k)

1− k2
−K(k)

](
−kz
F

)
F 1/2

}
= −µ0I

2πρ

z

F 1/2

{(
1− 1

2
k2

)
K(k)− E(k)− 1

2

k2

1− k2
E(k) +

1

2
k2K(k)

}
= − µ0I

2πF 1/2

(
z

ρ

){
K(k)

[
1− 1

2
k2 +

1

2
k2

]
− E(k)

[
1 +

1

2

k2

1− k2

]}
.

Coefficient of E(k):

1 +
1

2

k2

1− k2
=

1− k2 + 1
2k

2

1− k2
=

1− 1
2k

2

1− k2
=

1

2

k2 − 2

k2 − 1
=

a2 + ρ2 + z2

(a− ρ)2 + z2
.

So

Bρ =
µ0I

2πF 1/2

(
z

ρ

)[
a2 + ρ2 + z2

(a− ρ)2 + z2
E(k2)−K(k2)

]
as before.

3.18. Let B(r) be the magnetic field produced by loop 1. As shown in Problem 3.17, this can be
written as

B(r) = Bz(ρ, z)ẑ +Bρ(ρ, z)ρ̂.
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The force on loop 2 is given by

F2 =

∮
Γ2

I2dl2 ×B

where

dl2 ×B = a2 dφφ̂× [Bz(a2, d)ẑ +Bρ(a2, d)ρ̂]

= a2 dφρ̂Bz(a2, d)− a2 dφẑBρ(a2, d).

So

F2 = Bz(a2, d)a2

∫ 2π

0
[x̂ cosφ+ ŷ sinφ] dφ−Bρ(a2, d)a2

∫ 2π

0
ẑ dφ

= −ẑBρ(a2, d)2πa2.

The formula for Bρ(ρ, d) is given in the solution to Problem 3.17.

3.19. See Figure 19.

Figure 19

J = ẑ
I

πa2
=⇒ B =

{
φ̂µ0Iρ

2πa2 , ρ ≤ a,
φ̂µ0I

2πρ , ρ ≥ a.

Maxwell’s stress tensor:

T̄m =
1

2
(B ·H)Ī−BH.

Magnetic force:

Fm = −
∫
S

T̄m · dS.

Thus, the force on the half of the wire occupying y > 0 is

Fm =

∫
x

∫
z
T̄m · ŷ dx dz.
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We have

T̄m · ŷ =


µ0

2

(
Iρ

2πa2

)2
ŷ − φ̂µ0

(
Iρ

2πa2

)2
cosφ, ρ ≤ a,

µ0

2

(
I

2πρ

)2
ŷ − φ̂µ0

(
I

2πρ

)2
cosφ ρ ≥ a.

Note: in the plane y = 0 the relation φ̂ = ŷ cosφ holds. So

T̄m · ŷ =

{
−µ0

2

(
Ix

2πa2

)2
ŷ, x ≤ a,

−µ0

2

(
I

2πx

)2
ŷ, x ≥ a.

Therefore

Fm = −ŷ

∫ l

0
dy

[∫ a

−a

µ0

2

(
I

2πa2

)2

x2 dx+

∫ −a
−∞

µ0

2

(
I

2π

)2 dx

x2
+

∫ ∞
a

µ0

2

(
I

2π

)2 dx

x2

]
,

Fm

l
= −ŷ

(
µ0I

2

8π2

)[
x3

3a4

∣∣∣∣a
−a
− 1

x

∣∣∣∣−a
−∞
− 1

x

∣∣∣∣∞
a

]

= −ŷ

(
µ0I

2

8π2

)[
2

3a
+

1

a
+

1

a

]
= −ŷ

(
µ0I

2

8π2

)(
8

3a

)
= −ŷ

µ0I
2

3π2a
.

This matches equation (3.136).

3.20. (a) Neglecting fringing, we have Φ(r) = Φ(z). Laplace’s equation

d2Φ(z)

dz2
= 0

can be integrated twice to yield the general solution

Φ(z) = C1z + C2.

Then

E = −∇Φ = −ẑ
dΦ(z)

∂z
= −C1z.

Boundary condition at z = d is n̂ ·D = ρs. Using n̂ = −ẑ and ρs = Q/A, we obtain

−ẑ · [−εC1ẑ] =
Q

A

or

C1 =
Q

εA
.

Therefore

E = − Q

εA
ẑ, Φ(z) =

Q

εA
z + C2.
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Boundary condition at z = 0 is Φ(0) = 0. This yields C2 = 0, so

Φ(z) =
Q

εA
z.

Next,

W =
1

2

∫
V
ρΦ dV +

1

2

N∑
i=1

QiVi

where ρ = 0 and N = 2. On the bottom plate, V = 0. On the top plate,

V = −
∫ d

0
E · dl =

∫ d

0

Q

εA
dz =

Qd

εA
.

So

W =
1

2
Q

(
Qd

εA

)
=
Q2d

2εA
.

(b)

W =
1

2

∫
V

D ·E dV =
1

2

∫ d

0

∫
y

∫
x

(
−Q
A

ẑ

)
·
(
− Q

εA
ẑ

)
dx dy dz =

Q2d

2εA
.

(c)

F = −ẑ
dW

dz
= −ẑ

d

dz

(
Q2z

2εA

)
= −ẑ

Q2

2εA
.

(d) See Figure 20.

Figure 20

T̄e · n̂ =

[
1

2
(D ·E)Ī−DE

]
· (−ẑ)

= −1

2
D ·Eẑ + DEz

= − ε
2

(
Q

εA

)2

ẑ + ẑε

(
Q

εA

)2

=
Q2

2εA2
ẑ,

Fe = −
∮
S

T̄e · dS = −
∫
x

∫
y

Q2

2εA2
ẑ dx dy = − Q2

2εA
ẑ.
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3.21. (a) Neglecting fringing, we have Φ(r) = Φ(z). Laplace’s equation

d2Φ(z)

dz2
= 0

can be integrated twice to yield the general solution

Φ(z) = C1z + C2.

Applying the boundary conditions on Φ at z = 0 and z = d, we find that C2 = 0 and C1 = V0/d.
Hence

Φ(z) =
V0

d
z.

Also,

E = −∇Φ = −ẑ
dΦ(z)

dz
= −ẑ

V0

d
.

Next,

W =
1

2

∫
V
ρΦ dV +

1

2

N∑
i=1

QiVi

where ρ = 0 and N = 2. On the bottom plate, V = 0. On the top plate, V = V0. Therefore

W =
1

2
QV0.

Note that on the top plate we have n̂ = −ẑ so that

ρs = n̂ ·D = −ẑ ·
(
−ẑε

V0

d

)
= ε

V0

d
,

Q =

∫
y

∫
x
ε
V0

d
dx dy = εA

V0

d
,

and

W =
1

2

(
εA
V0

d

)
V0 =

V0Aε

2d
.

(b)

W = =
1

2

∫
V

D ·E dV

=
1

2

∫ d

0

∫
y

∫
x

(
−εV0

d
ẑ

)
·
(
−V0

d
ẑ

)
dx dy dz

=
εAV 2

0

2d
.

(c)

F = −ẑ
dW

dz
= −ẑ

d

dz

(
εAV 2

0

2z

) ∣∣∣∣
z=d

= −ẑ
εAV 2

0

2d2
.
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(d) Refer to Figure 20 again.

T̄e · n̂ =

[
1

2
(D ·E)Ī−DE

]
· (−ẑ)

= −1

2
D ·Eẑ + DEz

= − ε
2

(
V0

d

)2

ẑ + ẑε

(
V0

d

)2

=
εV 2

0

2d2
ẑ,

Fe = −
∮
S

T̄e · dS = −
∫
x

∫
y

εV 2
0

2d2
ẑ dx dy = −εAV

2
0

2d2
ẑ.

3.22. Use

Qm =

N∑
n=1

cmnVn.

We can find cmn by setting Vn = 0 for n 6= m and computing the ratio

cmn =
Qm
V0

with Vm = V0.

Similarly, we can find cnm by setting Vm = 0 for m 6= n and computing the ratio

cnm =
Qn
V0

with Vn = V0.

But Green’s reciprocation theorem states that

N∑
k=1

q′kΦk =
N∑
k=1

qkΦ
′
k.

Let the primed case be the first situation considered above, and let the unprimed case be the second
situation. Then

QnVn = QmVm.

But Vn = Vm = V0, so Qn = Qm. Hence

cnm =
Qn
V0

= cmn =
Qm
V0

.

3.23.

Qm =

N∑
n=1

cmnVn =

N∑
n=1

cmnVn +

[
Vm

N∑
k=1

cmk − Vm
N∑
k=1

cmk

]
.

Write
N∑
k=1

cmk = Cmm.
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Then

Qm = CmmVm +

N∑
n=1

cmnVn −
N∑
k=1

cmkVm

= CmmVm +
N∑
k=1

cmkVk −
N∑
k=1

cmkVm

= CmmVm +

N∑
k=1

[−cmk][Vm − Vk].

Since Vm − Vk = 0 when k = m, we can exclude the k = m term from the sum. Let Cmn = −cmn
for m 6= n. Then

Qm = CmmVm +

N∑
k=1
k 6=m

Cmk(Vm − Vk).

3.24.

W =
1

2

∫
V
ρ(r)Φ(r) dV +

1

2

N∑
i=1

QiVi =
1

2

N∑
i=1

(
N∑
n=1

cinVn

)
Vi

=
1

2

N∑
i=1

N∑
n=1

cinVnVi =
1

2

N∑
m=1

N∑
n=1

cmnVnVm.

3.25. The flux ψm through loop m is

ψm =

∫
Sm

B(r) · n̂ dS =

∫
Sm

N∑
n=1

Bn(r) · n̂ dS,

where Bn is the field produced by loop n. Write Bn(r) = ∇ × An(r), where An is the vector
potential produced by loop n. Then

ψm =

∫
Sm

N∑
n=1

[∇×An(r)] · n̂ dS

=
N∑
n=1

∫
Sm

[∇×An(r)] · n̂ dS

=
N∑
n=1

∮
Γm

An(r) · dl

by Stokes’ theorem. Next, substitute

An(r) =
µ0

4π

∮
Γn

Indl′

|r− r′|

66



to get

ψm =
N∑
n=1

∮
Γm

[
µ0

4π

∮
Γn

Indl′

|r− r′|

]
· dl

=
N∑
n=1

[
µ0

4π

∮
Γm

∮
Γn

dl · dl′

|r− r′|

]
In

=

N∑
n=1

LmnIn.

We have Lmn = Lnm by inspection.

3.26. By (3.148) we have

W =
1

2

N∑
m=1

Imψm.

Using

ψm =

N∑
n=1

LmnIn,

we obtain

W =
1

2

N∑
m=1

Im

(
N∑
n=1

LmnIn

)
=

1

2

N∑
m=1

N∑
n=1

LmnInIm.

3.27. Let J be the actual distribution of current in a conducting body. In this case the dissipated
power is

P =
1

2

∫
V

J ·E dV =
1

2

∫
V

1

σ
J · J dV.

Now let J′ = J + δJ be any other steady current distribution in the body. The dissipated power
becomes

P ′ = P + δP =
1

2

∫
V

1

σ
(J + δJ) · (J + δJ) dV

so that

δP =

∫
V

1

σ
J · δJ dV +

1

2

∫
V

1

σ
|δJ|2 dV.

But ∫
V

1

σ
J · δJ dV =

∫
V

E · δJ dV = −
∫
V
∇Φ · δJ dV

= −
∫
V

[∇ · (Φ δJ)− Φ∇ · δJ] dV

= −
∮
S

Φ δJ · dS +

∫
V

Φ∇ · δJ dV = 0.

Hence

δP =
1

2

∫
V

1

σ
|δJ|2 dV ≥ 0,

as required.
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3.28. Use the standard series expansion

ln(1− x) = −
∞∑
n=1

1

n
xn

as follows:

R2 = ρ2
> − 2ρ<ρ> cosφ+ ρ2

<

= (ρ> − ρ<ejφ)(ρ> − ρ<e−jφ)

= ρ2
>

(
1− ρ<

ρ>
ejφ
)(

1− ρ<
ρ>
e−jφ

)
,

∴ lnR = ln

[
ρ2
>

(
1− ρ<

ρ>
ejφ
)(

1− ρ<
ρ>
e−jφ

)]1/2

= ln ρ> +
1

2
ln

(
1− ρ<

ρ>
ejφ
)

+
1

2
ln

(
1− ρ<

ρ>
e−jφ

)
= ln ρ> −

1

2

∞∑
n=1

1

n

(
ρ<
ρ>
ejφ
)n
− 1

2

∞∑
n=1

1

n

(
ρ<
ρ>
e−jφ

)n
= ln ρ> −

1

2

∞∑
n=1

1

n

(
ρ<
ρ>

)n (
ejnφ + e−jnφ

)
= ln ρ> −

∞∑
n=1

1

n

(
ρ<
ρ>

)n
cosnφ.

3.29. (a)

Φ(r, θ, φ) =
∞∑
l=0

l∑
m=−l

[
Almr

l +Blmr
−(l+1)

]
Ylm(θ, φ).

(b)

Φ(r, θ) =
∞∑
l=0

[
Alr

l +Blr
−(l+1)

]
Pl(cos θ).

(c) Since Pl(cos θ)
∣∣
θ=0

= 1,

Φ(r = z) =

∞∑
l=0

[
Alr

l +Blr
−(l+1)

]
.

(d) If Φ(r = z) can be found as an expansion in integer powers of z for an azimuthally-symmetric
problem, then Al and Bl can be determined.
(e) We have

Φ(z) =
Q

4πε(z2 + c2 − 2zc cosα)1/2
.

If z > c then
1

(z2 + c2 − 2zc cosα)1/2
=

1

z

∞∑
l=0

( c
z

)l
Pl(cosα)
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and

Φ(z) =
Q

4πεc

∞∑
l=0

( c
z

)l+1
Pl(cosα).

Hence

Φ(r, θ) =
Q

4πεc

∞∑
l=0

( c
r

)l+1
Pl(cosα)Pl(cos θ), r > c.

For r < c,

Φ(r, θ) =
Q

4πεc

∞∑
l=0

(r
c

)l
Pl(cosα)Pl(cos θ), r > c.

3.30. (a)

D = ε̄ ·E = θ̂
8ε0
r2

+ r̂
2ε0
r2

C/m2.

(b)

P = D− ε0E = θ̂
8ε0
r2

C/m2.

(c)

ρP = −∇ ·P =
8ε0
r3

cos θ

sin θ
C/m3.

3.31.

E(r) =
1

4πε0

∫
V
ρ(r′)

[
−∇

(
1

R

)]
dV ′

∇ ·E(r) = − 1

4πε0
∇ ·
∫
V
ρ(r′)∇

(
1

R

)
dV ′ = − 1

4πε0

∫
V
ρ(r′)∇ · ∇

(
1

R

)
dV ′

= − 1

4πε0

∫
V
ρ(r′)∇2

(
1

R

)
dV ′ = − 1

4πε0

∫
V
ρ(r′)[−4πδ(r− r′)] dV ′

=
1

ε0
ρ(r).

3.32. See Figure 21.

Figure 21

T̄ =
1

2
(D ·E)Ī−DE =

(
V 2

0 ε0
d2

)(
1

2
Ī− ẑẑ

)
,
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T̄ · n̂ =

(
V 2

0 ε0
d2

)(
1

2
Ī− ẑẑ

)
· ẑ = −ẑ

V 2
0 ε0
2d2

,

−F =

∫
S

T̄ · n̂ dS = −ẑ
V 2

0 ε0
2d2

A,

F = ẑ
V 2

0 ε0A

2d2
.

3.33. See Figure 22.

Figure 22

T̄e =
1

2
(D ·E) Ī−DE,

T̄e

∣∣
z=0

=
1

2
ẑE0 · ε0ẑE0 Ī− ε0E0ẑE0ẑ,

T̄e

∣∣
z=0
· n̂ =

(
1

2
ẑE0 · ε0ẑE0 Ī− ε0E0ẑE0ẑ

)
· ẑ = −1

2
ε0E

2
0 ẑ,

Fe = −
∮
S

T̄e

∣∣
z=0
· n̂ dS = 5ε0E

2
0 ẑ N.

3.34. We have ∇2
tΦ(x, y) = 0 in the regions y > 0 and y < 0. Write

Φ(x, y) =
1

2π

∫ ∞
−∞

Φ̃(k, y)ejkx dk

and obtain

∇2
tΦ =

1

2π

∫ ∞
−∞

(
∂2

∂x2
+

∂2

∂y2

)
Φ̃(k, y)ejkx dk = 0

so that (
∂2

∂y2
− k2

)
Φ̃(k, y) = 0.

Write the solutions as

Φ̃(k, y) =

{
A(k)e−|k|y, y > 0,

B(k)e|k|y, y < 0.

Boundary condition on continuity of potential:

Φ(x, 0+) = Φ(x, 0−) =⇒ Φ̃(k, 0+) = Φ̃(k, 0−) =⇒ A(k) = B(k).
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Other boundary condition:

ŷ · [ε1E(x, 0+)− ε2E(x, 0−)] = ρ0δ(x)

=⇒ ε2
∂Φ(x, y)

∂y

∣∣∣∣
y=0−

= ε1
∂Φ(x, y)

∂y

∣∣∣∣
y=0+

+ ρ0δ(x)

=⇒ ε2
∂Φ̃

∂y

∣∣∣∣
y=0−

= ε1
∂Φ̃

∂y

∣∣∣∣
y=0+

+

∫ ∞
−∞

ρδ(x)e−jkx dx.

So
ε2|k|A(k) = ε1(−|k|)A(k) + ρ0

which gives

A(k) =
ρ0

|k|(ε1 + ε2)
.

Therefore

Φ(x, y) =
1

2π

∫ ∞
−∞

ρ0

|k|(ε1 + ε2)
e∓|k|yejkx dk for y ≷ 0.

3.35.

ρ/ε = ∇ ·E

= ∇ ·

[
e−r/a

r2
r̂

]
+∇ ·

[
e−r/a

ra
r̂

]

= ∇ ·
[
−e−r/a∇

(
1

r

)]
+

1

r2

∂

∂r

[
r2 e
−r/a

ra

]
.

Use the identity
∇ · (φA) = A · ∇φ+ φ∇ ·A

with φ = −e−r/a and A = ∇(1/r) to get

∇ ·E = ∇
(

1

r

)
· ∇
(
−e−r/a

)
− e−r/a∇ ·

[
∇
(

1

r

)]
+

1

r2

[
1

a
− r

a2

]
e−r/a

=

(
− r̂

r2

)
·

(
r̂
e−r/a

a

)
+ e−r/a4πδ(r) +

e−r/a

r2a
− e−r/a

ra2

= 4πδ(r)− e−r/a

ra2
.

So

ρ = 4πεδ(r)− εe
−r/a

ra2
.

3.36.

−ρ/ε = ∇2Φ = ∇2

(
e−ar

r

)
+∇2

(a
2
e−ar

)
.
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Use

∇2(φψ) = ∇ · (∇[φψ])

= ∇ · (φ∇ψ + ψ∇φ)

= ∇ψ · ∇φ+ φ∇ · (∇ψ) +∇φ · ∇ψ + ψ∇ · (∇φ)

= 2∇ψ · ∇φ+ φ∇2ψ + ψ∇2φ

with φ = 1/r and ψ = e−ar to get

∇2Φ = 2∇
(

1

r

)
· ∇(e−ar) +

1

r
∇2(e−ar) + e−ar∇2

(
1

r

)
+∇2

(a
2
e−ar

)
.

Now use

∇
(

1

r

)
= − r̂

r2
, ∇(e−ar) = −r̂ae−ar, ∇2

(
1

r

)
= −4πδ(r),

and

∇2(e−ar) =
1

r2

∂

∂r
(r2(−a)e−ar) =

1

r2
[−2ar + a2r2]e−ar =

(
a2 − 2

a

r

)
e−ar

to find that

∇2Φ =
a3

2
e−ar − 4πδ(r).

So

ρ = 4πεδ(r)− εa
3

2
e−ar.

3.37.

E =
1

4πε0

∫
V
ρ(r′)

r− r′

|r− r′|3
dV ′

=
1

4πε0

∫ ∞
−∞

∫ ∞
−∞

∫ a

−a
ρ(z′)

(x− x′)x̂ + (y − y′)ŷ + (z − z′)ẑ
[(x− x′)2 + (y − y′)2 + (z − z′)2]3/2

dx′ dy′ dz′.

We have

Ex =
1

4πε0

∫ ∞
−∞

∫ a

−a
ρ(z′)

[∫ ∞
−∞

u du

[u2 + (y − y′)2 + (z − z′)2]3/2

]
dy′ dz′ = 0

by the odd symmetry of the integrand in the u integral. Similarly Ey = 0. The z component is
given by

Ez =
1

4πε0

∫ a

−a
ρ(z′)(z − z′)

∫ ∞
−∞

[∫ ∞
−∞

u du

[u2 + (y − y′)2 + (z − z′)2]3/2

]
dx′ dz′

=
2

4πε0

∫ a

−a
ρ(z′)(z − z′)

∫ ∞
−∞

1

u2 + (z − z′)2
du dz′

=
1

2πε0
π

∫ a

−a
ρ(z′)

z − z′

|z − z′|
dz′.
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In other words,

Ez =



1

2ε0

∫ a

−a
ρ(z′) dz′, z > a,

− 1

2ε0

∫ a

−a
ρ(z′) dz′, z < −a,

1

2ε0

∫ z

−a
ρ(z′) dz′ − 1

2ε0

∫ a

z
ρ(z′) dz′, −a < z < a.

3.38. Write

Φ(r) =
1

4πε0

∫
S
η(r′)

1

|r− r′|
dS′

where

r = zẑ, r′ = ar̂′ = ax̂ sin θ′ cosφ′ + aŷ sin θ′ sinφ′ + aẑ cos θ′, dS′ = a2 sin θ′ dθ′ dφ′.

So
r− r′ = −ax̂ sin θ′ cosφ′ − aŷ sin θ′ sinφ′ + (z − a cos θ′)ẑ,

|r− r′| = [a2 sin2 θ′ cos2 φ′ + a2 sin2 θ′ sin2 φ′ + z2 − 2az cos θ′ + a2 cos2 θ′]1/2

= [a2 sin2 θ′ + a2 cos2 θ′ + z2 − 2az cos θ′]1/2

= [a2 + z2 − 2az cos θ′]1/2,

and we have

Φ(r) =
1

4πε0

∫ 2π

0
dφ′
∫ π

0

η(θ′)

[a2 + z2 − 2az cos θ′]1/2
a2 sin θ′ dθ′ dφ′

=
a2

2ε0

∫ π

0

η(θ′) sin θ′ dθ′√
a2 + z2 − 2az cos θ′

.

3.39.

J = ∇×H

= ∇×
[
H0

(
a

ρ

)
e−ρ/aφ̂

]
= ∇× (ΦA) where Φ = H0ae

−ρ/a and A =
1

ρ
φ̂.

Use
∇× (ΦA) = ∇Φ×A + Φ∇×A

and the fact that

∇×
(

1

ρ
φ̂

)
=
δ(ρ)

ρ
ẑ.

(The latter identity can be verified by writing∫ 2π

0

∫ b

0

[
∇×

(
1

ρ
φ̂

)]
· ẑρ dρ dφ =

∫ 2π

0

1

ρ
φ̂ · φ̂ρ dφ = 2π
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and ∫ 2π

0

∫ b

0

δ(ρ)

ρ
ẑ · ẑρ dρ dφ = 2π,

where we have used Stokes’ theorem to obtain the first equality.) We have

J = ∇
(
H0ae

−ρ/a
)
× 1

ρ
φ̂ +H0ae

−ρ/a
(
δ(ρ)

ρ
ẑ

)
= −H0e

−ρ/a 1

ρ
(ρ̂× φ̂) +H0ae

−ρ/a δ(ρ)

ρ
ẑ

= H0

(
a

ρ

)
e−ρ/aẑ

[
δ(ρ)− 1

a

]
.

The presence of δ(ρ) indicates a line current along the z-axis.

3.40. Write
Hp = H0ẑ = −∇Φp

m, H = −∇Φm where ∇2Φm = 0,

and
Φm = Φp

m + Φs
m.

We have
Φp
m = −H0r cos θ = −H0rP1(cos θ)

and can expand

Φs
m =


∞∑
n=0

Gnr
nPn(cos θ), 0 ≤ r < a,

∞∑
n=0

hnr
−(n+1)Pn(cos θ), r ≥ a.

Boundary condition (1): continuity of Φm at r = a gives

∞∑
n=0

Gna
nPn(cos θ)−H0aP1(cos θ) =

∞∑
n=0

hna
−(n+1)Pn(cos θ)−H0aP1(cos θ).

Application of orthogonality gives
Gna

n = hna
−(n+1)

so that
hn = Gna

2n+1.

Boundary condition (2): continuity of normal B,

r̂ · (B1 −B2) = 0 at r = a.

Since B = µH = −µ∇Φm, we get

µ

[ ∞∑
n=0

Gnnr
n−1Pn(cos θ)−H0P1(cos θ)

]
r=a

= µ0

[
−
∞∑
n=0

(n+ 1)hnr
−n−2Pn(cos θ)−H0P1(cos θ)

]
r=a
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or
∞∑
n=0

[
Gnna

n−1µ+ (n+ 1)hna
−n−2µ0

]
Pn(cos θ) = H0(µ− µ0)P1(cos θ).

Application of orthogonality gives

G1µ+ 2h1a
−3µ0 = H0(µ− µ0), h1 = G1a

3,

or
G1(µ+ 2µ0) = H0(µ− µ0), hn = Gn = 0 for n 6= 1.

So

G1 = H0
µ− µ0

µ+ 2µ0
, h1 = H0a

3 µ− µ0

µ+ 2µ0
.

Substitution yields

Φm(r ≤ a) = H0r
µ− µ0

µ+ 2µ0
cos θ −H0r cos θ = H0r

(
− 3µ0

µ+ 2µ0

)
cos θ

and

Φm(r ≥ a) = H0a
(a
r

)2 µ− µ0

µ+ 2µ0
cos θ −H0r cos θ.

So

H(r ≤ a) =
3µ0

µ+ 2µ0
H0ẑ

and

H(r ≥ a) = −2H0

(a
r

)3 µ− µ0

µ+ 2µ0
cos θr̂ +H0

(a
r

)3 µ− µ0

µ+ 2µ0
sin θθ̂ −H0ẑ

= −H0

(a
r

)3 µ− µ0

µ+ 2µ0
(2 cos θr̂− sin θθ̂)−H0ẑ.

3.41. We have

A =
µ0

4π

∫
S

Js(r
′)

|r− r′|
dS′

where

r = zẑ, r′ = ρ′ρ̂′, |r− r′| =
√
z2 + ρ′2,

and
Js = η0v = η0ωρφ̂.

So

A(0, 0, z) =
µ0

4π

∫ 2π

0

∫ a

0

η0ωρ
′φ̂
′√

z2 + ρ′2
ρ′ dρ′ dφ′

=
µ0

4π

∫ a

0

η0ωρ
′√

z2 + ρ′2
ρ′ dρ′

∫ 2π

0
φ̂
′
dφ′

= 0.
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Next,

B =
µ0

4π

∫
S

Js(r
′)× (r− r′)

|r− r′|3
dS′.

Here
Js(r

′)× (r− r′) = η0ωρ
′φ̂
′ × (zẑ− ρ′ρ̂′) = η0ωρ

′(zρ̂′ + ρ′ẑ)

so we have

B(0, 0, z) =
µ0

4π

∫ 2π

0

∫ a

0
η0ωρ

′2 zρ̂′ + ρ′ẑ

(z2 + ρ′2)3/2
dρ′ dφ′

which simplifies to

B(0, 0, z) = ẑ
µ0η0ω

2

[
2z2 + a2

√
z2 + a2

− 2|z|
]
.

3.42. We have

∇ ·E = ∇ ·
(

Q0r̂

4πε0r2

)
−∇ ·

(
Q0r̂

4πε0ra

)
=

Q0

4πε0
∇ ·
(

r̂

r2

)
− Q0

4πε0a
∇ ·
(

r̂

r

)
=

Q0

4πε0
4πδ(r)− Q0

4πε0a

[
1

r2

∂

∂r
(r)

]
=

ρ

ε0
,

so

ρ = Q0

[
δ(r)− 1

4πar2

]
.

Then

Q =

∫
V
ρ dV

=

∫
V
Q0δ(r) dV −

Q0

4πa

∫ 2π

0

∫ π

0

∫ a

0

1

r2
r2 sin θ dr dθ dφ

= Q0 −
Q0

4πa

∫ a

0
4π dr

= Q0 −Q0

= 0.

3.43. (a)

n̂ ·P
∣∣∣∣
z=±a

= ẑ · ẑP0

[(z
a

)2
− 1

] ∣∣∣∣
z=±a

= 0,

−∇ ·P = −P0
∂

∂z

[(z
a

)2
− 1

]
= −P0

2z

a2
.
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(b) By the result of an earlier problem we have

Ez =
1

2ε0

∫ z

−a
ρ(z′) dz′ − 1

2ε0

∫ a

z
ρ(z′) dz′

= − 1

2ε0

∫ z

−a
P0

2z′

a2
dz′ +

1

2ε0

∫ a

z
P0

2z′

a2
dz′

= − P0

2ε0a2
(z2 − a2) +

P0

2ε0a2
(a2 − z2)

= − 1

ε0
P0

[(z
a

)2
− 1

]
.

3.44. For ρ > a we have

Φ(ρ, φ) =

∞∑
n=1

ρ−n[An cosnφ+Bn sinnφ].

The boundary condition gives

∞∑
n=1

a−n[An cosnφ+Bn sinnφ] =

{
V0, 0 ≤ φ ≤ π,
0, π < φ < 2π.

By orthogonality we find that

An = 0 for all n, Bn = 0 for all even n,

and that

Bn =
2V0

nπ
an for odd n.

Therefore

Φ(ρ, φ) =
2V0

π

∑
n=1
odd

1

n

(ρ
a

)n
sinnφ

for ρ > a.

3.45. The general solution takes the form

Φ(r, θ) =
∞∑
n=0

(Gnr
n +Hnr

−(n+1))Pn(cos θ).

Case 1: r < a. Write

Φ(r, θ) =

∞∑
n=0

Gnr
nPn(cos θ).

Impose the boundary condition:

Φ(a, θ) =

∞∑
n=0

Gna
nPn(cos θ) =

{
V0, 0 ≤ θ ≤ π/2,
0, π/2 < θ ≤ π.
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Apply orthogonality:

∞∑
n=0

Gna
n

∫ π

0
Pn(cos θ)Pm(cos θ) sin θ dθ = V0

∫ π/2

0
Pm(cos θ) sin θ dθ

which gives

G0 =
V0

2
, G2n = 0 for n = 1, 2, . . . ,

and

G2n+1 =
V0

a2n+1

(
4n+ 3

4n+ 4

)
P2n(0).

Therefore

Φ(r, θ) =
V0

2
+
∞∑
n=0

(r
a

)2n+1
(

4n+ 3

4n+ 4

)
P2n(0)P2n+1(cos θ) for r < a.

Case 2: r > a. Write

Φ(r, θ) =
∞∑
n=0

Hnr
−(n+1)Pn(cos θ).

Impose the boundary condition:

Φ(a, θ) =

∞∑
n=0

Hna
−(n+1)Pn(cos θ) =

{
V0, 0 ≤ θ ≤ π/2,
0, π/2 < θ ≤ π.

Apply orthogonality:

∞∑
n=0

Hna
−(n+1)

∫ π

0
Pn(cos θ)Pm(cos θ) sin θ dθ = V0

∫ π/2

0
Pm(cos θ) sin θ dθ

which gives

H0 =
V0

2
a, H2n = 0 for n = 1, 2, . . . ,

and

H2n+1 = V0a
2n+2

(
4n+ 3

4n+ 4

)
P2n(0).

Therefore

Φ(r, θ) =
V0

2

(a
r

)
+

∞∑
n=0

(a
r

)2n+2
(

4n+ 3

4n+ 4

)
P2n(0)P2n+1(cos θ) for r > a.

3.46. The primary potential of the dipole is

Φp =
p0

4πε0r2
cos θ.

The secondary potentials are

Φs
1 =

∞∑
n=0

Anr
nPn(cos θ) for r < a,

78



Φs
2 =

∞∑
n=0

(Bnr
n + Cnr

−(n+1))Pn(cos θ) for a < r < b,

and

Φs
3 =

∞∑
n=0

Dnr
−(n+1)Pn(cos θ) for r > b.

Boundary condition 1 at r = a:

Φ1(r = a) = Φ2(r = a)

=⇒
∞∑
n=0

Ana
nPn(cos θ) =

∞∑
n=0

(Bna
n + Cna

−n−1)Pn(cos θ)

=⇒ Ana
2n+1 = Bna

2n+1 + Cn.

Boundary condition 2 at r = a:

D1n(r = a) = D2n(r = a)

=⇒ −ε0
∂Φ1

∂r
= −ε∂Φ2

∂r

=⇒ −ε0

(
− p0

2πε0a2
cos θ +

∞∑
n=0

Anna
n−1Pn(cos θ)

)

= −ε

(
− p0

2πε0a2
cos θ +

∞∑
n=0

[Bnna
n−1 − (n+ 1)Cna

−n−2]Pn(cos θ)

)
=⇒ ε0

p0

2πε0a3
−A1ε0 = ε

p0

2πε0a3
− εB1 + 2C1εa

−3

=⇒ (ε− ε0)
p0

2πε0
= εB1a

3 − 2C1ε−A1ε0a
3.

Boundary condition 1 at r = b

Φ2(r = b) = Φ3(r = b)

=⇒
∞∑
n=0

(Bnb
n + Cnb

−(n+1))Pn(cos θ) =

∞∑
n=0

Dnb
−(n+1)Pn(cos θ)

=⇒ B1b+ C1b
−2 = D1b

−2

=⇒ B1b
3 + C1 = D1.
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Boundary condition 2 at r = b:

D2n(r = b) = D3n(r = b)

=⇒ −ε∂Φ2

∂r
= −ε0

∂Φ3

∂r

=⇒ −ε

(
− p0

2πε0b3
cos θ +

∞∑
n=0

[Bnnb
n−1 − (n+ 1)Cnb

−n−2]Pn(cos θ)

)

= −ε0

(
− p0

2πε0b3
cos θ −

∞∑
n=0

Dn(n+ 1)b−n−2Pn(cos θ)

)
=⇒ (ε− ε0)

p0

2πε0
= εB1b

3 − 2εC1 + 2ε0D1.

Hence we have four equations in four unknowns:

A1a
3 = B1a

3 + C1,

F = εB1a
3 − 2C1ε−A1ε0a

3, F = (ε− ε0)
p0

2πε0
,

B1b
3 = D1 − C1,

F = εB1b
3 − 2εC1 + 2ε0D1.

Solve these for A1, B1, C1, D1 and substitute into the equations

Φ1 =

(
p0

4πε0r2
+A1r

)
cos θ,

Φ2 =

(
p0

4πε0r2
+B1r + C1r

−2

)
cos θ,

and

Φ3 =

(
p0

4πε0r2
+D1r

−2

)
cos θ.

3.47. First show that the potential exterior to the sphere is

Φ(r, θ) = E0

[
a
(a
r

)2
− r
]

cos θ.

So

E = −∇Φ = −r̂
∂Φ

∂r
− θ̂

1

r

∂Φ

∂θ

= r̂E0

[
2
(a
r

)3
+ 1

]
cos θ + θ̂E0

[(a
r

)3
− 1

]
sin θ.

Now

Fz = ẑ · F = −
∫ 2π

0

∫ π/2

0
ẑ · T̄ · n̂a2 sin θ dθ dφ
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where

ẑ · T̄ · n̂ = ε0

[
(ẑ ·E)(E · n̂)− |E|

2

2
(ẑ · n̂)

]
= ε0

[
(ẑ ·E)(E · r̂)− |E|

2

2
(ẑ · r̂)

]
.

So

Fz = ε0a
2

∫ 2π

0

∫ π/2

0

[
Er(Er(ẑ · r̂) + Eθ(ẑ · θ̂))− |E|

2

2
(ẑ · r̂)

] ∣∣∣∣
r=a

sin θ dθ dφ

= ε0a
2

∫ 2π

0

∫ π/2

0

[
(ẑ · r̂)

(
E2
r −

E2
r + E2

θ

2

)
+ (ẑ · θ̂)ErEθ

] ∣∣∣∣
r=a

sin θ dθ dφ

= ε0a
2

∫ 2π

0

∫ π/2

0

[
E2
r − E2

θ

2
cos θ − ErEθ sin θ

] ∣∣∣∣
r=a

sin θ dθ dφ.

But Eθ(a, θ) = 0 by the boundary condition on tangential electric field, and Er(a, θ) = 3E0 cos θ,
so

Fz =
9ε0a

2E2
0

2

∫ 2π

0

∫ π/2

0
cos3 θ sin θ dθ dφ

=
9ε0a

2E2
0

2
2π

(
−1

4
cos4 θ

) ∣∣∣∣π/2
0

=
9πε0a

2E2
0

4
.

3.48. The shielding effectiveness on the axis of the hole is given by (3.232):

Esz(0, z)

E0
= − 1

π

tan−1 a

|z|
− 1
|z|
a + a

|z|

 (z < 0).

We need to compute the limit of this expression as z → 0−. Use

lim
z→0−

tan−1 a

|z|
=
π

2

and

lim
z→0−

1
|z|
a + a

|z|

=

[
lim
z→0−

|z|
] [

lim
z→0−

1
|z|2
a + a

]

= [0]

[
1

a

]
= 0

to give

lim
z→0−

Esz(0, z)

E0
= −1

2
.
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3.49. The shielding effectveness on the axis of the hole is given by (3.317):

Esz(0, z)

E0
= − 1

π

tan−1 a

|z|
− 1
|z|
a + a

|z|

 (z < 0).

When |z| � a we can use the small argument approximation for the arc tangent

tan−1(x) ≈ x− 1

3
x3

to give

Esz(0, z)

E0
≈ − 1

π

 a

|z|
− 1

3

a3

|z|3
− 1
|z|
a + a

|z|

 = − 1

π

(
a

|z|
− 1

3

a3

|z|3
− a

|z|

[
1

1 + a2

|z|2

])
.

Using the first two terms of the binomial series we have for |a/z| � 1 the approximation

1

1 + a2

|z|2
≈ 1− a2

|z|2
.

This gives
Esz(0, z)

E0
≈ − 1

π

(
a

|z|
− a

|z|
+

a3

|z|3
− 1

3

a3

|z|3

)
= − 2

3π

a3

|z|3
.

Thus

SE ≈ 20 log10

{
3π

2

|z|3

a3

}
= 20 log10

{
3π

2

}
+ 20 log10

{∣∣∣z
a

∣∣∣3}
or

SE ≈ 13.46 dB + 60 log10 |z/a| (|z/a| � 1).

3.50. That the dielectric shell provides no shielding when the field is z-directed can be argued on
purely physical grounds. If E is z-directed, then all the dipoles induced in the dielectric will be
z-directed, and we can write the polarization as

P(r) = ẑPz(ρ, φ).

Thus, the equivalent polarization volume charge density in the dielectric shell is

ρP = −∇ ·P =
∂

∂z
Pz(ρ, φ) = 0.

Similarly, the equivalent polarization surface charge densities on the inner and outer surfaces of the
dielectric shell are

ρPs|ρ=a = n̂ ·P(a, φ) = −ρ̂ · ẑPz(a, φ) = 0

and
ρPs|ρ=b = n̂ ·P(b, φ) = ρ̂ · ẑPz(b, φ) = 0.

Since there is no equivalent polarization charge, by (3.74) there is no scattered potential. Thus, the
field everywhere is identical to the incident field, and the shell provides no shielding whatsoever.
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3.51. We wish to solve the following four equations to determine D:

Da = BI1(γa) + CK1(γa) (*)

A

b
+ µ0H̃0b = BI1(γb) + CK1(γb) (**)

Da =
γa

µr

[
BI ′1(γa) + CK ′1(γa)

]
(***)

−A
b

+ µ0H̃0b =
γb

µr

[
BI ′1(γb) + CK ′1(γb)

]
. (****)

Subtracting (***) from (*) and isolating C gives C = −fB where

f =
N

M
=

I1(γa)− γa
µr
I ′1(γa)

K1(γa)− γa
µr
K ′1(γa)

.

Substituting C = −fB into (**) and (****) and subtracting gives

2µ0H̃0b = B

[
I1(γb)− fK1(γb) +

γb

µr
I ′1(γb)− γb

µr
fK ′1(γb)

]
. (A)

Substituting C = −fB into (*) gives

Da = B [I1(γa)− fK1(γa)] . (B)

Dividing (B) by (A) and substituting f = M/N gives

Da

2µ0H̃0b
=

MI1(γa)−NK1(γa)

MI1(γb)−NK1(γb)− γb
µr
MI ′1(γb) γbµrNK

′
1(γb)

Substituting M and N and factoring the denominator we have

Da

2µ0H̃0b
=
U

V

where
U =

γa

µr

[
K1(γa)I ′1(γa)− I1(γa)K ′1(γa)

]

V =

[
K1(γa)− γa

µr
K ′1(γa)

] [
I1(γb) +

γb

µr
I ′1(γb)

]
−[

I1(γa)− γa

µr
I ′1(γa)

] [
K1(γb) +

γb

µr
K ′1(γb)

]
.

Finally, using the Wronskian relation (E.93)

I ′1(z)K1(z)− I1(z)K ′1(z) =
1

z

and simplifying, gives (3.247).
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Chapter 4

4.1. By (4.35),

Re ε̃c(r, ω)− ε0 = − 1

π
P.V.

∫ ∞
−∞

Im ε̃c(r,Ω)

Ω− ω
dΩ

= − 1

π
P.V.

∫ 0

−∞

Im ε̃c(r,Ω)

Ω− ω
dΩ− 1

π
P.V.

∫ ∞
0

Im ε̃c(r,Ω)

Ω− ω
dΩ.

In the first integral let x = −Ω:

Re ε̃c(r, ω)− ε0 = − 1

π
P.V.

∫ 0

∞

Im ε̃c(r,−x)

−x− ω
(−dx)− 1

π
P.V.

∫ ∞
0

Im ε̃c(r,Ω)

Ω− ω
dΩ.

Use symmetry condition (4.27),

Im ε̃c(r,−ω) = − Im ε̃c(r, ω),

to get

Re ε̃c(r, ω)− ε0 = − 1

π
P.V.

∫ ∞
0

− Im ε̃c(r,Ω)

−Ω− ω
dΩ− 1

π
P.V.

∫ ∞
0

Im ε̃c(r,Ω)

Ω− ω
dΩ

= − 1

π
P.V.

∫ ∞
0

Im ε̃c(r,Ω)

[
1

Ω + ω
+

1

Ω− ω

]
dΩ

= − 1

π
P.V.

∫ ∞
0

Im ε̃c(r,Ω)

[
Ω− ω + Ω + ω

(Ω + ω)(Ω− ω)

]
dΩ

= − 2

π
P.V.

∫ ∞
0

Ω Im ε̃c(r,Ω)

Ω2 − ω2
dΩ.

This is (4.37). Next examine (4.36):

Im ε̃c(r, ω) =
1

π
P.V.

∫ ∞
−∞

Re ε̃c(r,Ω)− ε0
Ω− ω

dΩ− σ0(r)

ω

=
1

π
P.V.

∫ 0

−∞

Re ε̃c(r,Ω)− ε0
Ω− ω

dΩ +
1

π
P.V.

∫ ∞
0

Re ε̃c(r,Ω)− ε0
Ω− ω

dΩ− σ0(r)

ω
.

Let x = −Ω in the first integral:

Im ε̃c(r, ω) =
1

π
P.V.

∫ 0

∞

Re ε̃c(r,−x)− ε0
−x− ω

(−dx) +
1

π
P.V.

∫ ∞
0

Re ε̃c(r,Ω)− ε0
Ω− ω

dΩ− σ0(r)

ω
.

Use the symmetry condition Re ε̃c(r,−ω) = Re ε̃c(r, ω):

Im ε̃c(r, ω) =
1

π
P.V.

∫ ∞
−∞

[Re ε̃c(r,Ω)− ε0]

[
− 1

Ω + ω
+

1

Ω− ω

]
dΩ− σ0(r)

ω

=
1

π
P.V.

∫ ∞
−∞

[Re ε̃c(r,Ω)− ε0]

[
−Ω + ω + Ω + ω

(Ω + ω)(Ω− ω)

]
dΩ− σ0(r)

ω

=
2ω

π
P.V.

∫ ∞
−∞

Re ε̃c(r,Ω)− ε0
Ω2 − ω2

dΩ− σ0(r)

ω
.

This is (4.38).
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4.2. We have

ε̃2xx = ε̃2yy = ε0

(
1−

ω2
p(ω − jν)

ω[(ω − jν)2 − ω2
c ]

)

= ε0

(
1−

ω2
p(ω − jν)

ω[ω2 − 2jνω − ν2 − ω2
c ]

)

= ε0

(
1−

ω2
p(ω − jν)

ω[(ω2 − ν2 − ω2
c )− 2jνω]

)

= ε0

(
1−

ω2
p(ω − jν)[(ω2 − ν2 − ω2

c ) + 2jνω]

ω[(ω2 − ν2 − ω2
c )

2 + 4ν2ω2]

)

= ε0

(
1−

ω2
p[ω(ω2 − ν2 − ω2

c ) + 2ν2ω] + jω2
p[2νω

2 − 2νω(ω2 − ν2 − ω2
c )]

ω[(ω2 − ν2 − ω2
c )

2 + 4ν2ω2]

)

= ε0

(
1−

ω2
p[ω(ω2 − ν2 − ω2

c ) + 2ν2ω]

ω[(ω2 − ν2 − ω2
c )

2 + 4ν2ω2]

)
+ ε0

ω2
p[2νω

2 − 2νω(ω2 − ν2 − ω2
c )]

jω[(ω2 − ν2 − ω2
c )

2 + 4ν2ω2]
.

Next,

ε̃cxy = −ε̃cyx = −jε0
ω2
pωc

ω[ω2 − 2jνω − ν2 − ω2
c ]

= −jε0
ω2
pωc

ω[(ω2 − ν2 − ω2
c )− 2jνω]

= −jε0
ω2
pωc[(ω

2 − ν2 − ω2
c ) + 2jνω]

ω[(ω2 − ν2 − ω2
c )

2 + 4ν2ω2]

= ε0
ω2
pωc[(ω

2 − ν2 − ω2
c ) + 2jνω]

jω[(ω2 − ν2 − ω2
c )

2 + 4ν2ω2]
+ ε0

ω2
pω

2
c2νω

ω[(ω2 − ν2 − ω2
c )

2 + 4ν2ω2]
.

Next,

ε̃czz = ε0

(
1−

ω2
p(ω + jν)

ω(ω2 + ν2)

)

= ε0

(
1−

ω2
pω

ω(ω2 + ν2)

)
+ ε0

ω2
pν

jω[ω(ω2 + ν2)]
.

Finally,
ε̃czx = ε̃cxz = ε̃czy = ε̃cyz = 0.

Hence we can write

[̃̄εc] = [̃̄ε] +
[˜̄σ]

jω

where

ε̃xx = ε̃yy = ε0

(
1−

ω2
p[ω(ω2 − ν2 − ω2

c ) + 2ν2ω]

ω[(ω2 − ν2 − ω2
c )

2 + 4ν2ω2]

)
,
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σ̃xx = σ̃yy = ε0
ω2
p[2νω

2 − 2νω(ω2 − ν2 − ω2
c )]

[(ω2 − ν2 − ω2
c )

2 + 4ν2ω2]
,

ε̃xy = −ε̃yx = ε0
ω2
pω

2
c2νω

ω[(ω2 − ν2 − ω2
c )

2 + 4ν2ω2]
,

σ̃xy = −σ̃yx = ε0
ω2
pωc[(ω

2 − ν2 − ω2
c ) + 2jνω]

ω[(ω2 − ν2 − ω2
c )

2 + 4ν2ω2]
,

ε̃zz = ε0

(
1−

ω2
pω

ω(ω2 + ν2)

)
,

σ̃zz = ε0
ω2
pν

[ω(ω2 + ν2)]
,

and
ε̃zx = ε̃xz = ε̃zy = ε̃yz = σ̃zx = σ̃xz = σ̃zy = σ̃yz = 0.

Since [̃̄ε] and [˜̄σ] are real matrices, and since [̃̄ε] = −[̃̄ε]T and [˜̄σ] = −[˜̄σ]T , we see that [̃̄ε] and [˜̄σ]
are hermitian.

4.3. Debye formulas:

Re ε̃(ω)− ε∞ =
εs − ε∞
1 + ω2τ2

, Im ε̃(ω) = −ωτ(εs − ε∞)

1 + ω2τ2
.

Note that we must modify the Kramers–Kronig relations slightly because

lim
ω→∞

ε̃c(ω) = ε∞ (not ε0).

So

Im ε̃(ω) =
1

π
P.V.

∫ ∞
−∞

Re ε̃(ω)− ε∞
Ω− ω

dΩ

=
1

π
P.V.

∫ ∞
−∞

εs−ε∞
1+Ω2τ2

Ω− ω
dΩ

=
1

π
lim
δ→0

∫ ω−δ

−∞

εs−ε∞
1+Ω2τ2

Ω− ω
dΩ +

1

π
lim
δ→0

∫ ∞
ω+δ

εs−ε∞
1+Ω2τ2

Ω− ω
dΩ.

To compute the integral, consider the contour integral

I =
εs − ε∞

π

1

τ2

∮
C

dΩ(
1 + j 1

τ

) (
1− j 1

τ

)
(Ω− ω)

where C is shown in Figure 23. We have (informally)∮
C

=

∫
C1

+

∫
C2

+

∫
Cω︸︷︷︸

=0

+

∫
C∞︸︷︷︸
=0

= πj res(Ω = ω) + 2πj res(Ω = j 1
τ ).
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Figure 23

Since ∫
C1

+

∫
C2

= P.V.

∫ ∞
−∞

,

we have

Im ε̃(ω) =
εs − ε∞

π

1

τ2

[
πj res(Ω = ω) + 2πj res(Ω = j 1

τ )
]

=
εs − ε∞

π

1

τ2
(πj)

[
1

(ω + j 1
τ )(ω − j 1

τ )
+

2

(2j 1
τ )(j 1

τ − ω)

]

=
εs − ε∞
τ2

j
1

(ω − j 1
τ )

[
1

ω + j 1
τ

− 2

2j 1
τ

]
=
εs − ε∞
τ2

· 1

ω − j 1
τ

· −ωτ
ω + j 1

τ

= −ωτ(εs − ε∞)

1 + ω2τ2
.

Next,

Re ε̃c − ε∞ = − 1

π
P.V.

∫ ∞
−∞

Im ε̃c(Ω)

Ω− ω
dΩ

= − 1

π
P.V.

∫ ∞
−∞

−Ωτ(εs − ε∞)

(1 + Ω2τ2)(Ω− ω)
dΩ

By the same procedure as above we obtain

Re ε̃c − ε∞ =
1

π
· τ(εs − ε∞)

τ2

[
πj res(Ω = ω) + 2πj res(Ω = j 1

τ )
]

where the residues are found for the function

f(Ω) =
Ω

(Ω + j 1
τ )(Ω− j 1

τ )(Ω− ω)
.
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So

Re ε̃c − ε∞ =
1

π
· τ(εs − ε∞)

τ2
(πj)

[
ω

(ω + j 1
τ )(ω − j 1

τ )
+

2j 1
τ

(2j 1
τ )(j 1

τ − ω)

]

=
τ(εs − ε∞)

τ2
· j

(ω − j 1
τ )

[
ω

ω + j 1
τ

−
2j 1

τ

2j 1
τ

]

=
τ(εs − ε∞)

τ2
· j

(ω − j 1
τ )

[
ω − ω − j 1

τ

ω + j 1
τ

]
=

εs − ε∞
ω2τ2 + 1

.

4.4. Extend (2.12) and (2.13) to the frequency domain. Then, for the original problem we have

D̃1 = ˜̄ε1 · Ẽ1 + ˜̄ξ1 · H̃1, (1)

B̃1 = ˜̄ζ1 · Ẽ1 + ˜̄µ1 · H̃1. (2)

For the dual problem we have

D̃2 = ˜̄ε2 · Ẽ2 + ˜̄ξ2 · H̃2, (3)

B̃2 = ˜̄ζ2 · Ẽ2 + ˜̄µ2 · H̃2. (4)

Now substitute the solution to the dual problem (4.181)–(4.184) into (1):

B̃2

−η0
= ˜̄ε · (−η0H̃2) + ˜̄ξ1 ·

(
Ẽ2

η0

)
or

B̃2 = (η2
0
˜̄ε1) · H̃2 + (−˜̄ξ1) · Ẽ2.

Compare this to (4). We find that

˜̄ζ2 = −˜̄ξ1, ˜̄µ2 = η2
0
˜̄ε1.

Next substitute (4.181)–(4.184) into (2):

η0D̃2 = ˜̄ζ1 · (−η0H̃2) + ˜̄µ1 ·

(
Ẽ2

η0

)
or

D̃2 = (−˜̄ζ1) · H̃2 +

(
˜̄µ1

η2
0

)
· Ẽ2.

Comparison to (3) shows that

˜̄ε2 =
˜̄µ1

η2
0

, ˜̄ξ2 = −˜̄ζ1.
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4.5.

∇(e−jk·r) =

(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
e−jkxxe−jkyye−jkzz

= x̂e−jkyye−jkzz
∂

∂x
e−jkxx + ŷe−jkxxe−jkzz

∂

∂y
e−jkyy + ẑe−jkxxe−jkyy

∂

∂z
e−jkzz

= (−jkxx̂− jkyŷ − jkzẑ)e−jkxxe−jkyye−jkzz

= −j(x̂kx + ŷky + ẑkz)e
−j(kxx+kyy+kzz)

= −jke−jk·r.

∇ · (Ee−jk·r) = e−jk·r∇ ·E + E · ∇(e−jk·r)

= E · (−jke−jk·r)
= −jk ·Ee−jk·r.

∇× (Ee−jk·r) = e−jk·r∇×E−E×∇(e−jk·r)

= −E× (−jke−jk·r)
= −jk×Ee−jk·r.

∇2(Ee−jk·r) = e−jk·r∇2E + E∇2(e−jk·r) + 2(∇e−jk·r · ∇)E

= E∇2(e−jk·r)

= E∇ · (∇e−jk·r)
= E∇ · (−jke−jk·r)

= E

(
−jkx

∂

∂x
e−jk·r − jky

∂

∂y
e−jk·r − jkz

∂

∂z
e−jk·r

)
= E[(−jkx)(−jkx) + (−jky)(−jky) + (−jkz)(−jkz)]e−jk·r

= −E(k2
x + k2

y + k2
z)e
−jk·r

= −k2Ee−jk·r.

4.6. First,

ε̃c = ε0

(
εr − j

σ

ωε0

)
= Re ε̃c + j Im ε̃c =⇒ Re ε̃c = εrε0, Im ε̃c = −σ

ω
.

k = ω
√
µε̃c = ω

√
µ0ε0

√
εr − j

σ

ωε0
= β − jα.

By (4.215),

β = ω
√
µ0 Re ε̃c

√√√√1

2

[√
1 +

[Im ε̃c]2

[Re ε̃c]2
+ 1

]
=
ω

c

√
εr

1√
2

√√√√
1 +

√
1 +

(
σ

ωε0εr

)2

.
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We have
vp =

ω

β
.

To find

vg =
dω

dβ
,

write

β =

[√
εr

c
√

2

]
ωf(ω), f(ω) = [1 + g(ω)]1/2, g(ω) =

[
1 +

(
A

ω

)2
]1/2

, A =
σ

ε0εr
.

dβ

dω
=

[√
εr

c
√

2

] [
ωf ′(ω) + f(ω)

]
.

f ′(ω) =
1

2
[1 + g(ω)]−1/2g′(ω) =

1

2

g′(ω)

f(ω)
.

g′(ω) =
1

2

[
1 +

(
A

ω

)2
]−1/2

(−2A2ω−3) = − A2

ω3g(ω)
.

The ω-β diagram is shown in Figure 24. The velocities vp and vg are shown in Figure 25. It appears

0 100 200 300 400 500

β (r/m) 

0

1

2

3

f (
G

H
z)

Light Line: ε=ε εr 0

Figure 24

that vg > vp at all frequencies, but we should check for low frequencies. For small ω we have

k ≈ ω

c

√
−j σ

ωε0
=
ω

c

1√
2

√
σ

ωε0
− j ω

c

1√
2

√
σ

ωε0
=⇒ β =

√
ω

1

c

√
σ

2ε0
.

vp =
ω

β
=
√
ωc

√
2ε0
σ
.
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dβ

dω
=

1

2
ω−1/2 1

c

√
σ

2ε0
,

vg =
dω

dβ
= 2
√
ωc

√
2ε0
σ

= 2vp.

Thus, since vg > vp at all frequencies, this model of water exhibits anomalous dispersion!

From Figure 25 we see that the relaxation effect shifts the region over which vg differs the most
from vp up in frequency significantly. From Figure 24 we see that relaxation model produces a
nonzero velocity at low frequencies.

4.7. For perpendicular polarization we have

ki = (x̂ sin θi + ẑ cos θi)k1, kr = (x̂ sin θi − ẑ cos θi)k1, kt = (x̂ sin θt + ẑ cos θt)k2.

Use (4.261):

Ẽi
⊥ = ŷẼ0e

−jki·r = ŷẼ0e
−jk1(x sin θi+z cos θi),

Ẽr
⊥ = ŷẼ0Γ̃⊥e

−jkr·r = ŷẼ0Γ̃⊥e
−jk1(x sin θi−z cos θi),

Ẽt
⊥ = ŷẼ0T⊥e

−jkt·r = ŷẼ0T̃⊥e
−jk2(x sin θt+z cos θt).

Use the equations following (4.261):

H̃i
⊥ =

k1

k1η1
k̂i × Ẽi

⊥ =
Ẽ0

η1
(ẑ sin θi − x̂ cos θi)e

−jk1(x sin θi+z cos θi),

H̃r
⊥ =

k1

k1η1
k̂r × Ẽr

⊥ =
Ẽ0Γ̃⊥
η1

(ẑ sin θi + x̂ cos θi)e
−jk1(x sin θi−z cos θi),

H̃t
⊥ =

k2

k2η2
k̂t × Ẽt

⊥ =
Ẽ0T̃⊥
η2

(ẑ sin θt − x̂ cos θt)e
−jk2(x sin θt+z cos θt).
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Since regions 1 and 2 are lossless, and θi < θc, we know that Γ̃⊥ and T̃⊥ are real numbers.
In region 1 we have

Ẽtot = Ẽi
⊥ + Ẽr

⊥

= ŷẼ0e
−jk1x sin θi

[
e−jk1z cos θi + Γ̃⊥e

jk1z cos θi
]

= ŷẼ0e
−jk1x sin θi

[
(1 + Γ⊥)e−jk1z cos θi + 2jΓ⊥ sin(k1z cos θi)

]
and, similarly,

H̃tot = ẑ
Ẽ0

η1
e−jk1x sin θi

[
(1 + Γ̃⊥)e−jk1z cos θi + 2jΓ̃⊥ sin(k1z cos θi)

]
+ x̂

Ẽ0

η1
e−jk1x sin θi

[
(−1 + Γ̃⊥)e−jk1z cos θi + 2jΓ̃⊥ sin(k1z cos θi)

]
.

Note the traveling and standing wave terms in each final expression. In region 2 we have

Ẽtot = Ẽt
⊥ = ŷẼ0T̃⊥e

−jk2x sin θte−jk2z cos θt

and

H̃tot = H̃t
⊥ =

Ẽ0T̃⊥
η2

(ẑ sin θt − x̂ cos θt)e
−jk2x sin θte−jk2z cos θt .

These represent pure traveling waves. The case of parallel polarization proceeds similarly.

4.8. Referring to the results of Problem 4.7, we have

Sav,1 =
1

2
Re[Ětot × Ȟ∗tot]

=
1

2
x̂
|Ě0|2

η1
Re[e−jk1z cos θi + Γ⊥e

jk1z cos θi ][ejk1z cos θi + Γ⊥e
−jk1z cos θi ] sin θi

− 1

2
ẑ
|Ě0|2

η1
Re[e−jk1z cos θi + Γ⊥e

jk1z cos θi ][−ejk1z cos θi + Γ⊥e
−jk1z cos θi ] cos θi.

Then

ẑ · Sav,1 = −1

2

|Ě0|2

η1
Re[−1 + Γ2

⊥ − Γ⊥e
2jk1z cos θi + Γ⊥e

−2jk1z cos θi ] cos θi.

At z = 0,

ẑ · Sav,1 =
1

2

|Ě0|2

η1
Re(1− Γ2

⊥) cos θi.

In region 2,

ẑ · Sav,2 =
1

2

|Ě0|2T 2
⊥

η2
cos θt.

Continuity of ẑ · Sav at z = 0 would require that

1

2

|Ě0|2

η1
Re(1− Γ2

⊥) cos θi =
1

2

|Ě0|2T 2
⊥

η2
cos θt.
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In view of the fact that T⊥ = 1 + Γ⊥, this reduces to

1

η1
(1− Γ⊥) cos θi =

1

η2
(1 + Γ⊥) cos θi.

Next use
Z1⊥ =

η1

cos θi
, Z2⊥ =

η2

cos θt
,

to get
1− Γ⊥
Z1⊥

=
1 + Γ⊥
Z2⊥

which yields

Γ⊥ =
Z2⊥ − Z1⊥
Z2⊥ + Z1⊥

.

We see that ẑ · Sav is continuous at z = 0. The case of parallel polarization is similar.

4.9. For perpendicular polarization we have

ki = (x̂ sin θi + ẑ cos θi)k1, kr = (x̂ sin θi − ẑ cos θi)k1, kt = x̂ sin θi − jẑαc,

where

αc =
√
k2

1 sin2 θi − k2
2.

Use (4.261):

Ẽi
⊥ = ŷẼ0e

−jki·r = ŷẼ0e
−jk1(x sin θi+z cos θi),

Ẽr
⊥ = ŷẼ0Γ̃⊥e

−jkr·r = ŷẼ0Γ̃⊥e
−jk1(x sin θi−z cos θi),

Ẽt
⊥ = ŷẼ0T̃⊥e

−jkt·r = ŷẼ0T̃⊥e
−jk2x sin θte−αcz.

Use the equations following (4.261):

H̃i
⊥ =

k1

k1η1
k̂i × Ẽi

⊥ =
Ẽ0

η1
(ẑ sin θi − x̂ cos θi)e

−jk1(x sin θi+z cos θi),

H̃r
⊥ =

k1

k1η1
k̂r × Ẽr

⊥ =
Ẽ0Γ̃⊥
η1

(ẑ sin θi + x̂ cos θi)e
−jk1(x sin θi−z cos θi),

H̃t
⊥ =

1

k2η2
kt × Ẽt

⊥ =
Ẽ0T̃⊥
k2η2

(ẑk1 sin θi + jx̂αc)e
−jk2x sin θte−αcz.

Since regions 1 and 2 are lossless, and θi < θc, we know that Γ̃⊥ and T̃⊥ are real numbers.
In region 1 we have

Ẽtot = Ẽi
⊥ + Ẽr

⊥

= ŷẼ0e
−jk1x sin θi

[
e−jk1z cos θi + Γ̃⊥e

jk1z cos θi
]

= ŷẼ0e
−jk1x sin θiejφ⊥/2

[
e−j(k1z cos θi+φ⊥/2) + ej(k1z cos θi+φ⊥/2)

]
= ŷẼ0e

−jk1x sin θiejφ⊥/22 cos(k1z cos θi + φ⊥/2).
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Similarly,

H̃tot = ẑ
Ẽ0

η1
e−jk1x sin θiejφ⊥/22 cos(k1z cos θi + φ⊥/2) sin θi

+ x̂
Ẽ0

η1
e−jk1x sin θiejφ⊥/22j sin(k1z cos θi + φ⊥/2) cos θi.

These are pure standing waves. In region 2 we have the evanescent wave expressions

Ẽtot = Ẽt
⊥ = ŷẼ0T̃⊥e

−jk2x sin θie−αcz

and

H̃tot = H̃t
⊥ =

Ẽ0T̃⊥
k2η2

(ẑk1 sin θi + jx̂αc)e
−jk2x sin θte−αcz.

The case of parallel polarization proceeds similarly.

4.10. We have

ẑ · Sav,1 = ẑ · 1

2
Re[Ětot × Ȟ∗tot]

=
1

2
Re[Ětot,yȞ

∗
tot,x]

=
1

2
Re{|Ě0|22 cos(k1z cos θi + φ⊥/2)[−j2 sin(k1z cos θi + φ⊥/2)] cos θi}

= 0.

The rest of the problem is similar.

4.11. In region 1 we have
ε̃1 = ε0ε1r, µ̃1 = µ0µ1r.

In region 2,

ε̃c2 = ε2rε0 − j
σ

ω
, µ̃2 = µ0µ2r.

(a)
k1 = β1 = ω

√
µ̃1ε̃1 = ω

√
µ0ε0
√
µ1rε1r,

k2 = ω
√
µ̃2ε̃c2 = ω

√
µ0ε0
√
µr2εr2

√
1− j σ

ωε0ε2r
.

The definition of a good conductor is through the inequality

σ

ωε0ε2r
� 1.

So √
1− j σ

ωε0ε2r
≈
√
−j σ

ωε0ε2r
=

1− j√
2

√
σ

ωε0ε2r
.
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This implies

k2 = β2 − jα2 ≈ ω
√
µ0ε0

√
σ

ωε0ε2r

√
µ2rε2r

1− j√
2

=
√
µ̃2

√
ωσ

2
(1− j) =

√
ωµ̃2σ

2
(1− j)

or

β2 = α2 =

√
ωµ̃2σ

2
.

Examining the ratio

β2

β1
≈

√
ωµ̃2σ

2

ω
√
µ̃1ε̃1

=

√
µ̃2σ

2ωµ̃1ε̃1
=

√
σ

ωε0ε2r

√
µ2rε2r
µ1rε1r

1√
2
� 1

we find that
β2 � β1.

Thus
A = β2

2 − α2
2 − (β2

1 − α2
1) sin2 θi ≈ −β2

1 sin2 θi,

B = 2(β2α2 − β1α1 sin2 θi) ≈ 2β2
2 ,

τ t = (A2 +B2)1/4 ≈
√

2β2.

Then

γt =
1

2
tan−1 B

A
≈ 1

2
tan−1

[
2β2

2

−β2
1 sin2 θi

]
=

1

2
tan−1[−∆] where ∆� 1

= −π/4.

Finally,

θt = tan−1

(
β1

τ t
sin θi
cos γt

)
.

Since
β1

τ t
≈ β1√

2β2

� 1,

we have
θt ≈ tan−1 δ where δ � 1.

Hence
θt ≈ 0.

(b) For perpendicular polarization,

Ẽ2 = ŷT̃⊥Ẽ
i
⊥e
−jkt·r, kt = k′2 + jk′′2 ≈ ẑβ2(1− j).
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So
Ẽ2 ≈ ŷT̃⊥Ẽ

i
⊥e
−jβ2ze−β2z, J̃2 = σẼ2 = ŷσT̃⊥Ẽ

i
⊥e
−jβ2ze−β2z.

The current per unit width is

J̃s =

∫ ∞
0

J̃2 · ŷ dz

= σT̃⊥Ẽ
i
⊥

∫ ∞
0

e−(1+j)β2z dz

=
σ

−(1 + j)β2
T̃⊥Ẽ

i
⊥[e−(1+j)β2z]

∣∣∞
0

=
1

1 + j

σ

β2
T̃⊥Ẽ

i
⊥.

But
1

1 + j
=

1− j
2

,

so

K̃ = ŷσT̃⊥Ẽ
i
⊥

1− j
2β2

.

Now

H̃2 ≈ −x̂
ktz
k2

T̃⊥Ẽ
i
⊥

η2
e−jβ2ze−β2z

≈ −x̂
T̃⊥Ẽ

i
⊥

η2
e−jβ2ze−β2z.

Here

η2 =

√
µ̃2

ε̃c2
=

√
µ̃2

ε̃2rε0 − j σω
=

√
µ̃2

ε2rε0

1√
1− j σ

ωε0ε2r

≈
√
µ2rµ0

ε2rε0

1 + j√
2

√
ωε0ε2r
σ

= (1 + j)

√
ωµ̃2

2σ
.

So

H̃2 ≈ −x̂
T̃⊥Ẽ

i
⊥

1 + j

√
2σ

ωµ̃2
e−jβ2ze−β2z

= −x̂T̃⊥Ẽ
i
⊥

1− j
2

√
2σ

ωµ̃2

= −x̂T̃⊥Ẽ
i
⊥

1− j
2

σ

β2

since

β2 =

√
ωµ̃2σ

2
.

Thus, at z = 0,

−ẑ× H̃t ≈ −ẑ× (−x̂)T̃⊥Ẽ
i
⊥

1− j
2

σ

β2
≈ K̃ = ŷσT̃⊥Ẽ

i
⊥

1− j
2β2

.
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(c)

Zs =

∣∣∣∣∣ ẼyH̃x

∣∣∣∣∣
z=0

=
T̃⊥Ẽ

i
⊥

T̃⊥Ẽ
i
⊥

1−j
2β2

σ
=

2β2

(1− j)σ
= (1 + j)β2.

Let δ = 1/β2 be the skin depth. Then

Zs = (1 + j)
1

σδ
= Rs + jXs, Rs = Xs =

1

σδ
.

(d) At z = 0,

Sav =
1

2
Re[Ě× Ȟ∗]|z=0

= ŷT̃⊥Ě
i
⊥ ×

[
−x̂T̃⊥Ě

i
⊥

1− j
2

σ

β2

]∗
= ẑ|T̃⊥Ěi⊥|2

σ

2β2
.

But

Ǩ = ŷσT̃⊥Ě
i
⊥

1− j
2β2

.

So

Ǩ · Ǩ∗ = σ2|T̃⊥Ěi⊥|2
(1− j)(1 + j)

2β2
2

= σ2|T̃⊥Ěi⊥|2
1

β2
2

.

Hence

ẑ
1

2
(Ǩ · Ǩ∗)Rs = ẑ

1

2
(Ǩ · Ǩ∗)

(
β2

σ

)
1

β2
2

= ẑ|T̃⊥Ěi⊥|2
σ

2β2
= Sav.

4.12. From the text we have

R̃1 =
b1
a1

=
Γ1 + Γ2P̃

2
1

1 + Γ1Γ2P̃ 2
1

.

With Γ2 = −Γ1,

R̃1 = Γ1
1− P̃ 2

1

1− Γ2
1P̃

2
1

.

Use of the expansion
(1− x)−1 = 1 + x+ x2 + x3 + · · ·

gives

R̃1(ω) = Γ1(1− P̃ 2
1 )(1 + Γ2

1P̃
2
1 + Γ4

1P̃
4
1 + Γ6

1P̃
6
1 + · · · )

= Γ1[1 + Γ2
1P̃

2
1 − P̃ 2

1 − Γ2
1P̃

4
1 + Γ4

1P̃
4
1 − Γ4

1P̃
6
1 + Γ6

1P̃
6
1 + · · · ]

= Γ1[1 + (Γ2
1 − 1)P̃ 2

1 + Γ2
1(Γ2

1 − 1)P̃ 4
1 + Γ4

1(Γ2
1 − 1)P̃ 6

1 + · · · ].

Now use

P̃ 2n
1 (ω) ↔ δ(t− nτ), τ =

∆

v1
cos θt.

Also
(Γ2

1 − 1) = −(1− Γ1)(1 + Γ1) = −T1T2.
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So

Er(t) = Γ1E
i
⊥(t)− Γ1T1T2E

i
⊥(t− 2τ)− Γ3

1T1T2E
i
⊥(t− 3τ)− Γ5

1T1T2E
i
⊥(t− 5τ) + · · · .

Each of these terms may be interpreted in terms of multiple reflections within the slab, as shown
in Figure 26.

Figure 26

4.13. See Figure 27.

Figure 27

We have
ki = kixx̂ + kizẑ, kix = k sin θi, kiz = k cos θi, (kix)2 + (kiz)

2 = k2.

Region 0:

Ẽi
⊥ = ŷẼi⊥e

−j(kixx+kizz), H̃i
⊥ =

−x̂kiz + ẑkix
k

Ẽi⊥
η
e−j(k

i
xx+kizz),

Ẽr
⊥ = ŷẼr⊥e

−j(kixx−kizz), H̃r
⊥ =

x̂kiz + ẑkix
k

Ẽr⊥
η
e−j(k

i
xx−kizz).

98



Region 1: k2
x + k2

z = k2
0,

Ẽ+
⊥ = ŷẼ+

⊥e
−j(kxx+kzz), H̃+

⊥ =
−x̂kz + ẑkx

k0

Ẽ+
⊥
η0
e−j(kxx+kzz),

Ẽ−⊥ = ŷẼ−⊥e
−j(kxx−kzz), H̃−⊥ =

x̂kz + ẑkx
k0

Ẽ−⊥
η0
e−j(kxx−kzz).

Region 2: (ktx)2 + (ktz)
2 = k2,

Ẽt
⊥ = ŷẼt⊥e

−j(ktxx+ktzz), H̃t
⊥ =

−x̂ktz + ẑktx
k

Ẽt⊥
η
e−j(k

t
xx+ktzz).

Note: Applying the boundary conditions, we find that to match the phase of the field at the
interface we must have

kx = ktx = kix,

so

ktz = kiz, kz =
√
k2

0 − (kix)2 =
√
k2

0 − k2 sin2 θi.

If k2
0 − k2 sin2 θi < 0, then kz = −jk̄z where k̄z =

√
k2 sin2 θi − k2

0. This condition holds if

k2 sin2 θi > k2
0, or

sin2 θi >
k2

0

k2
=

1

εr
so that θi > sin−1 1

√
εr

= θc.

To find Ẽr⊥, Ẽt⊥, Ẽi⊥, and Ẽ+
⊥ , we apply the boundary conditions.

(1) Tangential E continuous at z = z1:

Ẽi⊥e
−jkizz1 + Ẽr⊥e

jkizz1 = Ẽ+
⊥e
−jkzz1 + Ẽ−⊥e

jkzz1 ,

or

P1Ẽ
i
⊥ +

1

P1
Ẽr⊥ = Q1Ẽ

+
⊥ +

1

Q1
Ẽ−⊥

where
P1 = e−jk

i
zz1 , Q1 = e−jkzz1 .

(2) Tangential H continuous at z = z1:

−k
i
z

k

Ẽi⊥
η
P1 +

kiz
k

Ẽr⊥
η

1

P1
= −kz

k0

Ẽ+
⊥
η0
Q1 +

kz
k0

Ẽ−⊥
η0

1

Q1

or
1

Z1⊥

(
Ẽr⊥

1

P1
− P1Ẽ

i
⊥

)
=

1

Z2⊥

(
Ẽ−⊥

1

Q1
−Q1Ẽ

+
⊥

)
where

Z1⊥ =
kη

kiz
, Z2⊥ =

k0η0

kz
.
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(3) Tangential E continuous at z = z2:

Ẽ+
⊥e
−jkzz2 + Ẽ−⊥e

jkzz2 = Ẽt⊥e
−jkizz2 ,

or

Q2Ẽ
+
⊥ +

1

Q2
Ẽ−⊥ = P2Ẽ

t
⊥

where
P2 = e−jk

i
zz2 , Q2 = e−jkzz2 .

(4) Tangential H continuous at z = z2:

−kz
k0

Ẽ+
⊥
η0
Q2 +

kz
k0

Ẽ−⊥
η0

1

Q2
= −k

i
z

k

Ẽt⊥
η
P2

or

− 1

Z2⊥
Ẽ+
⊥Q2 +

1

Z2⊥
Ẽ−⊥

1

Q2
= − 1

Z1⊥
Ẽt⊥P2.

So we have

P1Ẽ
i
⊥ +

1

P1
Ẽr⊥ =

(
Ẽ−⊥

1

Q1
+ Ẽ+

⊥Q1

)
, (1)

− P1Ẽ
i
⊥ +

1

P1
Ẽr⊥ =

Z1⊥
Z2⊥

(
Ẽ−⊥

1

Q1
− Ẽ+

⊥Q1

)
, (2)

Ẽt⊥P2 =

(
Ẽ−⊥

1

Q2
+ Ẽ+

⊥Q2

)
, (3)

− Ẽt⊥P2 =
Z1⊥
Z2⊥

(
Ẽ−⊥

1

Q2
− Ẽ+

⊥Q2

)
. (4)

Subtracting (2) from (1) we get

2P1Ẽ
i
⊥ = Ẽ−⊥

1

Q1

(
1− Z1⊥

Z2⊥

)
+ Ẽ+

⊥Q1

(
1 +

Z1⊥
Z2⊥

)
. (*)

Adding (4) to (3) we get

−Z1⊥
Z2⊥

(
Ẽ−⊥ − Ẽ

+
⊥Q2

)
= Ẽ−⊥

1

Q2
+ E+

⊥Q2,

hence

Ẽ−⊥ = −Ẽ+
⊥Q

2
2

Z2⊥ − Z1⊥
Z2⊥ + Z1⊥

= −Ẽ+
⊥Q

2
2Γ.

Substitution into (1) yields

Ẽ+
⊥ =

2Z2⊥
Z1⊥ + Z2⊥

P1Q1

Q2
2

1
Q2

1

Q2
2
− Γ2

Ẽi⊥ = τẼi⊥.

Adding (2) to (1), we find that

Ẽr⊥ = P 2
1

Γ
(

1− Q2
1

Q2
2

)
Γ2 − Q2

1

Q2
2

Ẽi⊥.
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From (3) we obtain

Ẽt⊥ =
P1Q1

P2Q2

1− Γ2

Q2
1

Q2
2
− Γ2

Ẽi⊥.

Let

R =
Ẽr⊥
Ẽi⊥

= P 2
1

Γ
(

1− Q2
1

Q2
2

)
Γ2 − Q2

1

Q2
2

, T =
Ẽt⊥
Ẽi⊥

=
P1Q1

P2Q2

1− Γ2

Q2
1

Q2
2
− Γ2

.

Now use

Sav =
1

2
Re{Ě× Ȟ∗}.

(a) In region 0 at z = z1 we have

Ě = Ěi
⊥ + Ěr

⊥ = ŷĚi⊥

(
e−jk

i
zz1 +Rejk

i
zz1
)
e−jk

i
xx = ŷĚi⊥

(
P1 +

R

P1

)
e−jk

i
xx,

Ȟ = Ȟi
⊥ + Ȟr

⊥ =
1

kη
Ěi⊥

[(
−x̂kiz + ẑkix

)
e−jk

i
zz1 +

(
x̂kiz + ẑkix

)
ejk

i
z

]
e−jk

i
xx.

So

ẑ · Sav =
1

2
Re

{
ŷĚi⊥

(
P1 +

R

P1

)
e−jk

i
xx × kiz

kη
x̂Ěi∗⊥

(
−P ∗1 +

R∗

P ∗1

)
ejk

i
xx

}
· ẑ

=
1

2
Re

{
− 1

Z1⊥
|Ěi⊥|2

(
−1 +

R

P 2
1

−
(
R

P 2
1

)∗
+ |R|2

)}
=

1

2

1

Z1⊥
|Ěi⊥|2(1− |R|2).

(b) In region 1 at z = z2 we obtain, similarly,

ẑ · Sav = − k̄z
η0k0
|τ |2|Ěi⊥|2 Im{Γ}.

(c) In region 2 at z = z2,

ẑ · Sav =
1

2
|T |2 1

Z1⊥
|Ěi⊥|2.

Power is conserved if 1− |R|2 = |T |2.

4.14. Begin with the wave equation (4.319):

1

ε
∇× (∇× H̃)− ω2 ˜̄µ · H̃ = 0.

Assuming H̃(r) = H̃0e
−jkzz where kz = β − jα, we have

∇× H̃ = ∇×
(
H̃0e

−jkzz
)

= −jkzẑ× H̃0e
−jkzz

101



and

∇× (∇× H̃) = −jkz∇×
(
ẑ× H̃0e

−jkzz
)

= −jkz
[
e−jkzz∇× (ẑ× H̃0)− (ẑ× H̃0)e−jkzz

]
= (−jkz)2ẑ× (ẑ× H̃0)e−jkzz

= k2
ze
−jkzzH̃0.

Substitute into (4.319) to get
k2
z

ε̃
H̃0e

−jkzz = ω2 ˜̄µ · H̃0e
−jkzz

or
k2
zH̃0 = ω2ε̃˜̄µ · H̃0. (1)

Now let

˜̄µ =

µ̃xx µ̃xy 0
µ̃yx µ̃yy 0
0 0 µ̃0

 .

Write (1) in component form:

k2
zH̃0x = ω2ε̃µ̃xxH̃0x + ω2ε̃µ̃xyH̃0y,

k2
zH̃0y = ω2ε̃µ̃yxH̃0x + ω2ε̃µ̃yyH̃0y,

or (
k2
z − ω2ε̃µ̃xx −ω2ε̃µ̃xy
−ω2ε̃µ̃yx k2

z − ω2ε̃µ̃yy

)(
H̃0x

H̃0y

)
=

(
0
0

)
.

A nontrivial solution requires the determinant of the coefficient matrix to vanish:

(k2
z − ω2ε̃µ̃xx)(k2

z − ω2ε̃µ̃yy)− ω4ε̃2µ̃yxµ̃xy = 0,

k4
z + [−ω2ε̃(µ̃xx + µ̃yy)]k

2
z + ω4ε̃2(µ̃xxµ̃yy − µ̃xyµ̃yx) = 0.

But µ̃xx = µ̃yy and µ̃yx = −µ̃xy, so

k4
z + [−2ω2ε̃µ̃xx]k2

z + ω4ε̃2(µ̃2
xx + µ̃2

xy) = 0.

We get

k2
z =

2ω2ε̃µ̃xx ±
√

4ω4ε̃2µ̃2
xx − 4ω4ε̃2(µ̃2

xx + µ̃2
xy)

2
= ω2ε̃µ̃xx ± ω2ε̃

√
−µ̃2

xy = ω2ε̃(µ̃xx ∓ jµ̃xy).

Now examine (4.118) and (4.119). Assume α� 1. Near resonance when ω ≈ ω0, the denominator
is

[ω2(1 + α2)− ω2
0]2 + 4α2ω2ω2

0 ≈ [ω2
0(1 + α2)− ω2

0]2 + 4α2ω2
0ω

2
0

≈ ω4
0α

4 + 4α2ω4
0

≈ 4α2ω4
0.
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So

µ̃xx ≈ µ0 − µ0ωM
−α2ω3

0 + j2ω3
0α

4α2ω4
0

= µ0

[
1− ωM

4ω0

]
− jµ0

ωM
2αω0

,

µ̃xy ≈
2µ0αω

3
0ωM − jµ0ωMω

3
0α

2

4α2ω4
0

≈ µ0
ωM

2ω0α
− jµ0

ωMα

4ω0
.

Thus

µ̃xx + jµ̃xy ≈ µ0

(
1− ωM

4ω0

)
− jµ0

ωM
2αω0

+ jµ0
ωM

2ω0α
+ µ0

ωMα

4ω0

≈ µ0

(
1− ωM

4ω0
+
ωMα

4ω0

)
≈ µ0

(
1− ωM

4ω0

)
, a real number.

Therefore k2
z = (β− − jα−)2 is approximately real, hence α− ≈ 0. Also,

µ̃xx − jµ̃xy ≈ µ0

(
1− ωM

4ω0

)
− jµ0

ωM
2αω0

− jµ0
ωM

2ω0α
− µ0

ωMα

4ω0

≈ µ0

(
1− ωM

4ω0

)
− jµ0

ωM
αω0

≈ −jµ0
ωM
αω0

.

So
k2
z = (β+ − jα+)2 ≈ −jµ0

ωM
αω0

ω2
0 ε̃,

β+ − jα+ ≈
1− j√

2
ω0
√
µ0ε0

√
ωM
αω0

,

α+ ≈ k0

√
ωM

2αω0
� α−.

4.15. For TE polarization,

H̃z = − j
4
H̃z0H

(2)
0 (kρ), Ẽφ = −ZTE

H̃z0

4
H

(2)
1 (kρ),

where k = β − jα and ZTE = k/ωε̃c. For kρ� 1, use

H
(2)
0 (kρ) ∼

√
2

πkρ
e−j(kρ−π/4), H

(2)
1 (kρ) ∼

√
2

πkρ
e−j(kρ−3π/4).

Then

Sav =
1

2
Re
{
φ̂Ěφ × ẑȞ∗z

}
= ρ̂

1

2
Re

{
−ZTE

Ȟz0

4

√
2

πkρ
e−j(βρ−3π/4)

(
j

4

)
Ȟ∗z0

√
2

πk∗ρ
ej(βρ−π/4)e−αρ

}
= ρ̂

1

2
Re

{
−ZTE

|Ȟz0|2

16|k|
2

πρ
e−2αρjejπ/2

}
= ρ̂Re{ZTE}

e−2αρ

16π|k|ρ
|Ȟz0|2.
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The power passing through a cylinder of radius ρ and length l is

Pav =

∫
S

Sav · ρ̂ dS

=

∫ l

0

∫ 2π

0
Re{ZTE}

e−2αρ

16π|k|ρ
|Ȟz0|2ρ dφ dz

= 2πlRe{ZTE}
e−2αρ

16π|k|
|Ȟz0|2.

Hence
Pav
l

= Re{ZTE}
e−2αρ

8|k|
|Ȟz0|2.

For a lossless region we have k = β − jα = β,

ZTE =
k

ωε
=
ω
√
µε

ωε
=

√
µ

ε
= η (real),

and
Pav
l

=
η|Ȟz0|2

8k
.

4.16. We have

Ẽsz =
∞∑
n=0

DnH
(2)
n (k0ρ) cosnφ

where

Dn = Ẽ0εnj
−n Jn(k0a)

H
(2)
n (k0a)

.

For k0ρ� 1 we have

H(2)
n (k0ρ) ≈

√
2

πk0ρ
e−j(k0ρ−π4−nπ).

Therefore

Ẽsz ≈
∞∑
n=0

Ẽ0εnj
−n Jn(k0a)

H
(2)
n (k0a)

√
2

πk0ρ
e−jk0ρejπ/4ejnπ/2 cosnφ

=

√
2j

πk0

e−jk0ρ

√
ρ
Ẽ0

∞∑
n=0

εn
Jn(k0a)

H
(2)
n (k0a)

cosnφ.

Then

σ2D = 2πρ

(
2
πk0

)
Ẽ2

0

∣∣∣∣∑∞n=0 εn
Jn(k0a)

H
(2)
n (k0a)

cosnφ

∣∣∣∣2
ρẼ2

0

=
4

k0

∣∣∣∣∣
∞∑
n=0

εn
Jn(k0a)

H
(2)
n (k0a)

cosnφ

∣∣∣∣∣
2

.
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For small ka, use the approximations (E.50), (E.52), and (E.53).

Since N0(x) is logarithmic for x � 1 while Nn(x) ∼ x−n for n > 0, the n = 0 term from the sum
dominates.

J0(k0a) ≈ 1,

H
(2)
0 (k0a) ≈ jN0(k0a) ≈ j 2

π
[ln k0a− ln 2− 0.57722] ≈ j 2

π
ln

(
k0a

e0.57722

2

)
≈ j 2

π
ln(0.891k0a),

σ2D ≈
4

k0

∣∣∣∣∣ 1

j 2
π ln(0.891k0a)

∣∣∣∣∣
2

=
π2a

k0a

1

ln2(0.891k0a)
.

4.17. Start with
Ẽi = ŷẼ0e

−jk0x = (ρ̂ sinφ+ φ̂ cosφ)Ẽ0e
−jk0ρ cosφ

and

H̃i = ẑ
Ẽ0

η0
e−jk0x = ẑ

Ẽ0

η0
e−jk0ρ cosφ.

Internal to the cylinder (ρ < a) we have

H̃z =

∞∑
n=0

BnJn(kρ) cosnφ,

Ẽφ =
jZTE
k

∂Hz

∂ρ
=
∞∑
n=0

BnjZTEJ
′
n(kρ) cosnφ,

Ẽρ = −j ZTE
k

1

ρ

∂Hz

∂φ
=
∞∑
n=0

j
ZTE
k

n

ρ
BnJn(kρ) sinnφ.

External to the cylinder (ρ > a) we have

H̃s
z =

∞∑
n=0

DnH
(2)
n (k0ρ) cosnφ,

Ẽsφ =
∞∑
n=0

jη0DnH
(2)′
n (k0ρ) cosnφ,

Ẽsρ =
∞∑
n=0

j
η0

k0

n

ρ
DnJn(k0ρ) sinnφ.

Boundary condition 1: H̃z is continuous at ρ = a.

H̃ i
z + H̃s

z = H̃z =⇒ Ẽ0

η0
e−jk0a cosφ +

∞∑
n=0

DnH
(2)
n (k0a) cosnφ =

∞∑
n=0

BnJn(ka) cosnφ.

Apply orthogonality:∫ π

−π

Ẽ0

η0
e−jk0a cosφ cosmφdφ+

∞∑
n=0

DnH
(2)
n (k0a)

∫ π

−π
cosmφ cosnφdφ

=

∞∑
n=0

BnJn(ka)

∫ π

−π
cosmφ cosnφdφ,
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which gives
Ẽ0

η0
2πεmj

−mJm(k0a) + 2πDmH
(2)
m (k0a) = 2πBmJm(ka). (1)

Boundary condition 2: Ẽφ is continuous at ρ = a.

cosφẼ0e
−jk0a cosφ +

∞∑
n=0

DnjZTEH
(2)′
n (k0a) cosnφ =

∞∑
n=0

BnjZTEJ
′
n(ka) cosnφ.

Apply orthogonality:

Ẽ0

∫ π

−π
cosφ cosmφe−jk0a cosφ dφ+

∞∑
n=0

Dnjη0H
(2)′
n (k0a)

∫ π

−π
cosmφ cosnφdφ

=
∞∑
n=0

BnjZTEJ
′
n(ka)

∫ π

−π
cosmφ cosnφdφ,

which gives
εmẼ0j2πj

−mJ ′m(k0a) +Dmjη02πH(2)′
m (k0a) = BmjZTE2πJ ′m(ka). (2)

Solving (1) and (2) simultaneously, we get

Dm = −Ẽ0

η0
εmj

−m Jm(k0a)J ′m(ka)− η0

ZTE
Jm(ka)J ′m(k0a)

H
(2)
m (k0a)J ′m(ka)− η0

ZTE
H

(2)′
m (k0a)Jm(ka)

and

Bm =
Ẽ0

η0
εmj

−m Jm(k0a)H
(2)′
m (k0a)− J ′m(k0a)H

(2)
m (k0a)

Jm(ka)H
(2)′
m (k0a)− ZTE

η0
J ′m(ka)H

(2)
m (k0a)

.

For a PEC cylinder, use

ZTE
η0
→ 0 =⇒ Dm = −Ẽ0

η0
εmj

−m J ′m(k0a)

H
(2)′
m (k0a)

.

Then

H̃s
z = −

∞∑
n=0

Ẽ0

η0
εnj
−n J ′n(k0a)

H
(2)′
n (k0a)

H(2)
n (k0ρ) cosnφ.

Also,

H̃ i
z =

Ẽ0

η0
e−jk0ρ cosφ =

∞∑
n=0

Ẽ0

η0
εnj
−nJn(k0ρ) cosnφ.

Thus, the total field external to the cylinder is

H̃tot
z =

Ẽ0

η0

∞∑
n=0

εnj
−n

[
Jn(k0ρ)− J ′n(k0a)

H
(2)′
n (k0a)

H(2)
n (k0ρ)

]
cosnφ

=
Ẽ0

η0

∞∑
n=0

εnj
−n

H
(2)′
n (k0a)

[
Jn(k0ρ)H(2)′

n (k0a)− J ′n(k0a)H(2)
n (k0ρ)

]
cosnφ.
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4.18. The incident field is given by

Ẽi = ẑẼ0e
−jk0ρ cosφ, H̃i = −(ρ̂ sinφ+ φ̂ cosφ)

Ẽ0

η0
e−jk0ρ cosφ.

In region 1 (a ≤ ρ ≤ b),

Ẽ1
z (ρ, φ) =

∞∑
n=0

[AnJn(kρ) +BnH
(2)
n (kρ)] cosnφ,

H̃1
φ(ρ, φ) =

∞∑
n=0

(
− j
η

)
[AnJ

′
n(kρ) +BnH

(2)′
n (kρ)] cosnφ.

In region 2 (ρ ≥ b),

Ẽ2
z (ρ, φ) =

∞∑
n=0

CnH
(2)
n (k0ρ) cosnφ,

H̃2
φ(ρ, φ) =

∞∑
n=0

(
− j

η0

)
CnH

(2)′
n (k0ρ) cosnφ.

Boundary condition 1: Ẽ1
z = 0 at ρ = a:

AnJn(ka) +BnH
(2)
n (ka) = 0 =⇒ Bn = −An

Jn(ka)

H
(2)
n (ka)

.

So

Ẽ1
z =

∞∑
n=0

An

[
Jn(kρ)−H(2)

n (kρ)
Jn(ka)

H
(2)
n (ka)

]
cosnφ,

H̃1
z =

∞∑
n=0

(
− j
η

)
An

[
J ′n(kρ)−H(2)′

n (kρ)
Jn(ka)

H
(2)
n (ka)

]
cosnφ.

Boundary condition 2: Etan continuous at ρ = b:

Ẽ0e
−jk0b cosφ +

∞∑
n=0

CnH
(2)
n (k0b) cosnφ =

∞∑
n=0

An

[
Jn(kb)−H(2)

n (kb)
Jn(ka)

H
(2)
n (ka)

]
cosnφ.

Apply orthogonality to obtain

Ẽ02πεnj
−nJn(k0b) + 2πCnH

(2)
n (k0b) = 2πAnFn

or
AnFn − CnH(2)

n (k0b) = εnj
−nJn(k0b)Ẽ0

where

Fn =

[
Jn(kb)−H(2)

n (kb)
Jn(ka)

H
(2)
n (ka)

]
cosnφ.
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Boundary condition 3: Htan continuous at ρ = b:

− cosφ
Ẽ0

η0
e−jk0b cosφ+

∞∑
n=0

(
− j

η0

)
CnH

(2)′
n (k0b) cosnφ =

∞∑
n=0

(
− j
η

)
An

[
J ′n(kb)−H(2)′

n (kb)
Jn(ka)

H
(2)
n (ka)

]
cosnφ.

Apply orthogonality to get

−j2π Ẽ0

η0
εnj
−nJ ′n(k0b) + 2πCn

(
− j

η0

)
H(2)′
n (k0b) = 2π

(
− j
η

)
AnGn

or
An

η0

η
Gn − CnH(2)′

n (k0b) = Ẽ0εnj
−nJ ′n(k0b)

where

Gn =

[
J ′n(kb)−H(2)′

n (kb)
Jn(ka)

H
(2)
n (ka)

]
cosnφ.

Solving the equations

AnFn − CnH(2)
n (k0b) = Ẽ0εnj

−nJn(k0b),

An
η0

η
Gn − CnH(2)′

n (k0b) = Ẽ0εnj
−nJ ′n(k0b),

simultaneously, we obtain

Cn = −εnj−nẼ0

FnH
(2)′
n (k0b)− η0

η GnH
(2)
n (k0b)

FnJ ′n(k0b)− η0

η GnJn(k0b)

and

An = −
2j
πk0b

Ẽ0εnj
−n

FnH
(2)′
n (k0b)− η0

η GnH
(2)
n (k0b)

.

4.19. See Figure 28. By symmetry the fields should be even about the line φ = φ0. Hence we
expand them in terms of cosn(φ− φ0).

For ρ > ρ0 we have

Ẽ2
z =

∞∑
n=0

Cn cosn(φ− φ0)H(2)
n (k0ρ),

H̃2
φ =

∞∑
n=0

(
−j
η0

)
Cn cosn(φ− φ0)H(2)′

n (k0ρ).

For ρ < ρ0 we have

Ẽ1
z =

∞∑
n=0

[
AnJn(k0ρ) +BnH

(2)
n (k0ρ)

]
cosn(φ− φ0),

H̃1
φ =

∞∑
n=0

(
−j
η0

)[
AnJ

′
n(k0ρ) +BnH

(2)′
n (k0ρ)

]
cosn(φ− φ0).
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Figure 28

Boundary condition 1: Ẽz = 0 at ρ = a. By orthogonality we get

Bn = −An
Jn(k0a)

H
(2)
n (k0a)

,

so

Ẽ1
z =

∞∑
n=0

An

[
Jn(k0ρ)− Jn(k0a)

H
(2)
n (k0a)

H(2)
n (k0ρ)

]
cosn(φ− φ0)

=
∞∑
n=0

A′n

[
Jn(k0ρ)H(2)

n (k0a)− Jn(k0a)H(2)
n (k0ρ)

]
cosn(φ− φ0)

where

A′n =
An

H
(2)
n (k0a)

.

Also,

H̃1
φ =

∞∑
n=0

(
−j
η0

)
A′n

[
J ′n(k0ρ)H(2)

n (k0a)− Jn(k0a)H(2)′
n (k0ρ)

]
cosn(φ− φ0).

Boundary condition 2: Ẽz continuous at ρ = ρ0. By orthogonality

CnH
(2)
n (k0ρ0) = A′n

[
Jn(k0ρ0)H(2)

n (k0a)− Jn(k0a)H(2)
n (k0ρ0)

]
= A′nFn, say.

Boundary condition 3: H̃φ is discontinuous at the surface current

J̃s = ẑĨ
δ(φ− φ0)

ρ0
.

We have

H̃φ(ρ+
0 , φ)− H̃φ(ρ−0 , φ) = Ĩ

δ(φ− φ0)

ρ0
,
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∞∑
n=0

(
−j
η0

)
Cn cosn(φ− φ0)H(2)′

n (k0ρ0)

−
∞∑
n=0

(
−j
η0

)
A′n

[
J ′n(k0ρ)H(2)

n (k0a)− Jn(k0a)H(2)′
n (k0ρ)

]
cosn(φ− φ0) = Ĩ

δ(φ− φ0)

ρ0
.

Multiply by cosm(φ− φ0) and apply the orthogonality relation∫ π

−π
cosn(φ− φ0) cosm(φ− φ0) dφ =

2π

εn
δmn

to get

CnH
(2)′
n (k0ρ0)

(
−j
η0

)
2π

εn
−A′nGn

(
−j
η0

)
2π

εn
=

∫ π

−π
Ĩ
δ(φ− φ0)

ρ0
cosm(φ− φ0) dφ =

Ĩ

ρ0

where
Gn = J ′n(k0ρ)H(2)

n (k0a)− Jn(k0a)H(2)′
n (k0ρ).

Solving the equations

CnH
(2)
n (k0ρ0)−A′nFn = 0,

CnH
(2)′
n (k0ρ0)−A′nGn = εnjη0

Ĩ

2πρ0
,

simultaneously and back-substituting, we obtain

An = εnjη0
Ĩ

2πρ0

H
(2)
n (k0ρ0)H

(2)
n (k0a)

FnH
(2)′
n (k0ρ0)−GnH(2)

n (k0ρ)

Bn = −εnjη0
Ĩ

2πρ0

H
(2)
n (k0ρ0)Jn(k0a)

FnH
(2)′
n (k0ρ0)−GnH(2)

n (k0ρ)

and

Cn = εnjη0
Ĩ

2πρ0

FnH
(2)
n (k0a)

FnH
(2)′
n (k0ρ0)−GnH(2)

n (k0ρ)
.

4.20. Let

ψ̃(x, y) =
k

2π

∫
A(k cos ξ)e−jkx cos ξe±jky sin ξ sin ξ dξ.

An important question is: What is the path of integration? Compare with

u(x, y) =
1

2π

∫ ∞+j∆

−∞+j∆
A(kx)e−jkxxe−j

√
k2−k2

xy dkx.

The integration variable must go through the same values during integration in each case.

Simple but important case: k real =⇒ ∆→ 0.
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Use

cos z = cos(u+ jv) = cosu cosh v − j sinu sinh v,

sin z = sin(u+ jv) = sinu cosh v + j cosu sinh v.

Case 1: y > 0. Choose ky = −k sin ξ. (Note: minus sign is chosen by convention. Others (e.g.,
Born and Wolf) choose a plus sign.)

kx −jky = −j
√
k2 − k2

x ξ kx = k cos ξ −jky = jk sin ξ

kx −
√
k2
x − k2 ξr + jξi −k cosh ξi jk(−j sinh ξi) = k sinh ξi

[−∞,−k] [−∞, 0] [π − j∞,−π] [∞,−k] [−∞, 0]

kx −j
√
k2 − k2

x ξr k cos ξr jk sin ξr

[−k, k] [0,−jk,−jk, 0] [−π, 0] [−k, k] [0,−jk,−jk, 0]

kx −
√
k2
x − k2 ξr + jξi k cosh ξi jk(j sinh ξi) = −k sinh ξi

[k,∞] [0,−∞] [0, j∞] [k,∞] [0,−∞]

Figure 29

The case for y < 0 is treated similarly. The resulting contour C< is identical to C>.

4.21. For a magnetic line source we have TEz fields so that Ẽz = 0. Let

H̃z(x, y) =


1

2π

∫ ∞+j∆

−∞+j∆
Ã+(kx)e−jkxxe−jkyy dkx, y > 0,

1

2π

∫ ∞+j∆

−∞+j∆
Ã−(kx)e−jkxxe+jkyy dkx, y < 0.

From (4.225) we have

Ẽx =
1

jωε̃c
∂H̃z

∂y
,
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so

Ẽx =


1

2π

∫ ∞+j∆

−∞+j∆

(
−ky
ωεc

)
Ã+(kx)e−jkxxe−jkyy dkx, y > 0,

1

2π

∫ ∞+j∆

−∞+j∆

(
+ky
ωε̃c

)
Ã−(kx)e−jkxxe+jkyy dkx, y < 0.

BC 1) Tangential H̃ is continuous at y = 0. This implies

Ã+(kx)− Ã−(kx) = 0 (A)

BC 2) n̂12 × (Ẽ1 − Ẽ2) = −J̃ms = −Ĩmδ(x). This implies

−Ã+(kx)− Ã−(kx) = Ĩm
ωε̃c

ky
(B)

Adding (A) and (B) we obtain

−2Ã−(kx) = Ĩm
ωε̃c

ky
so

Ã+(kx) = Ã−(kx) = −Ĩm
ωε̃c

2ky
.

Finally,

H̃z(x, y) = −ωε̃
cĨm

2π

∫ ∞+j∆

−∞+j∆

e−jky |y|

2ky
e−jkxx dkx.

4.22. See Figure 30. In region 1 we need both upward and downward traveling waves:

Figure 30

Ẽ+
z1 =

1

2π

∫ ∞+j∆

−∞+j∆
Ã+(kx)e−jkyye−jkxx dkx, ky =

√
k2 − k2

x

Ẽ−z1 =
1

2π

∫ ∞+j∆

−∞+j∆
Ã−(kx)ejkyye−jkxx dkx,

H̃+
x1 =

1

2π

∫ ∞+j∆

−∞+j∆

(
ky
ωµ̃

)
Ã+(kx)e−jkyye−jkxx dkx,

H̃−x1 =
1

2π

∫ ∞+j∆

−∞+j∆

(
− ky
ωµ̃

)
Ã−(kx)ejkyye−jkxx dkx.
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In region 2 we need only upward traveling waves:

Ẽz2 =
1

2π

∫ ∞+j∆

−∞+j∆
B̃(kx)e−jkyye−jkxx dkx,

H̃x2 =
1

2π

∫ ∞+j∆

−∞+j∆

(
ωµ̃

ky

)
B̃(kx)e−jkyye−jkxx dkx.

Boundary condition 1: Ẽz = 0 at y = 0.

Ã−(kx) = −Ã+(kx),

Ẽz1 = Ẽ+
z1 + Ẽ−z1 =

1

2π

∫ ∞+j∆

−∞+j∆
Ã+(kx)

[
e−jkyy − ejkyy

]
e−jkxx dkx,

H̃x1 =
1

2π

∫ ∞+j∆

−∞+j∆
Ã+(kx)

(
kx
ωµ̃

)[
e−jkyy + ejkyy

]
e−jkxx dkx.

Boundary condition 2: Ẽz continuous at y = h.

Ã+
[
e−jkyh − ejkyh

]
= B̃e−jkyh,

B̃ = Ã+
[
1− e2jkyh

]
.

Boundary condition 3:

H̃x1 − H̃x2 = J̃zs = Ĩδ(x) = Ĩ
1

2π

∫ ∞+j∆

−∞+j∆
e−jkxx dkx,

Ã+
[
e−jkyh + ejkyh

]
− Ã+

[
1− e2jkyh

]
e−jkyh = Ĩ

ωµ̃

ky
,

Ã+ = Ĩ
ωµ̃

2ky
e−jkyh.

Thus

Ẽz1 =
1

2π

∫ ∞+j∆

−∞+j∆
Ĩ
ωµ̃

2ky

[
e−jky(y+h) − ejky(y−h)

]
e−jkxx dkx,

Ẽz2 =
1

2π

∫ ∞+j∆

−∞+j∆
Ĩ
ωµ̃

ky
e−jkyy

[
e−jkyh − ejkyh

]
e−jkxx dkx

=
1

2π

∫ ∞+j∆

−∞+j∆
Ĩ
ωµ̃

ky

[
e−jky(y+h) − e−jky(y−h)

]
e−jkxx dkx
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We can combine these two formulas using the absolute value function since

|y − h| =

{
y − h, y > h,

h− y, y < h.

The result,

Ẽz(x, y) = −ωµ̃Ĩ
2π

∫ ∞+j∆

−∞+j∆

e−jky |y−h| − e−jky(y+h)

2ky
e−jkxx dkx,

matches (4.403) and (4.406) when split into two terms.

4.23. The impressed magnetic field is, from (4.402),

H̃ i
z(x, y) = −ωε̃

c
1Ĩm

2π

∫ ∞+j∆

−∞+j∆

e−jky1|y−h|

2ky1
e−jkxx dkx, ky1 =

√
k2

1 − k2
x.

For 0 ≤ y < h the impressed field can be written as

H̃ i
z(x, y) = −ωε̃

c
1Ĩm

2π

∫ ∞+j∆

−∞+j∆

ejky1(y−h)

2ky1
e−jkxx dkx.

Use Ampere’s law in the form

Ẽx =
1

jωε̃

∂H̃z

∂y

to obtain

Ẽix(x, y) = − Ĩm
2π

∫ ∞+j∆

−∞+j∆

ejky1(y−h)

2
e−jkxx dkx, 0 ≤ y < h.

The scattered field in region 1 is

H̃s
z1(x, y) =

1

2π

∫ ∞+j∆

−∞+j∆
Ã1(kx)e−jky1ye−jkxx dkx,

Ẽsx1(x, y) =
1

2π

∫ ∞+j∆

−∞+j∆

(
− ky1

ωε̃c1

)
Ã1(kx)e−jky1ye−jkxx dkx.

The scattered field in region 2 is

H̃s
z2(x, y) =

1

2π

∫ ∞+j∆

−∞+j∆
Ã2(kx)ejky2ye−jkxx dkx,

Ẽsx2(x, y) =
1

2π

∫ ∞+j∆

−∞+j∆

(
ky2

ωεc2

)
Ã2(kx)ejky2ye−jkxx dkx.

Boundary condition 1: Ẽtan continuous at y = 0:

− Ĩm
2π

∫ ∞+j∆

−∞+j∆

e−jky1h

2
e−jkxx dkx −

1

2π

∫ ∞+j∆

−∞+j∆

ky1

ωε̃c1
Ã1e

−jkxx dkx =
1

2π

∫ ∞+j∆

−∞+j∆

ky2

ωε̃c2
Ã2e

−jkxx dkx,

or

−Ĩm
e−jky1h

2
− ky1

ωε̃c1
Ã1 =

ky2

ωε̃c2
Ã2.
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Boundary condition 2: H̃tan continuous at y = 0:

−ωε̃c1Ĩm
e−jky1h

2ky1
+ Ã1 = Ã2.

Solving simultaneously, we obtain

Ã1 =
ε̃c1ky2 − ε̃c2ky1

ε̃c1ky2 + ε̃c2ky1
F, Ã2 = 2F

ε̃c2ky1

ε̃c2ky1 + ε̃c1ky2

where

F = −Ĩm
ωε̃c1
ky1

e−jky1h

2
.

Substitution yields

H̃s
z1(x, y) = − Ĩmωε̃

c
1

2π

∫ ∞+j∆

−∞+j∆

e−jky1(y+h)

2ky1
RTE(kx)e−jkxx dkx,

H̃s
z2(x, y) = − Ĩmωε̃

c
2

2π

∫ ∞+j∆

−∞+j∆

e−jky2(y−hky1/ky2)

2ky2
TTE(kx)e−jkxx dkx,

where

RTE =
ε̃c1ky2 − ε̃c2ky1

ε̃c1ky2 + ε̃c2ky1
, TTE =

2ε̃c1ky2

ε̃c1ky2 + ε̃c2ky1
= 1 +RTE .

4.24. See Figure 31.

Figure 31

Write

H̃i = ẑH̃0e
−jkixxe−jk

i
yy, kix = −k cosφ0, kiy = −k sinφ0, kix = −

√
k2 − (kiy)

2,

Ẽi = ηH̃0(x̂ sinφ0 − ŷ cosφ0)e−jk
i
xxe−jk

i
yy

=
ηH̃0

k
(−kiyx̂ + kixŷ)e−jk

i
xxe−jk

i
yy.
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Represent the scattered magnetic field in terms of an inverse transform:

H̃s
z =

1

2π

∫ ∞+j∆

−∞+j∆
Ã(ky)e

−jkxxe−jkyy dky, kx =
√
k2 − k2

y. (1)

To find Ẽs use

∇× H̃ = jωε̃Ẽ = x̂
∂H̃z

∂y
− ŷ

∂H̃z

∂x

to obtain

Ẽsz =
1

2π

∫ ∞+j∆

−∞+j∆
Ã(ky)

(
kx
ωε̃

)
e−jkxxe−jkyy dky.

Next we apply the boundary condition

ŷ · Ẽtot = 0 at x = 0, where Ẽtot = Ẽi + Ẽs.

We obtain

ηH̃0
kix
k
e−jk

i
yy +

1

2π

∫ ∞+j∆

−∞+j∆
Ã(ky)

(
kx
ωε̃

)
e−jkyy dky = 0.

Next use

e−jk
i
yy =

1

2π

∫ ∞+j∆

−∞+j∆

1

j(ky − kiy)
e−jkyy dky

to get

Ã(ky) = −ηH̃0
kix
k

(
ωε̃

kx

)
1

j(ky − kiy)
.

Substitution into (1) yields

H̃s
z = − 1

2π

∫ ∞+j∆

−∞+j∆
ηH̃0

kix
k

(
ωε̃

kx

)
1

j(ky − kiy)
e−jkxxe−jkyy dky

Let us evaluate this integral using the residue theorem.

H̃s
z =

1

2π
2πj lim

ky→kiy
(ky − kiy)

{
−ηH̃0

kix
k

(
ωε̃

kx

)
1

j(ky − kiy)
e−jkxxe−jkyy

}
.

Use
lim

ky→kiy
kx =

√
k2 − (kiy)

2 = −kix

to get

H̃ i
z = −ηH̃0

kix
k

(
ωε̃

−kix

)
e−jk

i
yyejk

i
xx =

ωε̃η

k
H̃0e

−jkiyyejk
i
xx.

Finally then,
H̃s = ẑH̃0e

−jkiyyejk
i
xx.
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Figure 32

4.25. See Figure 32.

We have ∆n = 2∆ and ∆n−1 = ∆,

θ0 = 0 =⇒ kx0 = 0 =⇒ kzn = kn, Zn = ηn.

So

kn = ω
√
µ0ε0 = k0, kn−1 = ω

√
µ04ε0 = 2k0, Zn =

√
µ0/ε0 = η0, Zn−1 =

√
µ0/4ε0 = η0/2.

Use (4.494):

cosκL =
1

4

(η0/2 + η0)2

η0η0/2
cos(k02∆ + 2k0∆)− 1

4

(η0/2− η0)2

η0η0/2
cos(k02∆− 2k0∆)

=
1

4
2

(
3

2

)2

cos(4k0∆)− 1

4
2

(
1

2

)2

=
9

8
cos(4k0∆)− 1

8
.

So

cos(4k0∆) =
8

9

[
cosκL+

1

8

]
,

4k0∆ = ± cos−1

(
8

9

[
cosκL+

1

8

])
+ 2nπ (n = 0,±1,±2, . . .).

With L = 2∆ + ∆ = 3∆ we get

k0∆ = ±1

4
cos−1

(
1

9
[8 cos(3κ∆) + 1]

)
+ n

π

2
.

A plot of k0∆ vs. κ∆ is shown below. The periodicity of the propagation constant is seen, as are
the pass bands and stop bands. The stop bands indicate ranges of frequency for which real values
of the propagation constant are not allowed. Thus, the wave is evanescent within the stop bands.
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κ∆ 

0

1

2
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4

k 0
∆

n=0, plus sign

n=1, minus sign

n=1, plus sign

n=2, minus sign

n=2, plus sign

STOP BAND

STOP BAND

Figure 33

4.26. See Figure 34.

Using T-matrices we can write(
T

(n)
11 T

(n)
12

T
(n)
21 T

(n)
22

)(
T

(n+1)
11 T

(n+1)
12

T
(n+1)
21 T

(n+1)
22

)(
T

(n+2)
11 T

(n+2)
12

T
(n+2)
21 T

(n+2)
22

)(
an+3

bn+3

)
=

(
an
bn

)
.

But, by periodicity of the medium,(
T11 T12

T21 T22

)(
an+3

bn+3

)
=

(
an
bn

)
= ejκL

(
an+3

bn+3

)
(1)

where L = ∆n + ∆n+1 + ∆n+2 and(
T11 T12

T21 T22

)
=

(
T

(n)
11 T

(n)
12

T
(n)
21 T

(n)
22

)(
T

(n+1)
11 T

(n+1)
12

T
(n+1)
21 T

(n+1)
22

)(
T

(n+2)
11 T

(n+2)
12

T
(n+2)
21 T

(n+2)
22

)
. (2)

Rewriting (1) we have the eigenvalue equation(
T11 − ejκL T12

T21 T22 − ejκL
)(

an+3

bn+3

)
=

(
0
0

)
for the allowed values of κ. Setting the determinant to zero we have

T11T22 − T12T21 − ejκL(T11 + T22) + e2jκL = 0.

Use

T11T22 − T12T21 =

∣∣∣∣T11 T12

T21 T22

∣∣∣∣ =

∣∣∣∣∣T (n)
11 T

(n)
12

T
(n)
21 T

(n)
22

∣∣∣∣∣
∣∣∣∣∣T (n+1)

11 T
(n+1)
12

T
(n+1)
21 T

(n+1)
22

∣∣∣∣∣
∣∣∣∣∣T (n+2)

11 T
(n+2)
12

T
(n+2)
21 T

(n+2)
22

∣∣∣∣∣ .
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Figure 34

Since ∣∣∣∣∣T (n)
11 T

(n)
12

T
(n)
21 T

(n)
22

∣∣∣∣∣ =
Zn−1

Zn
,

we have

T11T22 − T12T21 =
Zn−1

Zn

Zn
Zn+1

Zn+1

Zn+2
=
Zn−1

Zn

Zn
Zn+1

Zn+1

Zn−1
= 1.

So
1− ejκL(T11 + T22) + e2jκL = 0

or
e−jκL + ejκL = T11 + T22

or

cosκL =
T11 + T22

2
.

This is the desired eigenvalue equation for κ. Specific formulas for T11 and T22 may be found by
multiplying out (2) and simplifying using expressions from Section 4.14.2 of the text.

4.27.

ω2
p =

Nq2
e

ε0me
=

2× 1011(1.602× 10−19)2

(8.854× 10−12)(9.109× 10−31)
, ∴ ωp = 25.2× 106s−1.

(a)

σ̃ =
ε0ω

2
pν

ω2 + ν2
≈ ε0ν

ω2
p

ω2
=

{
5.71× 10−10 S/m at 5 MHz,

1.43× 10−12 S/m at 100 MHz,

ε̃ = ε0

[
1−

ω2
p

ω2 + ν2

]
≈ ε0

[
1−

ω2
p

ω2

]
=

{
0.355 ε0 at 5 MHz,

0.998 ε0 at 100 MHz.

(b)

ωc =
qe
me

B0 =
1.602× 10−19

9.109× 10−31
· 0.5× 10−4 = 8.79× 106s−1,
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ε̃ = ε0

[
1−

ω2
p

ω2 − ω2
c

]
=

{
0.300 ε0 at 5 MHz,

0.998 ε0 at 100 MHz,

ε̃z = ε0

[
1−

ω2
p

ω2

]
=

{
0.355 ε0 at 5 MHz,

0.988 ε0 at 100 MHz,

δ̃ = ε0
ωcω

2
p

ω(ω2 − ω2
c )

=

{
0.196 ε0 at 5 MHz,

2.26× 10−5 ε0 at 100 MHz.

4.28. (a)

Re ε̃− ε0 = ε0ω
2
p

ω2
0 − ω2

(ω2
0 − ω2)2 + 4ω2Γ2

. (*)

Setting
∂ Re ε̃

∂ω
= 0

and using the quotient rule for differentiation, we obtain

(ω2
0 − ω2)2 = 4ω2

0Γ2.

Solving for ω, we get
ω = ω0

√
1± 2Γ/ω0

and choose the minus sign for a minimum. Substitution back into (*) gives the desired result for
Re ε̃.
(b)

ω → 0 =⇒ Re ε̃ = 5ε0 = ε0

(
1 +

ω2
p

ω2
0

)
,

and

[Im ε̃]max = −16ε0 = −1

2
ε0
ω2
p

ω2
0

ω0

Γ
.

So

5 = 1 +
ω2
p

ω2
0

, 32 =
ω2
p

Γω0
.

Combining these, we obtain
Γ

ω0
=

1

8
.

Then

W = 2Γ =⇒ W

ω0
= 2

Γ

ω0
=

1

4
.

4.29. (a)

Ě(r, ω̌) = θ̂
E0

r sin θ
e−jβrejξ

E
.

(b)

Ȟ(r, ω̌) = r̂× θ̂
E0/η0

r sin θ
e−jβrejξ

E
= φ̂

E0/η0

r sin θ
e−jβrejξ

E
.

120



(c)

lim
r→∞

r
[
η0r̂× Ȟ + Ě

]
= lim

r→∞
r

[
η0r̂× φ̂

E0/η0

r sin θ
e−jβrejξ

E
+ θ̂

E0

r sin θ
e−jβrejξ

E

]
= lim

r→∞

[
−θ̂ E0

sin θ
e−jβrejξ

E
+ θ̂

E0

sin θ
e−jβrejξ

E

]
= 0.

lim
r→∞

r
[
r̂× Ě− η0Ȟ

]
= lim

r→∞
r

[
r̂× θ̂

E0

r sin θ
e−jβrejξ

E − η0φ̂
E0/η0

r sin θ
e−jβrejξ

E

]
= lim

r→∞

[
φ̂
E0

sin θ
e−jβrejξ

E − φ̂
E0

sin θ
e−jβrejξ

E

]
= 0.

4.30.
E(r, t) = E0 cos(ωt+ ξE), D(r, t) = D0 cos(ωt+ ξD).

we(r, t) =
1

2
E ·D =

1

2
E0 ·D0 cos(ωt+ ξE) cos(ωt+ ξD).

〈we(r, t)〉 =
ω

2π

∫ 2π/ω

0

1

2
E0 ·D0 cos(ωt+ ξE) cos(ωt+ ξD) dt

=
ω

2π

1

2
E0 ·D0

∫ 2π/ω

0

1

4

[
ejξ

E
ejωt + e−jξ

E
e−jωt

] [
ejξ

D
ejωt + e−jξ

D
e−jωt

]
dt

=
ω

2π

1

2
E0 ·D0

1

4

[
ejξ

E
ejξ

D

∫ 2π/ω

0
ej2ωt dt+ e−jξ

E
e−jξ

D

∫ 2π/ω

0
e−j2ωt dt

+ ejξ
E
e−jξ

D

∫ 2π/ω

0
dt+ e−jξ

E
ejξ

D

∫ 2π/ω

0
dt

]
=

1

2
E0 ·D0

1

4

[
ejξ

E
e−jξ

D
+ e−jξ

E
ejξ

D
]

=
1

2

1

4

[
E0e

jξE ·D0e
−jξD + (E0e

jξE ·D0e
−jξD)∗

]
=

1

2

1

4
2 Re

[
E0e

jξE ·D0e
−jξD

]
=

1

4
Re
{
Ě(r) · Ď∗(r)

}
.

4.31. Since
k2 = ω2µ̃(Re ε̃+ j Im ε̃) = (β − jα)2 = β2 − 2jαβ − α2,

we have
β2 − α2 = ω2µ̃Re ε̃, −2αβ = ω2µ Im ε̃.

Therefore

α =
ω2µ̃ Im ε̃

2β
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and we can back-substitute:

β2 −
(
ω2µ̃Re ε̃

2β

)2

= ω2µ̃Re ε̃.

Rearrange to obtain

β4 − β2ω2µ̃Re ε̃− 1

4
ω4µ̃(Im ε̃)2 = 0.

Use the quadratic formula to solve for β2, picking the positive sign so that β2 > 0:

β2 =
ω2µ̃Re ε̃

2

[
1 +

√
1 +

(Im ε̃)2

(Re ε̃)2

]
.

So

β = ω
√
µ̃Re ε̃

√√√√1

2

[√
1 +

(Im ε̃)2

(Re ε̃)2
+ 1

]
.

Then

α2 = β2 − ω2µ̃Re ε̃ =
ω2µ̃Re ε̃

2

[
1 +

√
1 +

(Im ε̃)2

(Re ε̃)2

]
− ω2µ̃Re ε̃ =

ω2µ̃Re ε̃

2

[
−1 +

√
1 +

(Im ε̃)2

(Re ε̃)2

]
so

α = ω
√
µ̃Re ε̃

√√√√1

2

[√
1 +

(Im ε̃)2

(Re ε̃)2
− 1

]
.

4.32. Phasor fields:

Ě(r) = x̂E0e
−jβz, Ȟ(r) = ŷ

E0

η0
e−jβz.

Complex Poynting theorem:

−1

2

∫
V

Ě · J̌∗ dV =
1

2

∮
S

(Ě× Ȟ∗) · dS− 2jω̌

∫
V

[
1

4
Ě · Ď∗ − 1

4
B̌ · Ȟ∗

]
dV

The first term is zero because J̌ = 0. Next,

Ě× Ȟ∗ = ẑ
E2

0

η0
=⇒ 1

2

∮
S

(Ě× Ȟ∗) · dS =
1

2

∫
top

E2
0

η0
dS − 1

2

∫
bottom

E2
0

η0
dS = 0.

Finally,
1

4
Ě · Ď∗ − 1

4
B̌ · Ȟ∗ =

1

4
ε0E

2
0 −

1

4
µ0
E2

0

η2
0

=
1

4
ε0E

2
0 −

1

4
µ0

E2
0

µ0/ε0
= 0.

4.33.

k = β − jα = ω
√
µ̃ε̃ = ω

√
µ0

1

µ0c2

(
2 + 10

c

ω

)2
=
ω

c

(
2 + 10

c

ω

)
=

2ω

c
+ 10 = β,

dβ

dω
=

2

c
, ∴ vg =

dω

dβ
=
c

2
.

vp =
ω

β
=

ω
2ω
c + 10

=
ωc

2ω + 10c
.
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4.34.
E(r, t) = Re

[
Ě(r)ejωt

]
= x̂E0 cos(ωt− βz)− ŷE0 sin(ωt− βz),

E2
x + E2

y = E2
0

[
cos2(ωt− βz) + sin2(ωt− βz)

]
= E2

0 .

This is a case of left-hand circular polarization.

4.35.

Pav =

∫
S

1

2
Ě× Ȟ∗ · dS =

∫
S

1

2
ĚθȞ

∗
φ dS =

∫ 2π

0

∫ π

0
Ě0e

−jβr Ě
∗
0

η0
ejβr

2

(βr)2
sin2 θr2 sin θ dθ dφ

=
|Ě0|2

η0

2

β2

∫ 2π

0
dφ

∫ π

0
sin3 θ dθ =

|Ě0|2

η0

16π

3β2
.

4.36. (a)

ǐt =

∮
C

Ȟ · dl =

∫ 2π

0

Ě0a

ηρ
φ̂ · φ̂ρ dφ = 2π

Ě0a

η
.

(b)

Pd =

∫
V

σ

2
Ě · Ě∗ dV =

∫ L

0

∫ 2π

0

∫ b

a

σ

2

|Ě0|2a2

ρ2
e−2αzρ dρ dφ dz

=
σ|Ě0|2a2

2

1− e−2αL

2α
2π ln(b/a).

(c)

Pcs(z) =

∫
S

n̂ · (Ě× Ȟ∗) dS =

∫ 2π

0

∫ b

a

|Ě0|2a2

η∗ρ2
e−2αzρ dρ dφ

=
|Ě0|2a2

η∗
2πe−2αz ln(b/a).

(d)
Ps = 0 = Pd + j2ω̌(Wm −We)Pf =⇒ Pd = −Re[Pf ].

Pf = Pcs
∣∣
z=L
− Pcs

∣∣
z=0

= −|Ě0|2a2

η∗
2π(1− e−2αL) ln(b/a),

σ|Ě0|2a2

2

1− e−2αL

2α
2π ln(b/a) = |Ě0|2a2 Re[1/η∗]2π(1− e−2αL) ln(b/a),

α =
σ

4 Re[1/η∗]
.

4.37. From (4.454) we have the structure reflection coefficients for each case as

R̃A =
Γ̃ + Γ̃2P̃ 2

A − Γ̃P̃ 2 − P̃ 2P̃ 2
A

1 + Γ̃P̃ 2
A − Γ̃2P̃ 2 − Γ̃P̃ 2P̃ 2

B

, R̃B =
Γ̃ + Γ̃2P̃ 2

B − Γ̃P̃ 2 − P̃ 2P̃ 2
B

1 + Γ̃P̃ 2
B − Γ̃2P̃ 2 − Γ̃P̃ 2P̃ 2

B

.
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Solving each equation for P̃ 2 gives, respectively,

P̃ 2 =
Γ̃ + Γ̃2P̃ 2

A − R̃A − Γ̃P̃ 2
AR̃A

Γ̃ + P̃ 2
A − Γ̃2R̃A − Γ̃P̃ 2

AR̃A
(*)

P̃ 2 =
Γ̃ + Γ̃2P̃ 2

B − R̃B − Γ̃P̃ 2
BR̃B

Γ̃ + P̃ 2
B − Γ̃2R̃B − Γ̃P̃ 2

BR̃B
. (**)

Equating and clearing the denominators gives(
Γ̃ + Γ̃2P̃ 2

A − R̃A − Γ̃P̃ 2
AR̃A

)(
Γ̃ + P̃ 2

B − Γ̃2R̃B − Γ̃P̃ 2
BR̃B

)
=
(

Γ̃ + Γ̃2P̃ 2
B − R̃B − Γ̃P̃ 2

BR̃B
)(

Γ̃ + P̃ 2
A − Γ̃2R̃A − Γ̃P̃ 2

AR̃A
)
.

Multiplying an collecting terms we find

Γ̃4 − CΓ̃3 + CΓ̃− 1 = 0

where

C =

(
R̃A − R̃B

)(
1 + P̃ 2

AP̃
2
B

)
+
(
P̃ 2
A − P̃ 2

B

)(
1 + R̃AR̃B

)
R̃BP̃ 2

A − R̃AP̃ 2
B

.

This takes the form of (4.461) with the solution given by

Γ̃ =
C

2
±

√(
C

2

)2

− 1.

Once Γ̃ is found, P̃ may be computed using either (*) or (**).

4.38. As in the two thickness method, let ∆B = κ∆A. Then P̃ 2
A = e−2jkz∆ = Q and P̃ 2

B =
e−2jkz(κ∆) = Qκ. The transmission coefficients are then

T̃A =
(1− Γ̃2)P̃A

1− Γ̃2P̃ 2
A

=
(1− Γ̃2)Q

1− Γ̃2Q2
,

T̃B =
(1− Γ̃2)P̃B

1− Γ̃2P̃ 2
B

=
(1− Γ̃2)Qκ

1− Γ̃2Q2κ
.

Solving each equation for Γ̃2 gives

Γ̃2 =
Q− T̃A
Q− T̃AQ2

, (*)

Γ̃2 =
Qκ − T̃B
Q− T̃BQ2κ

. (**)

Equating the expressions and clearing the denominators we find

Q2κ − T̃AQ2κ−1 − T̃A
T̃B

Qκ+1 +
T̃A
T̃B

Qκ−1 + T̃AQ− 1 = 0.
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For the special case of κ = 2 this reduces to

Q4 − CQ3 + CQ− 1 = 0

where

C = T̃A +
T̃A
T̃B

.

This takes the form of (4.461) with the solution given by

Q =
C

2
±

√(
C

2

)2

− 1.

Once Q and thus P̃A is found, Γ̃ may be computed using either (*) or (**).
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Chapter 5

5.1. We assume that µ, ε, and σ are even about z = 0. For the case of even symmetry we have the
following:

source/field components symmetry about z = 0

J ix, J iy, J
i
mz even

J iz, J
i
mx, J imy odd

Ex, Ey, Hz even
Ez, Hx, Hy odd

All the terms
∂Ez
∂y

,
∂Ey
∂z

, µ
∂Hx

∂t
, J imx,

in equation (5.1) are odd in z, so symmetry is obeyed. The rest of the problem is similar.

5.2. Recall that the field due to a Hertzian dipole on the z axis is given by

Ẽ = r̂
Ĩ dz

4π

e−jkr

r

[
2
η0

r
+

2

jωε0r2

]
cos θ + θ̂

Ĩ dz

4π

e−jkr

r

[
jωµ0 +

η0

r
+

1

jωε0r2

]
sin θ.

Write Ẽ = f1(r) cos θr̂ + f2(r) sin θθ̂.

Case 1: horizontal dipole. See Figure 35.

Figure 35

Choose di = d, |Ĩi| = |Ĩ|, and assume Ĩi and Ĩ are directed oppositely. Then ri = r, θi = θ, and

(Ẽri)tan = −(Ẽr)tan, (Ẽθi)tan = −(Ẽθ)tan.

So
(Ẽ + Ẽi)tan = 0
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Figure 36

and the boundary condition is satisfied.

Case 2: vertical dipole. See Figure 36.

Choose di = d, |Ĩi| = |Ĩ|, and assume Ĩi and Ĩ are co-directed. Then ri = r and θi = π − θ so that
cos θi = − cos θ and sin θi = sin θ. We have

(Ẽri)tan = −(Ẽr)tan, (Ẽθi)tan = −(Ẽθ)tan.

So
(Ẽ + Ẽi)tan = 0

and the boundary condition is satisfied.

Summary: horizontal currents image in opposite directions, while vertical currents image in the
same direction.

5.3. The impressed field is given by

Ẽiz(x, y) = −ωµ̃Ĩ
2π

∫ ∞+j∆

−∞+j∆

e−jky |y−h|

2ky
e−jkxx dkx.

The scattered field consists of both upward and downward traveling waves:

Ẽsz(x, y) =
1

2π

∫ ∞+j∆

−∞+j∆

[
Ã+(kx)e−jkyy + Ã−(kx)ejkyy

]
e−jkxx dkx.

To find Ã+ and Ã−, apply the boundary condition Ẽiz + Ẽsz = 0 at y = ±d to get the equations

ωµ̃Ĩ

2ky
e−jky(d−h) = Ã+e−jkyd + Ã−ejkyd,

ωµ̃Ĩ

2ky
e−jky(d+h) = Ã+ejkyd + Ã−e−jkyd.

Solving simultaneously, we obtain

Ã− =
ωµ̃Ĩ

2ky
e−jkyd

sin ky(d+ h)

sin 2kyd
, Ã+ =

ωµ̃Ĩ

2ky
e−jkyd

sin ky(d− h)

sin 2kyd
.
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Therefore

Ẽsz =
ωµ̃Ĩ

2π

∫ ∞+j∆

−∞+j∆

e−jkyd

2ky

[
sin ky(d− h)

sin 2kyd
e−jkyy +

sin ky(d+ h)

sin 2kyd
ejkyy

]
e−jkxx dkx.

The term in brackets can be rewritten algebraically to put this into the form of (5.8).

5.4. Assume J̃i = 0, J̃im 6= 0. From (5.71) we have

Ãh(r) =

∫
V

ε̃c

4π
J̃im(r′)

e−jkR

R
dV ′ = ε̃c

∫
V

J̃im(r′)G(r|r′) dV ′.

Examine (5.53):

H̃ = −j ω
k2
∇(∇ · Ãh)− jωÃh

= −j ωε̃
c

k2
∇∇ ·

∫
V

J̃im(r′)G(r|r′) dV ′ − jωε̃c
∫
V

J̃im(r′)G(r|r′) dV ′

= −jωε̃c
∫
V

{
J̃im(r′)G(r|r′) +

1

k2
∇∇ ·

[
J̃im(r′)G(r|r′)

]}
dV ′.

Use
∇ ·
[
J̃im(r′)G(r|r′)

]
= J̃im(r′) · ∇G(r|r′) +G(r|r′)∇ · J̃im(r′)︸ ︷︷ ︸

=0

to write

H̃ = −jωε̃c
∫
V

{
J̃im(r′)G(r|r′) +

1

k2
∇∇G(r|r′) · J̃im(r′)

}
dV ′

= −jωε̃c
∫
V

Ḡe(r|r′) · J̃im(r′) dV ′

where

Ḡe(r|r′) =

[
Ī +
∇∇
k2

]
G(r|r′).

Next, examine (5.63):

Ẽ(r) = − 1

ε̃c
∇× Ãh

= −∇×
∫
V

J̃im(r′)G(r|r′) dV ′

= −
∫
V
∇× [J̃im(r′)G(r|r′)] dV ′.

Use

∇×
[
J̃im(r′)G(r|r′)

]
= ∇G(r|r′)× J̃im(r′) +G(r|r′)∇× J̃im(r′)︸ ︷︷ ︸

=0

= −J̃im(r′)×∇G(r|r′)
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and (B.15):

J̃im(r′)×∇G(r|r′) =
[
J̃im(r′)×∇G(r|r′)

]
· Ī

=
[
∇G(r|r′)× Ī

]
· J̃im(r′)

= Ḡm(r|r′) · J̃im(r′).

So

Ẽ(r) =

∫
V

Ḡm(r|r′) · J̃im(r′) dV ′.

5.5. Start with

V = lim
∆V→0

∇
∮
S

J̃ · n̂′

4πR
dS′.

Assume J̃ = ẑJ̃z with J̃z constant. Then

V = lim
∆V→0

∮
S

J̃ · n̂′∇
(

1

4πR

)
dS′ = − lim

∆V→0

∮
S

J̃ · n̂′ R

4πR3
dS′.

We have

J̃ · n̂′ =


J̃z, on the top surface of the cube,

−J̃z, on the bottom surface,

0, on the other surfaces.

Assume r = 0 (center of cube) so that

−R = −(r− r′) = r′ =

{
aẑ + x′x̂ + y′ŷ, on top,

−aẑ + x′x̂ + y′ŷ, on bottom.

Then

V = − lim
∆V→0

2

∫
top

J̃z
R

4πR3
dS′

= lim
a→0

2

∫ a

−a

∫ a

−a
J̃z

aẑ + x′x̂ + y′ŷ

4π(a2 + x′2 + y′2)3/2
dx′ dy′

= ẑ lim
a→0

2a

4π
J̃z

∫ a

−a

∫ a

−a

dx′ dy′

(a2 + x′2 + y′2)3/2

= ẑ lim
a→0

2a

4π
J̃z · 2a

∫ a

−a

dy′

(a2 + y′2)
√

2a2 + y′2

= ẑ lim
a→0

2a

4π
J̃z ·

4π

6a

= ẑ
1

3
J̃z.

Setting this equal to L̄ · J̃ = L̄ · (ẑJ̃z), we find that Lzz = 1/3. Since (J̃zẑ) · n̂ = 0 on the side
surfaces, we have Lxz = Lyz = 0. By letting J̃ = x̂J̃x and J̃ = ŷJ̃y, we see immediately that
Lxx = Lyy = Lzz = 1/3 and Lyx = Lyz = Lzx = Lzz = 0. Therefore

L̄ =

1/3 0 0
0 1/3 0
0 0 1/3

 =
1

3
Ī.
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5.6. Start with

V = lim
∆V→0

∇
∮
S

J̃ · n̂′

4πR
dS′.

Assume J̃ = ẑJ̃z with J̃z constant. Then

V = lim
∆V→0

∮
S

J̃ · n̂′∇
(

1

4πR

)
dS′ = − lim

∆V→0

∮
S

J̃ · n̂′ R

4πR3
dS′.

We have

J̃ · n̂′ =


J̃z, on the top surface of the cylinder,

−J̃z, on the bottom surface,

0, on the curved surface.

Assume r = 0 (center of cylinder) so that

−R = −(r− r′) = r′ =

{
aẑ + x′x̂ + y′ŷ = aẑ + ρ′ cosφ′x̂ + ρ′ sinφ′ŷ, on top,

−aẑ + x′x̂ + y′ŷ = −aẑ + ρ′ cosφ′x̂ + ρ′ sinφ′ŷ, on bottom.

Then

V = − lim
∆V→0

2

∫
top

J̃z
R

4πR3
dS′

= lim
a→0

2

∫ 2π

0

∫ a

0
J̃z
aẑ + ρ′ cosφ′x̂ + ρ′ sinφ′ŷ

4π(a2 + ρ′2)3/2
ρ′ dρ′ dφ′

= ẑ lim
a→0

2(2π)
1

4π
J̃za

[
− 1√

ρ′2 + a2

] ∣∣∣∣a
0

= −ẑ lim
a→0

J̃za

[
1√
2a2
− 1

a

]
= ẑJ̃z

[
1− 1√

2

]
= 0.293J̃zẑ.

Setting this equal to L̄ · (ẑJ̃z), we find that Lzz = 0.293.

5.7. (a) ∣∣∣ lim
r→∞

ψ̃(r, ω)
∣∣∣ = lim

r→∞

∣∣∣∣e−jkr4πr

∣∣∣∣ = lim
r→∞

1

4πr
= 0.

(b)

∂ψ̃

∂r
=

∂

∂r

(
e−jkr

4πr

)
=

1

4π
(−jkr − 1)

e−jkr

r2
,∣∣∣∣∣ lim

r→∞
r

(
jkψ̃ +

∂ψ̃

∂r

)∣∣∣∣∣ =

∣∣∣∣ lim
r→∞

r

(
jk
e−jkr

4πr
+

1

4π
(−jkr − 1)

e−jkr

r2

)∣∣∣∣ = lim
r→∞

∣∣∣∣−e−jkr4πr

∣∣∣∣ = 0.
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5.8. Begin with

∇2A = ∇(∇ ·A)−∇× (∇×A) and ∇ = ∇t + û
∂

∂u
.

Use

∇ ·A =

(
∇t + û

∂

∂u

)
· (At + ûAu) = ∇t ·At +

∂Au
∂u

to write

∇(∇ ·A) =

(
∇t + û

∂

∂u

)(
∇t ·At +

∂Au
∂u

)
= ∇t(∇t ·At) + û∇t ·

∂At

∂u
+ û

∂2Au
∂u2

+∇t
∂Au
∂u

.

With the help of (B.104) we obtain

(∇2A)t = ∇t(∇t ·At) +∇t
∂Au
∂u
−∇t ×∇t ×At +

∂2At

∂u2
−∇t

∂Au
∂u

= ∇t(∇t ·At) +
∂2At

∂u2
−∇t ×∇t ×At.

Finally,

(∇2A)u = ∇t ·
∂At

∂u
+
∂2Au
∂u2

−∇t ·
∂At

∂u
+∇2

tAu

=

(
∇2
t +

∂2

∂u2

)
Au

= ∇2Au.

5.9. (B.88):
û ·At = û · [A− ûAu] = û ·A−Au = Au −Au = 0.

(B.89):

(û · ∇t)φ =

(
û ·
[
∇− û

∂

∂u

])
φ = û · ∇φ− ∂φ

∂u
= 0.

(B.90):

∇tφ =

(
∇− û

∂

∂u

)
φ = ∇φ− û

∂φ

∂u
.

(B.91):

û · (∇φ) = û ·
[
∇tφ+ û

∂φ

∂u

]
= û · (∇tφ) +

∂φ

∂u
=
∂φ

∂u
,

(û · ∇)φ =

(
û ·
[
∇t + û

∂

∂u

])
φ = û · û∂φ

∂u
=
∂φ

∂u
.

(B.92):

û · (∇tφ) = û ·
[
∇φ− û

∂φ

∂u

]
=
∂φ

∂u
− ∂φ

∂u
= 0.
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(B.93):

∇t · (ûφ) =

(
∇− û

∂

∂u

)
· (ûφ) = ∇ · (ûφ)− ∂φ

∂u
= φ∇ · û + û · ∇φ− ∂φ

∂u
=
∂φ

∂u
− ∂φ

∂u
= 0.

(B.94):

∇t × (ûφ) =

(
∇− û

∂

∂u

)
× (ûφ) = ∇× (ûφ)− (û× û)

∂φ

∂u
= φ∇× û− û×∇φ

= −û×
(
∇t + û

∂

∂u

)
φ = −û×∇tφ− û× û

∂φ

∂u
= −û×∇tφ.

(B.95):

∇t × (û×A) =

[
∇− û

∂

∂u

]
× [û× (At + ûAu)]

=

[
∇− û

∂

∂u

]
× (û×At)

= ∇× (û×At)− û× û× ∂At

∂u

= ∇× (û×At)− û

(
û · ∂At

∂u

)
+
∂At

∂u

= ∇× (û×At) +
∂At

∂u

= û∇ ·At − (û · ∇)At +
∂At

∂u

= û

[
∇t + û

∂

∂u

]
·At −

∂At

∂u
+
∂At

∂u

= û∇t ·At.

(B.96):

û× (∇t ×A) = û× [∇t × (ûAu + At)]

= û× [−û×∇tAu + (∇t ×At)]

= −û× (û×∇tAu) + û× (∇t ×At)

= −û(û · ∇tAu) +∇tAu(û · û)

= ∇tAu.
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(B.97):

û× (∇t ×At) = û×
[(
∇− û

∂

∂u

)
×At

]
= û× (∇×At)− û×

(
û× ∂At

∂u

)
= ∇(û ·At)− (û · ∇)At − û

(
û · ∂At

∂u

)
+ (û · û)

∂At

∂u

= −∂At

∂t
+
∂At

∂t
= 0.

(B.98):
û · (û×A) = A · (û× û) = 0.

(B.99):
û× (û×A) = û(û ·A)−A(û · û) = −[A− û(û ·A)] = −At.

5.10. (B.100):

∇φ =

(
∇t + û

∂

∂u

)
φ = ∇tφ+ û

∂φ

∂u
.

(B.101):

∇ ·A =

(
∇t + û

∂

∂u

)
· (At + ûAu)

= ∇t ·At +
∂

∂u
(û ·At) +∇t · (ûAu) +

∂Au
∂u

= ∇t ·At +
∂Au
∂u

.

(B.102):

∇×A =

(
∇t + û

∂

∂u

)
× (At + ûAu)

= ∇t ×At + û× ∂At

∂u
+∇t × (ûAu) + (û× û)

∂Au
∂u

= ∇t ×At + û×
(
∂At

∂u
−∇tAu

)
.

(B.103):

∇2φ = ∇ · (∇φ) = ∇ ·
(
∇tφ+ û

∂φ

∂u

)
= ∇t · (∇tφ) +

∂

∂u

(
∂φ

∂u

)
= ∇2

tφ+
∂2φ

∂u2
.

133



(B.104):

∇× (∇×A) =

(
∇t + û

∂

∂u

)
×
[
∇t ×At + û×

(
∂At
∂u
−∇tAu

)]
= ∇t × (∇t ×At) + û×

(
∇t ×

∂At

∂u

)
+∇t ×

[
û×

(
∂At

∂u
−∇tAu

)]
+ û×

[
û×

(
∂2At

∂u2
−∇t

∂Au
∂u

)]
.

Use

∇t ×
[
û×

(
∂At

∂u
−∇tAu

)]
= û

[
∇t ·

(
∂At

∂u
−∇tAu

)]
and

û×
[
û×

(
∂2At

∂u2
−∇t

∂Au
∂u

)]
= −

(
∂2At

∂u2
−∇t

∂Au
∂u

)
to get, finally,

∇× (∇×A) = ∇t × (∇t ×At)−
∂2At

∂u2
−∇t

∂Au
∂u
− û

[
∂

∂u
(∇t ·At)−∇2

tAu

]
.

5.11. Take û× ∂/∂u of (5.90):

−û×

(
û×∇t

∂Ẽu
∂u

)
+ û×

(
û× ∂2Ẽt

∂u2

)
= −jωµ̃û× ∂H̃t

∂u
− û× ∂J̃imt

∂u
.

Use

−û×

(
û×∇t

∂Ẽu
∂u

)
= ∇t

∂Ẽu
∂u

and û×

(
û× ∂2Ẽt

∂u2

)
= −∂

2Ẽt

∂u2

to get

∇t
∂Ẽu
∂u
− ∂2Ẽt

∂u2
= −jωµ̃û× ∂H̃t

∂u
− û× ∂J̃imt

∂u
. (*)

Now multiply (5.92) by −jωµ̃:

û× jωµ̃∇tH̃u − jωµ̃û× ∂H̃t

∂u
= k2Et − jωµ̃J̃it. (**)

Add (*) and (**):

∇t
∂Ẽu
∂u
− ∂2Ẽt

∂u2
+ û× jωµ̃∇tH̃u = k2Ẽt − jωµ̃J̃it − û× ∂J̃imt

∂u

or (
∂2

∂u2
+ k2

)
Ẽt = ∇t

∂Ẽu
∂u

+ jωµ̃û×∇tH̃u + û× ∂J̃imt
∂u

+ jωµ̃J̃it.
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5.12. Begin with

∇×E = −Jm − µ
∂H

∂t
, ∇×H = J + ε

∂E

∂t
.

Write

∇×E = −Jmt − ûJmu − µ
∂Ht

∂t
− µû

∂Hu

∂t
.

Use (B.102) to get

∇t ×Et + û× ∂Et

∂u
− û×∇tEu = −Jmt − ûJmu − µ

∂Ht

∂t
− µû

∂Hu

∂t
.

Equate transverse components:

û× ∂Et

∂u
− û×∇tEu = −Jmt − µ

∂Ht

∂t
.

Equate longitudinal components:

∇t ×Et = −ûJmu − µû
∂Hu

∂t
.

Do the same with Ampere’s law:

∇t ×Ht + û× ∂Ht

∂u
− û×∇tHu = Jt + ûJu + ε

∂Et

∂t
+ εû

∂Eu
∂u

,

û× ∂Ht

∂u
− û×∇tHu = Jt + ε

∂Et

∂t
,

∇t ×Ht = ûJu + εû
∂Eu
∂t

.

So

û× ∂Et

∂u
− û×∇tEu = −Jmt − µ

∂Ht

∂t
(1)

and

û× ∂Ht

∂u
− û×∇tHu = −Jt + ε

∂Et

∂t
. (2)

Apply û× ∂/∂u to (1):

−∂
2Et

∂u2
+∇t

∂Eu
∂u

= −û× ∂Jmt
∂u

− µû× ∂2Ht

∂t∂u
. (3)

Apply µ∂/∂t to (2):

µû× ∂2Ht

∂t∂u
− µû×∇t

∂Hu

∂u
= µ

∂Jt
∂u

+ εµ
∂2Et

∂t2
. (4)

Subtract (4) from (3) to get(
∂2

∂u2
− 1

v2

∂2

∂t2

)
Et = ∇t

∂Eu
∂u

+ µû×∇t
∂Hu

∂u
+ û× ∂Jmt

∂u
+ µ

∂Jt
∂u

.

Next, apply û× ∂/∂u to (2):

−∂
2Ht

∂u2
+∇tHu = û× ∂Jt

∂u
+ εû× ∂2Et

∂t∂u
. (5)
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Apply ε ∂/∂t to (1):

εû× ∂2Et

∂t∂u
− εû×∇t

∂Eu
∂t

= −ε∂Jmt
∂t
− εµ∂

2Ht

∂t2
. (6)

Add (5) and (6) to get(
∂2

∂u2
− 1

v2

∂2

∂t2

)
Ht = ∇tHu − εû×∇t

∂Eu
∂t

+ ε
∂Jmt
∂t
− û× ∂Jt

∂u
.

To get the wave equation for Eu, start with (2.259) and use Gauss’s law:

∇2E− µε∂
2E

∂t2
= ∇× Jm + µ

∂J

∂t
+

1

ε
∇ρ.

Apply û· to both sides to obtain

∇2Eu − µε
∂2Eu
∂t2

= û · (∇t × Jmt) + µ
∂Ju
∂t

+
1

ε

∂ρ

∂u
,

or (
∇2 − 1

v2

∂2

∂t2

)
Eu =

1

ε

∂ρ

∂u
+ µ

∂Ju
∂t

+ û · (∇t × Jmt).

The wave equation for Hu is obtained similarly, starting with (2.260).

5.13. Examine the first equation from Problem 5.12 with u = z:(
∂2

∂z2
− 1

v2

∂2

∂t2

)
(x̂Hx + ŷHy) = x̂

∂2Hz

∂x∂z
+ ŷ

∂2Hz

∂y∂z
− εẑ×

(
x̂
∂2Ez
∂x∂t

+ ŷ
∂2Ez
∂y∂t

)
.

Equate x-components to obtain:(
∂2

∂z2
− 1

v2

∂2

∂t2

)
Hx =

∂2Hz

∂x∂z
+ ε

∂2Ez
∂y∂t

.

Equate y-components to obtain:(
∂2

∂z2
− 1

v2

∂2

∂t2

)
Hy =

∂2Hz

∂y∂z
− ε∂

2Ez
∂x∂t

.

Examine the second equation from Problem 5.12 with u = z:(
∂2

∂z2
− 1

v2

∂2

∂t2

)
(x̂Ex + ŷEy) = x̂

∂2Ez
∂x∂z

+ ŷ
∂2Ez
∂y∂z

+ µẑ×
(

x̂
∂2Hz

∂x∂t
+ ŷ

∂2Hz

∂y∂t

)
.

Equate x-components to obtain:(
∂2

∂z2
− 1

v2

∂2

∂t2

)
Ex =

∂2Ez
∂x∂z

− µ∂
2Hz

∂y∂t
.

Equate y-components to obtain:(
∂2

∂z2
− 1

v2

∂2

∂t2

)
Ey =

∂2Ez
∂y∂z

+ µ
∂2Hz

∂x∂t
.

The third and fourth equations from Problem 5.12 with u = z yield the wave equations.
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5.14. Let Πe = ûΠe and Πh = 0. Then(
∇2 − µε ∂

2

∂t2

)
ûΠe = 0.

Use (B.105):
∇2(ûΠe) = û∇2Πe,

so (
∇2 − 1

v2

∂2

∂t2

)
Πe = 0. (*)

We also have
E = ∇× (∇×Πe) = ∇× (∇× ûΠe).

Use (B.104):

E = ∇t
∂Πe

∂u
− û∇2

tΠe.

By (*) we have

∇2Πe = ∇2
tΠe +

∂2Πe

∂u2
=

1

v2

∂2Πe

∂t2
,

so

E = ∇t
∂Πe

∂u
+ û

(
∂2Πe

∂u2
− 1

v2

∂2Πe

∂t2

)
.

Finally,

H = ε∇× ∂

∂t
(ûΠe) = ε

∂

∂t
∇× (ûΠe).

Use (B.102):

H = ε
∂

∂t
(−û×∇tΠe) = −εû×∇t

∂Πe

∂t
.

5.15. Let Πh = ûΠh and Πe = 0. Then(
∇2 − µε ∂

2

∂t2

)
ûΠh = 0.

Use (B.105):
∇2(ûΠh) = û∇2Πh,

so (
∇2 − 1

v2

∂2

∂t2

)
Πh = 0. (*)

We also have
H = ∇× (∇×Πh) = ∇× (∇× ûΠh).

Use (B.104):

E = ∇t
∂Πh

∂u
− û∇2

tΠh.

By (*) we have

∇2Πh = ∇2
tΠh +

∂2Πh

∂u2
=

1

v2

∂2Πh

∂t2
,
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so

H = ∇t
∂Πh

∂u
+ û

(
∂2Πh

∂u2
− 1

v2

∂2Πh

∂t2

)
.

Finally, from (5.54),

E = −µ∇× ∂

∂t
(ûΠh) = −µ ∂

∂t
∇× (ûΠh).

Use (B.102):

E = −µ ∂
∂t

(−û×∇tΠh) = µû×∇t
∂Πh

∂t
.

5.16. From Problem 5.14, E has no u-component when

∂2Πe

∂u2
=

1

v2

∂2Πe

∂t2
. (*)

So

E = ∇t
∂Πe

∂u
and H = −εû×∇t

∂Πe

∂t
.

The wave equation is (
∇2 − 1

v2

∂2

∂t2

)
Πe = 0.

Use (*): (
∇2 − ∂2

∂u2

)
Πe = 0 =⇒ ∇2

tΠe = 0.

5.17. From Problem 5.15, H has no u-component when

∂2Πh

∂u2
=

1

v2

∂2Πh

∂t2
. (*)

So

H = ∇t
∂Πh

∂u
and E = µû×∇t

∂Πh

∂t
.

The wave equation is (
∇2 − 1

v2

∂2

∂t2

)
Πh = 0.

Use (*): (
∇2 − ∂2

∂u2

)
Πh = 0 =⇒ ∇2

tΠh = 0.

5.18. Start with

Ẽ = x̂Ẽ0e
−jkz, H̃ = ŷ

Ẽ0

η
e−jkz.
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(a) TEy, use (5.96):

k2Ẽt = ∇t
∂Ẽy
∂y

+ jωµ̃ŷ ×∇tH̃y

= jωµ̃ŷ × ẑ
∂

∂z

(
Ẽ0

η
e−jkz

)

= jωµ̃x̂(−jk)
Ẽ0

η
e−jkz

= k2ηx̂
Ẽ0

η
e−jkz.

So
Ẽt = x̂Ẽ0e

−jkz.

(b) TMx, use (5.95):

k2H̃t = ∇t
∂H̃x

∂x
− jωε̃cx̂× ẑ

∂Ẽx
∂z

= jωε̃cŷ
∂

∂z

(
Ẽ0e

−jkz
)

= ωε̃ckŷẼ0e
−jkz

=
k2

η
ŷẼ0e

−jkz.

So

H̃t = ŷ
Ẽ0

η
e−jkz.

(c) Use (5.124):

Ẽ = jωµ̃ŷ ×∇tΠ̃h

= jωµ̃ŷ × ẑ
∂

∂z

(
Ẽ0

ηk2
e−jkz

)

= ωµ̃kx̂
Ẽ0

ηk2
e−jkz

= x̂Ẽ0e
−jkz.

Use (5.125):

H̃ = ∇t
∂Π̃h

∂y
+ ŷ

(
∂2

∂y2
+ k2

)
Π̃h = ŷk2Π̃h = ŷ

Ẽ0

η
e−jkz.

(d) Use (5.122):

Ẽ = ∇t
∂Π̃e

∂x
+ x̂

(
∂2

∂x2
+ k2

)
Π̃e = x̂k2Π̃e = x̂Ẽ0e

−jkz.
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Use (5.123):

H̃ = −jωε̃cx̂×∇tΠ̃e

= −jωε̃cx̂× ẑ
∂

∂z

(
Ẽ0

k2
e−jkz

)

= ωε̃ckŷ
Ẽ0

k2
e−jkz

= ŷ
Ẽ0

η
e−jkz.

(e), (f) Similar.

5.19. Using the given identity, we have∫
S

(ψ̃m∇2ψ̃n − ψ̃n∇2ψ̃m) dS =

∮
Γ

(
ψ̃m

∂ψ̃n
∂n

+ ψ̃n
∂ψ̃m
∂n

)
dl.

Use ∇2ψ̃n = ∇2
t ψ̃n = −k2

c,nψ̃n:

∫
S

(−k2
c,nψ̃nψ̃m + k2

c,mψ̃mψ̃n) dS = (k2
c,m − k2

c,n)

∫
S
ψ̃nψ̃m dS =

∮
Γ

(
ψ̃m

∂ψ̃n
∂n
− ψ̃n

∂ψ̃m
∂n

)
dl.

The boundary conditions are that ψ̃e = 0 on Γ for TM modes and ∂ψ̃h/∂n = 0 on Γ for TE modes.
Since kc,m 6= kc,n, we must have ∫

S
ψ̃nψ̃m dS = 0.

So ∫
S

(k2
c,nψ̃n)(k2

c,mψ̃m) dS = 0.

For TM modes, k2
c,nψ̃n = ez,n. In this case∫

S
ẽz,nẽz,m dS = 0

so that ∫
S

(
ẽz,ne

±jkz,nz
)(

ẽz,me
±jkz,mz

)
dS = 0

or ∫
S
Ẽz,nẼz,m dS = 0.

TE modes are treated similarly.

5.20. (a) For TM modes we write

Ẽ = Ẽt + ẑẼz, Ẽm · Ẽn = Ẽtm · Ẽtn + ẼzmẼzn.
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Let the modal indices for mode m be α, β. Let the modal indices for mode n be γ, δ.

Ẽtm · Ẽtn = −kzmkznAαβAγδ
[
βπ

a
cos

βπx

a
sin

απy

b
· δπ
a

cos
δπx

a
sin

γπy

b

+
απ

b
sin

βπx

a
cos

απy

b
· γπ
b

sin
δπx

a
cos

γπy

b

]
e∓jkznze∓jkzmz

∫
CS

Ẽtm · Ẽtn dS = kzmkznAαβAγδe
∓jkznze∓jkzmz

[
βπ

a

δπ

a

∫ a

0
cos

βπx

a
cos

δπx

a
dx

∫ b

0
sin

απy

b
sin

γπy

b
dy

+
απ

b

γπ

b

∫ a

0
sin

βπx

a
sin

δπx

a
dx

∫ b

0
cos

απy

b
cos

γπy

b
dy

]
But ∫ a

0
cos

βπx

a
cos

δπx

a
dx =

∫ b

0
sin

απy

b
sin

γπy

b
dy = 0,

so ∫
CS

Ẽtm · Ẽtn dS = 0.

Next,

ẼzmẼzn = k2
cnk

2
cmAαβAγδe

∓jkznze∓kzmz sin
βπx

a
sin

απy

b
sin

δπx

a
sin

γπy

b∫
CS

ẼzmẼzn dS = k2
cnk

2
cmAαβAγδe

∓jkznze∓kzmz
∫ a

0
sin

βπx

a
sin

δπx

a
dx

∫ b

0
sin

απy

b
sin

γπy

b
dy = 0.

Thus ∫
CS

Ẽm · Ẽn dS = 0.

(b) Write

H̃m · H̃n = H̃tm · H̃tn

= −kzmkznYemYenAαβAγδe∓jkznze∓jkzmz
[
απ

b
sin

βπx

a
cos

απy

b
· γπ
b

sin
δπx

a
cos

γπy

b

+
βπ

a
cos

βπx

a
sin

απy

b
· δπ
a

cos
δπx

a
sin

γπy

b

]
,

∫
CS

H̃m · H̃n dS = kznkzmYemYenAαβAγδe
∓jkznze∓jkzmz

[
απ

b

γπ

b

∫ a

0
sin

βπx

a
sin

δπx

a
dx

∫ b

0
cos

απy

b
cos

γπy

b
dy

+
βπ

a

δπ

a

∫ a

0
cos

βπx

a
cos

δπx

a
dx

∫ b

0
sin

απy

b
sin

γπy

b
dy

]
= 0.

The treatment for TE modes is similar.
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5.21.

ẑ · (ět × ȟ∗t ) = ẑ · [Zh(ẑ× ȟt)× (−jk∗z)∇tψ̌∗h]

= −kzk∗zZhẑ · [(ẑ×∇tψ̌h)×∇tψ̌∗h]

= |kz|2Zhẑ · [∇tψ̌∗h × (ẑ×∇tψ̌h)]

= |kz|2Zhẑ · [ẑ(∇tψ̌∗h) · (∇tψ̌h)−∇tψ̌h(ẑ · ∇tψ̌∗h)]

= |kz|2Zh(∇tψ̌h) · (∇tψ̌∗h).

Pav =
1

2
Re

∫
CS

ẑ · (ět × ȟ∗t ) dS =
1

2
Re{Zh}|kz|2

∫
CS

(∇tψ̌h) · (∇tψ̌∗h) dS.

Use (B.35): ∫
S

(∇ta · ∇tb+ a∇2
t b) dS =

∮
Γ
a
∂b

∂n
dl.

Let a = ψ̌h and b = ψ̌∗h. Then∫
CS

(∇tψ̌h · ∇tψ̌∗h + ψ̌h∇2
t ψ̌
∗
h) dS =

∮
Γ
ψ̌h
∂ψ̌∗h
∂n

dl.

Since ∂ψ̌h/∂n = 0 on Γ and ∇2
t ψ̌h = −k2

c ψ̌h, we have∫
CS

(∇tψ̌h) · (∇tψ̌∗h) dS = −
∫
CS

ψ̌h∇2
t ψ̌
∗
h dS = k2

c

∫
CS

ψ̌hψ̌
∗
h dS.

Therefore

Pav =
1

2
Re{Zh}|kz|2k2

c

∫
CS

ψ̌hψ̌
∗
h dS.

For a lossless guide, kz = β and Zh = ω̌µ/β. In this case,

Pav =
1

2

ω̌µ

β
β2k2

c

∫
CS

ψ̌hψ̌
∗
h dS =

1

2
ω̌µβk2

c

∫
CS

ψ̌hψ̌
∗
h dS.

5.22. We have

〈we〉 =
ε

4

∫ l

0

∫
CS

Ě · Ě∗ dS dz,

so
〈we〉
l

=
ε

4

∫
CS

Ě · Ě∗ dS.

Substitute from (5.199) and (5.200):

〈we〉
l

=
ε

4

∫
CS
|Zh|2|kz|2(ẑ×∇tψ̌h) · (ẑ×∇tψ̌∗h) dS

=
ε

4

(
ω̌µ

β

)2

β2

∫
CS

(ẑ×∇tψ̌h) · (ẑ×∇tψ̌∗h) dS

=
ε

4
(ω̌µ)2

∫
CS

ẑ · [∇tψ̌∗h × (ẑ×∇tψ̌h)] dS

=
ε

4
(ω̌µ)2

∫
CS
∇tψ̌∗h · ∇tψ̌h dS

=
ε

4
(ω̌µ)2k2

c

∫
CS

ψ̌hψ̌
∗
h dS
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(cf., Problem 5.21).

5.23. For TM modes,

Pav =
1

2
ω̌εβk2

c

∫
CS

ψ̌eψ̌
∗
e dS.

Use
ψ̌e(x, y) = Anm sin

(nπx
a

)
sin
(mπy

b

)
to get

(Pav)nm =
1

2
ω̌εβnmk

2
c,nm|Anm|2

∫ a

0
sin2

(nπx
a

)
dx

∫ b

0
sin2

(mπy
b

)
dy

=
1

2
ω̌εβnmk

2
c,nm|Anm|2 ·

a

2
· b

2
.

5.24. For TE modes,

Pav =
1

2
ω̌µβk2

c

∫
CS

ψ̌hψ̌
∗
h dS.

Use
ψ̌h(x, y) = Bnm cos

(nπx
a

)
cos
(mπy

b

)
to get

(Pav)nm =
1

2
ω̌µβnmk

2
c,nm|Bnm|2

∫ a

0
cos2

(nπx
a

)
dx

∫ b

0
cos2

(mπy
b

)
dy

=
1

2
ω̌µβnmk

2
c,nm|Bnm|2 ·

a

2
· b

2
.

5.25. Assume µ, ε constant and that the region is source-free. Write

∇×E = −∂B

∂t

and equate the θ components:

1

r

[
1

sin θ

∂Er
∂φ
− ∂

∂r
(rEφ)

]
= −µ∂Hθ

∂t
. (1)

Write

∇×H = ε
∂E

∂t

and equate the φ components:

1

r

[
∂

∂r
(rHθ)−

∂Hr

∂θ

]
= ε

∂Eφ
∂t

. (2)

Now multiply (2) by r and take ∂/∂r:

∂

∂r

[
∂

∂r
(rHθ)−

∂Hr

∂θ

]
= ε

∂

∂r

(
r
∂Eφ
∂t

)
,
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or
∂2

∂r2
(rHθ)−

∂2Hr

∂r∂θ
= ε

∂

∂r

(
r
∂Eφ
∂t

)
. (3)

Multiply (1) by εr and take ∂/∂t:

ε

sin θ

∂2Er
∂φ∂t

− ε ∂
∂r

(
r
∂Eφ
∂t

)
= −µε ∂

2

∂t2
(rHθ). (4)

Substitute (3) into (4):

ε

sin θ

∂2Er
∂φ∂t

− ∂2

∂r2
(rHθ) +

∂2Hr

∂r∂θ
= −µε ∂

2

∂t2
(rHθ)

or (
∂2

∂r2
− 1

v2

∂2

∂t2

)
(rHθ) =

ε

sin θ

∂2Er
∂φ∂t

+
∂2Hr

∂r∂θ
.

Thus, Hθ can be found from Er and Hr by solving this differential equation. Similarly,(
∂2

∂r2
− 1

v2

∂2

∂t2

)
(rHφ) = −ε∂

2Er
∂θ∂t

+
1

sin θ

∂2Hr

∂r∂φ
,(

∂2

∂r2
− 1

v2

∂2

∂t2

)
(rEφ) =

1

sin θ

∂2Er
∂φ∂r

+ µ
∂2Hr

∂θ∂t
,

and (
∂2

∂r2
− 1

v2

∂2

∂t2

)
(rEθ) =

∂2Er
∂θ∂r

+ µ
1

sin θ

∂2Hr

∂φ∂t
.

Now we can perform a TE–TM decomposition.

A. TE case: Er = 0. (
∂2

∂r2
− 1

v2

∂2

∂t2

)
(rHθ) =

∂2Hr

∂r∂θ
,(

∂2

∂r2
− 1

v2

∂2

∂t2

)
(rHφ) =

1

sin θ

∂2Hr

∂r∂φ
,(

∂2

∂r2
− 1

v2

∂2

∂t2

)
(rEφ) = µ

∂2Hr

∂θ∂t
,

and (
∂2

∂r2
− 1

v2

∂2

∂t2

)
(rEθ) = µ

1

sin θ

∂2Hr

∂φ∂t
.

B. TM case: Hr = 0. (
∂2

∂r2
− 1

v2

∂2

∂t2

)
(rHθ) =

ε

sin θ

∂2Er
∂φ∂t

,(
∂2

∂r2
− 1

v2

∂2

∂t2

)
(rHφ) = −ε∂

2Er
∂θ∂t

,(
∂2

∂r2
− 1

v2

∂2

∂t2

)
(rEφ) =

1

sin θ

∂2Er
∂φ∂r

,

and (
∂2

∂r2
− 1

v2

∂2

∂t2

)
(rEθ) =

∂2Er
∂θ∂r

.
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5.26. The backscatter direction is θ = π. Since the incident electric field is polarized in the
x-direction, only the x-component of Ẽs exists along the direction θ = π. This is given by

Ẽsx

∣∣∣∣
θ=π

= −Ẽsθ
∣∣∣∣θ=π
φ=0

.

In the far zone we have

Ẽsθ = Ẽ0
e−jkr

kr
cosφ

∞∑
n=1

jn+1

[
bn sin θP 1′

n (cos θ)− cn
1

sin θ
P 1
n(cos θ)

]
.

To evaluate this along θ = π, we use

lim
θ→π

P 1
n(cos θ)

sin θ
= −(−1)n

2
n(n+ 1), (1)

lim
θ→π

d

dθ
P 1
n(cos θ) =

(−1)n

2
n(n+ 1). (2)

From (2) we also have

lim
θ→π

d

dθ
P 1
n(cos θ) = lim

θ→π
(− sin θ)P 1′

n (cos θ) where P 1′
n (x) =

dP 1
n(x)

dx
.

So

Ẽx

∣∣∣∣
θ=π

= −Ẽ0
e−jkr

kr
cos(0)

∞∑
n=1

jn+1

[
−(−1)n

2
n(n+ 1)bn +

(−1)n

2
n(n+ 1)cn

]

=
Ẽ0

2

e−jkr

kr

∞∑
n=1

jn+1n(n+ 1)(cn − bn).

Use

cn = − Ĵn(ka)

Ĥ
(2)
n (ka)

an, bn = − Ĵ ′n(ka)

Ĥ
(2)′
n (ka)

an

to get

cn − bn =

[
Ĵ ′n(ka)

Ĥ
(2)′
n (ka)

− Ĵn(ka)

Ĥ
(2)
n (ka)

]
an =

[
Ĵ ′n(ka)Ĥ

(2)
n (ka)− Ĥ(2)′

n (ka)Ĵn(ka)

Ĥ
(2)′
n (ka)Ĥ

(2)
n (ka)

]
an.

Use

Ĵ ′n(x) =
d

dx
[xjn(x)] = jn(x) + xj′n(x),

Ĥ(2)′
n (x) =

d

dx
[xh(2)

n (x)] = h(2)
n (x) + xh(2)′

n (x),

and (E.99) to get

Ĵ ′n(x)Ĥ(2)
n (x)− Ĥ(2)′

n (x)Ĵn(x)

= [jn(x) + xj′n(x)][xjn(x)− jxnn(x)]− [jn(x)− jnn(x) + x(j′n(x)− jn′n(x))][xjn(x)]

= x[j2
n(x)− jjn(x)nn(x)− j2

n(x) + jnn(x)jn(x)]

+ x2[jn(x)j′n(x)− jj′n(x)nn(x)− jn(x)j′n(x) + jn′n(x)jn(x)]

= jx2[jn(x)n′n(x)− j′n(x)nn(x)]

= j.
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So

cn − bn = j
an

Ĥ
(2)′
n (ka)Ĥ

(2)
n (ka)

where an = j−n
2n+ 1

n(n+ 1)
.

Therefore

Ẽx

∣∣∣∣
θ=π

=
Ẽ0

2

e−jkr

kr

∞∑
n=1

jn+1(−1)nn(n+ 1)j
j−n(2n+ 1)

n(n+ 1)

1

Ĥ
(2)′
n (ka)Ĥ

(2)
n (ka)

= −Ẽ0

2

e−jkr

kr

∞∑
n=1

(−1)n
2n+ 1

Ĥ
(2)′
n (ka)Ĥ

(2)
n (ka)

.

Now use (5.167):

σ = lim
r→∞

(
4πr2 |Es|2

|Ẽi|2

)
, Ẽi = x̂Ẽ0e

−jkz.

σ = lim
r→∞

4πr2

∣∣∣∣∣Ẽ0

2

∣∣∣∣∣
2 ∣∣∣∣e−jkrkr

∣∣∣∣2
∣∣∣∣∣
∞∑
n=1

(−1)n
2n+ 1

Ĥ
(2)′
n (ka)Ĥ

(2)
n (ka)

∣∣∣∣∣
2

|Ẽ0|2|e−jkz|2

= 4π
1

4

(
λ

2π

)2
∣∣∣∣∣
∞∑
n=1

(−1)n(2n+ 1)

Ĥ
(2)′
n (ka)Ĥ

(2)
n (ka)

∣∣∣∣∣
2

=
λ2

4π

∣∣∣∣∣
∞∑
n=1

(−1)n(2n+ 1)

Ĥ
(2)′
n (ka)Ĥ

(2)
n (ka)

∣∣∣∣∣
2

.

5.27. Start with

σ =
λ2

4π

∣∣∣∣∣
∞∑
n=1

(−1)n(2n+ 1)

Ĥ
(2)′
n (ka)Ĥ

(2)
n (ka)

∣∣∣∣∣
2

.

Use
Ĥ(2)
n (x) = Ĵn(x)− jN̂n(x) = xjn(x)− jxnn(x).

For x� 1, (E.59) and (E.60) give

jn(x) ≈ 2nn!

(2n+ 1)!
xn, nn(x) ≈ −(2n)!

2nn!
x−(n+1).

So

Ĥ(2)
n (x) ≈ −jN̂n(x) = j

(2n)!

2nn!
x−n, Ĥ(2)′

n (x) ≈ −nj (2n)!

2nn!
x−n−1,

Ĥ(2)
n (x)Ĥ(2)′

n (x) ≈ n
[

(2n)!

2nn!

]2

x−2n−1.

Therefore

σ ≈ λ2

4π

∣∣∣∣∣∣∣
∞∑
n=1

(−1)n(2n+ 1)

n
[

(2n)!
2nn!

]2 (ka)2n+1

∣∣∣∣∣∣∣
2

.
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Since ka� 1, the first term in the series dominates:

σ ∼ λ2

∣∣∣∣∣
(

1

λ

)2+1
∣∣∣∣∣
2

∼ λ2

(
1

λ

)6

∼ λ−4.

5.28.

∇×
(

B

µ

)
= Ji + ε0

∂E

∂t
,

1

µ
∇×B−B×∇

(
1

µ

)
= Ji + ε0

∂E

∂t
,

1

µ
∇×∇×A− (∇×A)×∇

(
1

µ

)
= Ji + ε0

∂

∂t

(
−∂A

∂t
−∇φ

)
,

1

µ
∇(∇ ·A)− 1

µ
∇2A− (∇×A)×∇

(
1

µ

)
= Ji − ε0

∂2A

∂t2
− ε0

∂

∂t
∇φ.

∇ ·A = −µε0
∂φ

∂t
,

− 1

µ
∇2A− (∇×A)×∇

(
1

µ

)
= Ji − ε0

∂2A

∂t2
,

∇2A− µε0
∂2A

∂t2
+ µ∇×A +∇

(
1

µ

)
= Ji.

Because

∇
(

1

µ

)
= −∇µ

µ2
,

we can also write

∇2A− µε0
∂2A

∂t2
− (∇×A)× ∇µ

µ2
= Ji.

5.29.

A(r, t) = F−1

[
µ0

4π

∫
V

J̃(r′, ω)
e−jkR

R
dV ′
]

=
µ0

4π

∫
V

1

R
F−1

[
J̃(r′, ω)e−jω(R/c)

]
dV ′

=
µ0

4π

∫
V

1

R
J(r′, t−R/c) dV ′.

This is a “retarded potential” because the value of A at time t is produced by values of J at time
t − R/c (i.e., they are retarded in time). Note that R/c is the time it takes a wave to propagate
from the source point to the field point.

5.30. Write

G(ρ|ρ′) =
1

(2π)2

∫∫ ∞
−∞

G(λ|ρ′)ejλ·ρ d2λ,

where
λ = x̂λx + ŷλy, |λ|2 = λ2 = λ2

x + λ2
y, d2λ = dλx dλy.
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Also

δ(ρ− ρ′) =
1

(2π)2

∫∫ ∞
−∞

ejλ·(ρ−ρ
′)d2λ.

Then

∇2

[
1

(2π)2

∫∫ ∞
−∞

G(λ|ρ′)ejλ·ρ d2λ

]
+ k2

[
1

(2π)2

∫∫ ∞
−∞

G(λ|ρ′)ejλ·ρ d2λ

]
= − 1

(2π)2

∫∫ ∞
−∞

ejλ·(ρ−ρ
′)d2λ.

But

∇2

[
1

(2π)2

∫∫ ∞
−∞

G(λ|ρ′)ejλ·ρ d2λ

]
=

1

(2π)2

∫∫ ∞
−∞

G(λ|ρ′)∇2ejλ·ρ d2λ

=
1

(2π)2

∫∫ ∞
−∞

G(λ|ρ′)
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ej(λxx+λyy) d2λ

=
1

(2π)2

∫∫ ∞
−∞

(−λ2
x − λ2

y)G(λ|ρ′)ejλ·ρ d2λ

so
1

(2π)2

∫∫ ∞
−∞

[
(−λ2

x − λ2
y + k2)G(λ|ρ′) + e−jλ·ρ

′
]
ejλ·ρ d2λ = 0.

By the Fourier transform theorem this implies

(k2 − λ2
x − λ2

y)G(λ|ρ′) = e−jλ·ρ
′
,

hence

G(λ|ρ′) = − e
−jλ·ρ′

k2 − λ2
.

Therefore

G(ρ|ρ′) = − 1

(2π)2

∫∫ ∞
−∞

e−jλ·ρ
′

k2 − λ2
ejλ·ρ d2λ

= − 1

(2π)2

∫ ∞
−∞

dλxe
jλx(x−x′)

[∫ ∞
−∞

ejλy(y−y′)

k2 − λ2
x − λ2

y

dλy

]
.

Write
k2 − λ2

x − λ2
y =

(√
k2 − λ2

x − λy
)(√

k2 − λ2
x + λy

)
.

See Figure 37. Because −π/2 ≤ ∠k ≤ 0, k lies in the fourth quadrant of the complex λ-plane.
Hence k2 lies in the third or fourth quadrant. So k2−λ2

x lies in the third or fourth quadrant. If λx
is real, then

√
k2 − λ2

x lies in the fourth quadrant. We now carry out the integration over λy.

Case 1: y < y′. Close in lower half plane. See Figure 38. No contribution from the integral over
C∞, and the residue evaluation at the pole gives∫ ∞

−∞

ejλy(y−y′)

k2 − λ2
x − λ2

y

dλy = −jπ e
−j
√
k2−λ2

x|y−y′|√
k2 − λ2

x

.
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Figure 37

Figure 38

Case 2: y > y′. Close in upper half plane. See Figure 39. No contribution from the integral over
C∞, and the residue evaluation at the pole gives the same expression as above.

Therefore

G(ρ|ρ′) = − 1

(2π)2

∫ ∞
−∞

dλxe
jλx(x−x′)

[
−jπ e

−j
√
k2−λ2

x|y−y′|√
k2 − λ2

x

]

=
j

4

[
1

π

∫ ∞
−∞

ejλx(x−x′)e−j
√
k2−λ2

x|y−y′|√
k2 − λ2

x

dλx

]
.

Finally, use the integral representation (see, for example, Morse and Feshbach)

H
(2)
0 (k|ρ− ρ′|) = − 1

π

∫ ∞
−∞

ejα(x−x′)e−j
√
k2−α2|y−y′|

√
k2 − α2

dα

to finish the problem.
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Figure 39

5.31. See Figure 40.

Figure 40

H̃y = −∂ψ̃
∂x

, Ẽx = − kz
ωε̃

∂ψ̃

∂x
, Ẽz =

k2
x

jωε̃
ψ̃.

Region 1:
ψ̃1 = C1 sin kx1xe

−jkzz.

Region 0:
ψ̃0 = (C2 sin kx0x+ C3 cos kx0x)e−jkzz.

Boundary condition: Ẽz = 0 at x = d
2 =⇒ ψ̃ = 0 at x = d

2 :

C2 sin kx0
d
2 + C3 cos kx0

d
2 = 0 =⇒ C3 = −C2

sin kx0
d
2

cos kx0
d
2

.

ψ̃0 = C2

[
sin kx0x− C2

sin kx0
d
2

cos kx0
d
2

cos kx0x

]
= C̄2 sin kx0(x− d

2).

H̃y = −∂ψ̃
∂x

= e−jkzz

{
−kx0C̄2 cos kx0(x− d

2), region 0,

−kx1C1 cos kx1x, region 1.
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BC: H̃y continuous at x = a
2

kx0C̄2 cos kx0(a−d2 ) = kx1C1 cos kx1
a
2 .

BC: Ẽz continuous at x = a
2

k2
x0

jωε0
C̄2 sin kx0(a−d2 ) =

k2
x1

jωε̃1
C1 sin kx1

a
2 .

Divide the two preceding equations:

kx0

ε0
tan kx0(a−d2 ) =

kx1

ε̃1
tan kx1

a
2 .
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Chapter 6

6.1. Consider the geometry shown in Figure 6.1. We will calculate H̃(r) for all r ∈ V by placing
a magnetic dipole at location r and using the Lorentz reciprocity theorem

−
∮
S

n̂′ · (Ẽ× H̃pm − Ẽpm × H̃) dS′ =

∫
V ′

(Ẽpm · J̃− H̃pm · J̃m) dV ′. (1)

Here n̂ is the normal directed into the region V , and Ẽpm and H̃pm are the fields due to a magnetic
dipole. Ẽ and H̃ are the desired unknowns, and we have excluded a small volume element Vδ
around the point determined by r.

Let us use

Ẽpm = −jω
4π
∇× (p̃mψ̃), H̃pm =

1

4πµ̃
∇×∇× (p̃mψ̃).

and calculate each term in (1).

(a) ∮
S

n̂′ · (Ẽ× H̃pm) dS′ =

∮
S

n̂′ ·
{

Ẽ×
[

1

4πµ̃
∇′ ×∇× (p̃mψ̃)

]}
dS′

=
1

4πµ̃

∮
S

n̂′ · {Ẽ× [∇′(∇′ · [p̃mψ̃])−∇′2[p̃mψ̃]} dS′

=
1

4πµ̃

∮
S

n̂′ · {Ẽ× [∇′(p̃m · ∇′ψ̃ + ψ̃∇′ · p̃m)−∇′2[p̃mψ̃]} dS′.

Note that

∇′2[p̃mψ̃] = x̂∇′2[p̃mxψ̃] + ŷ∇′2[p̃myψ̃] + ẑ∇′2[p̃mzψ̃]

= (x̂p̃mx∇′2ψ̃) + (ŷp̃my∇′2ψ̃) + (ẑp̃mz∇′2ψ̃)

= (x̂p̃mx + ŷp̃my + ẑp̃mz)∇′2ψ̃

= p̃m∇′2ψ̃.

So

RHS =
1

4πµ̃

∮
S

n̂′ · {Ẽ× [∇′(p̃m · ∇′ψ̃)− p̃m∇′2ψ̃]} dS′.

But ∇′2ψ̃ = −k2ψ̃ for r 6= r′, so

RHS =
1

4πµ̃

∮
S

n̂′ · {Ẽ× [∇′(p̃m · ∇′ψ̃) + p̃mk
2ψ̃]} dS′.

Next use A×∇φ = φ∇×A−∇× (φA) to write

RHS =
1

4πµ̃

∮
S

n̂′ · {(Ẽ× p̃m)k2ψ̃ + (p̃m · ∇′ψ̃)(∇′ × Ẽ)−∇′ × [(p̃m · ∇′ψ̃)Ẽ]} dS′

=
1

4πµ̃

∮
S
{n̂′ · (Ẽ× p̃m)k2ψ̃ + (p̃m · ∇′ψ̃)n̂′ · (−J̃m − jωµ̃H̃)} dS′ − third term

=
1

4πµ̃

∮
S
{p̃m · (n̂′ × Ẽ)k2ψ̃ − (p̃m · ∇′ψ̃)n̂′ · (J̃m + jωµ̃H̃)} dS′ − third term
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where

third term =
∑
n

1

4πµ̃

∮
Sn

n̂′ · ∇′ × [(p̃m · ∇′ψ̃)Ẽ] dS′.

Split each surface along lines of discontinuity of Ẽ. By Stokes’s theorem,∮
Sn=Sna+Snb

n̂′ · ∇ × [(p̃m · ∇′ψ̃)Ẽ] dS′ =

∮
Γna+Γnb

(dl′ · Ẽ)(p̃m · ∇′ψ̃).

Note that if Ẽ is continuous the two line integrals cancel and the third term is zero.

So∮
S

n̂′·(Ẽ×H̃pm) dS′ =
1

4πµ̃
p̃m·

{∮
S

[(n̂′ × Ẽ)k2ψ̃ − n̂′ · (J̃m + jωµ̃H̃)∇′ψ̃] dS′ −
∑
n

∮
Γna+Γnb

(dl′ · Ẽ)∇′ψ̃

}
.

(b)

∮
S

n̂′ · (Ẽpm × H̃) dS = −jω
4π

∮
S

n̂′ · {[∇′ × (p̃mψ̃)]× H̃} dS′

=
jω

4π

∮
S

n̂′ · [H̃× (∇′ × [p̃mψ̃])] dS′

=
jω

4π

∮
S

(n̂′ × H̃) · (∇′ × [p̃mψ̃]) dS′

=
jω

4π

∮
S

(n̂′ × H̃) · {∇′ψ̃ × p̃m + ψ̃∇′ × p̃m} dS′

=
jω

4π

∮
S

p̃m · [(n̂′ × H̃)×∇′ψ̃] dS′

=
jω

4π
p̃m ·

∮
S

(n̂′ × H̃)×∇′ψ̃ dS.

Combining terms (a) and (b) gives the LHS of (1) as

LHS = −
∮
S

n̂′ · (Ẽ× H̃pm − Ẽpm × H̃) dS′

= − 1

4πµ̃
p̃m ·

{∮
S

[(n̂′ × Ẽ)k2ψ̃ − n̂′ · (J̃m + jωµ̃H̃)∇′ψ̃] dS′ −
∑
n

∮
Γna+Γnb

(dl′ · Ẽ)∇′ψ̃

}

+
jω

4π
p̃m ·

∮
S

(n̂′ × H̃)×∇′ψ̃ dS

= − 1

4πµ̃
p̃m ·

{∮
S

[−jωµ̃(n̂′ × H̃)×∇′ψ̃ + k2(n̂′ × Ẽ)ψ̃ − n̂′ · (J̃m + jωµ̃H̃)∇′ψ̃] dS′

−
∑
n

∮
Γna+Γnb

(dl′ · Ẽ)∇′ψ̃
}
.

Now calculate the RHS of (1).
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(c) ∫
V ′

Ẽpm · J̃ dV ′ = −
jω

4π

∫
V ′

[∇′ × (p̃mψ̃)] · J̃ dV ′

= −jω
4π

∫
V ′

J̃ · [∇′ψ̃ × p̃m + ψ̃∇′ × p̃m] dV ′

= −jω
4π

∫
V ′

[p̃m · (J̃×∇′ψ̃] dV ′

= −jω
4π

p̃m ·
∫
V ′

(J̃×∇′ψ̃) dV ′.

(d)∫
V ′

H̃pm · J̃m dV ′ =
1

4πµ̃

∫
V ′
{∇′ × [∇′ × (p̃mψ̃)]} · J̃m dV ′

=
1

4πµ̃

∫
V ′

[∇′(∇′ · [p̃mψ̃])−∇′2(p̃mψ̃)] · J̃m dV ′

=
1

4πµ̃

∫
V ′

J̃m · [∇′(p̃m · ∇′ψ̃ + ψ̃∇′ · p̃m)− p̃m∇′2ψ̃] dV ′

=
1

4πµ̃

∫
V ′

J̃m · [∇′(p̃m · ∇′ψ̃) + p̃mk
2ψ̃] dV ′

=
1

4πµ̃

∫
V ′

[∇′ · (J̃m[p̃m · ∇′ψ̃])− (p̃m · ∇′ψ̃)∇′ · J̃m + k2(p̃m · J̃m)ψ̃] dV ′

=
1

4πµ̃

∫
V ′

[k2(p̃m · J̃m)ψ̃ + jωρ̃m(p̃m · ∇′ψ̃)] dV ′ −
∮
S

J̃m[p̃m · ∇′ψ̃] · n̂′ dS′

=
1

4πµ̃
p̃m ·

{∫
V ′

[k2J̃mψ̃ + jωρ̃m∇′ψ̃] dV ′ −
∮
S

(n̂′ · J̃m)∇′ψ̃ dS′
}
.

Combining, we get the RHS of (1):

RHS =
1

4πµ̃
p̃m ·

{∫
V ′

[−jωµ̃(J̃×∇′ψ̃)− k2ψ̃J̃m − jωρ̃m∇′ψ̃] dV ′ +

∮
S

(n̂′ · J̃m)∇′ψ̃ dS′
}
.

Equating both sides of (1) gives

− 1

4πµ̃
p̃m ·

{∫
V ′

[jωµ̃(J̃×∇′ψ̃) + k2ψ̃J̃m + jωρ̃m∇′ψ̃] dV ′ −
∮
S

(n̂′ · J̃m)∇′ψ̃ dS′
}

= − 1

4πµ̃
p̃m ·

{∮
S

[−jωµ̃(n̂′ × H̃)×∇′ψ̃ + k2(n̂′ × Ẽ)ψ̃ − n̂′ · (J̃m + jωµ̃H̃)∇′ψ̃] dS′

−
∑
n

∮
Γna+Γnb

(dl′ · Ẽ)∇′ψ̃
}
,

hence∫
V ′

[jωµ̃J̃×∇′ψ̃ + k2ψ̃J̃m + jωρ̃m∇′ψ̃] dV ′

=

∮
S

[−jωµ̃(n̂′ × H̃)×∇′ψ̃ + k2(n̂′ × Ẽ)ψ̃ − jωµ̃(n̂′ · H̃)∇′ψ̃] dS′ −
∮

Γna+Γnb

(dl′ · Ẽ)∇′ψ̃,
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∫
V ′

[J̃×∇′ψ̃ − jωε̃ψ̃J̃m +
ρ̃m
µ̃
∇′ψ̃] dV ′

=

∮
S

[−(n̂′ × H̃)×∇′ψ̃ − jωε̃(n̂′ × Ẽ)ψ̃ − (n̂′ · H̃)∇′ψ̃] dS′ −
∮

Γna+Γnb

(dl′ · Ẽ)∇′ψ̃ 1

jωµ̃
. (2)

Now single out the contributions due to the surface Σ and the volume Vδ. Since Ẽ is continuous
on Σ we have ∮

ΓΣa+ΓΣb

(dl′ · Ẽ)∇′ψ̃ = 0.

Also,

lim
δ→0

∮
Σ

[−(n̂′ × H̃)×∇′ψ̃ − jωε̃(n̂′ × Ẽ)ψ̃ − (n̂′ · H̃)∇′ψ̃] dS′

= lim
δ→0

∮
Σ

[
(R̂× H̃)× R̂

δ2
+ jωε̃

R̂× Ẽ

δ
+ (R̂ · H̃)

R̂

δ2

]
dS′

= lim
δ→0

∫ 2π

0

∫ π

0

[
H̃(R̂ · R̂)

1

δ2
− R̂(R̂ · H̃)

1

δ2
+ jωε̃

R̂× Ẽ

δ
+ (R̂ · H̃)

R̂

δ2

]
δ2 sin θ′ dθ′ dφ′

= lim
δ→0

∫ 2π

0

∫ π

0
[H̃(r) + jωε̃δ(R̂× Ẽ)] sin θ′ dθ′ dφ′

= 4πH̃(r),

lim
δ→0

∫
Vδ

[
J̃× R̂

δ2
− jωε̃J̃m

1

δ
+
ρ̃m
µ̃

R̂

δ2

]
δ2 sin θ dδ dθ dφ

= lim
δ→0

∫ δ

0
4π

[
J̃× R̂− jωε̃δJ̃m +

ρ̃m
µ̃

R̂

]
dδ

= 0.

Substitution back into (1) gives the desired result for H̃(r).

6.2. Derive H̃ from Ẽ using Faraday’s law

∇× Ẽ = −J̃m − jωµ̃H̃.

Calculate ∇× Ẽ term by term:

∇× Ẽ =
1

4π
∇×

∫
V

[−J̃m ×∇′ψ̃ +
ρ̃

ε̃
∇′ψ̃ − jωµ̃J̃ψ̃] dV ′

+
1

4π

∑
n

∇×
∫
Sn

[(n̂′ × Ẽ)×∇′ψ̃ + (n̂′ · Ẽ)∇′ψ̃ − jωµ̃(n̂′ × H̃)ψ̃] dS′

− 1

4π

∑
n

∇×
∮

Γna+Γnb

1

jωε̃
(dl′ · H̃)∇′ψ̃.
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(a)

∇×
∫
V

[−J̃m ×∇′ψ̃] dV ′ =

∫
V
∇× (J̃m ×∇ψ̃) dV ′

=

∫
V
∇× [ψ̃∇× J̃m −∇× (ψ̃J̃m)] dV ′

= −
∫
V
∇×∇× (ψ̃J̃m) dV ′

= −
∫
V

[∇(∇ · [ψ̃J̃m])−∇2(ψ̃J̃m)] dV ′

= −
∫
V

[∇(∇ · [ψ̃J̃m])− J̃m∇2ψ̃] dV ′

= −
∫
V

[∇(J̃m · ∇ψ̃ + ψ̃∇ · J̃m)− J̃m∇2ψ̃] dV ′.

Continuing, we use the fact that ∇2ψ̃ + k2ψ̃ = −4πδ(r− r′):

∇×
∫
V

[−J̃m ×∇′ψ̃] dV ′ = −
∫
V

[∇(J̃m · ∇ψ̃)− J̃m(−k2 − 4πδ(r− r′))]] dV ′

= −4πJ̃m(r)−
∫
V

[∇(J̃m · ∇ψ̃) + ψ̃k2J̃m] dV ′

= −4πJ̃m(r)−
∫
V

[−∇(J̃m · ∇′ψ̃) + ψ̃k2J̃m] dV ′

= −4πJ̃m(r)−
∫
V

[∇(ψ̃∇′ · J̃m −∇′ · [J̃mψ̃])− ψ̃k2J̃m] dV ′

= −4πJ̃m(r)−
∫
V

[−jω∇(ψ̃ρ̃m)− ψ̃k2J̃m] dV ′ +∇
∫
V
∇′ · [J̃mψ̃] dV ′

= −4πJ̃m(r)−
∫
V

[−jω(ρ̃m∇ψ̃ + ψ̃∇ρ̃m)− ψ̃k2J̃m] dV ′ −∇
∮
S

n̂′ · (J̃mψ̃) dS′

= −4πJ̃m(r)−
∫
V

[jωρ̃m∇′ψ̃ + ψ̃k2J̃m] dV ′ −
∮
S
∇{n̂′ · (J̃mψ̃)} dS′

= −4πJ̃m(r)−
∫
V

[jωρ̃m∇′ψ̃ + ψ̃k2J̃m] dV ′ −
∮
S

n̂′ · J̃m∇ψ̃ dS′

= −4πJ̃m(r)−
∫
V

[jωρ̃m∇′ψ̃ + ψ̃k2J̃m] dV ′ +

∮
S

(n̂′ · J̃m)∇′ψ̃ dS′.

(b)

∇×
∫
V

ρ̃

ε̃
∇′ψ̃ dV ′ =

∫
V
∇×

[
− ρ̃
ε̃
∇ψ̃
]
dV ′ = −

∫
V

ρ̃

ε̃
∇×∇ψ̃ dV ′ = 0.
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(c)

∇×
∫
V

[−jωµ̃J̃ψ̃] dV ′ = −jωµ̃
∫
V
∇× [J̃ψ̃] dV ′

= −jωµ̃
∫
V

[∇ψ̃ × J̃ + ψ̃∇× J̃] dV ′

= −jωµ̃
∫
V

J̃×∇′ψ̃ dV ′.

(d)

∇×
∫
Sn

(n̂′ × Ẽ)×∇′ψ̃ dS′ = −∇×
∫
Sn

(n̂′ × Ẽ)×∇ψ̃ dS′

= −∇×
∫
Sn

[ψ̃∇× (n̂′ × Ẽ)−∇× {ψ̃(n̂′ × Ẽ)}] dS′

= ∇×∇×
∫
Sn

ψ̃(n̂′ × Ẽ) dS′.

(e)

∇×
∫
Sn

(n̂′ · Ẽ)∇′ψ̃ dS′ =
∫
Sn

(n̂′ · Ẽ)(∇×∇′ψ̃) dS′

= −
∫
Sn

(n̂′ · Ẽ)(∇×∇ψ̃) dS′

= 0.

(f)

∇×
∫
Sn

[−jωµ̃(n̂′ × H̃)ψ̃] dS′ = −jωµ̃
∫
Sn

∇× [(n̂′ × H̃)ψ̃] dS′

= −jωµ̃
∫
Sn

[ψ̃∇× (n̂′ × H̃) +∇ψ̃ × (n̂′ × H̃)] dS′

= −jωµ̃
∫
Sn

(n̂′ × H̃)×∇′ψ̃ dS′.

(g)

∇×
∫

Γna+Γnb

1

jωε̃
(dl′ · H̃)∇′ψ̃ =

1

jωε̃

∫
Γna+Γnb

[∇(dl′ · H̃)×∇′ψ̃ + (dl′ · H̃)∇×∇′ψ̃]

= − 1

jωε̃

∫
Γna+Γnb

(dl′ · H̃)∇×∇ψ̃

= 0.
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Now, let’s calculate H̃.

H̃ = −∇× Ẽ

jωµ̃
− J̃m
jωµ̃

= − J̃m
jωµ̃

+
J̃m
jωµ̃

+
1

4π

∫
V

[
ρ̃m
µ̃
∇′ψ̃ − jωε̃ψ̃J̃

]
dV ′

−
∑
n

1

jωµ̃4π

∫
Sn

(n̂′ · J̃m)∇′ψ̃ dS′ + 1

4π

∫
V

J̃×∇′ψ̃ dV ′

−
∑
n

1

ωµ̃4π

∫
Sn

∇×∇× [ψ̃(n̂′ × Ẽ)] dS′

+
1

4π

∑
n

∫
Sn

(n̂′ × H̃)×∇′ψ̃ dS′

=
1

4π

∫
V

[
ρ̃m
µ̃
∇′ψ̃ − jωε̃ψ̃J̃m + J̃×∇′ψ̃

]
dV ′

+
1

4π

∑
n

∫
Sn

(n̂′ × H̃)×∇′ψ̃ dS′

−
∑
n

1

jωµ̃4π

∫
Sn

{∇ ×∇× [ψ̃(n̂′ × Ẽ)] + (n̂′ · J̃m)∇′ψ̃} dS′.

The volume integral is exactly what we need, but the surface integral still requires manipulation.∫
Sn

(n̂′ · J̃m)∇′ψ̃ dS′ =
∫
Sn

n̂′ · (−∇′ × Ẽ− jωµ̃H̃)∇′ψ̃ dS′

= ∇
∫
Sn

n̂′ · (∇′ × Ẽ + jωµ̃H̃)ψ̃ dS′

= ∇
∫
Sn

n̂′ · (∇′ × [Ẽψ̃]−∇′ψ̃ × Ẽ + jωµ̃H̃ψ̃) dS′.

Use Stokes’s theorem on the first term:

RHS = ∇
∮

Γna+Γnb

(dl′ · Ẽ)ψ̃ −∇
∫
Sn

∇′ψ̃ × Ẽ dS′ +∇
∫
Sn

jωµ̃(n̂′ · H̃)ψ̃ dS′

= −
∮

Γna+Γnb

(dl′ · Ẽ)∇′ψ̃ −∇
∫
Sn

(n̂′ × Ẽ) · ∇ψ̃ dS′ − jωµ̃
∫
Sn

(n̂′ · H̃)∇′ψ̃ dS′

= −
∮

Γna+Γnb

(dl′ · Ẽ)∇′ψ̃ −∇∇ ·
∫
Sn

(n̂′ × Ẽ)ψ̃ dS′ − jωµ̃
∫
Sn

(n̂′ · H̃)∇′ψ̃ dS′.
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Thus∫
Sn

{∇ ×∇× [ψ̃(n̂′ × Ẽ)] + (n̂′ · J̃m)∇′ψ̃} dS′ = [∇×∇×−∇∇·]
∫
Sn

(n̂′ × Ẽ)ψ̃ dS′

−
∮

Γna+Γnb

(dl′ · Ẽ)∇′ψ̃ − jωµ̃
∫
Sn

(n̂′ · H̃)∇′ψ̃ dS′

= −∇2

∫
Sn

(n̂′ × Ẽ)ψ̃ dS′ + remaining terms

= −
∫
Sn

(n̂′ × Ẽ)∇2ψ̃ dS′ + remaining terms

=

∫
Sn

(n̂′ × Ẽ)k2ψ̃ dS′ + remaining terms.

Back-substitution gives the desired result for H̃.

6.3. Consider two separate cases.

1. Do not exclude Vm, but do exclude all regions Vn with n 6= m. Then the magnetic field external
to the excluded region is

H̃(r, ω) =

∫
V+Vm

(
J̃i ×∇′G̃+

ρ̃im
µ̃
∇′G̃− jωε̃cJ̃imG̃

)
dV ′

+
∑
n6=m

∫
Sn

[
(n̂′ × H̃)×∇′G̃+ (n̂′ · H̃)∇′G̃+ jωε̃c(n̂′ × Ẽ)G̃

]
dS′

+
∑
n6=m

1

jωµ̃

∮
Γna+Γnb

(dl′ · Ẽ)∇′G̃, r ∈ V + Vm.

Note that the valid region for this expression includes the volume Vm.

2. Exclude all of space except for Vm:

H̃(r, ω) =

∫
Vm

(
J̃i ×∇′G̃+

ρ̃im
µ̃
∇′G̃− jωε̃cJ̃imG̃

)
dV ′

−
∫
Sm

[
(n̂′ × H̃)×∇′G̃+ (n̂′ · H̃)∇′G̃+ jωε̃c(n̂′ × Ẽ)G̃

]
dS′

− 1

jωµ̃

∮
Γma+Γmb

(dl′ · Ẽ)∇′G̃, r ∈ Vm.

Note the minus signs introduced by reversal of the normal vector.

Now subtract the two equations for points within Vm:

0 =

∫
V

(
J̃i ×∇′G̃+

ρ̃im
µ̃
∇′G̃− jωε̃cJ̃imG̃

)
dV ′

+

N∑
n=1

∫
Sn

[
(n̂′ × H̃)×∇′G̃+ (n̂′ · H̃)∇′G̃+ jωε̃c(n̂′ × Ẽ)G̃

]
dS′

+

N∑
n=1

1

jωµ̃

∮
Γna+Γnb

(dl′ · Ẽ)∇′G̃, r ∈ Vm.
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This is (6.8) evaluated within Vm.

6.4. We wish to show

∇ ·E(r) = ∇ ·
∫
V

(
−Jim ×∇′G+

ρi

ε
∇′G

)
dV ′ =

ρi

ε
.

Moving the divergence through the integral sign we need

∇ ·
(
−Jim ×∇′G

)
=∇ ·

(
Jim ×∇G

)
=∇ ·

(
G∇× Jim

)
−∇ · ∇ ×

(
JimG

)
=∇ · ∇ ×

(
JimG

)
=0.

Here we have used ∇× Jim = 0 since Jim depends on r′ and we are differentiating with respect to
r. Thus

∇ ·E(r) =

∫
V
∇ ·
(
ρi

ε
∇′G

)
dV ′

=−
∫
V
∇ ·
(
ρi

ε
∇G

)
dV ′

=−
∫
V

(
ρi

ε
∇ · ∇G+∇G · ∇

[
ρi

ε

])
dV ′.

The second term is zero since the argument of the derivative depends on r′. Using ∇·∇G = ∇2G =
−δ(r− r′) we have

∇ ·E(r) =

∫
V

ρi

ε
δ(r− r′)dV ′ =

ρi

ε
.

6.5. By (6.20) we have

H̃φ = j
Ĩ

4πρ

[
e−jkR1 + e−jkR2 − (2 cos kl)e−jkr

]
.

Here

R1 = (ρ2 + (z − l)2)1/2 = (ρ2 + z2 − 2lz + l2)1/2 = (r2 − 2lz + l2)1/2

= r

(
1− 2lz

r2
+
l2

r2

)1/2

≈ r
(

1− 2
lz

r2

)1/2

≈ r
(

1− lz

r2

)
= r − z

r
l

and we can use z = r cos θ to write
R1 ≈ r − l cos θ.

Similarly,
R2 ≈ r + l cos θ.
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Using ρ = r sin θ, we obtain

H̃φ = j
Ĩ

4πρ

[
e−jkrejkl cos θ + e−jkre−jkl cos θ − (2 cos kl)e−jkr

]
= j

Ĩ

4πr sin θ
e−jkr

[
ejkl cos θ + e−jkl cos θ − 2 cos kl

]
= j

Ĩ

2π

e−jkr

r

cos(kl cos θ)− cos kl

sin θ

= j
Ĩ

2π

e−jkr

r
F (θ, kl) where F (θ, kl) =

cos(kl cos θ)− cos kl

sin θ
.

Next, by (6.21),

Ẽρ = j
ηĨ

4π

[
z − l
ρ

e−jkR1

R1
+
z + l

ρ

e−jkR2

R2
− z

ρ
(2 cos kl)

e−jkr

r

]
.

Here we will use
z − l
ρ
≈ z

ρ
,

z + l

ρ
≈ z

ρ
,

where z = r cos θ and ρ = r sin θ. Also,

1

R1
=

1

r − l cos θ
≈ 1

r
,

1

R2
≈ 1

r
.

So

Ẽρ ≈ j
ηĨ

4π

[
cos θ

sin θ

e−jkrejkl cos θ

r
+

cos θ

sin θ

e−jkre−jkl cos θ

r
− (2 cos kl)

cos θ

sin θ

e−jkr

r

]
= j

ηĨ

4π

cos θ

sin θ

e−jkr

r

[
ejkl cos θ + e−jkl cos θ − 2 cos kl

]
= j

ηĨ

2π
cos θ

e−jkr

r
F (θ, kl).

By (6.22),

Ẽz = −j ηĨ
4π

[
e−jkR1

R1
+
e−jkR2

R2
− (2 cos kl)

e−jkr

r

]
≈ −j ηĨ

4π

[
e−jkrejkl cos θ

r
+
e−jkre−jkl cos θ

r
− (2 cos kl)

e−jkr

r

]
= −j ηĨ

4π

e−jkr

r
sin θF (θ, kl).

Therefore

Ẽ = ρ̂Ẽρ + ẑẼz = j
ηĨ

2π

e−jkr

r
F (θ, kl)[ρ̂ cos θ − ẑ sin θ].

Let
V = ρ̂ cos θ − ẑ sin θ = [x̂ cosφ+ ŷ sinφ] cos θ − ẑ sin θ.
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Then

Vθ = θ̂ ·V
= (θ̂ · x̂) cosφ cos θ + (θ̂ · ŷ) sinφ cos θ − (θ̂ · ẑ) sin θ

= (cos θ cosφ) cosφ cos θ + (cos θ sinφ) sinφ cos θ + sin2 θ

= cos2 θ + sin2 θ

= 1,

Vr = r̂ ·V
= (r̂ · x̂) cosφ cos θ + (r̂ · ŷ) sinφ cos θ − (r̂ · ẑ) sin θ

= (sin θ cosφ) cosφ cos θ + (sin θ sinφ) sinφ cos θ − cos θ sin θ

= sin θ cos θ(cos2 φ+ sin2 φ)− cos θ sin θ

= 0,

Vφ = φ̂ ·V
= (φ̂ · x̂) cosφ cos θ + (φ̂ · ŷ) sinφ cos θ − (φ̂ · ẑ) sin θ

= (− sinφ) cosφ cos θ + (cosφ) sinφ cos θ − (0) sin θ

= 0.

Finally then,

Ẽ = θ̂j
ηĨ

2π

e−jkr

r
F (θ, kl).

6.6. We have
J̃i = ẑĨe−jk|z|δ(x)δ(y),

and

R = (ρ2 + (z − z′)2)1/2,


R(z′ = l) = R1 = (ρ2 + (z − l)2)1/2,

R(z′ = −l) = R2 = (ρ2 + (z + l)2)1/2,

R(z′ = 0) = r = (ρ2 + z2)1/2.

Now

Ãe = ẑ
µ̃Ĩ

4π

∫ l

−l
e−jk|z

′| e
−jkR

R
dz′

and

H̃ =
1

µ̃
∇× Ãe = −φ̂ 1

µ̃

∂Ãez
∂ρ

.

Therefore

H̃φ = − Ĩ

4π

∂

∂ρ

∫ 0

−l
ejkz

′ e−jkR

R
dz′ − Ĩ

4π

∂

∂ρ

∫ l

0
e−jkz

′ e−jkR

R
dz′

= − Ĩ

4π

∫ 0

−l

∂

∂ρ

e−jk(R−z′)

R
dz′ − Ĩ

4π

∫ l

0

∂

∂ρ

e−jk(R+z′)

R
dz′.
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Use
∂

∂ρ

e−jk(R±z′)

R
= ±ρ ∂

∂z′
e−jk(R±z′)

R[R∓ (z − z′)]
to get

H̃φ = − Ĩ

4π

[
−ρ e−jk(R−z′)

R[R+ (z − z′)]

] ∣∣∣∣0
−l
− Ĩ

4π

[
ρ

e−jk(R+z′)

R[R− (z − z′)]

] ∣∣∣∣l
0

= − Ĩ

4π

[
−ρ e−jkr

r[r + z]
− ρ e−jkr

r[r − z]

]
− Ĩ

4π

[
ρ

e−jkR2e−jkl

R2[R2 + (z + l)]
+ ρ

e−jkR1e−jkl

R1[R1 − (z − l)]

]
= − Ĩ

4π
ρ
e−jkr

r

[
− 1

r + z
− 1

r − z

]
− Ĩ

4π
ρe−jkl

[
e−jkR2

R2
· R2 − (z + l)

R2
2 − (z + l)2

+
e−jkR1

R1
· R1 + (z − l)
R2

1 − (z − l)2

]
=

Ĩ

2π

r

ρ

e−jkr

r
− Ĩ

4πρ
e−jkl

[
e−jkR2 + e−jkR1 − e−jkR2

z + l

R2
+ e−jkR1

z − l
R1

]
=

Ĩ

2π

r

ρ

e−jkr

r
− Ĩ

4πρ
e−jkl

[
e−jkR2

(
1− z + l

R2

)
+ e−jkR1

(
1 +

z − l
R1

)]
.

To find Ẽ, use

Ẽ =
1

jωε̃
∇× H̃ =

1

jωε̃
∇× (φ̂H̃φ) =

1

jωε̃

[
−ρ̂

∂H̃φ

∂z
+ ẑ

1

ρ

∂

∂ρ
(ρH̃φ)

]
, and so on.

For kr � 1 we make the approximation

R1 = (ρ2 + z2 − 2lz + l2)1/2 = (r2 − 2lz + l2)1/2 = r

(
1− 2lz

r2
+
l2

r2

)1/2

≈ r
(

1− 2
lz

r2

)1/2

≈ r
(

1− lz

r2

)
= r − z

r
l = r − l cos θ.

and, similarly, R2 ≈ r + l cos θ. Note also that ρ = r sin θ. Hence

H̃φ ≈ −
Ĩ

2π

1

sin θ

e−jkr

r
− Ĩ

4πρ
e−jkl

[
e−jkre−jkl cos θ

(
1− z + l

r + l cos θ

)
+ e−jkrejkl cos θ

(
1 +

z − l
r − l cos θ

)]
≈ − Ĩ

2π

1

sin θ

e−jkr

r
− Ĩ

4π

1

sin θ

e−jkr

r

[
e−jkl cos θ(1− cos θ) + ejkl cos θ(1 + cos θ)

]
.

To find Ẽ, cross r̂ into both sides of

H̃ ≈ r̂× Ẽ

η

to obtain
ηr̂× H̃ = r̂× (r̂× Ẽ) = r̂(r̂ · Ẽ)− Ẽ(r̂ · r̂) = −Ẽ

or
Ẽ = −ηr̂× H̃.

Since r̂× φ̂ = −θ̂, we compute

Ẽθ ≈ η
Ĩ

2π

1

sin θ

e−jkr

r
+ η

Ĩ

4π

1

sin θ

e−jkr

r

[
e−jkl cos θ(1− cos θ) + ejkl cos θ(1 + cos θ)

]
.
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Figure 41

6.7. Refer to Figure 41.

By (6.31) we have

ǎe =

∫
V

J̌i(r′, ω)ejk0r̂·r′ dV ′

=

∫ π

−π
φ̂
′
Ǐ(φ′)ejk0r̂·r′a dφ′ where Ǐ(φ) = Ǐ0e

−jk0a|φ|.

But

r̂ · r′ = (x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ) · (x̂ cosφ′ + ŷ sinφ′)a

= a(sin θ cosφ cosφ′ + sin θ sinφ sinφ′)

= a sin θ cos(φ− φ′)

and

φ̂
′
= −x̂ sinφ′ + ŷ cosφ′

= −(r̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sinφ) sinφ′ + (r̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cosφ) cosφ′

= r̂(− sin θ cosφ sinφ′ + sin θ sinφ cosφ′)

+ θ̂(− cos θ cosφ sinφ′ + cos θ sinφ cosφ′)

+ φ̂(sinφ sinφ′ + cosφ cosφ′)

= r̂ sin θ sin(φ− φ′) + θ̂ cos θ sin(φ− φ′) + φ̂ cos(φ− φ′).

Therefore

ǎθ = a cos θ

∫ π

−π
Ǐ(φ′) sin(φ− φ′)ejka sin θ cos(φ−φ′) dφ′

and

ǎφ = a

∫ π

−π
Ǐ(φ′) cos(φ− φ′)ejk0a sin θ cos(φ−φ′) dφ′.
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Substituting for Ǐ(φ), we find

ǎθ

Ǐ0a
= cos θ

∫ π

−π
sin(φ− φ′)e−jk0a[|φ′|−sin θ cos(φ−φ′)] dφ′

and
ǎφ

Ǐ0a
=

∫ π

−π
cos(φ− φ′)e−jk0a[|φ′|−sin θ cos(φ−φ′)] dφ′.

We note that these integrals cannot be computed in closed form.
To compute the radiation resistance, we must first find the radiated power. Using (6.34) in (6.33)
we have

PR =

∫ 2π

0

∫ π

0

k2
0η0

32π2

[
ǎθǎ
∗
θ + ǎφǎ

∗
φ

]
sin θ dθ dφ.

Thus,

Rr =
2PR

|Ǐ0|2
= η0

(
k0a

4π

)2 ∫ 2π

0

∫ π

0

[∣∣∣∣ ǎθǏ0a

∣∣∣∣2 +

∣∣∣∣ ǎθǏ0a

∣∣∣∣2
]

sin θ dθ dφ.

Figure 42 shows the radiation resistance computed using numerical integration.
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Figure 42 Radiation resistance of a traveling-wave loop antenna.

6.8. From (6.75) we have

ǎφ ≈ Ǐ0a

∫ π

−π
cos

(
φ′

2

)
cos(φ− φ′)dφ′ = Ǐ0a

4

3
cosφ,

ǎθ ≈ Ǐ0a sin θ

∫ π

−π
cos

(
φ′

2

)
sin(φ− φ′)dφ′ = Ǐ0a sin θ

4

3
sinφ,

where we have approximated the exponential function as unity. We have from the previous problem
the following formula for the radiation resistance:

Rr =
2PR

|Ǐ0|2
= η0

(
k0a

4π

)2 ∫ 2π

0

∫ π

0

[∣∣∣∣ ǎθǏ0a

∣∣∣∣2 +

∣∣∣∣ ǎθǏ0a

∣∣∣∣2
]

sin θ dθ dφ.
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Thus

Rr = η0

(
k0a

4π

)2(4

3

)2 ∫ 2π

0

∫ π

0

[
cos2 φ+ sin2 φ sin2 θ

]
sin θ dθ dφ = η0

10π

27

(
d

λ

)2

,

where d = 2a is the loop diameter. The radiation resistance of a small short-circuited antenna is
from Example 6.9

Rr = η0
π5

6

(
d

λ

)4

.

Thus, the ratio of the radiation resistance of the short-circuited loop to that of the open-circuited
loop is

π5

6

(
d
λ

)4
10π
27

(
d
λ

)2 =
27

60
π4

(
d

λ

)2

= 43.8

(
d

λ

)2

.

Note that for small d/λ the ratio varies as diameter squared, and thus the radiation resistance of
the short-circuited loop becomes small compared to that of the open-circuited loop. The angularly-
varying current in the open-circuited loop produces less cancellation of the far-zone fields than does
the constant current in the short-circuited loop.

6.9. Refer to Figure 43.

Figure 43

The field in the aperture is
Ẽa = Ẽ0x̂e

−jkz∣∣
z=0

= Ẽ0x̂.

We have
J̃eqms = −2n̂× Ẽa = −2ẑ× (Ẽ0x̂) = −2ŷẼ0,

ãh =

∫
S

J̃ms(r
′)ejkr̂·r

′
dS′,

r̂ · r′ = r̂ · (x̂x′ + ŷy′) = x′ sin θ cosφ+ y′ sin θ sinφ.
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Therefore

ãh = −2ŷẼ0

∫ a/2

−a/2

∫ a/2

−a/2
ejkx

′ sin θ cosφejky
′ sin θ sinφ dx′ dy′

= −2ŷẼ0
ejkx

′ sin θ cosφ

jk sin θ cosφ

∣∣∣∣a/2
−a/2

ejky
′ sin θ sinφ

jk sin θ sinφ

∣∣∣∣a/2
−a/2

= −2ŷẼ0a
2 2j

j

sin(k a2 sin θ cosφ)

k a2 sin θ cosφ
· 2j

j

sin(k a2 sin θ sinφ)

k a2 sin θ sinφ

= −8ŷẼ0a
2 sinπX

πX
· sinπY

πY

where
X =

a

λ
sin θ cosφ, Y =

a

λ
sin θ sinφ.

Then, by (6.55),

Ẽ =
jk

ε0
r̂× Ãh

= −jk
ε0

8(r̂× ŷ)Ẽ0a
2 sinπX

πX
· sinπY

πY

(
ε0
e−jkr

4πr

)
.

Here
r̂× ŷ = r̂× (r̂ sin θ sinφ+ θ̂ cos θ sinφ− φ̂ cosφ) = φ̂ cos θ sinφ+ θ̂ cosφ,

so

Ẽ = −2jk0

π
Ẽ0a

2 e
−jkr

r
(φ̂ cos θ sinφ+ θ̂ cosφ)

sinπX

πX
· sinπY

πY
.

Finally,

H̃ =
r̂× Ẽ

η
= −2jk0

ηπ
Ẽ0a

2 e
−jkr

r
(φ̂ cosφ− θ̂ cos θ sinφ)

sinπX

πX
· sinπY

πY
.

6.10. Refer to Figure 44.

The field in the aperture is

Ẽa(r) = ρ̂
Ṽ0

ρ ln(b/a)
e−jkz

∣∣∣∣
z=0

= ρ̂
Ṽ0

ρ ln(b/a)
.

We have

ãh =

∫
S

J̃eqms(r
′)ejkr̂·r

′
dS′

where

J̃eqms = −2n̂× Ẽa = −2ẑ× ρ̂
Ṽ0

ρ ln(b/a)
= −2φ̂

Ṽ0

ρ ln(b/a)
.

Here
r′ = ρ′ρ̂′ = ρ′x̂ cosφ′ + ρ′ŷ sinφ′
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Figure 44

so

r̂ · r′ = (r̂ · x̂)ρ′ cosφ′ + (r̂ · ŷ)ρ′ sinφ′

= ρ′ cosφ′ sin θ cosφ+ ρ′ sinφ′ sin θ sinφ

= ρ′ sin θ cos(φ− φ′).

Also,

φ̂
′
= −x̂ sinφ′ + ŷ cosφ′

= −(r̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sinφ) sinφ′ + (r̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cosφ) cosφ′

= r̂(− sin θ cosφ sinφ′ + sin θ sinφ cosφ′)

+ θ̂(− cos θ cosφ sinφ′ + cos θ sinφ cosφ′)

+ φ̂(sinφ sinφ′ + cosφ cosφ′)

= r̂ sin θ sin(φ− φ′) + θ̂ cos θ sin(φ− φ′) + φ̂ cos(φ− φ′).

Hence

ãθ =

∫ 2π

0

∫ b

a
−2 cos θ sin(φ− φ′) Ṽ0

ρ′ ln(b/a)
ejkρ

′ sin θ cos(φ−φ′)ρ′ dρ′ dφ′ = 0
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(because the integrand is odd in u = φ− φ′) and

ãφ =

∫ 2π

0

∫ b

a
−2 cos(φ− φ′) Ṽ0

ρ′ ln(b/a)
ejkρ

′ sin θ cos(φ−φ′)ρ′ dρ′ dφ′

= − 2Ṽ0

ln(b/a)

∫ b

a

[∫ 2π

0
cosu ejkρ

′ sin θ cosu du

]
dρ′

= − 2Ṽ0

ln(b/a)

∫ b

a

[
2πjJ1(kρ′ sin θ)

]
dρ′ . . . by (E.83)

=
4πjṼ0

ln(b/a)

1

k sin θ
J0(kρ′ sin θ)

∣∣∣∣b
a

. . . since

∫
J1(x) dx = −J0(x)

=
4πjṼ0

ln(b/a)

J0(kb sin θ)− J0(ka sin θ)

k sin θ
.

Then

Ẽ =
jk

ε̃
r̂× Ãh

=
jk

ε̃
r̂×

(
ε̃
e−jkr

4πr
ah

)
=
jk

ε̃
(r̂× φ̂)ε̃

e−jkr

4πr

4πjṼ0

ln(b/a)

J0(kb sin θ)− J0(ka sin θ)

k sin θ

= θ̂
e−jkr

r

Ṽ0

ln(b/a)

J0(kb sin θ)− J0(ka sin θ)

sin θ

and

H̃ =
r̂× Ẽ

η
= φ̂

e−jkr

r

Ṽ0

η ln(b/a)

J0(kb sin θ)− J0(ka sin θ)

sin θ
.

6.11.

Ãe(r) = ẑ
e−jkr

4πr

∫ L/2

−L/2
Ĩ(z′)ejkz

′ cos θ dz′

= ẑ
e−jkr

4πr

[∫ 0

−L/2
Ĩ0e

jkz′ejkz
′ cos θ dz′ +

∫ L/2

0
Ĩ0e
−jkz′ejkz

′ cos θ dz′

]

= ẑ
e−jkr

4πr
Ĩ0

[
1− e−jk(cos θ+1)L/2

jk(cos θ + 1)
− 1− ejk(cos θ−1)L/2

jk(cos θ − 1)

]
.

6.12. Refer to Figure 45.

J̃ms = −2ẑ× ẼA = −2ẑ× x̂Ẽ0 = −ŷ2Ẽ0,

Ãh =
e−jkr

4πr

∫
S

J̃ms(r
′)ejkr̂·r

′
dS′
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Figure 45

r̂ · r′ = r̂ · (x̂x′ + ŷy′) = x′ sin θ cosφ+ y′ sin θ sinφ,

Ãh = −ŷ2Ẽ0
e−jkr

4πr

∫ a

−a
ejkx

′ sin θ cosφ dx′
∫ a

−a
ejky

′ sin θ sinφ dy′

= −ŷ2Ẽ0
e−jkr

4πr
2

sin(ka sin θ cosφ)

k sin θ cosφ
2

sin(ka sin θ sinφ)

k sin θ sinφ

Ẽ = jkr̂× J̃msT =⇒ Ẽφ = jkJ̃msθ

ŷ = r̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cosφ,

Ẽφ = jk cos θ sinφ(−2Ẽ0)
e−jkr

πr

sin(ka sin θ cosφ) sin(ka sin θ sinφ)

k2 sin2 θ sinφ cosφ

= −2jẼ0
e−jkr

πrk

cos θ

sin2 θ cosφ
sin(ka sin θ cosφ) sin(ka sin θ sinφ).
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Chapter 7

7.1. (a) Begin with (7.14) and (7.17):

dṼ (z)

dz
= γ2

∫ z

−l
Ṽ (t) dt+ C1,

Ṽ (z) = γ2

∫ z

−l
(z − t)Ṽ (t) dt+ C1z + C2. (1)

To find C1 and C2, apply the boundary conditions. At z = −l we have

Vg = Zg Ĩ(−l) + Ṽ (−l) where Ĩ(z) = − 1

Z

dṼ (z)

dz
.

This gives us

Vg = −Zg
Z
Ṽ ′(−l) + Ṽ (−l)

or

Vg = −Zg
Z
C1 − C1l + C2. (2)

At z = 0 we have
Ṽ (0) = ZLĨ(0)

which gives us

−γ2

∫ 0

−l
tṼ (t) dt+ C2 = −γ2ZL

Z

∫ 0

−l
Ṽ (t) dt− C1

ZL
Z
. (3)

Solving, we obtain

C1 =
Z

Zl + ZT
γ2

∫ 0

−l
tṼ (t) dt− γ2ZL

Zl + ZT

∫ 0

−l
Ṽ (t) dt− Z

Zl + ZT
Vg

where ZT = Zg + ZL, and

C2 =
ZT − Zg
ZT + Zl

Vg +
Zg + Zl

ZT + Zl
γ2

∫ 0

−l
tṼ (t) dt− Zg + Zl

ZT + Zl
γ2ZL

Z

∫ 0

−l
Ṽ (t) dt.

Substituting into (1) and simplifying, we get the integral equation for Ṽ (z):

Ṽ (z) = γ2

∫ z

−l
(z−t)Ṽ (t) dt−Zz − ZL

Zl + ZT
Vg+γ

2(l+z)

∫ 0

−l

Zt− ZL
Zl + ZT

Ṽ (t) dt+γ2

∫ 0

−l

Zg(t− ZL/Z)

Zl + ZT
Ṽ (t) dt,

holding for −l ≤ z ≤ 0. We see that if Zg = 0, then ZT = ZL, the last term vanishes, and the
equation reverts to (7.21) from the text.

(b) Now we solve the integral equation using the MoM. Expand

Ṽ (z) =
N∑
n=1

anPn(z)
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and point match at zm:

N∑
n=1

anPn(z) =
N∑
n=1

an

[
γ2

∫ zm

−l
(zm − t)Pn(t) dt

]
− Zzm − ZL

Zl + ZT
Vg

+
N∑
n=1

an

[
γ2(l + zm)

∫ 0

−l

Zt− ZL
Zl + ZT

Pn(t) dt

]

+
N∑
n=1

an

[
γ2

∫ 0

−l

Zg(t− ZL/Z)

Zl + ZT
Pn(t) dt

]
.

Write

γ2

∫ zm

−l
(t− zm)Pn(t) dt = Umn =


0, m < n,

−1
8γ

2∆2, m = n,

γ2∆(zn − zm), m > n,

−γ2(l + zm)

∫ 0

−l

Zt− ZL
Zl + ZT

Pn(t) dt = Wmn = −γ2(l + zm)∆
Zzn − ZL
Zl + ZT

,

−γ2

∫ 0

−l

Zg(t− ZL/Z)

Zl + ZT
Pn(t) dt = Zmn = −γ2∆

Zg(zn − ZL/Z)

Zl + ZT
,

and

−Zzm − ZL
Zl + ZT

Vg = bm.

Then we have the set of linear equations

N∑
n=1

an[δmn + Umn +Wmn + Zmn] = bm.

Solution is indicated in Figure 46. The theoretical voltage may be found in many elementary
textbooks:

Ṽ (z) =
Z0Vg

Z0 + Zg

(
e−γz + Γeγz

eγl − ΓΓge−γl

)
where

Γ =
ZL − Z0

ZL + Z0
, Γg =

Zg − Z0

Zg + Z0
.

For the special case of Zg = Z0, this reduces to

Ṽ (z) =
Vg
2
e−γl

(
e−γz + Γeγz

)
.

Note that the MoM solution matches well with the theoretical voltage.

7.2.∫ z

a

∫ u

a
F (t) dt du =

∫ z

a

du

du

∫ u

a
F (t) dt du =

[
u

∫ u

a
F (t)dt

] ∣∣∣∣z
u=a

−
∫ z

a
u
d

du

∫ u

a
F (t) dt du

= z

∫ z

a
F (t) dt−

∫ z

a
uF (u) du = z

∫ z

a
F (t) dt−

∫ z

a
tF (t) dt =

∫ z

a
(z − t)F (t) dt.
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7.3. Use Leibniz’s rule:

d

dz

∫ b(z)

a(z)
f(t, z) dt = f(b(z), z)

db(z)

dz
− f(a(z), z)

da(z)

dz
+

∫ b(z)

a(z)

∂f(t, z)

∂z
dt

to differentiate

g(z) = −
∫ z

0
(z − t)k2

z(t)g(t) dt+ C1z + C2

twice with respect to z. The results are

g′(z) = −
∫ z

0
k2
z(t)g(t) dt+ C1

and
g′′(z) = −k2

z(z)g(z).
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7.4. Let D = sin kzd− akz cos kzd. The first term on the RHS of (7.41) is

T1 = −k2
z

∫ z

0
(z − t)g(t) dt

= −k2
z

2Ẽ0

D

∫ z

0
(z − t) sin kz(d− t) dt

= −k2
z

2Ẽ0

D

[
z − t
kz

cos kz(d− t)−
sin kz(d− t)

k2
z

] ∣∣∣∣z
0

=
2Ẽ0

D
[sin kz(d− z) + zkz cos kzd− sin kzd].

The second term on the RHS of (7.41) is

T2 =
a− z
a− d

2Ẽ0

D
k2
z

∫ d

0
(d− t) sin kz(d− z) dt

=
a− z
a− d

2Ẽ0

D
k2
z

[
d− t
kz

cos kz(d− t)−
sin kz(d− t)

k2
z

] ∣∣∣∣d
0

=
a− z
a− d

2Ẽ0

D
k2
z [−dkz cos kzd+ sin kzd] .

Substituting these into (7.43), we get

2Ẽ0

D
sin kz(d− z) = T1 + T2 + 2Ẽ0

z − d
a− d

=
2Ẽ0

D
[sin kz(d− z) + zkz cos kzd− sin kzd]

+
2Ẽ0

D

a− z
a− d

[−dkz cos kzd+ sin kzd] +
2Ẽ0

D
D
z − d
z + d

.

Canceling the term on the LHS, we obtain

0 = zkz cos kzd− sin kzd+

(
a− z
a− d

)
[−dkz cos kzd+ sin kzd] +

(
z − d
a− d

)
[sin kzd− akz cos kzd].

Now multiply through by a− d and rearrange to see that (7.43) is satisfied.

7.5. Begin with (7.29):

H̃ =
j

ωµ̃(z)

[
−x̂

∂Ẽy
∂z

+ ẑ
∂Ẽy
∂x

]
.

Substitute into Ampere’s law:

∇× H̃ = ŷ

[
∂H̃x

∂z
− ∂H̃z

∂x

]
= jωε̃(z)Ẽy(x, z).

We obtain
∂

∂z

[
− j

ωµ̃(z)

∂Ẽy
∂z

]
− ∂

∂x

[
j

ωµ̃(z)

∂Ẽy
∂x

]
= jωε̃(z)Ẽy,
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∂

∂x

[
1

µ̃(z)

∂Ẽy
∂x

]
+

∂

∂z

[
1

µ̃(z)

∂Ẽy
∂z

]
= −ω2ε̃(z)Ẽy,

1

µ̃(z)

∂2Ẽy
∂x2

+
1

µ̃(z)

∂2Ẽy
∂z2

− µ̃′(z)

µ̃(z)

∂Ẽz
∂y

= −ω2ε̃(z)Ẽy,

so
∂2Ẽy
∂x2

+
∂2Ẽy
∂z2

− µ̃′(z)

µ̃(z)

∂Ẽy
∂z

+ k2Ẽy = 0, k2(z) = ω2µ̃(z)ε̃(z).

Let Ẽy(x, z) = f(x)g(z), substitute to get

g(z)
d2f(x)

dx2
+ f(x)

d2g(z)

dz2
− f(x)

µ̃′(z)

µ̃(z)

dg(z)

dz
+ k2f(x)g(z) = 0,

and divide by fg:
1

f

d2f

dx2
+

1

g

d2g

dz2
− 1

g

µ̃′(z)

µ̃(z)

dg

dz
= −k2.

Now separate variables to obtain

1

f

d2f

dx2
= −k2

x,
1

g

d2g

dz2
− 1

g

µ̃′(z)

µ̃(z)

dg

dz
= −k2

z

where
k2
x + k2

z = k2.

So
d2g

dz2
− 1

µ̃(z)

dµ̃(z)

dz

dg

dz
+ k2

zg = 0.

Integrate to obtain an integral equation:

g′(z)−
∫ z

0
h(t)g′(t) dt+

∫ z

0
f(t)g(t) dt = C̄1.

If µ̃(z) is twice differentiable, we can integrate the second term by parts:∫ z

0
h(t)g′(t) dt = h(t)g(t)

∣∣z
0
−
∫ z

0
h′(t)g(t) dt = h(z)g(z)− h(0)g(0)−

∫ z

0
h′(t)g(t) dt.

Then

g′(z) + h(z)g(z)−
∫ z

0
h′(t)g(t) dt+

∫ z

0
f(t)g(t) dt = C̄1 + h(0)g(0) = C1

or

g′(t) + h(z)g(z)−
∫ z

0
[f(t)− h′(t)]g(t) dt = C1.

Integrate again:

g(z) +

∫ z

0
h(t)g(t) dt+

∫ z

0
(z − t)[f(t)− h′(t)]g(t) dt = C1z + C2.
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Therefore

g(z) = −
∫ z

0
h(t)g(t) dt−

∫ z

0
(z − t)[f(t)− h′(t)]g(t) dt = C1z + C2. (*)

The constants C1 and C2 are determined by applying the boundary conditions

g(d) = 0

and

g(0) + ag′(0) = 2Ẽ0, a =
jη0

ωµ̃(0) cosφ0
.

We find

C2 =
2Ẽ0

h0
− a

h0
C1 where h0 = 1− ah(0)

and

C1 =
2Ẽ0

a− dh0
− h0

a− dh0

∫ d

0
{h(t) + (d− t)[f(t)− h′(t)]}g(t) dt.

Substitution into (*) gives the desired result.

7.6. (a) Start with
g(z) = A1g1(z) +A2g2(z).

Use (7.35) to get A1g1(d) +A2g2(d) = 0 or

A2 = −A1
g1(d)

g2(d)
.

Then

g(z) = A1

[
g1(z)− g1(d)

g2(d)
g2(z)

]
.

Now apply (7.38):

2Ẽ0 = A1

[
g1(0)− g1(d)

g2(d)
g2(0)

]
+ aA1

[
g′1(0)− g1(d)

g2(d)
g′2(0)

]
.

We obtain

A1 =
2Ẽ0g2(d)

F + aG
where

F = g1(0)g2(d)− g1(d)g2(0), G = g′1(0)g2(d)− g1(d)g′2(0).

Substitution yields

g(z) =
2Ẽ0

F + aG
[g1(z)g2(d)− g1(d)g2(z)].

(b)

Γ = −1 +
g(0)

Ẽ0

= −1 +
2

F + aG
[g1(0)g2(d)− g1(d)g2(0)]

= −1 +
2F

F + aG

=
F − aG
F + aG

.
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7.7. The differential equation is
d2g(z)

dz2
+ k2

z(z)g(z) = 0 (1)

where k2
z(z) = k2(z)− k2

x. We wish to verify that when ε̃(z) = ε0ε̃r0e
κz, a solution is

g(z) = Bν(λeκz/2) (2)

where λ = 2k0
√
µ̃r ε̃r0/κ and ν = 2kx/κ. Use

k2(z) = ω2µ̃ε̃(z) = ω2µ̃rµ0ε0ε̃r0e
κz = k2

0µ̃r ε̃r0e
κz.

Use

g′(z) = B′ν(λeκz/2)
d

dz
(λeκz/2) = λ

κ

2
eκz/2B′ν(λeκz/2),

g′′(z) = λ
(κ

2

)2
eκz/2B′ν(λeκz/2) +

(
λ
κ

2

)2
eκzB′′ν (λeκz/2).

Substitute these:

λ
κ2

4
eκz/2B′ν(λeκz/2) + λ2κ

2

4
eκzB′′ν (λeκz/2) + [k2

0µ̃r ε̃r0e
κz − k2

x]Bν(λeκz/2) = 0

or

B′′ν (u) +
1

λ
e−κz/2B′ν(u) + [k2

0µ̃r ε̃r0 − k2
xe
−κz]

4

λ2κ2
Bν(u) = 0

where u = λeκz/2. This can be rewritten as

B′′ν (u) +
1

u
B′ν(u) +

[
1− ν2

u2

]
Bν(u) = 0.

From (E.1) we see that this equation is satisfied when Bν(u) is Jν(u) or Nν(u).

7.8. The integral equation is, from (7.41),

g(z) = −
∫ z

0
(z − t)k2

z(t)g(t) dt+
a− z
a− d

∫ d

0
(d− t)k2

z(t)g(t) dt+ 2Ẽ0
z − d
a− d

where
k2
z(z) = ω2µ̃ε̃(z) = ω2µ0ε0ε̃r0e

κz = k2
0 ε̃r0e

κz.

(a) Let

g(z) =

N∑
n=1

anPn(z)

where

Pn(z) =

{
1, zn −∆/2 ≤ z ≤ zn + ∆/2,

0, elsewhere,
zn =

(
n− 1

2

)
∆.
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Substitute the expansion and point match at z = zm:

N∑
n=1

anPn(zm) = −
N∑
n=1

an

∫ zm

0
(zm − t)k2

z(t)Pn(t) dt

+

N∑
n=1

an
a− zm
a− d

∫ d

0
(d− t)k2

z(t)Pn(t) dt+ 2Ẽ0
zm − d
a− d

, m = 1, 2, . . . , N.

We can write this as a matrix equation

N∑
n=1

anAmn = bm

where

bm = 2Ẽ0
zm − d
a− d

,

Am = δmn + Umn + Vmn,

Umn =

∫ zm

0
(zm − t)k2

z(t)Pn(t) dt,

and

Vmn = −a− zm
a− d

∫ d

0
(d− t)k2

z(t)Pn(t) dt.

To compute Umn we consider three cases.

(1) m > n

Umn =

∫ zn+∆/2

zn−∆/2
(zm − t)k2

z(t) dt

= k2
0 ε̃r0

∫ zn+∆/2

zn−∆/2
(zm − t)eκt dt

= k2
0 ε̃r0

eκt

κ2
[(zm − t)κ+ 1]

∣∣∣∣zn+∆/2

zn−∆/2

= k2
0 ε̃r0

{
eκ(zn+∆/2)

κ2
[(zm − zn −∆/2)κ+ 1]− eκ(zn−∆/2)

κ2
[(zm − zn + ∆/2)κ+ 1]

}

= k2
0 ε̃r0

eκzn

κ2

{
eκ∆/2[(m− n− 1/2)κ∆ + 1]− e−κ1∆/2[(m− n+ 1/2)κ∆ + 1]

}
.
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(2) m = n

Umn =

∫ zm

zm−∆/2
(zm − t)k2

z(t) dt

= k2
0 ε̃r0

eκt

K2
[(zm − t)κ+ 1]

∣∣∣∣zm
zm−∆/2

= k2
0 ε̃r0

{
eκzm

κ2
− eκ(zm−∆/2)

κ2
[κ∆/2 + 1]

}

= k2
0 ε̃r0

eκzm

κ2

{
1− e−κ∆/2[κ∆/2 + 1]

}
.

(3) m < n
Umn = 0.

Next compute

Vmn = −a− zm
a− d

∫ d

0
(d− t)k2

z(t)Pn(t) dt

= −a− zm
a− d

k2
0 ε̃r0

∫ zn+∆/2

zn−∆/2
(d− t)eκt dt

= −a− zm
a− d

k2
0 ε̃r0

eκzn

κ2

{
eκ∆/2[(d− zn −∆/2)κ+ 1]− e−κ∆/2[(d− zn + ∆/2)κ+ 1]

}
.

(b) Let the numerical values be as given in the problem statement. The solution for g(z) yields a
numerical value for the reflection coefficient of Γ = 0.7368 − j0.6761, which matches the analytic
result to four significant digits.

A plot of |g(z)| is shown in Figure 47 and compared to the analytic result from Problem 7.7.
Excellent agreement is seen.

7.9. We have

Γ =
sin kzd+ akz cos kzd

sin kzd− akz cos kzd

=
ejkzd − e−jkzd + jakz(e

jkzd + e−jkzd)

ejkzd − e−jkzd − jakz(ejkzd + e−jkzd)

=
(1 + jakz)e

jkzd − (1− jakz)e−jkzd

(1− jakz)ejkzd − (1 + jakz)e−jkzd

=

1+jakz
1−jakz − e

−2jkzd

1− 1+jakz
1−jakz e

−2jkzd

=
Γ0 − P̃ 2

1− Γ0P̃ 2
where Γ0 =

1 + jakz
1− jakz

, P̃ = e−jkzd.
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Now

Γ0 =
1 + jakz
1− jakz

=
1 + j jη0

ωµ̃ cosφ0

√
k2 − k2

0 sin2 φ0

1− j jη0

ωµ̃ cosφ0

√
k2 − k2

0 sin2 φ0

=
ωµ̃rµ0 cosφ0 − η0k

2
0

√
µ̃r ε̃cr − sin2 φ0

ωµ̃rµ0 cosφ0 + η0k2
0

√
µ̃r ε̃cr − sin2 φ0

=
ωµ̃rµ0 cosφ0 −

√
µ0

ε0
ω
√
µ0ε0

√
µ̃r ε̃cr − sin2 φ0

ωµ̃rµ0 cosφ0 +
√

µ0

ε0
ω
√
µ0ε0

√
µ̃r ε̃cr − sin2 φ0

=
µ̃r cosφ0 −

√
µ̃r ε̃cr − sin2 φ0

µ̃r cosφ0 +
√
µ̃r ε̃cr − sin2 φ0

.
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7.10. In region 0,

Ẽi = ŷẼ0e
−jk0z, H̃i = −x̂

Ẽ0

η0
e−jk0z,

Ẽr = ŷẼre
jk0z, H̃r = x̂

Ẽr
η0
ejk0z.

In region 2,

Ẽt = ŷẼte
−jk0z, H̃t = −x̂

Ẽt
η0
ejk0z,

We can develop an integral equation for the electric field in region 1 by starting with Maxwell’s
equations. Faraday’s law:

∇× Ẽ = jωµ̃H̃ =⇒ H̃x =
−j
ωµ̃

∂Ẽy
∂z

.

Ampere’s law

∇× H̃ = jωε̃cẼ =⇒ jωε̃cẼy =
∂H̃x

∂z
.

Combine to obtain

jωε̃cẼy = − j

ωµ̃

∂2Ẽy
∂z2

or
∂2Ẽy
∂z2

+ k2Ẽy = 0, k2 = ω2µ̃ε̃c.

Let g(z) = Ẽy(z). Then we have the differential equation

g′′ + k2g = 0.

Integrate to obtain

g′(z) + k2

∫ z

0
g(t) dt = C1

and again to obtain

g(z) = −k2

∫ z

0
(z − t)g(t) dt+ C1z + C2.

To determine C1 and C2 we apply the boundary conditions. At z = 0, continuity of tangential E
gives

Ẽ0 + Ẽr = g(0). (1)

Continuity of tangential H gives

−Ẽ0 + Ẽr = −j η0

ωµ̃
g′(0). (2)

Subtracting (2) from (1), we obtain

2Ẽ0 = g(0) + j
η0

ωµ̃
g′(0). (3)
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At z = d, continuity of tangential Ẽ gives

g(d) + Ẽte
−jk0d. (4)

Continuity of tangential H gives

−j η0

ωµ̃
g′(d) = Ẽte

−jk0d. (5)

Subtracting (5) from (4), we obtain

g(d) + j
η0

ωµ̃
g′(d) = 0. (6)

Using (3) and the facts that g(0) = C2 and g′(0) = C1, we get

C2 = 2Ẽ0 − j
η0

ωµ̃
C1.

Using (6) and the relationships

g(d) = −k2

∫ d

0
(d− t)g(t) dt+ C1d+ C2, g′(d) = −k2

∫ d

0
g(t) dt+ C1,

we get

C1 =
k2

d

[∫ d

0
(d− t)g(t) dt− j η0

ωµ̃

∫ d

0
g(t) dt

]
.

Now substitute C1 and C2 back to get the desired integral equation.

7.11. (a) To get a differential equation for Hy(z), use Maxwell’s equations. First,

∇× H̃ = jωε̃c(z)Ẽ =⇒ Ẽ =
1

jωε̃c(z)

[
−x̂

∂H̃y

∂z
+ ẑ

∂H̃y

∂x

]
,

so

Ẽx = − 1

jωε̃c(z)

∂H̃y

∂z
, Ẽz =

1

jωε̃c(z)

∂H̃y

∂x
.

Then

∇× Ẽ = ŷ

[
∂Ẽx
∂z
− ∂Ẽz

∂x

]
= −jωµ̃(z)H̃,

so

H̃y = − 1

jωµ̃(z)

[
∂Ẽx
∂z
− ∂Ẽz

∂x

]

=

(
− 1

jωµ̃(z)

)(
− 1

jω

)[
∂

∂z

(
1

ε̃c(z)

∂H̃y

∂z

)
− ∂

∂x

(
1

ε̃c(z)

∂H̃y

∂x

)]

= − 1

ω2µ̃(z)

[
−∂ε̃

c/∂z

(ε̃c)2

∂H̃y

∂z
+

1

ε̃c
∂2H̃y

∂z2
+

1

ε̃c
∂2H̃y

∂x2

]

= − 1

k2(z)

[
∂2H̃y

∂x2
+
∂2H̃y

∂z2
− ε̃c′(z)

ε̃c(z)

∂H̃y

∂z

]
.
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Thus
∂2H̃y

∂x2
+
∂2H̃y

∂z2
− ε̃c′(z)

ε̃c(z)

∂H̃y

∂z
+ k2(z)H̃y = 0.

Seek a product solution. Let H̃y(x, z) = f(x)g(z):

g
d2f

dx2
+ f

d2g

dz2
− ε̃c′

ε̃c
f
dg

dz
+ k2fg = 0.

Divide by fg:
1

f

d2f

dx2
+

1

g

d2g

dz2
− ε̃c′

ε̃c
1

g

dg

dz
= −k2.

Separate variables:
1

f

d2f

dx2
= −k2

x,
1

g

d2g

dz2
− ε̃c′

ε̃c
1

g

dg

dz
= −k2

z ,

where
k2
z(z) + k2

x = k2(z).

Hence the differential equation for g(z) is

g′′(z)− ε̃c′(z)

ε̃c(z)
g′(z) + k2

zg(z) = 0.

(b) The incident and reflected fields in region 0 are

H̃ i
y = H̃0e

−jkx0xe−jkz0z, H̃r
y = H̃re

−jkx0xejkz0z,

Ẽix = η0 cosφ0H̃0e
−jkx0xe−jkz0z, Ẽrx = −η0 cosφ0H̃0e

−jkx0xejkz0z,

where
kx0 = k0 sinφ0, kz0 = k0 cosφ0,

so that
k2
x0 + k2

z0 = k2
0 = ω2µ̃0ε0.

To satisfy the boundary conditions we must have kx = kx0. Thus,

f(x) = e−jkx0x.

Boundary condition 1, tangential Ẽ continuous at z = 0:

η0H̃0 cosφ0 − η0H̃r cosφ0 =
j

ωε̃c(0)
g′(0).

Boundary condition 2, tangential H̃ continuous at z = 0:

H̃0 + H̃r = g(0).

Boundary condition 3, tangential Ẽ is zero at z = d:

g′(d) = 0.

183



Thus we have the three equations

H̃0 − H̃r =
j

ωε̃c(0)η0 cosφ0
g′(0), (1)

H̃0 + H̃r = g(0), (2)

and
g′(d) = 0. (3)

Adding (1) and (2), we get an alternative form of the boundary condition

2H̃0 = g(0) + ag′(0), a =
j

ωε̃c(0)η0 cosφ0
. (1’)

Now return to the differential equation for g(z):

g′′(z) + h(z)g′(z) + k2
z(z)g(z) = 0, h(z) = − ε̃

c′(z)

ε̃c(z)
.

Integrate:

g′(z) +

∫ z

0
h(t)g′(t) dt+

∫ z

0
k2
z(t)g(t) dt = C1.

Integrate again:

g(z) +

∫ z

0
(z − t)h(t)g′(t) dt =

∫ z

0
(z − t)k2

z(t)g(t) dt = C1z + C2.

To find C1 and C2 we apply (1’) and (3). We obtain

C1 =

∫ d

0
[h(t)g′(t) + k2

z(t)g(t)] dt, C2 = 2H0 − aC1.

Substitution yields

g(z) +

∫ z

0
(z − t)h(t)g′(t) dt+

∫ z

0
(z − t)k2

z(t)g(t) dt

= C1z + 2H̃0 − aC1

= 2H̃0 + C1(z − a)

= 2H̃0 + (z − a)

∫ d

0
[h(t)g′(t) + k2

z(t)g(t)] dt.

So the integro-differential equation for g(z) is

g(z) =

∫ d

0
[(z − a)− (z − t)U(z − t)][k2

z(t)g(t) + h(t)g′(t)] dt+ 2H̃0,

holding for 0 ≤ z ≤ d, where U(x) is the unit step function.
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7.12.

Amn =

∫ (m−n+ 1
2

)∆

(m−n− 1
2

)∆
G(u) du (1)

where

G(u) =

∫ 2π

0

e−jk0R(ξ,u)

R(ξ, u)
du, R(ξ, u) =

√
4a2 sin2(ξ/2) + u2.

In (1) let v = −u and use G(−u) = G(u):

Amn =

∫ −(m−n+ 1
2

)∆

−(m−n− 1
2

)∆
G(v)(−dv) =

∫ −(m−n− 1
2

)∆

−(m−n+ 1
2

)∆
G(v) dv =

∫ (m−n+ 1
2

)∆

(m−n− 1
2

)∆
G(u) du = Anm.

7.13. Refer to Figure 48.

Figure 48

Use the Schelkunoff equivalence principle of § 6.3.4.

J̃sm(r) = −2n̂× Ẽ = −2ẑ× ρ̂
Ṽ0/2

ρ ln(b/a)
= −φ̂ Ṽ0

ρ ln(b/a)
,

Ãh(r) =

∫
S
ε0J̃sm(r′)

e−jkR

4πR
dS′,

Ẽ = − 1

ε0
∇× Ãh

= ∇×
∫
S
φ̂
′ Ṽ0

ρ′ ln(b/a)

e−jkR

4πR
dS′

=
1

4π

Ṽ0

ln(b/a)

∫
S
∇×

[
φ̂
′ e−jkR

R

]
dS′

ρ′
.

Use (B.49) to write

∇×
[
φ̂
′ e−jkR

R

]
= −φ̂′ ×∇

(
e−jkR

R

)
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where, by (B.74),

∇
(
e−jkR

R

)
= −R

(
1

R
+ jk

)
e−jkR

R2
.

Then

Ẽ =
1

4π

Ṽ0

ln(b/a)

∫
S
φ̂
′ ×R

(
1

R
+ jk

)
e−jkR

R2

dS′

ρ′
.

But φ̂
′ ×R = φ̂

′ × (ẑz − ρ̂′ρ′) = ρ̂′z + ρ′ẑ for points on the z-axis, so

Ẽz =
1

4π

Ṽ0

ln(b/a)

∫ 2π

0
dφ′
∫ b

a
ρ′
(

1

R
+ jk

)
e−jkR

R2
dρ′

=
Ṽ0

2 ln(b/a)

∫ b

a

ρ′

R

(
1

R
+ jk

)
e−jkR

R
dρ′.

Now
∂

∂ρ′

(
e−jkR

R

)
= −

(
1

R
+ jk

)
e−jkR

R

∂R

∂ρ′

where
∂R

∂ρ′
=

∂

∂ρ′

√
ρ′2 + z2 =

ρ′√
ρ′2 + z2

=
ρ′

R
.

Therefore

Ẽz = − Ṽ0

2 ln(b/a)

∫ b

a

∂

∂ρ′

(
e−jkR

R

)
dρ′

=
Ṽ0

2 ln(b/a)

[
e−jkR1

R1
− e−jkR2

R2

]
where R1 =

√
a2 + z2 and R2 =

√
b2 + z2.

7.14. For a straight wire aligned along z, use

∂

∂u
=

∂

∂z
, û · û′ = 1, G(u, u′) = 2π

e−jk0R̄(z−z′)

R̄(z − z′)
, R̄ =

√
(z − z′)2 + a2.

Thus, from (7.80), the Pocklington integral equation is∫ L

−L
Ĩ(z′)

[
∂2

∂z∂z′
− k2

0

]
G(z − z′) dz′ = j

8π2k0

η0
Ẽi(z), −L ≤ z ≤ L.

Use
∂G(z − z′)

∂z
=

∂

∂z

[
2π
e−jk0R̄

R̄

]
= 2π

R̄(−jk0)− 1

R̄2
e−jk0R̄ ∂R̄

∂z
,

where
∂R̄

∂z
=

∂

∂z

√
(z − z′)2 + a2 =

z − z′

R̄

to write
∂G(z − z′)

∂z
= G1(z − z′) = −2π

z − z′

R̄3
(1 + jk0R̄)e−jk0R̄.
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The integral equation becomes∫ L

−L
Ĩ(z′)

∂G1(z − z′)
∂z′

dz′ − k2
0

∫ L

−L
Ĩ(z′)G(z − z′) dz′ = j

8π2k0

η0
Ẽi(z).

Use integration by parts in the first integral:∫ L

−L
Ĩ(z′)

∂G1(z − z′)
∂z′

dz′ = Ĩ(z′)G1(z − z′)
∣∣∣∣L
−L
−
∫ L

−L

∂Ĩ(z′)

∂z′
G1(z − z′) dz′,

so ∫ L

−L

[
∂Ĩ(z′)

∂z′
G1(z − z′) + k2

0 Ĩ(z′)G(z − z′)

]
dz′ = −j 8π2k0

η0
Ẽi(z),

since Ĩ(−L) = Ĩ(L) = 0. We can solve this integral equation using pulse function expansion and
point matching. Let

Ĩ(z) =

N∑
n=1

anPn(z)

where

Pn(z) =

{
1, zn −∆/2 ≤ z ≤ zn + ∆/2,

0, elsewhere,
∆ =

2L

N
, zn = −L+ (n− 1/2)∆.

We have

∂Ĩ(z)

∂z
=

N∑
n=1

an [δ(z − [zn −∆/2])− δ(z − [zn + ∆/2])]

so that

N∑
n=1

an

[
G1(zm − [zn −∆/2])−G1(zm − [zn + ∆/2]) + k2

0

∫ zn+∆/2

zn−∆/2
G(zm − z′) dz′

]
= −j 8π2k0

η0
Ẽi(zm)

for m = 1, 2, . . . , N . This is a matrix equation of the form

N∑
n=1

anAmn = bm.

Letting u = zm − z′, we can write

k2
0

∫ zn+∆/2

zn−∆/2
G(zm − z′) dz′ = k2

0

∫ zm−zn+∆/2

zm−zn−∆/2
G(u) du

where

G(u) = 2π
ejk0R̄(u)

R̄(u)
, R̄(u) =

√
u2 + a2,

and
zm − zn = −L+ (m− 1/2)∆− [−L+ (n− 1/2)∆] = (m− n)∆.
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Thus

Amn = G1([m− n+ 1/2]∆)−G1([m− n− 1/2]∆) + k2
0

∫ [m−n+1/2]∆

[m−n−1/2]∆
G(u) du

where
G1(u) = −2π

u

R̄3
(1 + jk0R)e−jk0R̄,

and

bm = −j 8π2k0

η0
Ẽi(zm)

where

Ẽi(z) =
V0

2 ln(b/a)

[
e−jk0R1(z)

R1(z)
− e−jk0R2(z)

R2(z)

]
,

R1(z) =
√
z2 + a2, R2(z) =

√
z2 + b2.

The input impedance found by solving the matrix equation is shown in Figure 49 for the case of
a = 0.01 m. Comparing this to Figure 7.15, we see that (1) the thin wire approximation breaks
down sooner with Hallen’s integral equation, and (2) Pocklington’s equation predicts a somewhat
higher input impedance than Hallen’s equation.
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The input impedance found by solving the matrix equation is shown in Figure 50 for the case of
a = 0.0001 m. Comparing this to Figure 7.14, we see that even for N = 2000 pulses the Pocklington
solution has not converged to a stable value.
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The input impedance found by solving the matrix equation is shown in Figure 51 for the case of
a = 0.001 m. This result is somewhat in between the previous two cases. The result takes a large
number of pulses to converge, but reaches a stable value by about N = 500 pulses.

7.15. Begin with the Pocklington integral equation∫
Γ
Ĩ(u′)K(u, u′) du′ = j

8π2k0

η0
Ẽi(u), u ∈ Γ,

where

K(u, u′) =

[
∂2

∂u∂u′
− k2

0(û · û′)
]
G(u, u′), G(u, u′) =

e−jk0R(u,u′)

R(u, u′)
.

For the circular loop we have

u = bφ, û = φ̂,
∂

∂u
=

1

b

∂

∂φ
, û · û′ = cos(φ− φ′), G(u, u′) = G(φ− φ′).
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The Hallen form of the integral equation is, from (7.83),∫ 2π

0
Ĩ(φ′)Π(φ, φ′) dφ′ = A sin k0bφ+B cos k0bφ− j

8π2

η0

∫ φ

0
Ẽi(ζ) sin k0b(φ− ζ) dζ.

The kernel is, from (7.84),

Π(φ, φ′) = cos(φ− φ′)G(φ− φ′)

−
∫ φ

0

{
1

b

∂

∂χ

[
cos(χ− φ′)G(χ− φ′)

]
+

1

b

∂G(χ− φ′)
∂φ′

}
cos k0b(φ− χ)b dχ.

Note that we have chosen the constant lower limit to be zero for convenience in the next step. We
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can remove the derivatives using integration by parts. Let

I1 =

∫ φ

0

∂

∂χ

[
cos(χ− φ′)G(χ− φ′)

]
cos k0b(χ− φ) dχ

=
[
cos(χ− φ′)G(χ− φ′)

]
cos k0b(χ− φ)

∣∣φ
0

+

∫ φ

0
k0b
[
cos(χ− φ′)G(χ− φ′)

]
sin k0b(χ− φ) dχ

= cos(φ− φ′)G(φ− φ′)− cosφ′G(φ′) cos k0bφ

+

∫ φ

0
k0b
[
cos(χ− φ′)G(χ− φ′)

]
sin k0b(χ− φ) dχ.

Let

I2 =

∫ φ

0

∂G(χ− φ′)
∂φ′

cos k0b(χ− φ) dχ

and use
∂G(χ− φ′)

∂φ′
= −∂G(χ− φ′)

∂χ

to write

I2 = −G(χ− φ′) cos k0b(χ− φ)
∣∣φ
0
−
∫ φ

0
k0bG(χ− φ′) sin k0b(χ− φ) dχ

= −G(φ− φ′) +G(φ′) cos k0bφ−
∫ φ

0
k0bG(χ− φ′) sin k0b(χ− φ) dχ.

Thus

Π(φ, φ′) = cos(φ− φ′)G(φ− φ′)− cos(φ− φ′)G(φ− φ′) + cosφ′G(φ′) cos k0bφ

−
∫ φ

0
k0b
[
cos(χ− φ′)G(χ− φ′)

]
sin k0b(χ− φ) dχ

+G(φ− φ′)−G(φ′) cos k0bφ+

∫ φ

0
k0bG(χ− φ′) sin k0b(χ− φ) dχ

or

Π(φ, φ′) = G(φ− φ′) +G(φ′) cos k0bφ[cosφ′ − 1]

+ k0b

∫ φ

0
G(χ− φ′) sin k0b(χ− φ)[cos(χ− φ′)− 1] dχ.

7.16. Using r̂ · r′ = r̂ · (ẑz′) = z′ cos θ and k0 = ω/c, we get

Ẽθ(r, θ, φ) = jω
µ0

4π

e−jk0r

r
sin θ

∫ L

−L
Ĩ(z′, ω)ejk0r̂·r′ dz′

=
µ0

4πr
sin θ

∫ L

−L
[jωĨ(z′, ω)]e

−jω
[
r
c
− z
′ cosω
c

]
dz′.
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Let Ĩ(z′, ω) ↔ I(z′, t). Then, by the differentiation and time-shifting theorems,

[jωĨ(z′, ω)]e
−jω

[
r
c
− z
′ cos θ
c

]
↔ I ′

(
z′, t−

[
r

c
− z′ cos θ

c

])
where I ′(t) = dI(t)/dt. So

Eθ(r, θ, t) =
µ0

4πr
sin θ

∫ L

−L
I ′
(
z′, t− r

c
+
z cos θ

c

)
dz′.

7.17. Assume
In(z) = sin

(nπ
2L

[z − L]
)
.

We have
am = Rm/Cm.

Rm = −8π2smε0 sin θiE0(sm)J0(−jsma sin θi/c)

∫ L

−L
Im(z)e−γmz cos θi dz.

Let

I =

∫ L

−L
Im(z)e−γmz cos θi dz

=

∫ L

−L
sin
(mπ

2L
[z − L]

)
e−γmz cos θi dz

=
e−γmz cos θi(

mπ
2L

)2
+ (γm cos θi)2

[
−γm cos θi sin

(mπ
2L

[z − L]
)
− mπ

2L
cos
(mπ

2L
[z − L]

)] ∣∣∣∣L
−L

=
e−γmL cos θi(

mπ
2L

)2
+ (γm cos θi)2

[
−mπ

2L

]
− eγmL cos θi(

mπ
L

)2
+ (γm cos θi)2

[
−mπ

2L
cosmπ

]
.

So

Rm = −8π2smε0 sin θiE0(sm)J0(−jsma sin θi/c)

(
mπ
2L

)(
mπ
2L

)2
+ (γm cos θi)2

[
(−1)meγmL cos θi − e−γmL cos θi

]
.

Then
Cm = Cm1 + Cm2

where

Cm1 =

∫ L

−L

∫ L

−L

∂Im(z)

∂z

∂Im(z′)

∂z′
F (z − z′, sm) dz′ dz

=

∫ L

−L

∫ L

−L

(mπ
2L

)2
cos
(mπ

2L
[z − L]

)
cos
(mπ

2L
[z′ − L]

)
F (z − z′, sm) dz′ dz

and

Cm2 =

∫ L

−L

∫ L

−L

γ2
m

c
Im(z)Im(z′)g(z − z′, sm) dz′ dz

=

∫ L

−L

∫ L

−L

γ2
m

c
sin
(mπ

2L
[z − L]

)
sin
(mπ

2L
[z′ − L]

)
g(z − z′, sm) dz′ dz.
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Use the identities

cosx cos y ≡ 1

2
[cos(x− y) + cos(x+ y)], sinx sin y ≡ 1

2
[cos(x− y)− cos(x+ y)]

Then

Cm = Cm1 + Cm2

=
1

2

∫ L

−L

∫ L

−L

[(mπ
2L

)2
F (z − z′, sm) +

γ2
m

c
g(z − z′, sm)

]
cos
(mπ

2L
[z − z′]

)
dz′ dz

+
1

2

∫ L

−L

∫ L

−L

[(mπ
2L

)2
F (z − z′, sm)− γ2

m

c
g(z − z′, sm)

]
cos
(mπ

2L
[z + z′ − 2L]

)
dz′ dz.

Use

cos
(mπ

2L
[z + z′ − 2L]

)
= cos

(mπ
2L

[z + z′]
)

cos(mπ) + sin
(mπ

2L
[z + z′]

)
sin(mπ)

= (−1)m cos
(mπ

2L
[z + z′]

)
to get

Cm = C−m + (−1)mC+
m

where

C±m =
1

2

∫ L

−L

∫ L

−L

[(mπ
2L

)2
F (z − z′, sm)∓ γ2

m

c
g(z − z′, sm)

]
cos
(mπ

2L
[z ± z′]

)
dz′ dz.

7.18. The integral equation for I(φ, s) in the Laplace domain is, by (7.86),∫ π

−π
I(φ′, s)K(φ− φ′, s)b dφ′ = j

8π2ω/c

η0
Ei(φ, s)

=
8π2γ

η0
Ei(φ, s), −π ≤ φ ≤ π, γ = s/c.

Expand

K(φ− φ′, s) =

∞∑
n=−∞

αn(s)ejn(φ−φ′)

where

αn(s) =
n2

b2
Kn(s) +

γ2

2
[Kn−1(s) +Kn+1(s)],

Kn(s) =
1

2π

∫ π

−π
G(ζ, s)e−jnζ dζ,

G(ζ, s) =

∫ 2π

0

e−γR̄(ξ,ζ)

R̄(ξ, ζ)
dξ.

Substitute to get

∞∑
n=−∞

αn(s)

∫ π

−π
I(φ′, s)ejn(φ−φ′) dφ′ =

8π2γ

bη0
Ei(φ, s), −π ≤ φ ≤ π,
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or
∞∑

n=−∞
αn(s)ejnφ

∫ π

−π
I(φ′, s)e−jnφ

′
dφ′ =

8π2γ

bη0
Ei(φ, s), −π ≤ φ ≤ π,

Let

In(s) =
1

2π

∫ π

−π
I(φ′, s)e−jnφ

′
dφ′

be the Fourier series coefficients of I(φ′, s) so that

I(φ, s) =
∞∑

n=−∞
In(s)ejnφ.

Then
∞∑

n=−∞
αn(s)In(s)ejnφ =

4πγ

bη0
Ei(φ, s), −π ≤ φ ≤ π.

Now expand In(s) in a pole series:

In(s) =

2N∑
m=1

In,m(s)

s− sn,m
.

So
2N∑
m=1

∞∑
n=−∞

αn(s)
In,m(s)

s− sn,m
ejnφ =

4πγ

bη0
Ei(φ, s), −π ≤ φ ≤ π.

Multiply through by (s− sα,β) and let s→ sα,β. Only one term in the series is nonzero so that

αn(sn,m)In,m(sn,m) = 0

or
αn(sn,m) = 0.

Thus
n2

b2
Kn(s) +

γ2

2
[Kn−1(s) +Kn+1(s)] = 0

defines the natural frequencies sn,m. We see that for each modal index n there is an infinite number
of natural frequencies sn,m and modal amplitudes In,m(sn,m).

7.19. Let

I =

∫ zm

−L
ejk0u cos θi sin k0(zm − u) du

= −
∫ zm

−L
eu(jk0 cos θi) sin(k0u− k0zm) du.

Use ∫
eax sin(bx+ c) dx =

eax

a2 + b2
[a sin(bx+ c)− b cos(bx+ c)]
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to get

I = − ejk0u cos θi

k2
0 − k2

0 cos2 θi
[jk0 cos θi sin k0(u− zm)− k0 cos k0(u− zm)]

∣∣∣∣zm
−L

= −e
jk0zm cos θi

k2
0 sin2 θi

[−k0] +
e−jk0L cos θi

k2
0 sin2 θi

[−jk0 cos θi sin k0(L+ zm)− k0 cos k0(L+ zm)].

Thus

bm = −j 8π2

η0
Ẽ0 sin θiJ0(k0a sin θi)

[
ejk0zm cos θi

k0 sin2 θi
− j cos θi sin k0(L+ zm)

k0 sin θi
− cos k0(L+ zm)

k0 sin2 θi

]
= −j 8π2

η0
Ẽ0
J0(k0a sin θi)

k0 sin θi

[
ejk0zm cos θi − j cos θi sin k0(zm + L)− cos k0(zm + L)

]
.

7.20. Note that we can move ρ′ to the origin without loss of generality. In that case, the line
source lies along the z-axis. Setting ρ′ = 0 gives

G2D(ρ|0) =
1

4j
H

(2)
0 (k0ρ).

We have

∇2G2D =
1

ρ

∂

∂ρ

(
ρ
∂G2D

∂ρ

)
=

1

ρ

∂

∂ρ

(
ρ
k0

4j
H

(2)′
0 (k0ρ)

)
, ρ 6= 0

=
1

ρ

[
ρ
k2

0

4j
H

(2)′′
0 (k0ρ) +

k0

4j
H

(2)′
0 (k0ρ)

]
=
k2

0

4j

[
H

(2)′′
0 (k0ρ) +

1

k0ρ
H

(2)′
0 (k0ρ)

]
.

So

∇2G2D + k2
0G2D =

k2
0

4j

[
H

(2)′′
0 (k0ρ) +

1

k0ρ
H

(2)′
0 (k0ρ) +H

(2)
0 (k0ρ)

]
.

But (E.1) shows that H
(2)
0 (z) satisfies

d2

dz2
H

(2)
0 (z) +

1

z

d

dz
H

(2)
0 (z) +H

(2)
0 (z) = 0.

Thus
∇2G2D + k2

0G2D = 0, ρ 6= 0.

To examine the behavior of G2D near the origin, integrate the equation

∇2G2D + k2
0G2D = −δ(ρ− ρ′)

over the disk 0 ≤ ρ ≤ a. Let

I =

∫
S

[∇ · (∇G2D) + k2
0G2D] dS

=

∫
Γ
[ρ̂ · ∇G2D] dS + k2

0

∫
S
G2D dS
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by (B.26), where Γ is the contour of the disk. But

∇G2D = ρ̂
∂

∂ρ

1

4j
H

(2)
0 (k0ρ) = ρ̂

k0

4j
H

(2)′
0 (k0ρ) = −ρ̂k0

4j
H

(2)
1 (k0ρ)

so

I = −
∫ 2π

0

k0

4j
H

(2)
1 (ka)a dφ+

∫ 2π

0

∫ a

δ

k2
0

4j
H

(2)
0 (k0ρ)ρ dρ dφ

= −2π
k0

4j
aH

(2)
1 (ka) +

k2
0

4j
2π

∫ a

δ
H

(2)
0 (k0ρ)ρ dρ

where δ → 0. Use (E.106) to write

I = −2π
k0

4j
aH

(2)
1 (ka) +

k2
0

4j
2π

[
a

k0
H

(2)
1 (ka)− δ

k0
H

(2)
1 (kδ)

]
= −2π

k0

4j
δH

(2)
1 (kδ).

Thus

lim
δ→0

I = −2π
k0

4j
lim
δ→0

δH
(2)
1 (kδ)

= −2π
k0

4j
lim
δ→0

δ

[
k0δ

2
− j

(
− 1

π

2

k0δ

)]
= −1

and ∫
S

[∇2G2D + k2
0G2D] dS = −1.

Now since

−
∫
S
δ(ρ) dS = −

∫∫
δ(x)δ(y) dx dy = −1,

we have established that
∇2G2D + k2

0G2D = −δ(ρ− ρ′).

7.21. The electric line source produces fields (excitation and scattered) that are TM to z. Thus,
the solution to this problem is given in Section 7.4.2.1. Only the excitation field changes, so the
matrix entries Amn remain the same. However, the bm change.

The field of the line source is, from (4.343),

Ẽiz = −ωµ̃
4
ĨH

(2)
0 (k0|ρ− ρ′|).

For ρ on the strip, we use ρ′ = dŷ and ρ = xx̂ so that

|ρ− ρ′| =
√
d2 + x2.

Thus

bm =
4

ωµ0
Ẽiz(xm) = −ĨH(2)

0 (k0

√
x2
m + d2).
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Consider the numerical solution for the induced current on the strip using the following parameters:
f = 300 MHz, w = 1 m, N = 201, Ĩ = 1 A. We get the following results.

(a) d = w/4. Comparing Figures 52 and 53 to text Figure 7.35, we see that the current magnitude
is very strong immediately beneath the line source, when the line source is close to the strip. Also,
the phase at the center of the strip is affected significantly.
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Figure 52

(b) d = w. Comparing Figures 54 and 55 to Figure 7.35, we see that the current magnitude is still
strong immediately beneath the line source, but not as strong as in the case of d = w/4.

(c) d = 4w. Comparing Figures 56 and 57 to text Figure 7.35, we see that the current magnitude
is very similar to that for plane-wave excitation. This is because when the line source is far from
the strip, the excitation field is fairly uniform across the strip.

7.22.

Amn =
1

k0

∫ k0∆(m−n+ 1
2

)

k0∆(m−n− 1
2

)
H

(2)
0 (|u|) du.

An+1,n =
1

k0

∫ 3
2
k0∆

1
2
k0∆

H
(2)
0 (|u|) du =

1

k0

∫ 3
2
k0∆

1
2
k0∆

H
(2)
0 (u) du.
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Figure 53

An−1,n =
1

k0

∫ − 1
2
k0∆

− 3
2
k0∆

H
(2)
0 (|u|) du =

1

k0

∫ 3
2
k0∆

1
2
k0∆

H
(2)
0 (|x|) dx = An+1,n.

Let

An+1,n =
1

k0

∫ 3
2
k0∆

1
2
k0∆

[
H

(2)
0 (u)− f0(u)

]
du+

1

k0

∫ 3
2
k0∆

1
2
k0∆

f0(u) du.
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Figure 54

Examine

I =
1

k0

∫ 3
2
k0∆

1
2
k0∆

f0(u) du

=
1

k0

∫ 3
2
k0∆

1
2
k0∆

[
1− j 2

π
(lnu+ γ − ln 2)

]
du

=
1

k0
(k0∆)

[
1− j 2

π
(γ − ln 2)

]
+

1

k0

∫ 3
2
k0∆

1
2
k0∆

(
−j 2

π

)
lnu du

=
1

k0
(k0∆)

[
1− j 2

π
(γ − ln 2)

]
+

1

k0

(
−j 2

π

)
[u lnu− u]

∣∣∣∣ 3
2
k0∆

1
2
k0∆

= ∆− j 2∆

π

[
γ − ln 2− 1 +

3

2
ln 3 + ln k0

∆

2

]
.
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Figure 55

Thus

An+1,n = An−1,n =
1

k0

∫ 3
2
k0∆

1
2
k0∆

[H
(2)
0 (u)− f0(u)] du

+ ∆− j 2∆

π

[
γ − ln 2 +

3

2
ln 3 + ln k0

∆

2
− 1

]
.

7.23. (a) For TE polarization, consider Figure 7.38. The current induced within the conducting
strip is x-directed, so the relationship between the incident and scattered fields within the strip is
given according to (7.23) and (7.27) as

Ẽsx − J̃x(x)Zi(x) = −Ẽix(x)

where

Zi(x) =
1

[σ̃(x) + jω(ε̃(x)− ε0)]t
.

Substitution from (7.156) and (7.155) gives the equation

−jω
k2

0

∂2Ãsex
∂x2

− jωÃsex − J̃x(x)Zi(x) = −Ẽ0 sinφ0e
jk0x cosφ0
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Figure 56

or (
∂2

∂x2
+ k2

0

)
Ãsex = − k

2
0

jω
J̃x(x)Zi(x) +

k2
0

jω
Ẽ0 sinφ0e

jk0x cosφ0 .

The solution to this differential equation is

Ãsex(x) = fp(x) + fc(x)

where
fc(x) = C1 sin k0x+ C2 cos k0x

and

fp(x) =
1

k0

∫ x

x0

[
−j k

2
0

ω
sinφ0e

jk0u cosφ0 sin k0(x− u)

]
du+

1

k0

∫ x

x0

j
k2

0

ω
J̃x(u)Zi(u) sin k0(x− u) du.

Choose x0 = 0. The first integral is given in the text. With that we find

fp(x) = −j Ẽ0

ω

1

sinφ0
ejk0x cosφ0 + j

k0

ω

∫ x

0
Zi(u)J̃x(u) sin k0(x− u) du.
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Figure 57

Substituting for Ãsex from (7.145), we write the integral equation as

µ0

4j

∫ w

−w
J̃x(x′)H

(2)
0 (k0|x− x′|) dx′ + C1 sin k0x+ C2 cos k0x

= −j Ẽ0

ω

1

sinφ0
ejk0x cosφ0 + j

k0

ω

∫ x

0
Zi(u)J̃x(u) sin k0(x− u) du.

Since ωµ0 = k0η0, we have∫ w

−w
J̃x(x′)H

(2)
0 (k0|x− x′|) dx′ + C1 sin k0x+ C2 cos k0x

− 4

η0

∫ x

0
Zi(u)J̃x(u) sin k0(x− u) du =

4Ẽ0

η0k0

1

sinφ0
ejk0x cosφ0 ,

holding for −w ≤ x ≤ w. This is Hallen’s integral equation for the lossy strip.

(b) To solve the integral equation, expand J̃x(x) in a rectangular pulse series:

J̃x(x) =

N∑
n=1

anPn(x), Pn(x) =

{
1, xn −∆/2 ≤ x ≤ xn + ∆/2,

0, elsewhere,
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where

xn = −w +

(
n− 1

2

)
∆, ∆ = 2w/N.

Substitute this and point match at x = xm. At this point let’s consider only the case Zi(u) = Zi =
constant.

N∑
n=1

an

∫ xn+∆/2

xn−∆/2
H

(2)
0 (k0|xm − x′|) dx′ + C1 sin k0xm + C2 cos k0xm

− 4Zi

η0

N∑
n=1

an

∫ xm

0
Pn(u) sin k0(xm − u) du = bm

where

bm =
4Ẽ0

η0k0

1

sinφ0
ejk0xm cosφ0 .

Examine

I =

∫ xm

0
Pn(u) sin k0(xm − u) du.

(a) n < m

I = − 1

k0

[
cos k0

([
m− n+

1

2

]
∆

)
− cos k0

([
m− n− 1

2

]
∆

)]
.

(b) n = m

I = − 1

k0

[
cos k0

∆

2
− 1

]
.

(c) n > m
I = 0.

Next, use the substitution u = xm−x′ in the remaining integral. This gives the system of equations

N∑
n=1

an

∫ (m−n+ 1
2

)∆

(m−n−1/2)∆
H

(2)
0 (k0|u|) du+ C1 sin k0xm + C2 cos k0xm +

N∑
n=1

anFmn = bm

or
N∑
n=1

an[Amn + Fmn] = bm

where

Fmn =


4Zi

k0η0

[
cos k0

([
m− n+ 1

2

]
∆
)
− cos k0

([
m− n− 1

2

]
∆
)]
, n < m,

4Zi

k0η0

[
cos k0

∆
2 − 1

]
, n = m,

0, n > m.

Two additional equation are generated by the conditions J̃x(−w) = 0 and J̃x(w) = 0. This gives
an (N + 2) × (N + 2) matrix equation. The matrix entries change from Amn in the PEC case to
Amn+Fmn in the lossy case. Everything else remains the same. Note that when Zi = 0, the results
for the PEC case are recovered.
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(c) Let the numerical values be as given in the problem statement. The magnitude of the current
density is shown in Figure 58, and is compared to the current for a PEC strip. It is seen that as
the strip becomes lossy, the induced current is reduced in strength and the density becomes more
uniform. A similar effect was seen in the case of TM polarization.
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Figure 58

The phase of the current density is shown in Figure 59 and is compared to the current for a PEC
strip. It is seen that as the strip becomes lossy, the phase changes to near 180◦ and is very uniform
across the strip.

7.24. Let
fa(z) = Az2 +Bz + C.

Then fa(0)=C, so we need only to find C.
Evaluate:

fa

(
∆

2

)
= a1 = A

(
∆

2

)2

+B

(
∆

2

)
+ C

fa

(
3∆

2

)
= a2 = A

(
3∆

2

)2

+B

(
3∆

2

)
+ C

fa

(
5∆

2

)
= a3 = A

(
5∆

2

)2

+B

(
5∆

2

)
+ C
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Let ā1 = 4a1, ā2 = 4a2, ā3 = 4a3, Ā = A∆2, B̄ = B∆, and C̄ = 4C. Then

ā1 = Ā+ 2B̄ + C̄

ā2 = 9Ā+ 6B̄ + C̄

ā3 = 25Ā+ 10B̄ + C̄.

Eliminating Ā gives the two equations

ā2 − 9ā1 = −12B̄ − 8C̄

ā3 − 25ā1 = −40B̄ − 24C̄.

Eliminating B̄ then gives
60ā1 − 40ā2 + 12ā3 = 32C̄,

and so

Fa(0) = C =
C̄

4
=

1

8
[15a1 − 10a2 + 3a3] .
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